1
|
Arshee MR, Shukla R, Li J, Doha U, Bagchi IC, Ziv-Gal A, Wagoner Johnson AJ. Impact of paraben on uterine collagen: An integrated and targeted Correlative approach using second harmonic generation microscopy, nanoindentation, and atomic force microscopy. J Mech Behav Biomed Mater 2025; 165:106926. [PMID: 39946870 DOI: 10.1016/j.jmbbm.2025.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 03/12/2025]
Abstract
This study investigates the structural and mechanical changes in uterine collagen following exposure to propylparaben (PP) using a combined methodology of Second Harmonic Generation (SHG) microscopy, Nanoindentation (NI), and Atomic Force Microscopy (AFM). SHG analysis identified significant disorganization in collagen fibril orientation in the circumferential layer and heterogeneous distribution of regions with elevated forward to backward ratios (F/B) across all uterine layers due to PP exposure. High F/B can indicate multiple potential fibril-level changes like thickened fibrils, higher crosslinking, fibril disorganization - changes not fully decipherable by SHG alone. Recognizing this limitation, the study employs NI and AFM to provide complementary mechanical and nanoscale insights. NI revealed increased indentation modulus in the exposed uteri, suggesting increased stiffness. Co-registration of the indentation response with SHG parameters uncovered that elevated F/B regions show enhanced mechanical stiffness, suggesting a fibrotic transformation following chronic PP exposure. AFM was specifically performed on regions identified by SHG as having low or high F/B, providing the necessary nanoscale resolution to elucidate the structural changes in fibrils that are likely responsible for the observed alterations. AFM confirmed the presence of disordered and entangled collagen fibrils in the circumferential layer in all regions and an increase in fibril diameter in the high F/B regions in the PP-exposed uteri. Together, these findings demonstrate significant alterations in collagen architecture due to PP exposure, revealing disruptions at both the fiber and fibril levels and highlighting the potential for broader applications of the multi-scale, multi-modal approach in collagenous tissue studies.
Collapse
Affiliation(s)
- Mahmuda R Arshee
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Ritwik Shukla
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jie Li
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Umnia Doha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Indrani C Bagchi
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA; Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; CZ Biohub Chicago, LLC, Chicago, IL, 60642, USA
| | - Ayelet Ziv-Gal
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; CZ Biohub Chicago, LLC, Chicago, IL, 60642, USA
| | - Amy J Wagoner Johnson
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA; Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; CZ Biohub Chicago, LLC, Chicago, IL, 60642, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Rizan C, Rotchell JM, Eng PC, Robaire B, Ciocan C, Kapoor N, Kalra S, Sherman JD. Mitigating the environmental effects of healthcare: the role of the endocrinologist. Nat Rev Endocrinol 2025:10.1038/s41574-025-01098-9. [PMID: 40082727 DOI: 10.1038/s41574-025-01098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/18/2025] [Indexed: 03/16/2025]
Abstract
Human health depends on planetary health, and yet healthcare provision can have unintended consequences for the health of the planet. Emissions from the healthcare sector include greenhouse gases, air pollution and plastic pollution, alongside chemical contamination. Chemical pollution resulting in endocrine disruption has been associated with plastics, which are a source of concerning additives such as phthalates, bisphenols, perfluoroalkyl and polyfluoroalkyl substances, and flame retardants (all routinely found in healthcare products). Many endocrine-disrupting chemicals are persistent and ubiquitous in the environment (including water and food sources), with potential secondary harms for human health, including disrupting reproductive, metabolic and thyroid function. Here we review evidence-based strategies for mitigating environmental effects of healthcare delivery. We focus on what endocrinologists can do, including reducing demand for healthcare services through better preventative health, focusing on high-value care and improving sustainability of medical equipment and pharmaceuticals through adopting circular economy principles (including reduce, reuse and, as a last resort, recycle). The specific issue of endocrine-disrupting chemicals might be mitigated through responsible disposal and processing, alongside advocating for the use of alternative materials and replacing additive chemicals with those that have lower toxicity profiles, as well as tighter regulations. We must work to urgently transition to sustainable models of care provision, minimizing negative effects on human and planetary health.
Collapse
Affiliation(s)
- Chantelle Rizan
- Centre for Sustainable Medicine, National University of Singapore, Singapore, Singapore.
- Brighton and Sussex Medical School, Brighton, UK.
| | | | - Pei Chia Eng
- Department of Endocrinology, National University Hospital, Singapore, Singapore
- Department of Medicine, National University of Singapore, Singapore, Singapore
| | - Bernard Robaire
- Faculty of Medicine and Biomedical Sciences, McGill University, Montreal, Quebec, Canada
| | - Corina Ciocan
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Nitin Kapoor
- Department of Endocrinology, Christian Medical College, Vellore, India
- The Non-Communicable Disease Unit, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, India
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Jodi D Sherman
- Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale School of Public Health, Yale University, New Haven, CT, USA
| |
Collapse
|
3
|
Korolenko A, Skinner MK. Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution. Epigenetics 2024; 19:2380929. [PMID: 39104183 PMCID: PMC11305060 DOI: 10.1080/15592294.2024.2380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).
Collapse
Affiliation(s)
- Alexandra Korolenko
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Arshee MR, Shukla R, Li J, Bagchi IC, Ziv-Gal A, Johnson AJW. Impact of Paraben on Uterine Collagen: An Integrated and Targeted Correlative Approach Using Second Harmonic Generation Microscopy, Nanoindentation, and Atomic Force Microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622338. [PMID: 39574727 PMCID: PMC11581003 DOI: 10.1101/2024.11.06.622338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
This study investigates the structural and mechanical changes in uterine collagen following exposure to propylparaben (PP), using a combined methodology of Second Harmonic Generation (SHG) microscopy, Nanoindentation (NI), and Atomic Force Microscopy (AFM). SHG analysis identified significant disorganization in collagen fibril orientation in the circumferential layer and heterogeneous distribution of regions with elevated forward to backward ratios (F/B) across all uterine layers due to PP exposure. High F/B can indicate multiple potential fibril-level changes like thickened fibrils, higher crosslinking, fibril disorganization - changes not fully decipherable by SHG alone. Recognizing this limitation, the study employs NI and AFM to provide complementary mechanical and nanoscale insights. NI revealed increased indentation modulus in the exposed uteri, suggesting increased stiffness. Co-registration of the indentation response with SHG parameters uncovered that elevated F/B regions show enhanced mechanical stiffness, suggesting a fibrotic transformation following PP exposure. AFM was specifically performed on regions identified by SHG as having low or high F/B, providing the necessary nanoscale resolution to elucidate the structural changes in fibrils that are likely responsible for the observed alterations. This approach confirmed the presence of disordered and entangled collagen fibrils in the circumferential layer in all regions and an increase in fibril diameter in the high F/B regions in the exposed uteri. Together, these findings demonstrate significant alterations in collagen architecture due to PP exposure, revealing disruptions at both the fiber and fibril levels and highlighting the potential for broader applications of the multi-scale, multi-modal approach in collagenous tissue studies.
Collapse
Affiliation(s)
- Mahmuda R Arshee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Ritwik Shukla
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Jie Li
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- CZ Biohub Chicago, LLC, Chicago, Illinois 60642
| | - Ayelet Ziv-Gal
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
- CZ Biohub Chicago, LLC, Chicago, Illinois 60642
| | - A J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- CZ Biohub Chicago, LLC, Chicago, Illinois 60642
| |
Collapse
|
5
|
Shulhai AM, Bianco V, Donini V, Esposito S, Street ME. Which is the current knowledge on man-made endocrine- disrupting chemicals in follicular fluid? An overview of effects on ovarian function and reproductive health. Front Endocrinol (Lausanne) 2024; 15:1435121. [PMID: 39415794 PMCID: PMC11479995 DOI: 10.3389/fendo.2024.1435121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
The increase in female reproductive disorders, such as polycystic ovary syndrome, endometriosis, and diminished ovarian reserve that lead to subfertility and infertility, has encouraged researchers to search and discover their underlying causes and risk factors. One of the crucial factors that may influence the increasing number of reproductive issues is environmental pollution, particularly exposure to man-made endocrine-disrupting chemicals (EDCs). EDCs can interfere with the ovarian microenvironment, impacting not only granulosa cell function but also other surrounding ovarian cells and follicular fluid (FF), which all play essential roles for oocyte development, maturation, and overall reproductive function. FF surrounds developing oocytes within an ovarian follicle and represents a dynamic milieu. EDCs are usually found in biological fluids, and FF is therefore of interest in this respect. This narrative review examines the current knowledge on specific classes of EDCs, including industrial chemicals, pesticides, and plasticizers, and their known effects on hormonal signaling pathways, gene expression, mitochondrial function, oxidative stress induction, and inflammation in FF. We describe the impact of EDCs on the development of reproductive disorders, oocyte quality, menstrual cycle regulation, and their effect on assisted reproductive technique outcomes. The potential transgenerational effects of EDCs on offspring through animal and first-human studies has been considered also. While significant progress has been made, the current understanding of EDCs' effects on ovarian function, particularly in humans, remains limited, underscoring the need for further research to clarify actions and effects of EDCs in the ovary.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Department of Pediatrics №2, Ivan Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Valentina Bianco
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Donini
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| |
Collapse
|
6
|
Sakali AK, Bargiota A, Bjekic-Macut J, Macut D, Mastorakos G, Papagianni M. Environmental factors affecting female fertility. Endocrine 2024; 86:58-69. [PMID: 38954374 DOI: 10.1007/s12020-024-03940-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Over the recent years, scientific community has increased its interest on solving problems of female fertility pathology. Many factors acting separately or in combination affect significantly the reproductive life of a woman. This review summarizes current evidence regarding the direct and/or indirect action of environmental factors and endocrine disrupting chemicals (EDCs; i.e. heavy metals, plasticizers, parabens, industrial chemicals, pesticides, or medications, by-products, anti-bacterial agents, perfluorochemicals) upon assisted and non-assisted female fertility, extracted from in vivo and in vitro animal and human published data. Transgenerational effects which could have been caused epigenetically by the action of EDCs have been raised. METHODS This narrative review englobes and describes data from in vitro and in vivo animal and human studies with regard to the action of environmental factors, which include EDCs, on female fertility following the questions for narrative reviews of the SANRA (a scale for the quality assessment of narrative review articles). The identification of the studies was done: through the PubMed Central and the PubMed of the MEDLINE, the Google Scholar database and the Cochrane Library database until December 2023 combining appropriate keywords ("specific environmental factors" including "EDCs" AND "specific negative fertility outcomes"); by manual scanning of references from selected articles and reviews focusing on these subjects. It includes references to EDCs-induced transgenerational effects. RESULTS From the reported evidence emerge negative or positive associations between specific environmental factors or EDCs and infertility outcomes such as infertility indices, disrupted maturation of the oocytes, anovulation, deranged transportation of the embryo and failure of implantation. CONCLUSION The revealed adverse outcomes related to female fertility could be attributed to exposure to specific environmental factors such as temperature, climate, radiation, air pollutants, nutrition, toxic substances and EDCs. The recognition of fertility hazards related to the environment will permit the limitation of exposure to them, will improve female fertility and protect the health potential of future generations.
Collapse
Affiliation(s)
- Anastasia-Konstantina Sakali
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, School of Medicine, University of Thessaly, Larissa, Greece
| | - Alexandra Bargiota
- Department of Endocrinology and Metabolic Diseases, Larissa University Hospital, School of Medicine, University of Thessaly, Larissa, Greece
| | - Jelica Bjekic-Macut
- Department of Endocrinology, University Medical Center Bežanijska kosa, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Djuro Macut
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - George Mastorakos
- Unit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Athens Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Papagianni
- Department of Nutrition and Dietetics, School of Physical Education, Sport Science and Dietetics, University of Thessaly, Trikala, Greece.
- Endocrine Unit, 3rd Department of Pediatrics, Hippokration Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
7
|
Li P, Chen Z. Association of blood isobutyronitrile with infertility among reproductive-aged women: Results from the NHANES cohort. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:117010. [PMID: 39241610 DOI: 10.1016/j.ecoenv.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Isobutyronitrile finds extensive application in organic synthesis for the production of the insecticide diazinon. Apart from occupational exposure, cigarette smoking may also expose the general population to isobutyronitrile. However, to date, the association between isobutyronitrile and female infertility has not been explored in a population-based study. Hence, we analysed data from 1254 women, aged 18-44, with blood isobutyronitrile results and infertility questionnaires, from National Health and Nutrition Examination Survey (NHANES) 2015-2016 and NHANES 2017-March 2020. To compare differences, weighted chi-square tests were conducted for categorical variables and weighted regression models were performed for continuous variables. Logistic regression and generalized linear models were applied to examine the associations. Each standard deviation increment (SD=0.026) of isobutyronitrile increased the risk of infertility by 24 % after adjusting for potential confounders in logistic regression model (aOR=1.24; 95 % CI: 1.06-1.46). In women who had been pregnant and gave birth, the results exhibited a consistent linear relationship. The participants were classified into two groups, namely positive and negative, using an isobutyronitrile cut-off value that exceeded 0.040 ng/mL. The positive group did not demonstrate a statistically significant correlation (aOR=1.55; 95 % CI: 0.66-3.65). According to smooth curve fitting, isobutyronitrile and infertility was linearly related across the entire range, and no threshold effect was found. Particularly, non-Hispanic Black women had a significantly stronger association with isobutyronitrile exposure and infertility (aOR=4.27; 95 % CI: 1.32-13.83). In conclusion, our study was the first report of an independent association of isobutyronitrile with infertility, especially in non-Hispanic Black women. Additional fundamental research on nonhuman primates, along with comprehensive clinical studies, are necessary to fully elucidate the intricate mechanisms underlying isobutyronitrile activity.
Collapse
Affiliation(s)
- Peiyi Li
- The Assisted Reproduction Centre, Huizhou Central People's Hospital, Huizhou, Guangdong, China
| | - Zhiyun Chen
- The Assisted Reproduction Centre, Huizhou Central People's Hospital, Huizhou, Guangdong, China.
| |
Collapse
|
8
|
Chaichian S, Khodabandehloo F, Haghighi L, Govahi A, Mehdizadeh M, Ajdary M, Varma RS. Toxicological Impact of Bisphenol A on Females' Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod Sci 2024; 31:1781-1799. [PMID: 38532232 DOI: 10.1007/s43032-024-01521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.
Collapse
Affiliation(s)
- Shahla Chaichian
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetics and Advanced Medical Technology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ladan Haghighi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry Federal University of São Carlos, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
9
|
Chen W, Wang X, Wan S, Yang Y, Zhang Y, Xu Z, Zhao J, Mi C, Zhang H. Dichloroacetic acid and trichloroacetic acid as disinfection by-products in drinking water are endocrine-disrupting chemicals. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133035. [PMID: 38266585 DOI: 10.1016/j.jhazmat.2023.133035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 01/26/2024]
Abstract
Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) are two typical non-volatile disinfection by-products (DBPs) found in drinking water. Increasing evidence has demonstrated that they show reproductive toxicity. However, whether they might have endocrine disrupting properties remains largely unknown. To discover this, we treated male mice or pregnant mice with 0, 1-, 102-, 103-, 104-, or 5 × 104-fold maximal concentration level (MCL) of DCAA or TCAA in drinking water. In male mice, the levels of testosterone in serum and androgen receptor (AR) in testis were declined with ≥ 103-fold MCL of DCAA (26.4 mg/kg/d) or TCAA (52.7 mg/kg/d). In pregnant mice, miscarriage rates were increased with ≥ 104-fold MCL of DCAA (264 mg/kg/d) or ≥ 103-fold MCL of TCAA. The levels of FSH in serum were increased and those of estradiol and progesterone were reduced with ≥ 103-fold MCL of DCAA or TCAA. The protein levels of estrogen receptors (ERα and ERβ) in ovary were reduced with ≥ 102-fold MCL of DCAA (2.64 mg/kg/d) or TCAA (5.27 mg/kg/d). Exposure to some certain fold MCL of DCAA or TCAA also altered the protein levels of ERα and ERβ in uterus and placenta. Exposure to 5 × 104-fold MCL of both DCAA and TCAA showed the combined effects. Therefore, both DCAA and TCAA could be considered as novel reproductive endocrine disrupting chemicals, which might be helpful for further assessment of the toxicological effects of DCAA and TCAA and the awareness of reproductive endocrine disrupting properties caused by DCAA and TCAA in drinking water.
Collapse
Affiliation(s)
- Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Xiaoqing Wang
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Shukun Wan
- Key Laboratory of Environment and Female Reproductive Health, West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China; Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Yang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Ying Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhongyan Xu
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Chenyang Mi
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Huidong Zhang
- Research Center for Environment and Female Reproductive Health, the Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
10
|
Wu X, Tian Y, Zhu H, Xu P, Zhang J, Hu Y, Ji X, Yan R, Yue H, Sang N. Invisible Hand behind Female Reproductive Disorders: Bisphenols, Recent Evidence and Future Perspectives. TOXICS 2023; 11:1000. [PMID: 38133401 PMCID: PMC10748066 DOI: 10.3390/toxics11121000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Reproductive disorders are considered a global health problem influenced by physiological, genetic, environmental, and lifestyle factors. The increased exposure to bisphenols, a chemical used in large quantities for the production of polycarbonate plastics, has raised concerns regarding health risks in humans, particularly their endocrine-disrupting effects on female reproductive health. To provide a basis for future research on environmental interference and reproductive health, we reviewed relevant studies on the exposure patterns and levels of bisphenols in environmental matrices and humans (including susceptible populations such as pregnant women and children). In addition, we focused on in vivo, in vitro, and epidemiological studies evaluating the effects of bisphenols on the female reproductive system (the uterus, ovaries, fallopian tubes, and vagina). The results indicate that bisphenols cause structural and functional damage to the female reproductive system by interfering with hormones; activating receptors; inducing oxidative stress, DNA damage, and carcinogenesis; and triggering epigenetic changes, with the damaging effects being intergenerational. Epidemiological studies support the association between bisphenols and diseases such as cancer of the female reproductive system, reproductive dysfunction, and miscarriage, which may negatively affect the establishment and maintenance of pregnancy. Altogether, this review provides a reference for assessing the adverse effects of bisphenols on female reproductive health.
Collapse
Affiliation(s)
- Xiaoyun Wu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yuchai Tian
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huizhen Zhu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Pengchong Xu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Jiyue Zhang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Yangcheng Hu
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Xiaotong Ji
- Department of Environmental Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China;
| | - Ruifeng Yan
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Huifeng Yue
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| | - Nan Sang
- Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China; (X.W.); (Y.T.); (H.Z.); (P.X.); (J.Z.); (Y.H.); (N.S.)
| |
Collapse
|
11
|
Howdeshell KL, Beverly BEJ, Blain RB, Goldstone AE, Hartman PA, Lemeris CR, Newbold RR, Rooney AA, Bucher JR. Evaluating endocrine disrupting chemicals: A perspective on the novel assessments in CLARITY-BPA. Birth Defects Res 2023; 115:1345-1397. [PMID: 37646438 DOI: 10.1002/bdr2.2238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND The Consortium Linking Academic and Regulatory Insights on Bisphenol A Toxicity (CLARITY-BPA) was a collaborative research effort to better link academic research with governmental guideline studies. This review explores the secondary goal of CLARITY-BPA: to identify endpoints or technologies from CLARITY-BPA and prior/concurrent literature from these laboratories that may enhance the capacity of rodent toxicity studies to detect endocrine disrupting chemicals (EDCs). METHODS A systematic literature search was conducted with search terms for BPA and the CLARITY-BPA participants. Relevant studies employed a laboratory rodent model and reported results on 1 of the 10 organs/organ systems evaluated in CLARITY-BPA (brain and behavior, cardiac, immune, mammary gland, ovary, penile function, prostate gland and urethra, testis and epididymis, thyroid hormone and metabolism, and uterus). Study design and findings were summarized, and a risk-of-bias assessment was conducted. RESULTS Several endpoints and methods were identified as potentially helpful to detect effects of EDCs. For example, molecular and quantitative morphological approaches were sensitive in detecting alterations in early postnatal development of the brain, ovary, and mammary glands. Hormone challenge studies mimicking human aging reported increased susceptibility of the prostate to disease following developmental BPA exposure. Statistical analyses for nonmonotonic dose responses, and computational approaches assessing multiple treatment-related outcomes concurrently in linked hormone-sensitive organ systems, reported effects at low BPA doses. CONCLUSIONS This review provided an opportunity to evaluate the unique insights provided by nontraditional assessments in CLARITY-BPA to identify technologies and endpoints to enhance detection of EDCs in future studies.
Collapse
Affiliation(s)
- Kembra L Howdeshell
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - Brandiese E J Beverly
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | - Retha R Newbold
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| | - Andrew A Rooney
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
| | - John R Bucher
- Division of Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, USA
- NIEHS, retired, Research Triangle Park, North Carolina, United States
| |
Collapse
|
12
|
Rogers RE, Chai S, Pask AJ, Mattiske DM. Prenatal exposure to diethylstilbestrol has long-lasting, transgenerational impacts on fertility and reproductive development. Toxicol Sci 2023; 195:53-60. [PMID: 37471692 PMCID: PMC10464516 DOI: 10.1093/toxsci/kfad066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Abstract
Significant decreases in fertility have been observed over the past 50 years, with female conception rates dropping by 44% and male sperm counts decreasing by over 50%. This dramatic decrease in fertility can be attributed in part to our increasing exposure to endocrine disrupting chemicals (EDCs). Diethylstilbestrol (DES) is an estrogenic EDC that was prescribed to millions of pregnant women between 1940 and 1970 and resulted in detrimental reproductive effects in the offspring that were exposed in utero. Women who were exposed to DES in utero experienced higher rates of infertility, pregnancy complications, and reproductive cancers. Alarmingly, there is evidence to suggest that these effects may persist in the grandchildren and great grandchildren of exposed women. To define the transgenerational reproductive impacts in females following exposure to DES, gestating mice were exposed to DES and the effects monitored in the female descendants across 3 generations. There was a trend for reduced pregnancy rate and fertility index seen across the generations and moreover, the anogenital distance (AGD) was significantly reduced up until the third, unexposed generation. The onset of puberty was also significantly affected, with the timing of vaginal opening occurring significantly earlier in DES descendants. These results indicate a transgenerational effect of DES on multiple reproductive parameters including fertility, timing of puberty, and AGD. These data have significant implications for more than 50 million DES descendants worldwide as well as raising concerns for the ongoing health impacts caused by exposures to other estrogenic EDCs which are pervasive in our environment.
Collapse
Affiliation(s)
- Rachael E Rogers
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shuyi Chai
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
13
|
Laws MJ, Meling DD, Deviney ARK, Santacruz-Márquez R, Flaws JA. Long-term exposure to di(2-ethylhexyl) phthalate, diisononyl phthalate, and a mixture of phthalates alters estrous cyclicity and/or impairs gestational index and birth rate in mice. Toxicol Sci 2023; 193:48-61. [PMID: 36929940 PMCID: PMC10176245 DOI: 10.1093/toxsci/kfad030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Phthalates are found in plastic food containers, medical plastics, and personal care products. However, the effects of long-term phthalate exposure on female reproduction are unknown. Thus, this study investigated the effects of long-term, dietary phthalate exposure on estrous cyclicity and fertility in female mice. Adult female CD-1 mice were fed chow containing vehicle control (corn oil) or 0.15-1500 ppm of di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DiNP), or a mixture of phthalates (Mix) containing DEHP, DiNP, benzyl butyl phthalate, di-n-butyl phthalate, diisobutyl phthalate, and diethyl phthalate. Measurements of urinary phthalate metabolites confirmed effective delivery of phthalates. Phthalate consumption for 11 months did not affect body weight compared to control. DEHP exposure at 0.15 ppm for 3 and 5 months increased the time that the mice spent in estrus and decreased the time the mice spent in metestrus/diestrus compared to control. DiNP exposure (0.15-1500 ppm) did not significantly affect time in estrus or metestrus/diestrus compared to control. Mix exposure at 0.15 and 1500 ppm for 3 months decreased the time the mice spent in metestrus/diestrus and increased the time the mice spent in estrus compared to control. DEHP (0.15-1500 ppm) or Mix (0.15-1500 ppm) exposure did not affect fertility-related indices compared to control. However, long-term DiNP exposure at 1500 ppm significantly reduced gestational index and birth rate compared to control. These data indicate that chronic dietary exposure to phthalates alters estrous cyclicity, and long-term exposure to DiNP reduces gestational index and birth rate in mice.
Collapse
Affiliation(s)
- Mary J Laws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Daryl D Meling
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ashley R K Deviney
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Ramsés Santacruz-Márquez
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois 61802, USA
| |
Collapse
|
14
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
15
|
Hirke A, Varghese B, Varade S, Adela R. Exposure to endocrine-disrupting chemicals and risk of gestational hypertension and preeclampsia: A systematic review and meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120828. [PMID: 36481468 DOI: 10.1016/j.envpol.2022.120828] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Prenatal exposure to endocrine-disrupting chemicals has been linked to gestational hypertension (GH) and preeclampsia (PE). However, the results were conflicting and inconclusive. We conducted a systematic review and meta-analysis for an overview of these relationships. We searched PubMed, and Google Scholar for studies investigating bisphenol A, phthalates, and per or poly-fluoroalkyl substances and GH or PE. Pooled odds ratio (OR) with a 95% confidence interval (CI) were calculated for risk estimate using the generic inverse variance method. A total of 14 studies were included in the present analysis. The pooled results demonstrated that perfluorooctanoic acid (PFOA, OR:1.20, 95% CI: 1.04, 1.39), perfluoro octane sulfonic acid (PFOS, (OR:1.23, 95% CI: 1.10, 1.38), and perfluononanoic acid (PFNA, OR:1.20, 95% CI: 1.03, 1.40) were significantly associated with an increased risk of PE. There was no significant association observed with perfluoro hexane sulfonic acid (PFHxS), perfluoro decanoic acid (PFDA), perfluoro heptanoic acid (PFHpA), and perfluoro undecanoic acid (PFUnDA) and PE. For GH, a statistically significant positive association was found with PFOA (OR:1.18, 95% CI: 1.01, 1.39) and PFHxS (OR:1.15, 95% CI: 1.02, 1.29). Among various phthalates analysed only mono-ethyl phthalate (MEP, OR:1.37, 95% CI: 1.11, 1.70) showed an association with GH. From our analysis, bisphenol A exposure during pregnancy did not show a significant association with the risk of PE. Our findings indicated that exposure to PFASs such as PFOA, PFOS, and PFNA during pregnancy is associated with an increased risk of PE and PFOA and PFHxS with GH. We also found that MEP was associated with GH. Most of the results were unstable in sensitivity analysis. Since most of these associations have limited evidence, more research is needed to confirm these findings.
Collapse
Affiliation(s)
- Amol Hirke
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Sila Katamur Village, Changsari, Assam, India.
| | - Bincy Varghese
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Sila Katamur Village, Changsari, Assam, India.
| | - Shruti Varade
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Sila Katamur Village, Changsari, Assam, India.
| | - Ramu Adela
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Guwahati, Sila Katamur Village, Changsari, Assam, India.
| |
Collapse
|
16
|
Verdikt R, Armstrong AA, Allard P. Transgenerational inheritance and its modulation by environmental cues. Curr Top Dev Biol 2022; 152:31-76. [PMID: 36707214 PMCID: PMC9940302 DOI: 10.1016/bs.ctdb.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epigenome plays an important role in shaping phenotypes. However, whether the environment can alter an organism's phenotype across several generations through epigenetic remodeling in the germline is still a highly debated topic. In this chapter, we briefly review the mechanisms of epigenetic inheritance and their connection with germline development before highlighting specific developmental windows of susceptibility to environmental cues. We further discuss the evidence of transgenerational inheritance to a range of different environmental cues, both epidemiological in humans and experimental in rodent models. Doing so, we pinpoint the current challenges in demonstrating transgenerational inheritance to environmental cues and offer insight in how recent technological advances may help deciphering the epigenetic mechanisms at play. Together, we draw a detailed picture of how our environment can influence our epigenomes, ultimately reshaping our phenotypes, in an extended theory of inheritance.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States.
| | - Abigail A Armstrong
- Department of Obstetrics/Gynecology and Division of Reproductive Endocrinology and Infertility, University of California, Los Angeles, CA, United States
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
17
|
Rebuzzini P, Fabozzi G, Cimadomo D, Ubaldi FM, Rienzi L, Zuccotti M, Garagna S. Multi- and Transgenerational Effects of Environmental Toxicants on Mammalian Reproduction. Cells 2022; 11:cells11193163. [PMID: 36231124 PMCID: PMC9563050 DOI: 10.3390/cells11193163] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/21/2022] Open
Abstract
Environmental toxicants (ETs) are an exogenous chemical group diffused in the environment that contaminate food, water, air and soil, and through the food chain, they bioaccumulate into the organisms. In mammals, the exposure to ETs can affect both male and female fertility and their reproductive health through complex alterations that impact both gametogeneses, among other processes. In humans, direct exposure to ETs concurs to the declining of fertility, and its transmission across generations has been recently proposed. However, multi- and transgenerational inheritances of ET reprotoxicity have only been demonstrated in animals. Here, we review recent studies performed on laboratory model animals investigating the effects of ETs, such as BPA, phthalates, pesticides and persistent contaminants, on the reproductive system transmitted through generations. This includes multigenerational effects, where exposure to the compounds cannot be excluded, and transgenerational effects in unexposed animals. Additionally, we report on epigenetic mechanisms, such as DNA methylation, histone tails and noncoding RNAs, which may play a mechanistic role in a nongenetic transmission of environmental information exposure through the germline across generations.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Gemma Fabozzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | - Danilo Cimadomo
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
| | | | - Laura Rienzi
- Clinica Valle Giulia, GeneraLife IVF, Via De Notaris 2B, 00197 Rome, Italy
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, Via Sant’Andrea 34, 61029 Urbino, Italy
| | - Maurizio Zuccotti
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| | - Silvia Garagna
- Laboratory of Developmental Biology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, Via Ferrata 9, University of Pavia, 27100 Pavia, Italy
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
- Correspondence: (P.R.); (M.Z.); (S.G.); Tel.: +39-0382-986323 (P.R. & M.Z. & S.G.)
| |
Collapse
|
18
|
Tuba-Guaman D, Zuarez-Chamba M, Quishpe-Quishpe L, Reinoso C, Santacruz CP, Herrera-Robledo M, Cisneros-Pérez PA. Photodegradation of Rhodamine B and Bisphenol A Over Visible-Light Driven Bi7O9I3-and Bi12O17Cl2-Photocatalysts Under White LED Irradiation. Top Catal 2022. [DOI: 10.1007/s11244-022-01689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Montjean D, Neyroud AS, Yefimova MG, Benkhalifa M, Cabry R, Ravel C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int J Mol Sci 2022; 23:3350. [PMID: 35328771 PMCID: PMC8950994 DOI: 10.3390/ijms23063350] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
| | - Anne-Sophie Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
| | - Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia;
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Célia Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
20
|
Robaire B, Delbes G, Head JA, Marlatt VL, Martyniuk CJ, Reynaud S, Trudeau VL, Mennigen JA. A cross-species comparative approach to assessing multi- and transgenerational effects of endocrine disrupting chemicals. ENVIRONMENTAL RESEARCH 2022; 204:112063. [PMID: 34562476 DOI: 10.1016/j.envres.2021.112063] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A wide range of chemicals have been identified as endocrine disrupting chemicals (EDCs) in vertebrate species. Most studies of EDCs have focused on exposure of both male and female adults to these chemicals; however, there is clear evidence that EDCs have dramatic effects when mature or developing gametes are exposed, and consequently are associated with in multigenerational and transgenerational effects. Several publications have reviewed such actions of EDCs in subgroups of species, e.g., fish or rodents. In this review, we take a holistic approach synthesizing knowledge of the effects of EDCs across vertebrate species, including fish, anurans, birds, and mammals, and discuss the potential mechanism(s) mediating such multi- and transgenerational effects. We also propose a series of recommendations aimed at moving the field forward in a structured and coherent manner.
Collapse
Affiliation(s)
- Bernard Robaire
- Department of Pharmacology and Therapeutics and of Obstetrics and Gynecology, McGill University, Montreal, Canada.
| | - Geraldine Delbes
- Centre Armand Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique (INRS), Laval, QC, Canada
| | - Jessica A Head
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Vicki L Marlatt
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Université. Savoie Mont Blanc, CNRS, LECA, Grenoble, 38000, France
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
21
|
Belmonte-Tebar A, San Martin Perez E, Nam Cha S, Soler Valls AJ, Singh ND, de la Casa-Esperon E. Diet effects on mouse meiotic recombination: a warning for recombination studies. Genetics 2022; 220:iyab190. [PMID: 34791205 PMCID: PMC8733447 DOI: 10.1093/genetics/iyab190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic recombination is a critical process for sexually reproducing organisms. This exchange of genetic information between homologous chromosomes during meiosis is important not only because it generates genetic diversity, but also because it is often required for proper chromosome segregation. Consequently, the frequency and distribution of crossovers are tightly controlled to ensure fertility and offspring viability. However, in many systems, it has been shown that environmental factors can alter the frequency of crossover events. Two studies in flies and yeast point to nutritional status affecting the frequency of crossing over. However, this question remains unexplored in mammals. Here, we test how crossover frequency varies in response to diet in Mus musculus males. We use immunohistochemistry to estimate crossover frequency in multiple genotypes under two diet treatments. Our results indicate that while crossover frequency was unaffected by diet in some strains, other strains were sensitive even to small composition changes between two common laboratory chows. Therefore, recombination is both resistant and sensitive to certain dietary changes in a strain-dependent manner and, hence, this response is genetically determined. Our study is the first to report a nutrition effect on genome-wide levels of recombination. Moreover, our work highlights the importance of controlling diet in recombination studies and may point to diet as a potential source of variability among studies, which is relevant for reproducibility.
Collapse
Affiliation(s)
- Angela Belmonte-Tebar
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Estefania San Martin Perez
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
| | - Syonghyun Nam Cha
- Pathology Department and Biobank of Albacete, University Hospital Complex of Albacete, Albacete 02006, Spain
| | | | - Nadia D Singh
- Department of Biology, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - Elena de la Casa-Esperon
- Regional Center for Biomedical Research (C.R.I.B.), University of Castilla-La Mancha, Albacete 02008, Spain
- Department of Inorganic and Organic Chemistry and Biochemistry, School of Pharmacy, University of Castilla-La Mancha, Albacete 02071, Spain
| |
Collapse
|
22
|
Kim S, Kang KH, Koh H. Maternal Exposure to Bisphenol A Impacts on Fecundity in F1 and F2 Generations in Drosophila melanogaster. Dev Reprod 2021; 25:193-197. [PMID: 34950822 PMCID: PMC8670775 DOI: 10.12717/dr.2021.25.3.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 08/16/2021] [Indexed: 12/02/2022]
Abstract
In previous reports, bisphenol A (BPA) exposure affects reproductive function in
Drosophila melanogaster females. To test the maternal
effect of BPA exposure on fly reproductive function, F0 mothers were exposed to
0, 0.1, 1, and 10 mg/L of BPA and the fecundity in F1 and F2 generations were
checked. In this experiment, 1 and 10 mg/L BPA significantly decreased the
fecundity of F1 females. Moreover, 0.1 and 1 mg/L BPA substantially reduced egg
production in the F2 generation. These results suggested that maternal exposure
to BPA at enviromentally relavant concnetrations reduces reproductive function
in Drosophila melanogaster females and that this effect is
transgenerational.
Collapse
Affiliation(s)
- Sohee Kim
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Korea
| | - Kyong-Hwa Kang
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Korea
| | - Hyongjong Koh
- Department of Pharmacology, Dong-A University College of Medicine, Busan 49201, Korea
| |
Collapse
|
23
|
Ho SM, Rao R, Ouyang B, Tam NNC, Schoch E, Song D, Ying J, Leung YK, Govindarajah V, Tarapore P. Three-Generation Study of Male Rats Gestationally Exposed to High Butterfat and Bisphenol A: Impaired Spermatogenesis, Penetrance with Reduced Severity. Nutrients 2021; 13:nu13103636. [PMID: 34684636 PMCID: PMC8541510 DOI: 10.3390/nu13103636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17β (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.
Collapse
Affiliation(s)
- Shuk-Mei Ho
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| | - Rahul Rao
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Bin Ouyang
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Neville N. C. Tam
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Emma Schoch
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Dan Song
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
| | - Jun Ying
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (N.N.C.T.); (Y.-K.L.)
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Pheruza Tarapore
- Department of Environmental and Public Health Sciences, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; (R.R.); (B.O.); (E.S.); (D.S.); (J.Y.)
- Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
- Cincinnati Cancer Center, Cincinnati, OH 45267, USA
- Correspondence: (S.-M.H.); (P.T.); Tel.: +501-686-5347 (S.-M.H.); +513-558-5148 (P.T.)
| |
Collapse
|
24
|
López-Rodríguez D, Aylwin CF, Delli V, Sevrin E, Campanile M, Martin M, Franssen D, Gérard A, Blacher S, Tirelli E, Noël A, Lomniczi A, Parent AS. Multi- and Transgenerational Outcomes of an Exposure to a Mixture of Endocrine-Disrupting Chemicals (EDCs) on Puberty and Maternal Behavior in the Female Rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87003. [PMID: 34383603 PMCID: PMC8360047 DOI: 10.1289/ehp8795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothalamus in puberty and ovulation disruption transmitted across generations. OBJECTIVES We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transgenerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care. METHODS Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs: di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole, dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations. RESULTS Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogenesis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of maternal behavior (F1-F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduction in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved. DISCUSSION Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.org/10.1289/EHP8795.
Collapse
Affiliation(s)
| | - Carlos Francisco Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | - Elena Sevrin
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marzia Campanile
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marion Martin
- Lille Neuroscience & Cognition (LilNCog), Institut national de la santé et de la recherche médicale (Inserm), CHU Lille, Lille, France
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Arlette Gérard
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ezio Tirelli
- Department of Psychology: Cognition and Behavior, University of Liège, Liège, Belgium
| | - Agnès Noël
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liège, Liège, Belgium
| |
Collapse
|
25
|
Liang X, Yang R, Yin N, Faiola F. Evaluation of the effects of low nanomolar bisphenol A-like compounds' levels on early human embryonic development and lipid metabolism with human embryonic stem cell in vitro differentiation models. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124387. [PMID: 33172680 DOI: 10.1016/j.jhazmat.2020.124387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
The widely used chemical bisphenol A (BPA) has been associated with several health effects. In recent years, many derivatives were developed to replace BPA although without thorough toxicological evaluation. Here, we employed a human embryoid body (EB)-based in vitro global differentiation and hepatic specification models, followed by RNA-seq analyses, to comprehensively study the potential developmental toxicity of six BPA replacements (BPS, BPF, BPZ, BPB, BPE, and BPAF), as compared to BPA. We found that those bisphenols may disrupt lineage commitment and lipid metabolism during early embryonic development. These effects mostly manifested via the dysregulation of HOX and APO family genes. Moreover, among the seven bisphenols analyzed, BPE seemed to have the mildest effects.
Collapse
Affiliation(s)
- Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Sirot V, Rivière G, Leconte S, Leblanc JC, Kolf-Clauw M, Vasseur P, Cravedi JP, Hulin M. Infant total diet study in France: Exposure to substances migrating from food contact materials. ENVIRONMENT INTERNATIONAL 2021; 149:106393. [PMID: 33529853 DOI: 10.1016/j.envint.2021.106393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
A total diet study (TDS) was conducted in France to assess the health risks related to the chemicals in food of non-breastfed children under three years of age (Infant TDS). For the first time, substances coming from food contact materials, such as bisphenol A (BPA), bisphenol A diglycidyl ether (BADGE) and its derivatives, some phthalates, and some ink photoinitiators, were targeted because of growing interest in these substances. Food samples were collected to be representative of the whole diet of non-breastfed children aged 1-36 months, and prepared as consumed prior to analysis. Dietary exposure was assessed for 705 representative children under three years of age. Generally, the substances from food contact materials were detected in few samples: 38% for BPA, 0% for BADGE and its derivatives, 0-35% for phthalates, 1.9% for benzophenone, and 0% for the other ink photoinitiators. Regarding exposure levels, the situation was deemed tolerable for BADGE and its hydrolysis products, di-isodecyl phthalate, dibutyl phthalate, butyl benzyl phthalate, bis(2-ethylhexyl) phthalate, and di-isononyl phthalate, benzophenone, and 4-methylbenzophenone. Only for BPA, the exposure levels of some children exceeded the lowest toxicological value established by the French Agency for Food, Environmental and Occupational Health & Safety at 0.083 µg.kg bw-1.d-1. The temporary tolerable daily intake of the European Food Safety Authority (EFSA), set at 4 µg.kg bw-1.d-1, was never exceeded. However, actual exposure to BPA was probably overestimated, as well as the associated risk, because the foods were sampled prior to the recent regulations banning BPA in food packaging. This study is the first worldwide to provide an estimate of infant food contamination levels and exposures of children under 3 years of age, based on a TDS approach. It therefore provides key data on the exposure of this particularly sensitive population to substances released from food contact materials, and presents useful data for studies evaluating exposure to mixtures or aggregated exposure.
Collapse
Affiliation(s)
| | - Gilles Rivière
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | | | - Martine Kolf-Clauw
- CREFRE, Toulouse University, INSERM, Toulouse Veterinary School, 23 Chemin des Capelles, BP 87614, 310176 Toulouse Cedex 3, France
| | - Paule Vasseur
- University of Lorraine, CNRS, LIEC, 57070 Metz, France
| | - Jean-Pierre Cravedi
- Toxalim (Research Center in Food Toxicology), University of Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Marion Hulin
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| |
Collapse
|
27
|
Soto AM, Schaeberle CM, Sonnenschein C. From Wingspread to CLARITY: a personal trajectory. Nat Rev Endocrinol 2021; 17:247-256. [PMID: 33514909 PMCID: PMC9662687 DOI: 10.1038/s41574-020-00460-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/30/2023]
Abstract
In the three decades since endocrine disruption was conceptualized at the Wingspread Conference, we have witnessed the growth of this multidisciplinary field and the accumulation of evidence showing the deleterious health effects of endocrine-disrupting chemicals. It is only within the past decade that, albeit slowly, some changes regarding regulatory measures have taken place. In this Perspective, we address some historical points regarding the advent of the endocrine disruption field and the conceptual changes that endocrine disruption brought about. We also provide our personal recollection of the events triggered by our serendipitous discovery of oestrogenic activity in plastic, a founder event in the field of endocrine disruption. This recollection ends with the CLARITY study as an example of a discordance between 'science for its own sake' and 'regulatory science' and leads us to offer a perspective that could be summarized by the motto attributed to Ludwig Boltzmann: "Nothing is more practical than a good theory".
Collapse
Affiliation(s)
- Ana M Soto
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA.
| | - Cheryl M Schaeberle
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| | - Carlos Sonnenschein
- Department of Immunology, Tufts University, School of Medicine, Boston, MA, USA
| |
Collapse
|
28
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
29
|
Nevoral J, Havránková J, Kolinko Y, Prokešová Š, Fenclová T, Monsef L, Žalmanová T, Petr J, Králíčková M. Exposure to alternative bisphenols BPS and BPF through breast milk: Noxious heritage effect during nursing associated with idiopathic infertility. Toxicol Appl Pharmacol 2021; 413:115409. [PMID: 33476676 DOI: 10.1016/j.taap.2021.115409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 02/08/2023]
Abstract
There is increasing evidence that bisphenols BPS and BPF, which are analogues of BPA, have deleterious effects on reproduction even at extremely low doses. Indirect exposure via the maternal route (i.e. across the placenta and/or by breastfeeding) is underestimated, although it can be assumed to be a cause of idiopathic female infertility. Therefore, we hypothesised the deleterious effects of exposure to BPA analogues during breastfeeding on the ovarian and oocyte quality of offspring. A 15-day exposure period of pups was designed, whilst nursing dams (N ≥ 6 per experimental group) were treated via drinking water with a low (0.2 ng/g body weight/day) or moderate (20 ng/g body weight/day) dose of bisphenol, mimicking real exposure in humans. Thereafter, female pups were bred to 60 days and oocytes were collected. Immature oocytes were used in the in-vitro maturation assay; alternatively, in-vivo-matured oocytes were isolated and used for parthenogenetic activation. Both in-vitro- and in-vivo-matured oocytes were subjected to immunostaining of spindle microtubules (α-tubulin) and demethylation of histone H3 on the lysine K27 (H3K27me2) residue. Although very low doses of both BPS and BPF did not affect the quality of ovarian histology, spindle formation and epigenetic signs were affected. Notably, in-vitro-matured oocytes were significantly sensitive to both doses of BPS and BPF. Although no significant differences in spindle-chromatin quality were identified in ovulated and in-vivo-matured oocytes, developmental competence was significantly damaged. Taken together, our mouse model provides evidence that bisphenol analogues represent a risk to human reproduction, possibly leading to idiopathic infertility in women.
Collapse
Affiliation(s)
- Jan Nevoral
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Jiřina Havránková
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Yaroslav Kolinko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Šárka Prokešová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Tereza Fenclová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ladan Monsef
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tereza Žalmanová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Jaroslav Petr
- Institute of Animal Science, Prague 10-Uhrineves, Czech Republic
| | - Milena Králíčková
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic; Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
30
|
Lopez-Rodriguez D, Franssen D, Bakker J, Lomniczi A, Parent AS. Cellular and molecular features of EDC exposure: consequences for the GnRH network. Nat Rev Endocrinol 2021; 17:83-96. [PMID: 33288917 DOI: 10.1038/s41574-020-00436-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.
Collapse
Affiliation(s)
| | - Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Bakker
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center (ONPRC), OHSU, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium.
- Department of Pediatrics, University Hospital Liège, Liège, Belgium.
| |
Collapse
|
31
|
The Influence of Environmental Factors on Ovarian Function, Follicular Genesis, and Oocyte Quality. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:41-62. [PMID: 33523429 DOI: 10.1007/978-981-33-4187-6_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) exist ubiquitously in the environment. Epidemiological data suggest that the increasing prevalence of infertility may be related to the numerous chemicals. Exposure to EDCs may have significant adverse impacts on the reproductive system including fertility, ovarian reserve, and sex steroid hormone levels. This chapter covers the common exposure ways, the origins of EDCs, and their effects on ovarian function, follicular genesis, and oocyte quality. Furthermore, we will review the origin and the physiology of ovarian development, as well as explore the mechanisms in which EDCs act on the ovary from human and animal data. And then, we will focus on the bisphenol A (BPA), which has been shown to reduce fertility and ovarian reserve, as well as disrupt steroidogenesis in animal and human models. Finally, we will discuss the future direction of prevention and solution methods.
Collapse
|
32
|
Diamante G, Cely I, Zamora Z, Ding J, Blencowe M, Lang J, Bline A, Singh M, Lusis AJ, Yang X. Systems toxicogenomics of prenatal low-dose BPA exposure on liver metabolic pathways, gut microbiota, and metabolic health in mice. ENVIRONMENT INTERNATIONAL 2021; 146:106260. [PMID: 33221593 PMCID: PMC7775895 DOI: 10.1016/j.envint.2020.106260] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 05/06/2023]
Abstract
Bisphenol A (BPA) is an industrial plasticizer widely found in consumer products, and exposure to BPA during early development has been associated with the prevalence of various cardiometabolic diseases including obesity, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. To elucidate the molecular perturbations underlying the connection of low-dose prenatal BPA exposure to cardiometabolic diseases, we conducted a multi-dimensional systems biology study assessing the liver transcriptome, gut microbial community, and diverse metabolic phenotypes in both male and female mouse offspring exposed to 5 μg/kg/day BPA during gestation. Prenatal exposure to low-dose BPA not only significantly affected liver genes involved in oxidative phosphorylation, PPAR signaling and fatty acid metabolism, but also affected the gut microbial composition in an age- and sex-dependent manner. Bacteria such as those belonging to the S24-7 and Lachnospiraceae families were correlated with offspring phenotypes, differentially expressed liver metabolic genes such as Acadl and Dgat1, and key drivers identified in our gene network modeling such as Malat1 and Apoa2. This multiomics study provides insight into the relationship between gut bacteria and host liver genes that could contribute to cardiometabolic disease risks upon low-dose BPA exposure.
Collapse
Affiliation(s)
- Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Ingrid Cely
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Zacary Zamora
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jessica Ding
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Interdepartmental Program of Molecular, Cellular and Integrative Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Jennifer Lang
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA
| | - Abigail Bline
- Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Maya Singh
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, CA (UCLA), Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Molecular Toxicology Interdepartmental Program, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA; Institute for Quantitative and Computational Biosciences, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| |
Collapse
|
33
|
Yang P, Lin BG, Zhou B, Cao WC, Chen PP, Deng YL, Hou J, Sun SZ, Zheng TZ, Lu WQ, Cheng LM, Zeng WJ, Zeng Q. Sex-specific associations of prenatal exposure to bisphenol A and its alternatives with fetal growth parameters and gestational age. ENVIRONMENT INTERNATIONAL 2021; 146:106305. [PMID: 33395947 DOI: 10.1016/j.envint.2020.106305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA) can cause detrimental effects on fetal growth. However, the effects of BPA alternatives, such as bisphenol F (BPF) and bisphenol S (BPS), on fetal growth are less known. OBJECTIVE To investigate the relationships of prenatal BPA, BPF, and BPS exposures with fetal growth parameters and gestational age. METHODS Urinary BPA, BPF, and BPS were measured in 1,197 pregnant women before delivery in a Chinese cohort. The associations of prenatal exposure to BPA, BPF, and BPS with fetal growth parameters and gestational age were examined, and associations stratified by fetal sex were also conducted. We used a restricted cubic splines (RCS) model to examine the dose-response associations between exposures and outcomes. RESULTS Maternal urinary BPA and BPF were negatively related to birth length (-0.30 cm, 95% CI: -0.44, -0.15 and -0.21 cm, 95% CI: -0.36, -0.07 comparing the extreme exposure groups, respectively, both p for trends < 0.01). These associations were more pronounced in girls with inverted U-shaped dose-response relationships. Maternal urinary BPA and BPF were positively related to ponderal index (0.05 g/cm3 × 100, 95% CI: 0.01, 0.09 and 0.04 g/cm3 × 100, 95% CI: 0.01, 0.08 comparing the extreme exposure groups, respectively, both p for trends = 0.02), and maternal urinary BPS was associated with shorter gestational age (-0.20 weeks, 95% CI: -0.37, -0.03 comparing the extreme exposure groups, p for trend = 0.02). These associations were only observed in girls and exhibited a linear dose-response relationship. CONCLUSIONS Prenatal BPA, BPF, and BPS exposures were associated with detrimental effects on fetal growth parameters, and stronger effects were noted in female infants.
Collapse
Affiliation(s)
- Pan Yang
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Occupational and Environmental Health, School of Basic Medicine and Public Health, Jinan University, Guangzhou, PR China
| | - Bi-Gui Lin
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wen-Cheng Cao
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, PR China
| | - Pan-Pan Chen
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Sheng-Zhi Sun
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Tong-Zhang Zheng
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Wen-Qing Lu
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Li-Ming Cheng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wan-Jiang Zeng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Qiang Zeng
- Department of Occupational and Environmental Health, and Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China; Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| |
Collapse
|
34
|
Wang Z, Alderman MH, Asgari C, Taylor HS. Fetal Bisphenol-A Induced Changes in Murine Behavior and Brain Gene Expression Persisted in Adult-aged Offspring. Endocrinology 2020; 161:bqaa164. [PMID: 32926169 PMCID: PMC7609133 DOI: 10.1210/endocr/bqaa164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
In utero Bisphenol A (BPA) exposure has been linked to many deficits during brain development, including sexual differentiation, behavior, and motor coordination. Yet, how BPA induces these disorders and whether its effects are long lasting are largely unknown. In this study, using a mouse model, we demonstrated that in utero exposure to an environmentally relevant dose of BPA induced locomotor deficits, anxiety-like behavior, and declarative memory impairments that persisted into old age (18 months). Compared to the control animals, the BPA-exposed mice had a significant decrease in locomotor activity, exploratory tendencies, and long-term memory, and an increase in anxiety. The global brain gene expression profile was altered permanently by BPA treatment and showed regional and sexual differences. The BPA-treated male mice had more changes in the hippocampus, while female mice experienced more changes in the cortex. Overall, we demonstrate that in utero exposure to BPA induces permanent changes in brain gene expression in a region-specific and sex-specific manner, including a significant decrease in locomotor activity, learning ability, long-term memory, and an increase in anxiety. Fetal/early life exposures permanently affect neurobehavioral functions that deteriorate with age; BPA exposure may compound the effects of aging.
Collapse
Affiliation(s)
- Zhihao Wang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Myles H Alderman
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Cyrus Asgari
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
35
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
36
|
Thayil AJ, Wang X, Bhandari P, vom Saal FS, Tillitt DE, Bhandari RK. Bisphenol A and 17α-ethinylestradiol-induced transgenerational gene expression differences in the brain-pituitary-testis axis of medaka, Oryzias latipes†. Biol Reprod 2020; 103:1324-1335. [PMID: 32940650 PMCID: PMC7711903 DOI: 10.1093/biolre/ioaa169] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/15/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 17α-ethinylestradiol (EE2), can have far reaching health effects, including transgenerational abnormalities in offspring that never directly contacted either chemical. We previously reported reduced fertilization rates and embryo survival at F2 and F3 generations caused by 7-day embryonic exposure (F0) to 100 μg/L BPA or 0.05 μg/L EE2 in medaka. Crossbreeding of fish in F2 generation indicated subfertility in males. To further understand the mechanisms underlying BPA or EE2-induced adult onset and transgenerational reproductive defects in males, the present study examined the expression of genes regulating the brain-pituitary-testis (BPT) axis in the same F0 and F2 generation male medaka. Embryonic exposure to BPA or EE2 led to hyperactivation of brain and pituitary genes, which are actively involved in reproduction in adulthood of the F0 generation male fish, and some of these F0 effects continued to the F2 generation (transgenerational effects). Particularly, the F2 generation inherited the hyperactivated state of expression for kisspeptin (kiss1 and kiss2) and their receptors (kiss1r and kiss2r), and gnrh and gnrh receptors. At F2 generation, expression of DNA methyltransferase 1 (dnmt1) decreased in brain of the BPA treatment lineage, while EE2 treatment lineage showed increased dnmt3bb expression. Global hypomethylation pattern was observed in the testis of both F0 and F2 generation fish. Taken together, these results demonstrated that BPA or EE2-induced transgenerational reproductive impairment in the F2 generation was associated with alterations of reproductive gene expression in brain and testis and global DNA methylation in testis.
Collapse
Affiliation(s)
- Albert J Thayil
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Xuegeng Wang
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Pooja Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | | | - Donald E Tillitt
- United States Geological Survey, Columbia Environmental Research Center, Columbia, MO, USA
| | - Ramji K Bhandari
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| |
Collapse
|
37
|
Ranard KM, Kuchan MJ, Erdman JW. Breeder Diet Strategies for Generating Ttpa-Null and Wild-Type Mice with Low Vitamin E Status to Assess Neurological Outcomes. Curr Dev Nutr 2020; 4:nzaa155. [PMID: 33173842 PMCID: PMC7609157 DOI: 10.1093/cdn/nzaa155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
Studying vitamin E [α-tocopherol (α-T)] metabolism and function in the brain and other tissues requires an animal model with low α-T status, such as the transgenic α-T transfer protein (Ttpa)-null (Ttpa - / -) mouse model. Ttpa + / - dams can be used to produce Ttpa - / - and Ttpa+/+ mice for these studies. However, the α-T content in Ttpa + / - dams' diet requires optimization; diets must provide sufficient α-T for reproduction, while minimizing the transfer of α-T to the offspring destined for future studies that require low baseline α-T status. The goal of this work was to assess the effectiveness and feasibility of 2 breeding diet strategies on reproduction outcomes and offspring brain α-T concentrations. These findings will help standardize the breeding methodology used to generate the Ttpa - / - mice for neurological studies.
Collapse
Affiliation(s)
- Katherine M Ranard
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - John W Erdman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
38
|
Rattan S, Flaws JA. The epigenetic impacts of endocrine disruptors on female reproduction across generations†. Biol Reprod 2020; 101:635-644. [PMID: 31077281 DOI: 10.1093/biolre/ioz081] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
Humans and animals are repeatedly exposed to endocrine disruptors, many of which are ubiquitous in the environment. Endocrine disruptors interfere with hormone action; thus, causing non-monotonic dose responses that are atypical of standard toxicant exposures. The female reproductive system is particularly susceptible to the effects of endocrine disruptors. Likewise, exposures to endocrine disruptors during developmental periods are particularly concerning because programming during development can be adversely impacted by hormone level changes. Subsequently, developing reproductive tissues can be predisposed to diseases in adulthood and these diseases can be passed down to future generations. The mechanisms of action by which endocrine disruptors cause disease transmission to future generations are thought to include epigenetic modifications. This review highlights the effects of endocrine disruptors on the female reproductive system, with an emphasis on the multi- and transgenerational epigenetic effects of these exposures.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Illinois, USA
| |
Collapse
|
39
|
Chen ACH, Lee KF, Yeung WSB, Lee YL. Human embryonic stem cells as an in vitro model for studying developmental origins of type 2 diabetes. World J Stem Cells 2020; 12:761-775. [PMID: 32952857 PMCID: PMC7477660 DOI: 10.4252/wjsc.v12.i8.761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 06/14/2020] [Indexed: 02/06/2023] Open
Abstract
The developmental origins of health and diseases (DOHaD) is a concept stating that adverse intrauterine environments contribute to the health risks of offspring. Since the theory emerged more than 30 years ago, many epidemiological and animal studies have confirmed that in utero exposure to environmental insults, including hyperglycemia and chemicals, increased the risk of developing noncommunicable diseases (NCDs). These NCDs include metabolic syndrome, type 2 diabetes, and complications such as diabetic cardiomyopathy. Studying the effects of different environmental insults on early embryo development would aid in understanding the underlying mechanisms by which these insults promote NCD development. Embryonic stem cells (ESCs) have also been utilized by researchers to study the DOHaD. ESCs have pluripotent characteristics and can be differentiated into almost every cell lineage; therefore, they are excellent in vitro models for studying early developmental events. More importantly, human ESCs (hESCs) are the best alternative to human embryos for research because of ethical concerns. In this review, we will discuss different maternal conditions associated with DOHaD, focusing on the complications of maternal diabetes. Next, we will review the differentiation protocols developed to generate different cell lineages from hESCs. Additionally, we will review how hESCs are utilized as a model for research into the DOHaD. The effects of environmental insults on hESC differentiation and the possible involvement of epigenetic regulation will be discussed.
Collapse
Affiliation(s)
- Andy Chun-Hang Chen
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Kai Fai Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - William Shu Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Hong Kong, China
- Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, Guangdong Province, China.
| |
Collapse
|
40
|
Shi M, Whorton AE, Sekulovski N, MacLean JA, Hayashi K. Prenatal Exposure to Bisphenol A, E, and S Induces Transgenerational Effects on Male Reproductive Functions in Mice. Toxicol Sci 2020; 172:303-315. [PMID: 31532523 DOI: 10.1093/toxsci/kfz207] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This study was performed to examine the transgenerational effects of bisphenol (BP) A analogs, BPE, and BPS on male reproductive functions using mice as a model. CD-1 mice (F0) were orally exposed to control treatment (corn oil), BPA, BPE, or BPS (0.5 or 50 µg/kg/day) from gestational day 7 (the presence of vaginal plug = 1) to birth. Mice from F1 and F2 offspring were used to generate F3 males. Prenatal exposure to BPA, BPE, and BPS decreased sperm counts and/or motility and disrupted the progression of germ cell development as morphometric analyses exhibited an abnormal distribution of the stages of spermatogenesis in F3 males. Dysregulated serum levels of estradiol-17β and testosterone, as well as expression of steroidogenic enzymes in F3 adult testis were also observed. In the neonatal testis, although apoptosis and DNA damage were not affected, mRNA levels of DNA methyltransferases, histone methyltransferases, and their associated factors were increased by BP exposure. Furthermore, BP exposure induced immunoreactive expression of DNMT3A in Sertoli cells, strengthened DNMT3B, and weakened H3K9me2 and H3K9me3 in germ cells of the neonatal testis, whereas DNMT1, H3K4me3, and H3K27ac were not affected. In adult testis, stage-specific DNMT3B was altered by BP exposure, although DNMT3A, H3K9me2, and H3K9me3 expression remained stable. These results suggest that prenatal exposure to BPA, BPE, and BPS induces transgenerational effects on male reproductive functions probably due to altered epigenetic modification following disruption of DNMTs and histone marks in the neonatal and/or adult testis.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
41
|
Nguyen HTT, Jang SH, Park SJ, Cho DH, Han SK. Potentiation of the Glycine Response by Bisphenol A, an Endocrine Disrupter, on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice. Chem Res Toxicol 2020; 33:782-788. [PMID: 31997638 DOI: 10.1021/acs.chemrestox.9b00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lamina II, also called the substantia gelatinosa (SG) of the medullary dorsal horn (the trigeminal subnucleus caudalis, Vc), is thought to play an essential role in the control of orofacial nociception because it receives the nociceptive signals from primary afferents, including thin myelinated Aδ- and unmyelinated C-fibers. Glycine, the main inhibitory neurotransmitter in the central nervous system, plays an essential role in the transference of nociceptive messages from the periphery to higher brain regions. Bisphenol A (BPA) is reported to alter the morphological and functional characteristics of neuronal cells and to be an effector of a great number of ion channels in the central nervous system. However, the electrophysiological effects of BPA on the glycine receptors of SG neurons in the Vc have not been well studied. Therefore, in this study, we used the whole-cell patch-clamp technique to determine the effect of BPA on the glycine response in SG neurons of the Vc in male mice. We demonstrated that in early neonatal mice (0-3 postnatal day mice), BPA did not affect the glycine-induced inward current. However, in the juvenile and adult groups, BPA enhanced the glycine-mediated responses. Heteromeric glycine receptors were involved in the modulation by BPA. The interaction between BPA and glycine appears to have a significant role in regulating transmission in the nociceptive pathway.
Collapse
Affiliation(s)
- Hoang Thi Thanh Nguyen
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea.,Faculty of Odonto-Stomatology, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Seon Hui Jang
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Soo Joung Park
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong Hyu Cho
- Department of Obstetrics and Gynecology, Jeonbuk National University Medical School, Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute and Institute for Medical Sciences, Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Seong Kyu Han
- Department of Oral Physiology, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
42
|
Vorobyeva OV, Samoylova TA, Yusupov VI. Effects of Photobiomodulation on Daphnia magna Straus and their Sensitivity to Toxicant. Photochem Photobiol 2020; 96:1116-1123. [PMID: 32119122 DOI: 10.1111/php.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/16/2020] [Indexed: 11/28/2022]
Abstract
This paper deals with the effect of photobiomodulation (PBM) on Daphnia magna S. and their sensitivity to cadmium sulfate, a known high toxic pollutant. In a first series of experiments, the effect of different He-Ne laser fluences irradiation (range 0.9-4300 mJ cm-2 ) on the fertility of both parent and filial generations (F1-F3) of the crustacean was studied. It was found that PBM in some cases significantly influenced the fertility of both irradiated crustaceans and their nonirradiated offspring. By selecting two fluences (9 ± 2 mJ cm-2 reducing fertility and 4.3 ± 0.9 J cm-2 increasing it), the effect of these on toxicity of cadmium sulfate was evaluated. These experiments have shown that prior irradiation with low-intensity light of a helium-neon laser with 632.8 nm wavelength can change the sensitivity of aquatic organisms to toxin cadmium sulfate. The degree and direction of changes depend on the toxicant concentration and the irradiation dose.
Collapse
Affiliation(s)
- Olga V Vorobyeva
- Lomonosov Moscow State University, Moscow, Russia.,VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Tatyana A Samoylova
- VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Vladimir I Yusupov
- Institute of Photon Technologies, FSRC "Crystallography and Photonics", Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
43
|
Santangeli S, Consales C, Pacchierotti F, Habibi HR, Carnevali O. Transgenerational effects of BPA on female reproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:1294-1305. [PMID: 31272786 DOI: 10.1016/j.scitotenv.2019.06.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Bisphenol A (BPA) is an abundant environmental contaminant and studies have shown the presence of BPA in the urine of over 90% of population tested in Canada and USA. In addition to its reported harmful effects, there is concern for its transgenerational effects. For a compound to induce transgenerational effect, an epigenetic mark should be mitotically and meiotically stable without reprogramming in primordial germ cells and post fertilization embryos. In the present study, female zebrafish were treated with an environmental dose (20 μg/L) of BPA and then crossed with untreated males. To assess epigenetic effects, transcript levels of several genes involved in female reproduction were measured in adult and in 24 hpf embryos up to F3 generation. Exposure to BPA affected adult female fertility up to F2 generation. In F0, F1 and F2 ovaries transcript levels for several genes involved in reproduction, including esr, star, lhcgr and fshr were affected. To investigate epigenetic mechanisms of gene expression modulation, we studied promoter DNA methylation. Among genes involved in gonadal differentiation, amh transcript level was reduced in 24 hpf embryos, up to the F3 generation. Variation in amh transcript level was associated with hyper-methylation of its promoter and changes in H3K4me3/H3K27me3 enrichment, coherent with gene silencing. The findings provide evidence for transgenerational effects of BPA in zebrafish and demonstrate that amh is susceptible to stable epigenetic alterations. CAPSULE: Transgenerational effects of BPA on female reproductive physiology.
Collapse
Affiliation(s)
- Stefania Santangeli
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Claudia Consales
- Laboratory of Biosafety and Risk Assessment, Division of Health Protection Technologies, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| | - Francesca Pacchierotti
- Laboratory of Biosafety and Risk Assessment, Division of Health Protection Technologies, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| | - Hamid R Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; INBB Consorzio Interuniversitario di Biosistemi e Biostrutture, 00136 Roma, Italy.
| |
Collapse
|
44
|
Attfield KR, Pinney SM, Sjödin A, Voss RW, Greenspan LC, Biro FM, Hiatt RA, Kushi LH, Windham GC. Longitudinal study of age of menarche in association with childhood concentrations of persistent organic pollutants. ENVIRONMENTAL RESEARCH 2019; 176:108551. [PMID: 31376650 DOI: 10.1016/j.envres.2019.108551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Age at female puberty is associated with adult morbidities, including breast cancer and diabetes. Hormonally active chemicals are suspected of altering pubertal timing. We examined whether persistent organic pollutants (POPs) are associated with age at menarche in a longitudinal study. METHODS We analyzed data for females enrolled at age 6-8 years in the Breast Cancer and Environment Research Program from California and Ohio. Participants were followed annually 2004-2013 and provided serum (mean age 7.8 years) for measurement of polychlorinated biphenyl (PCB), organochlorine pesticide (OCP), and polybrominated diphenyl ether (PBDE) concentrations. Age of menarche was assigned based on parental and participant reported dates and ages of menarche. Adjusted hazard ratios (aHRs) for menarchal onset were calculated with Cox proportional regression. Body mass index (BMI), potentially on the causal pathway, was added to parallel analyses. RESULTS Age of menarche was later with higher summed PCB levels (median 11.9 years in quartile 1 [Q1] versus 12.7 in quartile 4 [Q4]) and OCP levels (12.1 years versus 12.4, respectively). When adjusting for all covariates except BMI, higher POP concentrations were associated with later age at menarche (Q4 versus Q1 aHRs: PBDEs 0.75 [95% CI 0.58, 0.97], PCBs 0.67 [95% CI 0.5, 0.89], and OCPs 0.66 [95% CI 0.50, 0.89]). Additional adjustment for BMI attenuated aHRs; PCB aHR approached the null. CONCLUSION Findings revealed later onset of menarche with higher concentrations of certain POPs, possibly through an association with BMI. Altered pubertal timing may have long lasting effects on reproductive health and disease risk, so continued attention is important for understanding the biological processes affected by hormonally active chemicals.
Collapse
Affiliation(s)
- Kathleen R Attfield
- California Department of Public Health, Richmond, CA, USA; Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Susan M Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Andreas Sjödin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Robert W Voss
- California Department of Public Health, Richmond, CA, USA
| | | | - Frank M Biro
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert A Hiatt
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
45
|
Wolstenholme JT, Drobná Z, Henriksen AD, Goldsby JA, Stevenson R, Irvin JW, Flaws JA, Rissman EF. Transgenerational Bisphenol A Causes Deficits in Social Recognition and Alters Postsynaptic Density Genes in Mice. Endocrinology 2019; 160:1854-1867. [PMID: 31188430 PMCID: PMC6637794 DOI: 10.1210/en.2019-00196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical. Developmental exposure produces changes in behavior and gene expression in the brain. Here, we examined social recognition behaviors in mice from the third familial generation (F3) after exposure to gestational BPA. Second-generation mice were bred in one of four mating combinations to reveal whether characteristics in F3 were acquired via maternal or paternal exposures. After repeated habituation to the same mouse, offspring of dams from the BPA lineage failed to display increased investigation of a novel mouse. Genes involved in excitatory postsynaptic densities (PSDs) were examined in F3 brains using quantitative PCR. Differential expression of genes important for function and stability of PSDs were assessed at three developmental ages. Several related PSD genes-SH3 and multiple ankyrin repeat domains 1 (Shank1), Homer scaffolding protein 1c (Homer1c), DLG associated protein 1 (Gkap), and discs large MAGUK scaffold protein 4 (PSD95)-were differentially expressed in control- vs BPA-lineage brains. Using a second strain of F3 inbred mice exposed to BPA, we noted the same differences in Shank1 and PSD95 expression in C57BL/6J mice. In sum, transgenerational BPA exposure disrupted social interactions in mice and dysregulated normal expression of PSD genes during neural development. The fact that the same genetic effects were found in two different mouse strains and in several brain regions increased potential for translation. The genetic and functional relationship between PSD and abnormal neurobehavioral disorders is well established, and our data suggest that BPA may contribute in a transgenerational manner to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Zuzana Drobná
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anne D Henriksen
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia
| | - Jessica A Goldsby
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rachel Stevenson
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Joshua W Irvin
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
- Correspondence: Emilie F. Rissman, PhD, North Carolina State University, Thomas Hall Room 3526, Raleigh, North Carolina 27695. E-mail:
| |
Collapse
|
46
|
Horemans N, Spurgeon DJ, Lecomte-Pradines C, Saenen E, Bradshaw C, Oughton D, Rasnaca I, Kamstra JH, Adam-Guillermin C. Current evidence for a role of epigenetic mechanisms in response to ionizing radiation in an ecotoxicological context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:469-483. [PMID: 31103007 DOI: 10.1016/j.envpol.2019.04.125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/14/2019] [Accepted: 04/27/2019] [Indexed: 05/22/2023]
Abstract
The issue of potential long-term or hereditary effects for both humans and wildlife exposed to low doses (or dose rates) of ionising radiation is a major concern. Chronic exposure to ionising radiation, defined as an exposure over a large fraction of the organism's lifespan or even over several generations, can possibly have consequences in the progeny. Recent work has begun to show that epigenetics plays an important role in adaptation of organisms challenged to environmental stimulae. Changes to so-called epigenetic marks such as histone modifications, DNA methylation and non-coding RNAs result in altered transcriptomes and proteomes, without directly changing the DNA sequence. Moreover, some of these environmentally-induced epigenetic changes tend to persist over generations, and thus, epigenetic modifications are regarded as the conduits for environmental influence on the genome. Here, we review the current knowledge of possible involvement of epigenetics in the cascade of responses resulting from environmental exposure to ionising radiation. In addition, from a comparison of lab and field obtained data, we investigate evidence on radiation-induced changes in the epigenome and in particular the total or locus specific levels of DNA methylation. The challenges for future research and possible use of changes as an early warning (biomarker) of radiosensitivity and individual exposure is discussed. Such a biomarker could be used to detect and better understand the mechanisms of toxic action and inter/intra-species susceptibility to radiation within an environmental risk assessment and management context.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium; Centre for Environmental Research, University of Hasselt, Agoralaan, 3590, Diepenbeek, Belgium.
| | - David J Spurgeon
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Catherine Lecomte-Pradines
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-ENV/SRTE/LECO, Cadarache, Saint Paul Lez Durance, France
| | - Eline Saenen
- Belgian Nuclear Research Centre, Boeretang 200, B-2400, Mol, Belgium
| | - Clare Bradshaw
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91, Stockholm, Sweden
| | - Deborah Oughton
- Centre for Environmental Radioactivity (CERAD), Norwegian University of Life Sciences, 1430, Aas, Norway
| | - Ilze Rasnaca
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Wallingford, Oxon, OX10 8BB, UK
| | - Jorke H Kamstra
- Faculty of Veterinary Medicine, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire, PSE-SANTE, Cadarache, Saint Paul Lez Durance, France
| |
Collapse
|
47
|
Brehm E, Flaws JA. Transgenerational Effects of Endocrine-Disrupting Chemicals on Male and Female Reproduction. Endocrinology 2019; 160:1421-1435. [PMID: 30998239 PMCID: PMC6525581 DOI: 10.1210/en.2019-00034] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Endocrine-disrupting chemicals are known to interfere with normal reproductive function and hormone signaling. Phthalates, bisphenol A, pesticides, and environmental contaminants such as polychlorinated biphenyls and dioxins are known endocrine-disrupting chemicals that have been shown to negatively affect both male and female reproduction. Exposure to these chemicals occurs on a daily basis owing to these compounds being found in plastics, personal care products, and pesticides. Recently, studies have shown that these chemicals may cause transgenerational effects on reproduction in both males and females. This is of concern because exposure to these chemicals prenatally or during adult life can negatively impact the reproductive health of future generations. This mini-review summarizes the endocrine-disrupting chemicals that humans are exposed to on a daily basis and what is known about the transgenerational effects that these chemicals may have on male and female reproduction.
Collapse
Affiliation(s)
- Emily Brehm
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois 61802
- Correspondence: Jodi A. Flaws, PhD, Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Room 3223, Urbana, Illinois 61802. E-mail: .
| |
Collapse
|
48
|
Shi M, Whorton AE, Sekulovski N, MacLean JA, Hayashi K. Prenatal Exposure to Bisphenol A, E, and S Induces Transgenerational Effects on Female Reproductive Functions in Mice. Toxicol Sci 2019; 170:320-329. [DOI: 10.1093/toxsci/kfz124] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
This study was performed to examine the transgenerational effects of bisphenol (BP) A analogs, BPE, and BPS on female reproductive functions using mice as a model. CD-1 mice (F0) were orally exposed to control treatment (corn oil), BPA, BPE, or BPS (0.5 or 50 µg/kg/day) from gestational day 7 (the presence of vaginal plug = 1) to birth. Mice from F1 and F2 offspring were used to generate F3 females. Prenatal exposure to BPA, BPE, and BPS accelerated the onset of puberty and exhibited abnormal estrous cyclicity in F3 females, and those females exhibited mating difficulties starting at 6 months of age. Various fertility problems including reduced pregnancy rates, parturition, and nursing issues were also observed starting at 6 months, which worsened at 9 months. The levels of serum estradiol-17β were elevated by BPA or BPS exposure at the age of 6 months, whereas testosterone levels were not affected. The dysregulated expression of steroidogenic enzymes was observed in the ovary at 3 or 6 months of age by BPE or BPS exposure. However, BPA, BPE, and BPS exposure did not affect neonatal follicular development such as germ cell nest breakdown or follicle numbers in the ovary on postnatal day 4. These results suggest that prenatal exposure to BPA analogs, BPE and BPS, have transgenerational effects on female reproductive functions in mice.
Collapse
Affiliation(s)
- Mingxin Shi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Allison E Whorton
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Nikola Sekulovski
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - James A MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Kanako Hayashi
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| |
Collapse
|
49
|
Neff AM, Blanco SC, Flaws JA, Bagchi IC, Bagchi MK. Chronic Exposure of Mice to Bisphenol-A Alters Uterine Fibroblast Growth Factor Signaling and Leads to Aberrant Epithelial Proliferation. Endocrinology 2019; 160:1234-1246. [PMID: 30892605 PMCID: PMC6482033 DOI: 10.1210/en.2018-00872] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/13/2019] [Indexed: 01/25/2023]
Abstract
Uterine epithelial proliferation is regulated in a paracrine manner by a complex interplay between estrogen (E) and progesterone (P) signaling, in which E stimulates proliferation and P inhibits it. Perturbation of steroid hormone signaling within the uterine milieu could contribute to the development of endometrial hyperplasia and cancer. It is well established that bisphenol-A (BPA) is an endocrine-disrupting chemical with weak estrogenic effects, although little is known about how it affects steroid hormone signaling in the adult uterus. Because BPA acts as a weak E, we hypothesized that chronic exposure to BPA would create an imbalance between E and P signaling and cause changes in the uterus, such as aberrant epithelial proliferation. Indeed, exposure to an environmentally relevant dose of BPA had a uterotrophic affect. BPA-treated mice showed increased proliferation, notably in the glandular epithelium, which are sites of origin for endometrial hyperplasia and cancer. Increased proliferation appeared to be mediated through a similar mechanism as E-induced proliferation, via activation of the fibroblast growth factor receptor pathway and phosphorylation of the ERK1/2 mitogen-activated protein kinases in the epithelium. Interestingly, BPA reduced expression of heart and neural crest derivatives expressed 2 (HAND2), a known mediator of the antiproliferative effects of P. BPA also increased methylation of a CpG island in the Hand2 gene promoter, suggesting that BPA may promote epithelial proliferation through epigenetic silencing of antiproliferative factors like HAND2. Collectively, these findings establish that chronic exposure to BPA impairs steroid hormone signaling in the mouse uterus, and may contribute to the pathogenesis of uterine hyperplasia and cancer.
Collapse
Affiliation(s)
- Alison M Neff
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Sean C Blanco
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, Illinois
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois
- Correspondence: Milan K. Bagchi, PhD, School of Molecular and Cellular Biology, 534 Burrill Hall, 407 S Goodwin, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801. E-mail:
| |
Collapse
|
50
|
Rattan S, Brehm E, Gao L, Flaws JA. Di(2-Ethylhexyl) Phthalate Exposure During Prenatal Development Causes Adverse Transgenerational Effects on Female Fertility in Mice. Toxicol Sci 2019; 163:420-429. [PMID: 29471507 DOI: 10.1093/toxsci/kfy042] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a ubiquitous environmental toxicant and endocrine disrupting chemical, but little is known about its effects on female reproduction. Thus, we tested the hypothesis that prenatal exposure to DEHP accelerates the onset of puberty, disrupts estrous cyclicity, disrupts birth outcomes, and reduces fertility in the F1, F2, and F3 generations of female mice. Pregnant CD-1 mice were orally dosed with corn oil (vehicle control) or DEHP (20 and 200 µg/kg/day and 500 and 750 mg/kg/day) from gestation day 10.5 until birth. F1 females were mated with untreated males to obtain the F2 generation. F2 females were mated with untreated males to produce the F3 generation. In all generations, the onset of puberty, estrous cyclicity, select birth outcomes, and fertility-related indices were evaluated. In the F1 generation, prenatal DEHP exposure (200 µg/kg/day) accelerated the onset of puberty, it (200 µg and 500 mg/kg/day) disrupted estrous cyclicity, and it (20 and 200 µg/kg/day) decreased fertility-related indices. In the F2 generation, ancestral DEHP exposure (500 mg/kg/day) accelerated the onset of puberty, it (20 and 200 µg/kg/day) disrupted estrous cyclicity, it (20 µg and 500 mg/kg/day) increased litter size, and it (500 mg/kg/day) decreased fertility-related indices. In the F3 generation, ancestral DEHP exposure (20, 200 µg, and 500 mg/kg/day) accelerated the onset of puberty, it (20 µg/kg/day) disrupted estrous cyclicity, and it (750 mg/kg/day) decreased female pup anogenital index. Collectively, these data indicate that prenatal DEHP exposure causes female reproductive problems in a multigenerational and transgenerational manner.
Collapse
Affiliation(s)
- Saniya Rattan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Emily Brehm
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Liying Gao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802
| |
Collapse
|