1
|
Boregowda SV, Booker CN, Strivelli J, Phinney DG. Mesenchymal Stem/Stromal Cells (MSCs) from Mouse Pelvic vs. Long Bones Exhibit Disparate Critical Quality Attributes: Implications for Translational Studies. Cells 2025; 14:274. [PMID: 39996746 PMCID: PMC11853496 DOI: 10.3390/cells14040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/07/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been exploited as an experimental cell therapy in a broad array of clinical applications but have underperformed based on results from pre-clinical studies due to gaps in translating pre-clinical findings to human patients. Herein, we isolated mouse MSCs from pelvic bone marrow (BMP), a preferred source for human MSCs, and compared their growth, differentiation, and immuno-modulatory activity to those derived from long bone marrow (BML), the traditional source of mouse MSCs. We report that BMP-MSCs exhibit significantly enhanced growth kinetics in 5% and 21% oxygen saturation and superior bi-lineage differentiation and hematopoiesis-supporting activity as compared to BML-MSCs. Additionally, we show that TNF upregulates inducible nitric oxide synthase (NOS2) in BML- and BMP- MSCs and augments their immune suppressive activity in cell-based assays, while interferon-gamma (INFG) upregulates indoleamine, 2-3, dioxygenase (IDO1) and enhances the immune suppressive activity of only BMP-MSCs. These results indicate that mouse MSCs sourced from different bone compartments exhibit measurable differences in critical quality attributes, and these differences are comparable to those observed across species. Based on these differences, BMP- MSCs represent a useful resource to model the behavior of human BM-derived MSCs.
Collapse
Affiliation(s)
| | | | | | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, USA; (S.V.B.); (C.N.B.); (J.S.)
| |
Collapse
|
2
|
Jia Y, Wei Z, Feng J, Lei M, Yang Y, Liu J, Ma Y, Chen W, Huang G, Genin GM, Guo X, Li Y, Xu F. A Heart Rate Matched Patch for Mechano-Chemical Treatment of Myocardial Infarction: Optimal Design and Transspecies Application. RESEARCH (WASHINGTON, D.C.) 2024; 7:0517. [PMID: 39582687 PMCID: PMC11582187 DOI: 10.34133/research.0517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 11/26/2024]
Abstract
After myocardial infarction (MI), ventricular dilation and the microscopic passive stretching of the infarcted border zone is the meaning contributor to the continuous expansion of myocardial fibrosis. Epicardial hydrogel patches have been demonstrated to alleviate this sequela of MI in small-animal models. However, these have not been successfully translated to humans or even large animals, in part because of challenges in attaining both the greater stiffness and slower viscoelastic relaxation that mathematical models predict to be optimal for application to larger, slower-beating hearts. Here, using borate-based dynamic covalent chemistry, we develop an injectable "heart rate matched" viscoelastic gelatin (VGtn) hydrogel with a gel point tunable across the stiffnesses and frequencies that are predicted to transspecies and cross-scale cardiac repair after MI. Small-animal experiments demonstrated that, compared to heart rate mismatched patches, the heart rate matched VGtn patches inhibited ventricular bulging and attenuated stress concentrations in the myocardium after MI. In particular, the viscoelastic patch can coordinate the microscopic strain at the infarction boundary. VGtn loaded with anti-fibrotic agents further reduced myocardial damage and promoted angiogenesis in the myocardium. The tuned heart rate matched patches demonstrated similar benefits in a larger-scale and lower heart rate porcine MI model. Results suggest that heart rate matched VGtn patches may hold potential for clinical translation.
Collapse
Affiliation(s)
- Yuanbo Jia
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, P.R. China
- Key Laboratory of Surgical Critical Care and Life Support (Xi’an Jiaotong University), Ministry of Education, Xi’an, P.R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Zhao Wei
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jinteng Feng
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Meng Lei
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yanshen Yang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Jingyi Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Yufei Ma
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| | - Weiguo Chen
- Department of Cardiology, Tangdu Hospital,
the Air Force Military Medical University, Xi’an, Shaanxi 710038, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering,
Wuhan University, Wuhan 430072, P.R. China
| | - Guy M. Genin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
- Department of Mechanical Engineering & Materials Science,
Washington University in St. Louis, St. Louis, MO 63130, USA
- NSF Science and Technology Center for Engineering Mechanobiology,
Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiaogang Guo
- Department of Cardiology, the First Affiliated Hospital, School of Medicine,
Zhejiang University, Hangzhou 310003, P.R. China
| | - Yan Li
- Department of Cardiology, Tangdu Hospital,
the Air Force Military Medical University, Xi’an, Shaanxi 710038, P.R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an 710049, P.R. China
- MOE Key Laboratory of Biomedical Information Engineering,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, P.R. China
| |
Collapse
|
3
|
Jung JH, Kang SA, Park JH, Kim SD, Yu HS, Mun SJ, Cho KS. Immunomodulatory Effect of Adipose Stem Cell-Derived Extra-Cellular Vesicles on Cytokine Expression and Regulatory T Cells in Patients with Asthma. Int J Mol Sci 2024; 25:10524. [PMID: 39408853 PMCID: PMC11477288 DOI: 10.3390/ijms251910524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Although mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) are as effective as MSCs in the suppression of allergic airway inflammation, few studies have evaluated the immunomodulatory capacity of MSC-derived EVs in patients with asthma. Thus, we assessed the effects of adipose stem cell (ASC)-derived EVs on cytokine expression and regulatory T cells (Tregs) in peripheral blood mononuclear cells (PBMCs) of asthmatic patients. PBMCs (1 × 106 cells/mL) were isolated from asthmatic patient and healthy controls and co-cultured with 1 μg/mL of ASC-derived EVs. Th (T helper) 1-, Th2-, and Treg-related cytokine expression, fluorescence-activated cell sorting analysis of CD4+CD25+FOXP3+ T cells, and co-stimulatory molecules were analyzed before and after ASC-derived EV treatment. The expression levels of IL-4 and costimulatory molecules such as CD83 and CD86 were significantly higher in PBMCs of asthmatic patients than in control PBMCs. However, ASC-derived EV treatment significantly decreased the levels of interleukin (IL)-4 and co-stimulatory molecules such as CD83 and CD86 in the phytohemagglutinin (PHA)-stimulated PBMC of asthmatic patients. Furthermore, ASC-derived EVs remarkably increased the transforming growth factor-β (TGF-β) levels and expression of Tregs in the PBMC of asthmatic patients. ASC-derived EVs induce Treg expansion and have immunomodulatory effects by downregulating IL-4 and upregulating TGF-β in PBMCs of asthmatic patients.
Collapse
Affiliation(s)
- Jae Hoon Jung
- Department of Otorhinolaryngology, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Shin Ae Kang
- Department of Environmental Medical Biology, Catholic Kwandong University College of Medicine, Gangneung 25601, Republic of Korea;
| | - Ji-Hwan Park
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-H.P.); (S.-D.K.)
| | - Sung-Dong Kim
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-H.P.); (S.-D.K.)
| | - Hak Sun Yu
- Department of Parasitology and Tropical medicine, Pusan National University School of Medicine, Yangsan 50612, Republic of Korea;
| | - Sue Jean Mun
- Department of Otorhinolaryngology and Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea;
| | - Kyu-Sup Cho
- Department of Otorhinolaryngology and Biomedical Research Institute, Pusan National University School of Medicine, Pusan National University Hospital, Busan 49241, Republic of Korea; (J.-H.P.); (S.-D.K.)
| |
Collapse
|
4
|
Zhou L, Huang C, HuangFu C, Shen P, Hu Y, Wang N, Li G, Deng H, Xia T, Zhou Y, Li J, Bai Z, Zhou W, Gao Y. Low-dose radiation-induced SUMOylation of NICD1 negatively regulates osteogenic differentiation in BMSCs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116655. [PMID: 38968871 DOI: 10.1016/j.ecoenv.2024.116655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.10 Gy) disturb the serum Mg2+ level and Notch1 signal in the mouse femur tissues, the effects of LDR on osteogenesis and the underlying molecular mechanisms were investigated based on an in vitro culture system for bone marrow stromal cells (BMSCs). Our data showed that cumulative LDR suppressed the osteogenic potential in BMSCs as a result of upregulation of Notch1 signaling. Further analyses indicated that the upregulation of NICD1 (Notch1 intracellular domain), the key intracellular domain for Notch1 signaling, under LDR was a consequence of enhanced protein stabilization caused by SUMOylation (small ubiquitin-like modification). Specifically, the downregulation of SENP1 (sentrin/SUMO-specific protease 1) expression induced by LDR enhanced the SUMOylation of NICD1, causing the accumulation of Notch1 signaling, which eventually inhibited the osteogenic potential of BMSCs. In conclusion, this work expounded on the mechanisms underlying the impacts of LDR on bone metabolism and shed light on the research on bone regeneration under radiation.
Collapse
Affiliation(s)
- Lei Zhou
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Congshu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chaoji HuangFu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yangyi Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Huifang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tiantian Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yongqiang Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jiamiao Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
5
|
Kang QM, Wang J, Chen SM, Song SR, Yu SC. Glioma-associated mesenchymal stem cells. Brain 2024; 147:755-765. [PMID: 37850820 DOI: 10.1093/brain/awad360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 09/06/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have revealed that glioma-associated mesenchymal stem cells play instrumental roles in tumorigenesis and tumour progression and cannot be ignored as a cellular component of the glioma microenvironment. Nevertheless, the origin of these cells and their roles are poorly understood. The only relevant studies have shown that glioma-associated mesenchymal stem cells play a large role in promoting tumour proliferation, invasion and angiogenesis. This review provides a comprehensive summary of their discovery and definition, origin, differences from other tissue-derived mesenchymal stem cells, spatial distribution, functions and prognostic and therapeutic opportunities to deepen the understanding of these cells and provide new insight into the treatment of glioma.
Collapse
Affiliation(s)
- Qing-Mei Kang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Jun Wang
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Man Chen
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Si-Rong Song
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Chongqing, 400038, China
- International Joint Research Center for Precision Biotherapy, Ministry of Science and Technology, Chongqing, 400038, China
- Key Laboratory of Cancer Immunopathology, Ministry of Education, Chongqing, 400038, China
- Jin-feng Laboratory, Chongqing, 401329, China
| |
Collapse
|
6
|
Ao M, Ma H, Guo M, Dai X, Zhang X. Research hotspots and emerging trends in mesenchymal stem/stromal cells in bronchopulmonary dysplasia. Hum Cell 2024; 37:381-393. [PMID: 38159195 DOI: 10.1007/s13577-023-01018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a prevalent lung disease in neonates that is associated with numerous complications and high mortality. The promising approach to treat BPD is the use of mesenchymal stem cells (MSCs), However, the current treatment of MSCs presents safety concerns, including occlusion of blood vessels and tumorigenicity. In this study, relevant publications from the Web of Science Core Collection were downloaded in January 2023. The acquired data were analyzed and predicted for trends and hotspots in this field using CiteSpace software. Results revealed that in recent years, the focus of co-cited references has been primarily on the clinical studies of MSCs and the application of MSCs derivatives for treating BPD models. The keywords that have gained attention are extracellular vesicles and exosomes. The United States has emerged as the most influential co-authoring country in this field. Among the co-cited journals, the American Journal of Respiratory and Critical Care Medicine holds the highest influence. Thus, this study provides trends in publications, collaboration, research interests, and hotspots, and provides clues for novel ideas and strategies in to further MSCs treatments for BPD.
Collapse
Affiliation(s)
- Meng Ao
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Heqian Ma
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Meizhen Guo
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xuelin Dai
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China
| | - Xiaoying Zhang
- The School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin, 541100, People's Republic of China.
- The Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, 1 Zhiyuan Road, Lingui District, Guilin, 541199, People's Republic of China.
| |
Collapse
|
7
|
Chouaib B, Haack-Sørensen M, Chaubron F, Cuisinier F, Collart-Dutilleul PY. Towards the Standardization of Mesenchymal Stem Cell Secretome-Derived Product Manufacturing for Tissue Regeneration. Int J Mol Sci 2023; 24:12594. [PMID: 37628774 PMCID: PMC10454619 DOI: 10.3390/ijms241612594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/29/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stem cell secretome or conditioned medium (MSC-CM) is a combination of biomolecules and growth factors in cell culture growth medium, secreted by mesenchymal stem cells (MSCs), and the starting point of several derived products. MSC-CM and its derivatives could be applied after injuries and could mediate most of the beneficial regenerative effects of MSCs without the possible side effects of using MSCs themselves. However, before the clinical application of these promising biopharmaceuticals, several issues such as manufacturing protocols and quality control must be addressed. This review aims to underline the influence of the procedure for conditioned medium production on the quality of the secretome and its derivatives and highlights the questions considering cell sources and donors, cell expansion, cell passage number and confluency, conditioning period, cell culture medium, microenvironment cues, and secretome-derived product purification. A high degree of variability in MSC secretomes is revealed based on these parameters, confirming the need to standardize and optimize protocols. Understanding how bioprocessing and manufacturing conditions interact to determine the quantity, quality, and profile of MSC-CM is essential to the development of good manufacturing practice (GMP)-compliant procedures suitable for replacing mesenchymal stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Batoul Chouaib
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Human Health Department, IRSN, French Institute for Radiological Protection and Nuclear Safety, SERAMED, LRMed, 92262 Fontenay-aux-Roses, France
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre 9302, Rigshospitalet University of Copenhagen, Henrik Harpestrengsvej 4C, 2100 Copenhagen, Denmark
| | - Franck Chaubron
- Institut Clinident BioPharma, Biopôle Clermont-Limagne, 63360 Saint Beauzire, France;
| | - Frederic Cuisinier
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| | - Pierre-Yves Collart-Dutilleul
- LBN, University of Montpellier, 34000 Montpellier, France; (B.C.); (F.C.)
- Faculty of Dentistry, University of Montpellier, 34000 Montpellier, France
- Service Odontologie, CHU Montpellier, 34000 Montpellier, France
| |
Collapse
|
8
|
Biglari N, Mehdizadeh A, Vafaei Mastanabad M, Gharaeikhezri MH, Gol Mohammad Pour Afrakoti L, Pourbala H, Yousefi M, Soltani-Zangbar MS. Application of mesenchymal stem cells (MSCs) in neurodegenerative disorders: History, findings, and prospective challenges. Pathol Res Pract 2023; 247:154541. [PMID: 37245265 DOI: 10.1016/j.prp.2023.154541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
Over the past few decades, the application of mesenchymal stem cells has captured the attention of researchers and practitioners worldwide. These cells can be obtained from practically every tissue in the body and are used to treat a broad variety of conditions, most notably neurological diseases such as Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, and Alzheimer's disease. Studies are still being conducted, and the results of these studies have led to the identification of several different molecular pathways involved in the neuroglial speciation process. These molecular systems are closely regulated and interconnected due to the coordinated efforts of many components that make up the machinery responsible for cell signaling. Within the scope of this study, we compared and contrasted the numerous mesenchymal cell sources and their cellular features. These many sources of mesenchymal cells included adipocyte cells, fetal umbilical cord tissue, and bone marrow. In addition, we investigated whether these cells can potentially treat and modify neurodegenerative illnesses.
Collapse
Affiliation(s)
- Negin Biglari
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Vafaei Mastanabad
- Neurosurgery Department, Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | | | - Hooman Pourbala
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Sadegh Soltani-Zangbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Echalar B, Dostalova D, Palacka K, Javorkova E, Hermankova B, Cervena T, Zajicova A, Holan V, Rossner P. Effects of antimicrobial metal nanoparticles on characteristics and function properties of mouse mesenchymal stem cells. Toxicol In Vitro 2023; 87:105536. [PMID: 36528116 DOI: 10.1016/j.tiv.2022.105536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/21/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Nanoparticles (NPs) have a wide use in various field of industry and in medicine, where they represent a promise for their antimicrobial effects. Simultaneous application of NPs and therapeutic stem cells can speed up tissue regeneration and improve healing process but there is a danger of negative impacts of NPs on stem cells. Therefore, we tested effects of four types of metal antimicrobial NPs on characteristics and function properties of mouse mesenchymal stem cells (MSCs) in vitro. All types of tested NPs, i.e. zinc oxide, silver, copper oxide and titanium dioxide, exerted negative effects on the expression of phenotypic markers, metabolic activity, differentiation potential, expression of genes for immunoregulatory molecules and on production of cytokines and growth factors by MSCs. However, there were apparent differences in the impact of individual types of NPs on tested characteristics and function properties of MSCs. The results showed that individual types of NPs influence the activity of MSCs, and thus the use of metal NPs during tissue regeneration and in combination with stem cell therapy should be well considered.
Collapse
Affiliation(s)
- Barbora Echalar
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic.
| | - Dominika Dostalova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Katerina Palacka
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Eliska Javorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Barbora Hermankova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Tereza Cervena
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Alena Zajicova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Vladimir Holan
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic; Department of Cell Biology, Faculty of Science, Charles University, 128 43 Prague, Czech Republic
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
10
|
Luo W, Geng Y, Gao M, Cao M, Wang J, Yang J, Sun C, Yan X. Isolation and Identification of Bone Marrow Mesenchymal Stem Cells from Forest Musk Deer. Animals (Basel) 2022; 13:ani13010017. [PMID: 36611625 PMCID: PMC9817501 DOI: 10.3390/ani13010017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The forest musk deer (Moschus berezovskii) is an endangered animal that produces musk that is utilized for medical applications worldwide, and this species primarily lives in China. Animal-derived musk can be employed as an important ingredient in Chinese medicine. To investigate the properties of bone marrow mesenchymal stem cells (MSCs) obtained from the bone marrow of forest deer for future application, MSCs were isolated and cultivated in vitro. The properties and differentiation of these cells were assessed at the cellular and gene levels. The results show that 81,533 expressed genes were detected by RNA sequencing, and marker genes of MSCs were expressed in the cells. Karyotype analysis of the cells determined the karyotype to be normal, and marker proteins of MSCs were observed to be expressed in the cell membranes. Cells were differentiated into osteoblasts, adipocytes, and chondroblasts. The expression of genes related to osteoblasts, adipocytes, and chondroblasts was observed to be increased. The results of this study demonstrate that the properties of the cells isolated from bone marrow were in keeping with the characteristics of MSCs, providing a possible basis for future research.
Collapse
|
11
|
Wang Z, Sun Y, Shen R, Tang X, Xu Y, Zhang Y, Liu Y. Global scientific trends on the immunomodulation of mesenchymal stem cells in the 21st century: A bibliometric and visualized analysis. Front Immunol 2022; 13:984984. [PMID: 36090982 PMCID: PMC9449834 DOI: 10.3389/fimmu.2022.984984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background Since the discovery of the immunomodulatory functions of mesenchymal stem cells (MSCs), their application in immunomodulation has attracted considerable attention, and an increasing number of studies have been conducted worldwide. Our research aimed to investigate the global status and trends in this field. Methods Publications on the immunomodulatory functions of MSCs from 1 January 2000 to 7 March 2022 were retrieved from the Web of Science Core Collection. The data were studied and indexed using the bibliometric methodology. Visualization analysis, co-authorship, co-occurrence analysis, and publication trends in MSC immunomodulation were conducted using the VOSviewer software. Results In total, 4,227 papers were included in the study. The number of publications and research interests has significantly increased globally. China published the highest number of related articles, while the US published articles with the highest number of citations. Stem Cell Research & Therapy had the highest number of publications. Sun Yat-sen University, Shanghai Jiao Tong University, Harvard University, and Seoul National University were the most contributive institutions. Furthermore, the studies were divided into four research hotspots for MSC immunomodulation: MSC immunomodulation in regenerative medicine, the effects and mechanisms of MSC immunomodulation, MSC therapy for immune diseases, and the cell source of MSCs. Conclusion This study indicates that the number of publications on MSC immunomodulation will increase in the future, and MSC immunomodulation mechanisms and clinical applications of MSC immunotherapy should be the next hotspots in this research field.
Collapse
Affiliation(s)
- Zhongqing Wang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yuqiang Sun
- Department of Emergency, The First Hospital of China Medical University, Shenyang, China
| | - Rou Shen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xia Tang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yingxin Xu
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Ye Zhang
- Department of Information Center, The First Hospital of China Medical University, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- *Correspondence: Yao Liu,
| |
Collapse
|
12
|
Hu L, Xie X, Xue H, Wang T, Panayi AC, Lin Z, Xiong Y, Cao F, Yan C, Chen L, Cheng P, Zha K, Sun Y, Liu G, Yu C, Hu Y, Tao R, Zhou W, Mi B, Liu G. MiR-1224-5p modulates osteogenesis by coordinating osteoblast/osteoclast differentiation via the Rap1 signaling target ADCY2. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:961-972. [PMID: 35831436 PMCID: PMC9355958 DOI: 10.1038/s12276-022-00799-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/21/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies. Osteoblastogenesis and osteoclastogenesis were detected by ALP, ARS, and TRAP staining and bone slice resorption pit assays. The miR-1224-5p target gene was assessed by siRNA-mediated target gene knockdown and luciferase reporter assays. To explore the Rap1 pathway, we performed high-throughput sequencing, western blotting, RT-PCR, chromatin immunoprecipitation assays and immunohistochemical staining. In vivo, bone healing was judged by the cortical femoral defect, cranial bone defect and femoral fracture models. Progression of osteoporosis was evaluated by an ovariectomy model and an aged osteoporosis model. We discovered that the expression of miR-1224-5p was positively correlated with fracture healing progression. Moreover, in vitro, overexpression of miR-1224-5p slowed Rankl-induced osteoclast differentiation and promoted osteoblast differentiation via the Rap1-signaling pathway by targeting ADCY2. In addition, in vivo overexpression of miR-1224-5p significantly promoted fracture healing and ameliorated the progression of osteoporosis caused by estrogen deficiency or aging. Furthermore, knockdown of miRNA-1224-5p inhibited bone regeneration in mice and accelerated the progression of osteoporosis in elderly mice. Taken together, these results identify miR-1224-5p as a key bone osteogenic regulator, which may be a potential therapeutic target for osteoporosis and fracture nonunion. A microRNA called miR-1224-5p plays a key role in regulating the balance between bone formation and resorption, and may help in developing therapies for osteoporosis and hard-to-heal fractures. MicroRNAs are small, non-coding RNAs that regulate gene expression. Levels of miR-1224-5p were known to be low in patients with osteoporosis, caused by imbalanced bone resorption and formation, and high in patients with fractures. Guohui Liu and Bobin Mi at Union Hospital, Tongji Medical College, Huazhong University of Science and Technology in Wuhan, China, and coworkers hypothesized that miR-1224-5p might affect the bone resorption/formation balance. They found that miR-1224-5p levels correlated with fracture healing progress. Boosting levels in mice made bones stronger and improved fracture healing, whereas suppressing levels impaired fracture healing and accelerated osteoporosis. These results show that miR-1224-5p represents a potential target for treatment for osteoporosis and for bone-healing deficits. A proposed model illustrating (Supplementary materials e) miRNA-1224-5p-mediated bone cell differentiation. Schematic representation of the mechanism through which miRNA-1224-5p mediates bone cell differentiation in fracture healing and osteoporosis.
Collapse
Affiliation(s)
- Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Xudong Xie
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Hang Xue
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Tiantian Wang
- Department of emergency medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Adriana C Panayi
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ze Lin
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yuan Xiong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Chengcheng Yan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Lang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Peng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yun Sun
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.,Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
| | - Guodong Liu
- Medical Center of Trauma and War Injuries, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Yiqiang Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Ranyang Tao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, 430022, Wuhan, China.
| |
Collapse
|
13
|
Ebrahimi L, Samadikuchaksaraei A, Joghataei MT, Safa M, Abtahi Froushani SM, Ghasemian M, Zolfaghari S, Mozafari M, Brouki Milan P. Transplantation of decellularised human amniotic membranes seeded with mesenchymal stem cell-educated macrophages into animal models. J Biomed Mater Res B Appl Biomater 2022; 110:1637-1650. [PMID: 35113492 DOI: 10.1002/jbm.b.35024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
The reconstruction of chronic skin wounds remains a public health challenge in dermatology. Precisely controlling and monitoring the wound-healing process should result in enhanced outcomes for the patient. Cell-based therapies have shown great potential in medicine due to their immunomodulatory and healing properties. Herein, we produced activated macrophages by treating circulating monocytes with mesenchymal stem cell (MSC) supernatant. We also demonstrated the critical role of activated macrophages transplantation using amniotic membranes in accelerating wound healing in an animal wound model. The activated macrophages not only exhibited immunomodulatory cytokines like transforming growth factorβ (TGFβ) and interleukin 10 (and IL10) secretion but also showed attachment and proliferation ability on the amniotic membrane scaffold. Moreover, MSCs supernatant-treated cells also displayed significant ARG1, CD206, and IL 10 genes expression. Inspired by the in vitro results, we examined the in vivo therapeutic efficacy of the activated macrophage transplantation using an acellular amniotic membrane carrier in a full-thickness cutaneous wound model. The wound healing rate was significant in the group treated with macrophages generated via mesenchymal cell therapy seeded human amniotic membrane. There was less scarring in the wound sites after placing cell-scaffold constructs in the wound sites in the animal models. Overall, macrophages stimulated with mesenchymal cells' supernatant exhibited improved healing processes in incisional wounds by decreasing the inflammatory phase, increasing angiogenesis, and reducing scar tissue development.
Collapse
Affiliation(s)
- Loghman Ebrahimi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Melina Ghasemian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Zolfaghari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Sivan SS, Bonstein I, Marmor YN, Pelled G, Gazit Z, Amit M. Encapsulation of Human-Bone-Marrow-Derived Mesenchymal Stem Cells in Small Alginate Beads Using One-Step Emulsification by Internal Gelation: In Vitro, and In Vivo Evaluation in Degenerate Intervertebral Disc Model. Pharmaceutics 2022; 14:pharmaceutics14061179. [PMID: 35745752 PMCID: PMC9228465 DOI: 10.3390/pharmaceutics14061179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/21/2022] Open
Abstract
Cell microencapsulation in gel beads contributes to many biomedical processes and pharmaceutical applications. Small beads (<300 µm) offer distinct advantages, mainly due to improved mass transfer and mechanical strength. Here, we describe, for the first time, the encapsulation of human-bone-marrow-derived mesenchymal stem cells (hBM-MSCs) in small-sized microspheres, using one-step emulsification by internal gelation. Small (127−257 µm) high-mannuronic-alginate microspheres were prepared at high agitation rates (800−1000 rpm), enabling control over the bead size and shape. The average viability of encapsulated hBM-MSCs after 2 weeks was 81 ± 4.3% for the higher agitation rates. hBM-MSC-loaded microspheres seeded within a glycosaminoglycan (GAG) analogue, which was previously proposed as a mechanically equivalent implant for degenerate discs, kept their viability, sphericity, and integrity for at least 6 weeks. A preliminary in vivo study of hBM-MSC-loaded microspheres implanted (via a GAG-analogue hydrogel) in a rat injured intervertebral disc model demonstrated long-lasting viability and biocompatibility for at least 8 weeks post-implantation. The proposed method offers an effective and reproducible way to maintain long-lasting viability in vitro and in vivo. This approach not only utilizes the benefits of a simple, mild, and scalable method, but also allows for the easy control of the bead size and shape by the agitation rate, which, overall, makes it a very attractive platform for regenerative-medicine applications.
Collapse
Affiliation(s)
- Sarit S. Sivan
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
- Correspondence: ; Tel.: +972-4-990-1855
| | - Iris Bonstein
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
| | - Yariv N. Marmor
- Department of Industrial Engineering and Management, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel;
| | - Gadi Pelled
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (G.P.); (Z.G.)
| | - Zulma Gazit
- Skeletal Biotech Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (G.P.); (Z.G.)
| | - Michal Amit
- Department of Biotechnology Engineering, Braude College of Engineering, P.O. Box 78, Karmiel 2161002, Israel; (I.B.); (M.A.)
| |
Collapse
|
15
|
Khedgikar V, Charles JF, Lehoczky JA. Mouse LGR6 regulates osteogenesis in vitro and in vivo through differential ligand use. Bone 2022; 155:116267. [PMID: 34856421 DOI: 10.1016/j.bone.2021.116267] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022]
Abstract
Leucine-rich repeat containing G-protein-coupled receptor 6 (LGR6) is a marker of osteoprogenitor cells and is dynamically expressed during in vitro osteodifferentation of mouse and human mesenchymal stem cells (MSCs). While the Lgr6 genomic locus has been associated with osteoporosis in human cohorts, the precise molecular function of LGR6 in osteogenesis and maintenance of bone mass are not yet known. In this study, we performed in vitro Lgr6 knockdown and overexpression experiments in murine osteoblastic cells and find decreased Lgr6 levels results in reduced osteoblast proliferation, differentiation, and mineralization. Consistent with these data, overexpression of Lgr6 in these cells leads to significantly increased proliferation and osteodifferentiation. To determine whether these findings are recapitulated in vivo, we performed microCT and ex vivo osteodifferentiation analyses using our newly generated CRISPR-Cas9 mediated Lgr6 mouse knockout allele (Lgr6-KO). We find that ex vivo osteodifferentiation of Lgr6-KO primary MSCs is significantly reduced, and 8 week-old Lgr6-KO mice have less trabecular bone mass as compared to Lgr6 wildtype controls, indicating that Lgr6 is necessary for normal osteogenesis and bone mass. Towards mechanism, we analyzed in vitro signaling in the context of two LGR6 ligands, RSPO2 and MaR1. We find that RSPO2 stimulates LGR6-mediated WNT/β-catenin signaling whereas MaR1 stimulates LGR6-mediated cAMP activity, suggesting two ligand-dependent functions for LGR6 receptor signaling during osteogenesis. Collectively, this study reveals that Lgr6 is necessary for wildtype levels of proliferation and differentiation of osteoblasts, and achieving normal bone mass.
Collapse
Affiliation(s)
- Vikram Khedgikar
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
16
|
Paul PK, Das R, Drow TJ, de Souza AH, Balamurugan AN, Belt Davis D, Galipeau J. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:630-643. [PMID: 35438788 PMCID: PMC9216495 DOI: 10.1093/stcltm/szac018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pradyut K Paul
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Rahul Das
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Travis J Drow
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Arnaldo H de Souza
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
| | - Jacques Galipeau
- Corresponding author: Jacques Galipeau, Don and Marilyn Anderson Professor in Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, WI, USA. Tel: +1 608-263-0078;
| |
Collapse
|
17
|
Lee E, Kim YS, Lee YM, Kim WK, Lee YK, Kim SH. Identification of stemness and differentially expressed genes in human cementum-derived cells. J Periodontal Implant Sci 2021; 51:329-341. [PMID: 34713994 PMCID: PMC8558007 DOI: 10.5051/jpis.2102600130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.
Collapse
Affiliation(s)
- EunHye Lee
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Young-Sung Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Won-Kyung Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Kyoo Lee
- Department of Dentistry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
| | - Su-Hwan Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
18
|
Purwaningrum M, Jamilah NS, Purbantoro SD, Sawangmake C, Nantavisai S. Comparative characteristic study from bone marrow-derived mesenchymal stem cells. J Vet Sci 2021; 22:e74. [PMID: 34697921 PMCID: PMC8636658 DOI: 10.4142/jvs.2021.22.e74] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.
Collapse
Affiliation(s)
- Medania Purwaningrum
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nabila Syarifah Jamilah
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chenphop Sawangmake
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirirat Nantavisai
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
19
|
Marinescu CI, Preda MB, Neculachi CA, Rusu EG, Popescu S, Burlacu A. Identification of a Hematopoietic Cell Population Emerging From Mouse Bone Marrow With Proliferative Potential In Vitro and Immunomodulatory Capacity. Front Immunol 2021; 12:698070. [PMID: 34413852 PMCID: PMC8368722 DOI: 10.3389/fimmu.2021.698070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
There is continuing interest in therapeutic applications of bone marrow-derived mesenchymal stromal cells (MSC). Unlike human counterparts, mouse MSC are difficult to propagate in vitro due to their contamination with adherent hematopoietic cells that overgrow the cultures. Here we investigated the properties of these contaminating cells, referred to as bone marrow-derived proliferating hematopoietic cells (BM-PHC). The results showed that both BM-PHC and MSC had strong immunomodulatory properties on T cells in vitro, with PGE2 and NO involved in this mechanism. However, BM-PHC were stronger immunomodulators than MSC, with CCL-6 identified as putative molecule responsible for superior effects. In vivo studies showed that, in contrast to BM-PHC, MSC endorsed a more rapid xenograft tumor rejection, thus indicating a particular context in which only MSC therapy would produce positive outcomes. In conclusion, bone marrow contains two cell populations with immunomodulatory properties, which are valuable sources for therapeutic studies in specific disease-relevant contexts.
Collapse
Affiliation(s)
- Catalina-Iolanda Marinescu
- Laboratory of Stem Cell Biology, Department of Regenerative Medicine, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihai Bogdan Preda
- Laboratory of Stem Cell Biology, Department of Regenerative Medicine, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Carmen Alexandra Neculachi
- Laboratory of Stem Cell Biology, Department of Regenerative Medicine, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Evelyn Gabriela Rusu
- Laboratory of Stem Cell Biology, Department of Regenerative Medicine, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Sinziana Popescu
- Laboratory of Stem Cell Biology, Department of Regenerative Medicine, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Alexandrina Burlacu
- Laboratory of Stem Cell Biology, Department of Regenerative Medicine, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
20
|
Osteogenic effects of microRNA-335-5p/lipidoid nanoparticles coated on titanium surface. Arch Oral Biol 2021; 129:105207. [PMID: 34273868 DOI: 10.1016/j.archoralbio.2021.105207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 06/26/2021] [Accepted: 07/03/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE In this study, we aimed to investigate the therapeutic potential of miR-335-5p lipidoid nanocomplexes coated on Titanium (Ti) SLActive surface by lyophilization. DESIGN In our model, we coated miR-335-5p/Lipidoid nanoparticles on titanium implant, seeded GFP-labelled mouse bone marrow stromal cells (BMSCs) onto the functionalized Ti implant surface, and analyzed the transfection efficiency, cell adhesion, proliferation, and osteogenic activity of the bone-implant interface. RESULTS The Ti SLActive surface displayed a suitable hydrophilicity ability and provided a large surface area for miRNA loading, enabling spatial retention of the miRNAs within the nanopores until cellular delivery. We demonstrated a high transfection efficiency of miR-335-5p lipidoid nanoparticles in BMSCs seeded onto the Ti SLActive surface, even after 14 days. Alkaline phosphatase (ALP) activity and cell vitality were significantly increased in BMSCs transfected with miR-335-5p at 7 and 14 days as opposed to cells transfected with negative controls. When miR-335-5p transfected BMSCs were induced to undergo osteogenic differentiation, we detected increased mRNA expression of osteogenic markers including Alkaline phosphatase (ALP), collagen I (COL1), osteocalcin (OCN) and bone sialoprotein (BSP) at 7 and 14 days as compared with negative controls. CONCLUSION MiR-335-5p lipidoid nanoparticles could be used as a new cost-effective methodology to increase the osteogenic capacity of biomedical Ti implants.
Collapse
|
21
|
Alternative regulatory mechanism for the maintenance of bone homeostasis via STAT5-mediated regulation of the differentiation of BMSCs into adipocytes. Exp Mol Med 2021; 53:848-863. [PMID: 33990690 PMCID: PMC8178345 DOI: 10.1038/s12276-021-00616-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/17/2021] [Indexed: 12/25/2022] Open
Abstract
STAT5 is a transcription factor that is activated by various cytokines, hormones, and growth factors. Activated STAT5 is then translocated to the nucleus and regulates the transcription of target genes, affecting several biological processes. Several studies have investigated the role of STAT5 in adipogenesis, but unfortunately, its role in adipogenesis remains controversial. In the present study, we generated adipocyte-specific Stat5 conditional knockout (cKO) (Stat5fl/fl;Apn-cre) mice to investigate the role of STAT5 in the adipogenesis of bone marrow mesenchymal stem cells (BMSCs). BMSC adipogenesis was significantly inhibited upon overexpression of constitutively active STAT5A, while it was enhanced in the absence of Stat5 in vitro. In vivo adipose staining and histological analyses revealed increased adipose volume in the bone marrow of Stat5 cKO mice. ATF3 is the target of STAT5 during STAT5-mediated inhibition of adipogenesis, and its transcription is regulated by the binding of STAT5 to the Atf3 promoter. ATF3 overexpression was sufficient to suppress the enhanced adipogenesis of Stat5-deficient adipocytes, and Atf3 silencing abolished the STAT5-mediated inhibition of adipogenesis. Stat5 cKO mice exhibited reduced bone volume due to an increase in the osteoclast number, and coculture of bone marrow-derived macrophages with Stat5 cKO adipocytes resulted in enhanced osteoclastogenesis, suggesting that an increase in the adipocyte number may contribute to bone loss. In summary, this study shows that STAT5 is a negative regulator of BMSC adipogenesis and contributes to bone homeostasis via direct and indirect regulation of osteoclast differentiation; therefore, it may be a leading target for the treatment of both obesity and bone loss-related diseases. A protein connected with bone maintenance and fat cell differentiation could provide a novel therapeutic target for both obesity and osteoporosis. The processes of healthy bone remodeling and fat cell (adipocyte) differentiation from bone marrow stem cells (BMSCs) are intrinsically connected. The transcription factor protein STAT5 plays roles in maintaining bone homeostasis and adipocyte differentiation, but its role in the latter is unclear. Nacksung Kim at Chonnam National University Medical School in Gwangju, South Korea, and co-workers examined the role of STAT5 in mice. Mice without the Stat5 gene had increased fat tissue in their bone marrow, suggesting increased BMSC differentiation into adipocytes. The mice also had reduced bone mass due to increased numbers of bone-degrading cells. Further investigations showed that STAT5 regulates the differentiation of BMSCs into adipocytes via activation of a regulatory gene.
Collapse
|
22
|
Wang Y, Song X, Lei R, Zhang N, Zhang L, Xiao W, Xu J, Lin J. Adipose-derived stem cell sheets combined with β-tricalcium phosphate/collagen-I fiber scaffold improve cell osteogenesis. Exp Ther Med 2021; 21:452. [PMID: 33747187 PMCID: PMC7967868 DOI: 10.3892/etm.2021.9882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/22/2021] [Indexed: 12/16/2022] Open
Abstract
Transplantation of cell-based material is a promising approach for the treatment of critical bone defects. However, it is still limited by the lack of suitable scaffold material or abundant seeding cell sources. The present study aimed to establish a novel composite of an adipose-derived stem cell (ADSC) sheet and a synthetic porous β-tricalcium phosphate/collagen-I fiber (β-TCP/COL-I) scaffold to enhance osteogenic activity. ADSCs were isolated from 3-week-old female Sprague Dawley rats and the ADSC sheets were prepared in an osteoinductive medium. The study groups included the ADSC sheets/scaffold, scattered ADSCs/scaffold, ADSC sheet alone and scaffold alone. Scanning electron microscopy and energy-dispersive spectrometry were used to observe cell-scaffold interactions and analyze the relative calcium content on the composites' surface. Alizarin red S staining was used to examine the calcium deposition. ELISA and reverse transcription-quantitative PCR were used to detect the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and osteopontin (OPN). The results revealed that ADSCs were able to tightly adhere to the β-TCP/COL-I scaffold with no cytotoxicity. The calcifying nodules reaction was positive on ADSC sheets and gradually increased after osteogenic induction. In addition, the β-TCP/COL-I scaffold combined with ADSC sheets was able to significantly enhance the expression levels of ALP, OCN and OPN and increase the superficial relative calcium content compared to scattered ADSCs/scaffold or the ADSC sheet alone (P<0.05). The results indicated that ADSCs possess a strong osteogenic potential, particularly in the cell-sheet form and when compounded with the β-TCP/COL-I scaffold, compared to scattered ADSCs with a β-TCP/COL-I scaffold or an ADSC sheet alone. This novel composite may be a promising candidate for bone engineering.
Collapse
Affiliation(s)
- Yang Wang
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiaojia Song
- Department of Orthodontics, Hangzhou Stomatology Hospital, Hangzhou, Zhejiang 310012, P.R. China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ning Zhang
- Dental Department, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Liangping Zhang
- Department of Plastic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314000, P.R. China
| | - Wei Xiao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jinghong Xu
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Jun Lin
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
23
|
Wright A, Arthaud-Day ML, Weiss ML. Therapeutic Use of Mesenchymal Stromal Cells: The Need for Inclusive Characterization Guidelines to Accommodate All Tissue Sources and Species. Front Cell Dev Biol 2021; 9:632717. [PMID: 33665190 PMCID: PMC7921162 DOI: 10.3389/fcell.2021.632717] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022] Open
Abstract
Following their discovery over 50 years ago, mesenchymal stromal cells (MSCs) have become one of the most studied cellular therapeutic products by both academia and industry due to their regenerative potential and immunomodulatory properties. The promise of MSCs as a therapeutic modality has been demonstrated by preclinical data yet has not translated to consistent, successful clinical trial results in humans. Despite the disparities across the field, MSC shareholders are unified under one common goal-to use MSCs as a therapeutic modality to improve the quality of life for those suffering from a malady in which the standard of care is suboptimal or no longer effective. Currently, there is no Food and Drug Administration (FDA)-approved MSC therapy on the market in the United States although several MSC products have been granted regulatory approval in other countries. In this review, we intend to identify hurdles that are impeding therapeutic progress and discuss strategies that may aid in accomplishing this universal goal of widespread therapeutic use.
Collapse
Affiliation(s)
- Adrienne Wright
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States
| | - Marne L Arthaud-Day
- Department of Management, Kansas State University, Manhattan, KS, United States
| | - Mark L Weiss
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States.,Midwest Institute of Comparative Stem Cell Biotechnology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
24
|
Liu Z, Naveed M, Baig MMFA, Mikrani R, Li C, Saeed M, Zhang Q, Farooq MA, Zubair HM, Xiaohui Z. Therapeutic approach for global myocardial injury using bone marrow-derived mesenchymal stem cells by cardiac support device in rats. Biomed Microdevices 2021; 23:5. [PMID: 33415464 DOI: 10.1007/s10544-020-00538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2020] [Indexed: 02/07/2023]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have been considered a promising therapeutic approach to cardiovascular disease. This study intends to compare the effect of BMSCs through a standard active cardiac support device (ASD) and intravenous injection on global myocardial injury induced by isoproterenol. BMSCs were cultured in vitro, and the transplanted cells were labeled with a fluorescent dye CM-Dil. Isoproterenol (ISO) was injected into the rats; 2 weeks later, the labeled cells were transplanted into ISO-induced heart-jury rats through the tail vein or ASD device for 5 days. The rats were sacrificed on the first day, the third day, and the fifth day after transplantation to observe the distribution of cells in the myocardium by fluorescence microscopy. The hemodynamic indexes of the left ventricle were measured before sacrificing. H&E staining and Masson's trichrome staining were used to evaluate the cardiac histopathology. In the ASD groups, after 3 days of transplantation, there were a large number of BMSCs on the epicardial surface, and after 5 days of transplantation, BMSCs were widely distributed in the ventricular muscle. But in the intravenous injection group, there were no labeled-BMSCs distributed. In the ASD + BMSCs-three days treated group and ASD + BMSCs -five days-treated group, left ventricular systolic pressure (LVSP), the maximum rate of left ventricular pressure rise (+dP/dt), the maximum rate of left ventricular pressure decline (-dP/dt) increased compared with model group and intravenous injection group (P < 0.05). By giving BMSCs through ASD device, cells can rapidly and widely distribute in the myocardium and significantly improve heart function.
Collapse
Affiliation(s)
- Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China.,School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Cuican Li
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Saeed
- Faculty of Animal Production and Technology, The Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 6300, Pakistan
| | - Qin Zhang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | - Muhammad Asim Farooq
- Department of Pharmacy, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People's Republic of China
| | | | - Zhou Xiaohui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, School of Pharmacy, Nanjing, Jiangsu Province, 211198, People's Republic of China. .,Department of Heart Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, 2110017, People's Republic of China. .,Department of Cardiothoracic Surgery, Zhongda Hospital affiliated with Southeast University, Nanjing, Jiangsu Province, 210017, People's Republic of China.
| |
Collapse
|
25
|
Aslam R, Hussain A, Cheng K, Kumar V, Malhotra A, Gupta S, Singhal PC. Transplantation of mesenchymal stem cells preserves podocyte homeostasis through modulation of parietal epithelial cell activation in adriamycin-induced mouse kidney injury model. Histol Histopathol 2020; 35:1483-1492. [PMID: 33124682 DOI: 10.14670/hh-18-276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To determine the role of the transplantation of bone marrow-derived mesenchymal stem cells (MSCs) in podocyte renewal, we studied BALB/C mice with or without adriamycin-induced acute kidney injury. MSCs were transplanted ectopically under the capsule of the left kidney or into the peritoneal cavity after the onset of kidney injury to test testing their local or systemic paracrine effects, respectively. Adriamycin produced increases in urine protein: creatinine ratios, blood urea nitrogen, and blood pressure, which improved after both renal subcapsular and intraperitoneal MSCs transplants. The histological changes of adriamycin kidney changes regressed in both kidneys and in only the ipsilateral kidney after intraperitoneal or renal subcapsular transplants indicating that the benefits of transplanted MSCs were related to the extent of paracrine factor distribution. Analysis of kidney tissues for p57-positive parietal epithelial cells (PECs) showed that MSC transplants restored adriamycin-induced decreases in the abundance of these cells to normal levels, although after renal subcapsular transplants these changes did not extend to contralateral kidneys. Moreover, adriamycin caused inflammatory activation of PECs with coexpression of CD44 and phospho-ERK, which was normalized in both or only ipsilateral kidneys depending on whether MSCs were transplanted in the peritoneal cavity or subcapsular space, respectively.
Collapse
Affiliation(s)
- Rukhsana Aslam
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Ali Hussain
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Kang Cheng
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Vinod Kumar
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Ashwani Malhotra
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA
| | - Sanjeev Gupta
- Department of Medicine, Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, The Irwin S. and Sylvia Chanin Institute for Cancer Research, and Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, New York, USA
| | - Pravin C Singhal
- Department of Medicine, Hofstra Northwell School of Medicine, Hempstead, New York, USA.
| |
Collapse
|
26
|
Chen C, Yan S, Qiu S, Geng Z, Wang Z. HIF/Ca 2+/NO/ROS is critical in roxadustat treating bone fracture by stimulating the proliferation and migration of BMSCs. Life Sci 2020; 264:118684. [PMID: 33129877 DOI: 10.1016/j.lfs.2020.118684] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
AIMS Fracture site is regionally hypoxic resulting from vasculature disruption. HIF-1αplays an essential role in fracture repair. This study aims to investigate the influence of FG4592 on the femur fracture of SD rats and the proliferation, migration of BMSCs. MATERIALS AND METHODS After the femoral fracture model was established, computed tomography imaging and histological analyses were used to quantify bone healing and the expression of CD90, HIF-1α, VEGF were observed by means of immunohistochemistry method on Day 10 and Day 20. In addition, CCK-8 assay, transwell, flow cytometric analysis, laser confocal microscopy assay, western blot and rT-PCR were performed to text the proliferation and migration of BMSCs using FG4592. KEY FINDINGS In vivo, FG4592 facilitated the repair of bone fracture by increasing the number of BMSCs and cartilage formation. In vitro, FG4592 markedly improved the proliferation, migration of BMSCs via upregulation of intracellular Ca2+, NO and concomitant decrease of ROS. Gene silencing of HIF-1α resulted in the opposite phenomenon in BMSCs with the treatment of FG4592. SIGNIFICANCE The transplantation of BMSCs is the most promising candidate for the treatment of fracture non-union. We illustrated that FG4592 promoted the proliferation, migration of BMSCs via the HIF/Ca2+/NO/ROS pathway and further accelerated fracture healing. These results provide a deeper understanding for the mechanism of HIF in promoting fracture healing.
Collapse
Affiliation(s)
- Chunxia Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, PR China
| | - Shihai Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, PR China; Department of Pharmacology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Shuang Qiu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, PR China
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, PR China.
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
27
|
Chen HC, Awale S, Wu CP, Lee HH, Wu HT. Co-cultured bone marrow mesenchymal stem cells repair thioacetamide-induced hepatocyte damage. Cell Biol Int 2020; 44:2459-2472. [PMID: 32827326 DOI: 10.1002/cbin.11453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/18/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Adult stem cells, such as bone marrow mesenchymal stem cells (BMSCs), are postdevelopmental cells found in many bone tissues. They are capable of multipotent differentiation and have low immune-rejection characteristics. Hepatocytes may become inflamed and produce a large number of free radicals when affected by drugs, poisoning, or a viral infection. The excessive accumulation of free radicals in the extracellular matrix (ECM) eventually leads to liver fibrosis. This study aims to investigate the restorative effects of mouse bone marrow mesenchymal stem cells (mBMSCs) on thioacetamide (TAA)-induced damage in hepatocytes. An in vitro transwell co-culture system of HepG2 cells were co-cultured with mBMSCs. The effects of damage done to TAA-treated HepG2 cells were reflected in the overall cell survival, the expression of antioxidants (SOD1, GPX1, and CAT), the ECM (COL1A1 and MMP9), antiapoptosis characteristics (BCL2), and inflammation (TNF) genes. The majority of the damage done to HepG2 by TAA was significantly reduced when cells were co-cultured with mBMSCs. The signal transducer and activator of transcription 3 (STAT3) and its phosphorylated STAT3 (p-STAT3), as related to cell growth and survival, were detected in this study. The results show that STAT3 was significantly decreased in the TAA-treated HepG2 cells, but the STAT3 and p-STAT3 of HepG2 cells were significantly activated when the TAA-treated HepG2 co-cultured with mBMSCs. Strong expression of interleukin (Il6) messenger RNA in co-cultured mBMSCs/HepG2 indicated mBMSCs secret the cytokines IL-6, which promotes cell survival through downstream STAT3 activation and aid in the recovery of HepG2 cells damaged by TAA.
Collapse
Affiliation(s)
- Hung-Chiuan Chen
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Suresh Awale
- Department of Translational Research, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Chean-Ping Wu
- Department of Animal Science, National Chiayi University, Chiayi City, Taiwan
| | - Hu-Hui Lee
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| | - Hsi-Tien Wu
- Department of BioAgricultural Sciences, National Chiayi University, Chiayi City, Taiwan
| |
Collapse
|
28
|
Le NNT, Liu TL, Johnston J, Krutty JD, Templeton KM, Harms V, Dias A, Le H, Gopalan P, Murphy WL. Customized hydrogel substrates for serum-free expansion of functional hMSCs. Biomater Sci 2020; 8:3819-3829. [PMID: 32543628 PMCID: PMC7436193 DOI: 10.1039/d0bm00540a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe a screening approach to identify customized substrates for serum-free human mesenchymal stromal cell (hMSC) culture. In particular, we combine a biomaterials screening approach with design of experiments (DOE) and multivariate analysis (MVA) to understand the effects of substrate stiffness, substrate adhesivity, and media composition on hMSC behavior in vitro. This approach enabled identification of poly(ethylene glycol)-based and integrin binding hydrogel substrate compositions that supported functional hMSC expansion in multiple serum-containing and serum-free media, as well as the expansion of MSCs from multiple, distinct sources. The identified substrates were compatible with standard thaw, seed, and harvest protocols. Finally, we used MVA on the screening data to reveal the importance of serum and substrate stiffness on hMSC expansion, highlighting the need for customized cell culture substrates in optimal hMSC biomanufacturing processes.
Collapse
Affiliation(s)
- Ngoc Nhi T Le
- Materials Science Program, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Maung WM, Nakata H, Miura M, Miyasaka M, Kim YK, Kasugai S, Kuroda S. Low-Intensity Pulsed Ultrasound Stimulates Osteogenic Differentiation of Periosteal Cells In Vitro. Tissue Eng Part A 2020; 27:63-73. [PMID: 32164486 DOI: 10.1089/ten.tea.2019.0331] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adequate bone volume is required for osseointegrated implants to restore lost teeth and oral function. Several studies have demonstrated potential advantage of stem cells in regenerative medicine using osteoblasts. The periosteum is composed of osteoblasts, fibroblasts, and osteoprogenitor cells. It may be an alternative source for bone tissue engineering because of easy isolation and rapid proliferation in vivo and in vitro. Low-intensity pulsed ultrasound (LIPUS) has proved successful in recoveries from nonunions, delayed unions, and fracture of the bone in both animal experiments and clinical treatments. The study was to investigate the influence of LIPUS on the osteogenic differentiation in murine periosteum-derived cells (PDCs) and the underlying mechanism of LIPUS. PDCs were treated daily with LIPUS for 20 min up to 21 days with 3 MHz frequency, 30 mW/cm2 intensity, and pulse repetition frequency of 1 kHz. The effects of LIPUS on cell proliferation and viability were investigated. Osteogenic differentiation was analyzed by alkaline phosphatase (ALP)-positive cell staining, ALP activity assay, mineralized nodule formation, real-time reverse transcription-polymerase chain reaction, as well as western blotting. The results indicated that ultrasound stimulation did not significantly affect the proliferation of PDCs. But LIPUS significantly increased ALP activity on day 7 and markedly promoted formation of mineralized nodules on day 21. mRNA expression of ALP and osteocalcin was significantly upregulated by stimulation with LIPUS. LIPUS enhanced gene expression of both bone morphogenetic protein-2 (BMP-2) and osterix only in the presence of osteogenic medium. LIPUS stimulation did not affect Smad 1 and Smad 5 protein expression, but significantly upregulated protein levels of BMP-2 and phosphor-Smad 1/5/9 in PDCs. Thus, LIPUS stimulation increased early osteogenic differentiation in a normal medium and further enhanced expression of BMP-2 and subsequent osterix expression through the canonical Smad-signaling pathway in an osteogenic medium, leading to mineral apposition. Therefore, LIPUS might have potential to promote osteogenesis in PDCs. Impact statement There are few studies on periosteum-derived cells (PDCs) because conventional methods of their isolation are relatively difficult to procure abundant cells for cell culture and the total cell numbers are limited. In this study, a modified isolation technique of murine calvarial PDCs using gelatin is described. PDCs were initiated to emerge as early as day 3 and showed increased proliferation, which can be used for further studies. Low-intensity pulsed ultrasound stimulation increased early osteogenic differentiation in a normal medium and further enhanced expression of bone morphogenic protein-2 and subsequent osterix expression through the canonical Smad-signaling pathway in an osteogenic medium, leading to mineral apposition.
Collapse
Affiliation(s)
- Wai Myo Maung
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Hidemi Nakata
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Motoi Miura
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Munemitsu Miyasaka
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - You-Kyoung Kim
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Shohei Kasugai
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| | - Shinji Kuroda
- Tokyo Medical and Dental University (TMDU), Oral Implantology and Regenerative Dental Medicine Department, Tokyo, Japan
| |
Collapse
|
30
|
Munteanu R, Onaciu A, Moldovan C, Zimta AA, Gulei D, Paradiso AV, Lazar V, Berindan-Neagoe I. Adipocyte-Based Cell Therapy in Oncology: The Role of Cancer-Associated Adipocytes and Their Reinterpretation as Delivery Platforms. Pharmaceutics 2020; 12:E402. [PMID: 32354024 PMCID: PMC7284545 DOI: 10.3390/pharmaceutics12050402] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer-associated adipocytes have functional roles in tumor development through secreted adipocyte-derived factors and exosomes and also through metabolic symbiosis, where the malignant cells take up the lactate, fatty acids and glutamine produced by the neighboring adipocytes. Recent research has demonstrated the value of adipocytes as cell-based delivery platforms for drugs (or prodrugs), nucleic acids or loaded nanoparticles for cancer therapy. This strategy takes advantage of the biocompatibility of the delivery system, its ability to locate the tumor site and also the predisposition of cancer cells to come in functional contact with the adipocytes from the tumor microenvironment for metabolic sustenance. Also, their exosomal content can be used in the context of cancer stem cell reprogramming or as a delivery vehicle for different cargos, like non-coding nucleic acids. Moreover, the process of adipocytes isolation, processing and charging is quite straightforward, with minimal economical expenses. The present review comprehensively presents the role of adipocytes in cancer (in the context of obese and non-obese individuals), the main methods for isolation and characterization and also the current therapeutic applications of these cells as delivery platforms in the oncology sector.
Collapse
Affiliation(s)
- Raluca Munteanu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Cristian Moldovan
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Alina-Andreea Zimta
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
| | - Angelo V. Paradiso
- Oncologia Sperimentale, Istituto Tumori G Paolo II, IRCCS, 70125 Bari, Italy
| | - Vladimir Lazar
- Worldwide Innovative Network for Personalized Cancer Therapy, 94800 Villejuif, France
| | - Ioana Berindan-Neagoe
- Research Center for Advanced Medicine-Medfuture, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
| |
Collapse
|
31
|
An JH, Li FP, He P, Chen JS, Cai ZG, Liu SR, Yue CJ, Liu YL, Hou R. Characteristics of Mesenchymal Stem Cells Isolated from the Bone Marrow of Red Pandas. ZOOLOGY 2020; 140:125775. [PMID: 32251890 DOI: 10.1016/j.zool.2020.125775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 01/08/2023]
Abstract
Mesenchymal stem cells (MSC) have strong therapeutic potential due to their capacity for self-renewal and multilineage differentiation. MSCs can also be useful in preserving the current genetic diversity of endangered wildlife. To date, MSCs from various species have been studied, but only a few species of endangered wild animals have been reported. Adult bone marrow (BM) is a rich source of mesenchymal stem cells. The aim of this study was to isolate and characterize MSCs derived from the BM of red pandas. Red panda BM-MSCs isolated from five individuals were fibroblast-like cells, similar to other species. Cultured BM-MSCs with normal karyotype were negative for the hematopoietic line marker CD34 and the endothelial cell marker CD31 but were positive for MSC markers, including CD44, CD105 and CD90. RT-PCR and western blot analysis showed self-renewal and pluripotency genes, including Oct4, Sox2 and Klf4, were also expressed in red panda BM-MSCs. Finally, red panda BM-MSCs had the potential for differentiation into osteogenic, adipogenic and neuron-like cells by using a combination of previously reported protocols for other species. We have therefore demonstrated that cells harvested from red panda bone marrow are capable of extensive in vitro multiplication and multilineage differentiation, which is an essential step toward their use in the preservation of red pandas biological diversity and future studies on MSC applications in endangered species.
Collapse
Affiliation(s)
- Jun-Hui An
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Fei-Ping Li
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Ping He
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Jia-Song Chen
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Zhi-Gang Cai
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Song-Rui Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Chan-Juan Yue
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China
| | - Yu-Liang Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| | - Rong Hou
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, 1375 Panda Road, Chenghua District, Sichuan Province, 610081, China.
| |
Collapse
|
32
|
Jiao Z, Liu X, Ma Y, Ge Y, Zhang Q, Liu B, Wang H. Adipose-Derived Stem Cells Protect Ischemia-Reperfusion and Partial Hepatectomy by Attenuating Endoplasmic Reticulum Stress. Front Cell Dev Biol 2020; 8:177. [PMID: 32266259 PMCID: PMC7098915 DOI: 10.3389/fcell.2020.00177] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion (IR) is an inevitable complication of liver surgery. Recent studies indicate a critical role of endoplasmic reticulum stress (ERS) in hepatic IR. Mesenchymal stem cells (MSCs) have proven to be an effective tool for tissue regeneration and treatment of various diseases, including that of the liver. However, the mechanisms underlying the therapeutic effects of stem cells on hepatic IR injury (IRI) are still poorly understood, especially in the context of ERS. In this study, we established a porcine model of hepatic IRI and partial hepatectomy, and transplanted the animals with adipose-derived mesenchymal stem cells (ADSCs) isolated from miniature pigs. ADSCs not only alleviated the pathological changes in the liver parenchyma following IRI, but also protected the resident hepatocytes from damage. Mechanistically, the ADSCs significantly downregulated ERS-related proteins, including GRP78, p-eIF2α, ATF6 and XBP1s, as well as the proteins involved in ERS-induced apoptosis like p-JNK, ATF4 and CHOP. Taken together, ADSCs can alleviate hepatic IRI by inhibiting ERS and its downstream apoptotic pathways in the hepatocytes, indicating its therapeutic potential in liver diseases.
Collapse
Affiliation(s)
- Zhihui Jiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoning Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yajun Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Yansong Ge
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qianzhen Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Boyang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| | - Hongbin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
33
|
Atiya H, Frisbie L, Pressimone C, Coffman L. Mesenchymal Stem Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1234:31-42. [PMID: 32040853 DOI: 10.1007/978-3-030-37184-5_3] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between tumor cells and the non-malignant stromal and immune cells that make up the tumor microenvironment (TME) are critical to the pathophysiology of cancer. Mesenchymal stem cells (MSCs) are multipotent stromal stem cells found within most cancers and play a critical role influencing the formation and function of the TME. MSCs have been reported to support tumor growth through a variety of mechanisms including (i) differentiation into other pro-tumorigenic stromal components, (ii) suppression of the immune response, (iii) promotion of angiogenesis, (iv) enhancement of an epithelial-mesenchymal transition (EMT), (v) enrichment of cancer stem-like cells (CSC), (vi) increase in tumor cell survival, and (vii) promotion of tumor metastasis. In contrast, MSCs have also been reported to have antitumorigenic functions including (i) enhancement of the immune response, (ii) inhibition of angiogenesis, (iii) regulation of cellular signaling, and (iv) induction of tumor cell apoptosis. Although literature supporting both arguments exists, most studies point to MSCs acting in a cancer supporting role within the confines of the TME. Tumor-suppressive effects are observed when MSCs are used in higher ratios to tumor cells. Additionally, MSC function appears to be tissue type dependent and may rely on cancer education to reprogram a naïve MSC with antitumor effects into a cancer-educated or cancer-associated MSC (CA-MSC) which develops pro-tumorigenic function. Further work is required to delineate the complex crosstalk between MSCs and other components of the TME to accurately assess the impact of MSCs on cancer initiation, growth, and spread.
Collapse
Affiliation(s)
- Huda Atiya
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leonard Frisbie
- Division of Hematology/Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Lan Coffman
- Division of Hematology/Oncology, Division of Gynecologic Oncology, Department of Medicine, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
34
|
Huang JH, Xu Y, Yin XM, Lin FY. Exosomes Derived from miR-126-modified MSCs Promote Angiogenesis and Neurogenesis and Attenuate Apoptosis after Spinal Cord Injury in Rats. Neuroscience 2020; 424:133-145. [PMID: 31704348 DOI: 10.1016/j.neuroscience.2019.10.043] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological event that results in incomplete or complete loss of voluntary motor and sensory function. Until recently, there has been no effective curative strategy for SCI. Our previous study showed that microRNA (miR)-126 promoted angiogenesis and attenuated inflammation after SCI; however, the effect of miR-126-based treatment is limited because of the low efficiency of miR delivery in vivo. Recently, accumulating evidence has indicated that exosomes can serve as a valuable therapeutic vehicle for miR delivery to the central nervous system (CNS). Thus, the present study aimed to investigate whether exosomes derived from mesenchymal stem cells (MSCs) can be used to deliver miR-126 to treat SCI. In this study, we found that MSCs can load miR-126 into secreted exosomes. In a rat model of SCI, exosomes transferred miR-126 to the injured site of the spinal cord, reduced the lesion volume and improved functional recovery after SCI. Additionally, miR-126-loaded exosomes promoted angiogenesis post-SCI. Moreover, the administration of miR-126 exosomes promoted neurogenesis and reduced cell apoptosis after SCI. In vitro, we observed that exosomes derived from miR-126-modified MSCs promoted the angiogenesis and migration of human umbilical venous endothelial cells (HUVECs) by inhibiting the expression of Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2). In conclusion, our study demonstrated that exosomes derived from MSCs transfected with miR-126 may promote angiogenesis and neurogenesis, inhibit apoptosis and promote functional recovery after SCI. These findings suggest that exosomes derived from miR-126-modified MSCs may serve as a novel potential therapeutic strategy for treating SCI.
Collapse
Affiliation(s)
- Jiang-Hu Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Yang Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Xiao-Ming Yin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China
| | - Fei-Yue Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, PR China; Department of Orthopedics, Fujian Provincial Hospital, Fujian Medical University, Fuzhou 350001, PR China.
| |
Collapse
|
35
|
KIM SM, LI Q, AN JH, CHAE HK, YANG JI, RYU MO, NAM A, SONG WJ, YOUN HY. Enhanced angiogenic activity of dimethyloxalylglycine-treated canine adipose tissue-derived mesenchymal stem cells. J Vet Med Sci 2019; 81:1663-1670. [PMID: 31582601 PMCID: PMC6895634 DOI: 10.1292/jvms.19-0337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/19/2019] [Indexed: 12/13/2022] Open
Abstract
The paracrine function of mesenchymal stem cells (MSCs) during transplantation has been recently studied due to its poor differentiation ratio. Dimethyloxalylglycine (DMOG) has been used to promote angiogenesis in experimental animal models, however, comparable approaches for canine MSCs are not sufficient. In the present study, we assessed whether DMOG improves angiogenesis in canine adipose tissue-derived mesenchymal stem cells (cAT-MSCs). cAT-MSCs were treated with DMOG and their effect on angiogenesis was investigated by cell proliferation assay, western blotting, and tube formation assay. Dimethyloxalylglycine preconditioning enhanced the expression of vascular endothelial growth factor (VEGF) among pro-angiogenic factors in cAT-MSCs via hypoxia-inducible factor-1α stabilization. Dimethyloxalylglycine primed-cAT-MSC-conditioned media increased angiogenesis in human umbilical vein endothelial cells. These results suggest that DMOG conditioning of cAT-MSCs augmented the secretion of VEGF, which acted as a prominent pro-angiogenic factor during angiogenesis. DMOG-primed cAT-MSCs may have the potential to induce beneficial effects in ischemic diseases in clinical trials.
Collapse
Affiliation(s)
- Sang-Min KIM
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Qiang LI
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hyun AN
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Kyu CHAE
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-In YANG
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ok RYU
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Aryung NAM
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Jin SONG
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwa-Young YOUN
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
36
|
He X, Yang Y, Yao MW, Ren TT, Guo W, Li L, Xu X. Full title: High glucose protects mesenchymal stem cells from metformin-induced apoptosis through the AMPK-mediated mTOR pathway. Sci Rep 2019; 9:17764. [PMID: 31780804 PMCID: PMC6882892 DOI: 10.1038/s41598-019-54291-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 09/02/2019] [Indexed: 12/14/2022] Open
Abstract
Micro- and macro-vascular events are directly associated with hyperglycemia in patients with type 2 diabetes mellitus (T2DM), but whether intensive glucose control decreases the risk of diabetic cardiovascular complications remains uncertain. Many studies have confirmed that impaired quality and quantity of mesenchymal stem cells (MSCs) plays a pathogenic role in diabetes. Our previous study found that the abundance of circulating MSCs was significantly decreased in patients with T2DM, which was correlated with the progression of diabetic complications. In addition, metformin-induced MSC apoptosis is one of the reasons for the decreased quantity of endogenous or exogenous MSCs during intensive glucose control. However, the role of glucose in metformin-induced MSC apoptosis during intensive glucose control in T2DM remains unknown. In this study, we found that metformin induces MSC apoptosis during intensive glucose control, while high glucose (standard glucose control) could significantly reverse its adverse effect in an AMPK-mTOR pathway dependent manner. Thus, our results indicate that the poorer clinical benefit of the intensive glucose control strategy may be related to an adverse effect due to metformin-induced MSC apoptosis during intensive glucose control therapy in patients with T2DM.
Collapse
Affiliation(s)
- Xiao He
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Yi Yang
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Department of Rheumatology and Clinical Immunology, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
| | - Meng-Wei Yao
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China
| | - Ting-Ting Ren
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Department of Histology and Embryology, Qingdao University Medical College, Qingdao, Shandong, P.R. China
| | - Wei Guo
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China
| | - Ling Li
- Department of Histology and Embryology, Qingdao University Medical College, Qingdao, Shandong, P.R. China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China.
- Central Laboratory, State Key laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Military Medical University, Chongqing, P.R. China.
- Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
37
|
Improved Isolation of Mesenchymal Stem Cells Based on Interactions between N-Acetylglucosamine-Bearing Polymers and Cell-Surface Vimentin. Stem Cells Int 2019; 2019:4341286. [PMID: 31814834 PMCID: PMC6878802 DOI: 10.1155/2019/4341286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) in bone marrow and adipose tissues are expected to be effective tools for regenerative medicine to treat various diseases. To obtain MSCs that possess both high differentiation and tissue regenerative potential, it is necessary to establish an isolation system that does not require long-term culture. It has previously been reported that the cytoskeletal protein vimentin, expressed on the surfaces of multiple cell types, possesses N-acetylglucosamine- (GlcNAc-) binding activity. Therefore, we tried to exploit this interaction to efficiently isolate MSCs from rat bone marrow cells using GlcNAc-bearing polymer-coated dishes. Cells isolated by this method were identified as MSCs because they were CD34-, CD45-, and CD11b/c-negative and CD90-, CD29-, CD44-, CD54-, CD73-, and CD105-positive. Osteoblast, adipocyte, and chondrocyte differentiation was observed in these cells. In total, yields of rat MSCs were threefold to fourfold higher using GlcNAc-bearing polymer-coated dishes than yields using conventional tissue-culture dishes. Interestingly, MSCs isolated with GlcNAc-bearing polymer-coated dishes strongly expressed CD106, whereas those isolated with conventional tissue-culture dishes had low CD106 expression. Moreover, senescence-associated β-galactosidase activity in MSCs from GlcNAc-bearing polymer-coated dishes was lower than that in MSCs from tissue-culture dishes. These results establish an improved isolation method for high-quality MSCs.
Collapse
|
38
|
O'Neill HC, Lim HK, Periasamy P, Kumarappan L, Tan JKH, O'Neill TJ. Transplanted spleen stromal cells with osteogenic potential support ectopic myelopoiesis. PLoS One 2019; 14:e0223416. [PMID: 31584977 PMCID: PMC6777786 DOI: 10.1371/journal.pone.0223416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/20/2019] [Indexed: 12/24/2022] Open
Abstract
Spleen stromal lines which support in vitro hematopoiesis are investigated for their lineage origin and hematopoietic support function in vivo. Marker expression and gene profiling identify a lineage relationship with mesenchymal stem cells and perivascular reticular cells described recently in bone marrow. Stromal lines commonly express Cxcl12, Pdgfra and Pdgfr typical of bone marrow derived perivascular reticular cells but reflect a unique cell type in terms of other gene and marker expression. Their classification as osteoprogenitors is confirmed through ability to undergo osteogenic, but not adipogenic or chondrogenic differentiation. Some stromal lines were shown to form ectopic niches for HSCs following engraftment under the kidney capsule of NOD/SCID mice. The presence of myeloid cells and a higher representation of a specific dendritic-like cell type over other myeloid cells within grafts was consistent with previous in vitro evidence of hematopoietic support capacity. These studies reinforce the role of perivascular/perisinusoidal reticular cells in hematopoiesis and implicate such cells as niches for hematopoiesis in spleen.
Collapse
Affiliation(s)
- Helen C O'Neill
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Hong K Lim
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Pravin Periasamy
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia.,Department of Microbiology, Yoo Long School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lavanya Kumarappan
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonathan K H Tan
- Clem Jones Research Centre for Regenerative Medicine, Bond University, Gold Coast, Queensland, Australia
| | - Terence J O'Neill
- Big Data Centre, Bond Business School, Bond University, Gold Coast, Queensland, Australia
| |
Collapse
|
39
|
Li C, Jiao G, Wu W, Wang H, Ren S, Zhang L, Zhou H, Liu H, Chen Y. Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Neuronal Apoptosis and Promote Motor Function Recovery via the Wnt/β-catenin Signaling Pathway. Cell Transplant 2019; 28:1373-1383. [PMID: 31423807 PMCID: PMC6802144 DOI: 10.1177/0963689719870999] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Severe spinal cord injury (SCI) is caused by external mechanical injury, resulting in
unrecoverable neurological injury. Recent studies have shown that exosomes derived from
bone marrow mesenchymal stem cells (BMSCs-Exos) might be valuable paracrine molecules in
the treatment of SCI. In this study, we designed SCI models in vivo and in vitro and then
investigated the possible mechanism of successful repair by BMSCs-Exos. In vivo, we
established one Sham group and two SCI model groups. The Basso, Beattie, Bresnahan (BBB)
scores showed that BMSCs-Exos could effectively promote the recovery of spinal cord
function. The results of the Nissl staining, immunohistochemistry, and TUNEL/NeuN/DAPI
double staining showed that BMSCs-Exos inhibited neuronal apoptosis. Western blot analysis
showed that the protein expression level of Bcl-2 was significantly increased in the
BMSCs-Exos group compared with the PBS group, while the protein expression levels of Bax,
cleaved caspase-3, and cleaved caspase-9 were significantly decreased. The results of
western bolt and qRT-PCR demonstrated that BMSCs-Exos could activate the Wnt/β-catenin
signaling pathway effectively. In vitro, we found that inhibition of the Wnt/β-catenin
signaling pathway could promote neuronal apoptosis following lipopolysaccharide (LPS)
induction. These results demonstrated that BMSCs-Exos may be a promising therapeutic for
SCI by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Ci Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Guangjun Jiao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Wenliang Wu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongliang Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Shanwu Ren
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Lu Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Hongming Zhou
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Haichun Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| | - Yunzhen Chen
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.,Department of Shandong University Spine and Spine Cord Disease Research Center, Jinan, Shandong, China
| |
Collapse
|
40
|
Cao L, Xu H, Wang G, Liu M, Tian D, Yuan Z. Extracellular vesicles derived from bone marrow mesenchymal stem cells attenuate dextran sodium sulfate-induced ulcerative colitis by promoting M2 macrophage polarization. Int Immunopharmacol 2019; 72:264-274. [PMID: 31005036 DOI: 10.1016/j.intimp.2019.04.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) secreted by bone marrow mesenchymal stem cells (BMSCs) have shown repairing effects in tissue damage. However, their efficacy and mechanism in the treatment of ulcerative colitis (UC), a type of chronic inflammatory bowel disease, are unclear. To investigate the effects and possible mechanism of EVs in UC treatment, we established an in vitro model using lipopolysaccharide (LPS)-treated macrophages and an in vivo dextran sulfate sodium (DSS)-induced mouse model to mimic UC. In vitro, EVs promoted the proliferation and suppressed inflammatory response in LPS-induced macrophages, as demonstrated by the up-regulation of pro-inflammatory factors (TNF-α, IL-6, and IL-12) and down-regulation of the anti-inflammatory factor IL-10. In the in vivo model, EV administration ameliorated the symptoms of UC by reducing weight loss, disease activity index, and colon mucosa damage and severity while increasing colon length. This was additionally accompanied by the increase in IL-10 and TGF-β levels and the decline in VEGF-A, IFN-γ, IL-12, TNF-α, CCL-24, and CCL-17 levels. In terms of the mechanism, EVs promoted M2-like macrophage polarization, characterized by the increase in the M2 marker CD163. Furthermore, the positive effect of EVs on UC repair seemed to be related to the JAK1/STAT1/STAT6 signaling pathway. Collectively, BMSC-derived EVs exerted positive therapeutic effects against DSS-induced UC, which could be due to a negative inflammatory response.
Collapse
Affiliation(s)
- Li Cao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Hanxin Xu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan 430022, Hubei, China
| | - Ge Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Mei Liu
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Dean Tian
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan 430022, Hubei, China.
| |
Collapse
|
41
|
Akdere ÖE, Shikhaliyeva İ, Gümüşderelioğlu M. Boron mediated 2D and 3D cultures of adipose derived mesenchymal stem cells. Cytotechnology 2019; 71:611-622. [PMID: 30905012 DOI: 10.1007/s10616-019-00310-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Boron (B), which is a beneficial bioactive element for human, has an increasing interest in tissue engineering for the last 5 years. However, the effective B concentration in cell culture is still unknown. The aim of the present study is to investigate in vitro osteogenic potential of mesenchymal stem cells, isolated from adipose tissue (AdMSCs), on boron containing 2D and 3D cell cultures. At first, the effects of B concentrations between 1 and 20 μg/mL were evaluated on the survival and osteogenic differentiation of AdMSCs cultured on 2D cell cultures. The 3D cultures were established by using chitosan (Ch) scaffolds prepared by freeze-drying and Ch scaffolds combined with hydroxyapatite (HAp) and B containing hydroxyapatite (B-HAp) that are produced by microwave-induced biomimetic method. The proliferation and osteogenic differentiation of AdMSCs on Ch, HAp/Ch and B-HAp/Ch scaffolds were investigated by in vitro cell culture studies. The results were evaluated with respect to cell viability, bone related ECM gene expressions, and cellular morphology. It was demonstrated that cellular functions of AdMSCs were enhanced by boron in both 2D and 3D cultures. Especially, B-HAp/Ch scaffolds, which have both osteoinductive and osteoconductive properties based on presence of B and HAp in its structure, promoted adhesion, proliferation and osteogenic differentiation of AdMSCs.
Collapse
Affiliation(s)
- Özge Ekin Akdere
- Department of Bioengineering, Hacettepe University, Ankara, Turkey
| | | | - Menemşe Gümüşderelioğlu
- Department of Bioengineering, Hacettepe University, Ankara, Turkey.
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
42
|
Activation of mTORC1 in subchondral bone preosteoblasts promotes osteoarthritis by stimulating bone sclerosis and secretion of CXCL12. Bone Res 2019; 7:5. [PMID: 30792936 PMCID: PMC6381187 DOI: 10.1038/s41413-018-0041-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/02/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Increasing evidences show that aberrant subchondral bone remodeling plays an important role in the development of osteoarthritis (OA). However, how subchondral bone formation is activated and the mechanism by which increased subchondral bone turnover promotes cartilage degeneration during OA remains unclear. Here, we show that the mechanistic target of rapamycin complex 1 (mTORC1) pathway is activated in subchondral bone preosteoblasts (Osterix+) from OA patients and mice. Constitutive activation of mTORC1 in preosteoblasts by deletion of the mTORC1 upstream inhibitor, tuberous sclerosis 1, induced aberrant subchondral bone formation, and sclerosis with little-to-no effects on articular cartilage integrity, but accelerated post-traumatic OA development in mice. In contrast, inhibition of mTORC1 in preosteoblasts by disruption of Raptor (mTORC1-specific component) reduced subchondral bone formation and cartilage degeneration, and attenuated post-traumatic OA in mice. Mechanistically, mTORC1 activation promoted preosteoblast expansion and Cxcl12 secretion, which induced subchondral bone remodeling and cartilage degeneration during OA. A Cxcl12-neutralizing antibody reduced cartilage degeneration and alleviated OA in mice. Altogether, these findings demonstrate that mTORC1 activation in subchondral preosteoblasts is not sufficient to induce OA, but can induce aberrant subchondral bone formation and secrete of Cxcl12 to accelerate disease progression following surgical destabilization of the joint. Pharmaceutical inhibition of the pathway presents a promising therapeutic approach for OA treatment.
Collapse
|
43
|
Zhao X, Ruan Z, Qin X, Feng Y, Yu Q, Xu J, Deng Y, Shen P, Shi D, Lu F. The Role of 5-aza-2'-Deoxycytidine on Methylation Status of Xist Gene in Different Genders of Buffalo (Bubalus bubalis) Bone Marrow Mesenchymal Stem Cells. Cell Reprogram 2019; 21:89-98. [PMID: 30785778 DOI: 10.1089/cell.2018.0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Previous studies have demonstrated that proper concentration of 5-aza-2'-deoxycytidine (5-aza-CdR) treatment was advantageous to decrease DNA methylation level, but the relationships between 5-aza-CdR treatment and methylation status of imprinted genes are seldom detected. The aim of this study was to investigate the effect of low concentration 5-aza-CdR treatment on the methylation status of imprinted gene Xist in different genders of buffalo bone marrow mesenchymal stem cells (BMSCs). BMSCs were isolated and the cell gender was identified through polymerase chain reaction (PCR). Then different concentrations of 5-aza-CdR (0, 0.02, 0.1 μM) were applied for the treatment. The results showed cellular morphology, growth, Xist gene expression pattern, and adherent ability were not significantly affected with the treatment of 5-aza-CdR for 24 hours. Meanwhile, immunofluorescence analysis indicated that the expression of 5-methylcytosine (5-mC) was also not influenced after the treatment. However, bisulfite sequence PCR (BS-PCR) analysis revealed that the methylation level of Xist differentially methylated region (DMR) decreased significantly when the concentration of 5-aza-CdR increased to 0.1 μM in the ♀BMSCs group (p < 0.05), while there was no significant difference among the ♂BMSCs-treated groups. Our results implied that low concentrations of 5-aza-CdR treatment had little impacts on cellular morphology, growth Xist gene expression pattern, adherent ability, and global DNA methylation level of BMSCs in both genders, but the treatment could significantly decrease the methylation level of Xist DMR in ♀BMSCs. Thus, we conclude 5-aza-CdR treatment can affect the methylation status of Xist DMR, furthermore, the influence is also related to sex differences.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ziyun Ruan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Xiling Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Qing Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Jie Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Penglei Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Fenghua Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
44
|
Abdallah BM, Alzahrani AM, Abdel-Moneim AM, Ditzel N, Kassem M. A simple and reliable protocol for long-term culture of murine bone marrow stromal (mesenchymal) stem cells that retained their in vitro and in vivo stemness in long-term culture. Biol Proced Online 2019; 21:3. [PMID: 30733647 PMCID: PMC6357407 DOI: 10.1186/s12575-019-0091-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/23/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Bone marrow derived stromal stem cells (BMSCs) are a clonogenic cell population that is characterized by self-renewal capacity and differentiation potential into osteoblasts, and other mesenchymal cell types. Mouse BMSCs (mBMSCs) are difficult to be cultured and propagated in vitro due to their replicative senescent phenotype, heterogeneity and high contamination with plastic adherent hematopoietic progenitors (HPCs). In this study, we described long-term culture of homogenous population of mBMSCs using simple and highly reproducible approach based on frequent subculturing (FS) at fixed split ratio in the presence of basic fibroblast growth factor (bFGF). RESULTS Cultured mBMSCs using this protocol (mBMSCs-FS) showed long-term survival in culture > 70 population doubling (PD) and retained their characteristic surface markers and differentiation capacity into osteoblast and adipocyte lineages. When compared to the clonal bone marrow-derived cell line ST2, mBMSCs-FS displayed more enhanced osteoblast differentiation potential and responsiveness to osteogenic factors including BMPs, IGF-1, PDGF, TGFβ1,3, FGF, cAMP, Wnt3a and VEGF. In addition, unlike ST2 cells, mBMSCs-FS maintained capacity to form ectopic bone and bone marrow stroma upon in vivo transplantation in immune-compromising mice, even at high PD levels. Interestingly, by applying the same FS + bFGF protocol, we succeeded to obtain long-term cultures of primary neonatal calvarial osteoprogenitor cells (OBs) that were cultured for more than 70 PD and maintained in vitro and in vivo osteoblast differentiation capacities. CONCLUSIONS Our data provide a simple and reliable protocol for generating long-term cultures of mBMSCs and OBs with retained high in vitro and in vivo osteoblast differentiation capacities for use in pre-clinical and molecular mechanism studies.
Collapse
Affiliation(s)
- Basem M. Abdallah
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, Al-Ahsa 31982 Saudi Arabia
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Abdullah M. Alzahrani
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, Al-Ahsa 31982 Saudi Arabia
| | - Ashraf M. Abdel-Moneim
- Biological Sciences Department, College of Science, King Faisal University, Hofuf, Al-Ahsa 31982 Saudi Arabia
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Nicholas Ditzel
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital and University of Southern Denmark, Odense, Denmark
- Department of Cellular and Molecular Medicine, DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
- Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
45
|
Wang SS, Jia J, Wang Z. Mesenchymal Stem Cell-Derived Extracellular Vesicles Suppresses iNOS Expression and Ameliorates Neural Impairment in Alzheimer's Disease Mice. J Alzheimers Dis 2019; 61:1005-1013. [PMID: 29254100 DOI: 10.3233/jad-170848] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) have been reported to exhibit therapeutic effects in various animal models of neurological diseases, such as stroke and hypoxic-ischemic brain injury. OBJECTIVE The present study investigated the potential beneficial effect of MSC-derived EVs in an animal model of Alzheimer's disease (AD). METHODS APP/PS1 mice and their non-transgenic littermates (WT) received intracerebroventricle injection of MSC-derived EVs once per two days for two weeks. Then novel object recognition and water maze tasks were carried out to measure the cognitive behaviors. Electrophysiological tests were carried out to measure hippocampal synaptic plasticity. Inducible nitric oxide synthase (iNOS) mRNA and protein levels were measured by qRT-PCR and western blotting in primary cultured neurons treated with amyloid-β peptide (Aβ) or prepared from APP/PS1 mice. RESULTS Treatment with MSC-derived EVs alleviates exogenous Aβ-induced iNOS mRNA and protein expression. In cultured primary neurons prepared from APP/PS1 pups, iNOS mRNA and protein levels were significantly reduced when treated with MSC-derived EVs. MSC-derived EVs improved cognitive behavior, rescued impairment of CA1 synaptic transmission, and long-term potentiation in APP/PS1 mice. CONCLUSION MSC-derived EVs possessed beneficial effects in a mouse model of AD, probably by suppressing Aβ induced iNOS expression.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Department of Geriatric Neurology, Nanlou Clinical Division, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jianjun Jia
- Department of Geriatric Neurology, Nanlou Clinical Division, Chinese PLA General Hospital, Beijing, P.R. China
| | - Zhenfu Wang
- Department of Geriatric Neurology, Nanlou Clinical Division, Chinese PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
46
|
Khedgikar V, Lehoczky JA. Evidence for Lgr6 as a Novel Marker of Osteoblastic Progenitors in Mice. JBMR Plus 2018; 3:e10075. [PMID: 30828690 DOI: 10.1002/jbm4.10075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 11/07/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells are an important source of osteoblasts critical for both bone homeostasis and repair. The ability to isolate, or specifically target, mesenchymal stem cells committed to the osteogenic lineage is necessary for orthopedic translational therapy efforts; however the precise molecular signature of these cells remains elusive. Previously, we identified a population of osteoprogenitor cells expressing the Wnt signaling agonist Lgr6, which contributes to the development and regeneration of the mouse digit tip bone. In our present study we build upon this data and investigate the expression of Lgr6 more broadly in the skeleton. We find that Lgr6, and closely related Lgr4, are expressed in mouse primary calvarial cells, bone marrow cells, and bone marrow-derived mesenchymal stem cells. In addition, our data demonstrates that Lgr4 expression is modestly increased throughout the differentiation and mineralization of mesenchymal stem cells. In contrast, we find Lgr6 expression to be strikingly increased upon osteogenic induction and subsequently decreased upon differentiation and mineralization. These findings provide evidence for Lgr6 as a novel marker of osteoprogenitor cells in bone marrow, which could prove useful for isolation of this population toward future research and clinical applications.
Collapse
Affiliation(s)
- Vikram Khedgikar
- Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Boston MA USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery Brigham and Women's Hospital Harvard Medical School Boston MA USA
| |
Collapse
|
47
|
Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T, Yang S, Yin G, Chen J, Fan J, Cai W. Exosomes Derived from Bone Mesenchymal Stem Cells Repair Traumatic Spinal Cord Injury by Suppressing the Activation of A1 Neurotoxic Reactive Astrocytes. J Neurotrauma 2018; 36:469-484. [PMID: 29848167 DOI: 10.1089/neu.2018.5835] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is now considered as an effective treatment strategy for traumatic spinal cord injury (SCI). However, several key issues remain unresolved, including low survival rates, cell dedifferentiation, and tumor formation. Recent studies have demonstrated that the therapeutic effect of transplanted stem cells is primarily paracrine mediated. Exosomes are an important paracrine factor that can be used as a direct therapeutic agent. However, there are few reports on the application of exosomes derived from bone MSCs (BMSCs-Exos) in treating SCI. In this study, we demonstrated that BMSCs-Exos possessed robust proangiogenic properties, attenuated neuronal cells apoptosis, suppressed glial scar formation, attenuated lesion size, suppressed inflammation, promoted axonal regeneration, and eventually improved functional behavioral recovery effects after traumatic SCI. Briefly, lesion size was decreased by nearly 60%, neuronal apoptosis was attenuated by nearly 70%, glial scar formation was reduced by nearly 75%, average blood vessel density was increased by nearly 60%, and axonal regeneration was increased by almost 80% at day 28 after SCI in the BMSC-Exos group compared to the control group. Using a series of in vitro functional assays, we also confirmed that treatment with BSMCs-Exos significantly enhanced human umbilical vein endothelial cell proliferation, migration, and angiogenic tubule formation, attenuated neuronal cells apoptosis, and suppressed nitric oxide release in microglia. Moreover, our study demonstrated that administration of BMSCs-Exos suppressed inflammation efficiently after traumatic SCI and suppressed activation of A1 neurotoxic reactive astrocytes. In conclusion, our study suggested that the application of BMSCs-Exos may be a promising strategy for traumatic SCI.
Collapse
Affiliation(s)
- Wei Liu
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongxiang Wang
- 2 Department of Orthopaedics, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China
| | - Fangyi Gong
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuluo Rong
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yongjun Luo
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengyu Tang
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhou
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhimin Zhou
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Xu
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- 3 Department of Orthopaedics, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Siting Yang
- 4 Department of Anesthesia, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoyong Yin
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Chen
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Fan
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weihua Cai
- 1 Department of Orthopaedics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
48
|
Wang Q, Wang X, Lai D, Deng J, Hou Z, Liang H, Liu D. BIX-01294 promotes the differentiation of adipose mesenchymal stem cells into adipocytes and neural cells in Arbas Cashmere goats. Res Vet Sci 2018; 119:9-18. [PMID: 29783122 DOI: 10.1016/j.rvsc.2018.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/02/2018] [Accepted: 05/12/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Qing Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Defang Lai
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Jin Deng
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Zhuang Hou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Hao Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
49
|
Silva C, Oliveira K, Lavor M, Silva J, Rosado I, Taguchi T, Fukushima F, Caldeira F, Torres B, Milani P, Azevedo S, Motta G, Siano G, Goes A, Serakides R, Melo E. Benefícios da condroitinase abc associada a células-tronco mesenquimais na lesão espinhal aguda em ratos. ARQ BRAS MED VET ZOO 2018. [DOI: 10.1590/1678-4162-9523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RESUMO Com o objetivo de estudar o efeito da condroitinase associada às células-tronco mesenquimais na lesão aguda da medula espinhal, utilizaram-se 50 ratos Lewis, distribuídos igualmente nos grupos: controle negativo (CN), tratamento com placebo (PLA), condroitinase (CDN), células-tronco mesenquimais (CTM) e condroitinase mais células-tronco mesenquimais (CDN+CTM). Todos os animais tiveram a medula espinhal exposta por laminectomia, e os grupos PLA, CDT, CTM e CDT+CTM sofreram também trauma medular compressivo. Após sete dias, procedeu-se à reexposição da medula espinhal, quando os grupos PLA e CTM receberam 4µL de líquido cefalorraquidiano artificial via intralesional, e os grupos CDT e CDT+CTM receberam o mesmo líquido contendo 2,2U de condroitinase. Após 14 dias da cirurgia inicial, todos os animais receberam 0,2mL de PBS via endovenosa, contudo, nos grupos CTM e CDT+CTM, esse líquido continha 1x106 CTM. Avaliou-se a capacidade motora até o 28o dia pós-trauma e, posteriormente, as medulas espinhais foram analisadas por RT-PCR, para quantificação da expressão gênica para BDNF, NT-3, VEGF, KDR e PECAM-1, e por imunoistoquímica, para detecção das células-tronco GFP injetadas (anti-GFP), quantificação dos neurônios (anti-NeuN) e da GFAP e vimentina, para avaliação da cicatriz glial. As análises estatísticas foram realizadas com o auxílio do Prism 5 for Windows, com o nível de significância de 5%. Não houve diferença entre os grupos quanto à capacidade motora. O grupo CDT+CTM apresentou maior imunoexpressão de neurônios viáveis do que o placebo. No CTM, houve maior expressão dos fatores neurotróficos BDNF e VEGF. E no CDT, houve menor imunoexpressão de vimentina. Concluiu-se que a associação CDT+CTM favorece a viabilidade neuronal após o trauma, que o tratamento com CTM promove aumento na expressão dos fatores tróficos BDNF e VEGF e que o tratamento com condroitinase é efetivo na redução da cicatriz glial.
Collapse
Affiliation(s)
| | | | | | - J.F. Silva
- Universidade Estadual de Santa Cruz, Brazil
| | | | | | | | | | | | - P.F. Milani
- Universidade Federal de Minas Gerais, Brazil
| | | | - G.R. Motta
- Universidade Federal de Minas Gerais, Brazil
| | - G.F. Siano
- Universidade Federal de Minas Gerais, Brazil
| | - A.M. Goes
- Universidade Federal de Minas Gerais, Brazil
| | | | - E.G. Melo
- Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
50
|
Chen M, Zhang J, Chen Y, Qiu Y, Luo Z, Zhao S, Du L, Tian D. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses. Sci Rep 2018; 8:8004. [PMID: 29789753 PMCID: PMC5964155 DOI: 10.1038/s41598-018-26335-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/08/2018] [Indexed: 02/05/2023] Open
Abstract
Here we investigated whether hydrogen can protect the lung from chronic injury induced by hypoxia/re-oxygenation (H/R). We developed a mouse model in which H/R exposure triggered clinically typical lung injury, involving increased alveolar wall thickening, infiltration by neutrophils, consolidation, alveolar hemorrhage, increased levels of inflammatory factors and recruitment of M1 macrophages. All these processes were attenuated in the presence of H2. We found that H/R-induced injury in our mouse model was associated with production of hydroxyl radicals as well as increased levels of colony-stimulating factors and circulating leukocytes. H2 attenuated H/R-induced production of hydroxyl radicals, up-regulation of colony-stimulating factors, and recruitment of neutrophils and M1 macrophages to lung tissues. However, H2 did not substantially affect the H/R-induced increase in erythropoietin or pulmonary artery remodeling. Our results suggest that H2 ameliorates H/R-induced lung injury by inhibiting hydroxyl radical production and inflammation in lungs. It may also prevent colony-stimulating factors from mobilizing progenitors in response to H/R-induced injury.
Collapse
Affiliation(s)
- Meihong Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China
| | - Jie Zhang
- Department of Pathology Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yun Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China
| | - Yan Qiu
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zi Luo
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Anesthesiology, Loudi Central Hospital, Loudi, Hunan, 417000, China
| | - Sixia Zhao
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.,Department of Anesthesiology, Xiangtan Central Hospital, Xiangtan, Hunan, 411100, China
| | - Lei Du
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, Guangdong, 511500, China.
| |
Collapse
|