1
|
Yi LX, Woon HR, Saw G, Zeng L, Tan EK, Zhou ZD. Induced pluripotent stem cell-related approaches to generate dopaminergic neurons for Parkinson's disease. Neural Regen Res 2025; 20:3193-3206. [PMID: 39665833 PMCID: PMC11881713 DOI: 10.4103/nrr.nrr-d-24-00771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
The progressive loss of dopaminergic neurons in affected patient brains is one of the pathological features of Parkinson's disease, the second most common human neurodegenerative disease. Although the detailed pathogenesis accounting for dopaminergic neuron degeneration in Parkinson's disease is still unclear, the advancement of stem cell approaches has shown promise for Parkinson's disease research and therapy. The induced pluripotent stem cells have been commonly used to generate dopaminergic neurons, which has provided valuable insights to improve our understanding of Parkinson's disease pathogenesis and contributed to anti-Parkinson's disease therapies. The current review discusses the practical approaches and potential applications of induced pluripotent stem cell techniques for generating and differentiating dopaminergic neurons from induced pluripotent stem cells. The benefits of induced pluripotent stem cell-based research are highlighted. Various dopaminergic neuron differentiation protocols from induced pluripotent stem cells are compared. The emerging three-dimension-based brain organoid models compared with conventional two-dimensional cell culture are evaluated. Finally, limitations, challenges, and future directions of induced pluripotent stem cell-based approaches are analyzed and proposed, which will be significant to the future application of induced pluripotent stem cell-related techniques for Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Li Zeng
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Eng King Tan
- National Neuroscience Institute, Singapore
- Department of Neurology, Singapore General Hospital, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| | - Zhi Dong Zhou
- National Neuroscience Institute, Singapore
- Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore
| |
Collapse
|
2
|
Molina-Ruiz FJ, Sanders P, Gomis C, Abante J, Londoño F, Bombau G, Galofré M, Vinyes-Bassols GL, Monforte V, Canals JM. CD200-based cell sorting results in homogeneous transplantable striatal neuroblasts for human cell therapy for Huntington's disease. Neurobiol Dis 2025; 209:106905. [PMID: 40220917 DOI: 10.1016/j.nbd.2025.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
Neurodegenerative diseases are characterized by selective loss of neurons. Cell replacement therapies are the most promising therapeutic strategies to restore the neuronal functions lost during these neurodegenerative processes. However, cell replacement-based clinical trials for Huntington's (HD) and Parkinson's diseases (PD) failed due to the large heterogeneity of the samples. Here, we identify CD200 as a cell surface marker for human striatal neuroblasts (NBs) using massively parallel single-cell RNA sequencing. Next, we set up a CD200-based immunomagnetic sorting pipeline that allows high-yield enrichment of human striatal NBs from in vitro differentiation of human pluripotent stem cells (hPSCs). We also show that sorted CD200-positive cells are striatal projection neuron (SPN)-committed NBs which survive upon intra-striatal transplantation in adult mice with no evidence of graft overgrowth in vivo. In conclusion, we implemented a new CD200 cell selection strategy that reduces the heterogeneity and batch-to-batch variation and potentially decreases the teratogenic risk of hPSC-based cell therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Francisco J Molina-Ruiz
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Phil Sanders
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Cinta Gomis
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Jordi Abante
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Data Science, Stanford University, Stanford, CA, United States of America
| | - Francisco Londoño
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Georgina Bombau
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Mireia Galofré
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Gal la Vinyes-Bassols
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Veronica Monforte
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
| | - Josep M Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences; Institute of Neurosciences; and Creatio, Production and Validation Center of Advanced Therapies, University of Barcelona, 08036 Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
3
|
Verma I, Seshagiri PB. Current Applications of Human Pluripotent Stem Cells in Neuroscience Research and Cell Transplantation Therapy for Neurological Disorders. Stem Cell Rev Rep 2025; 21:964-987. [PMID: 40186708 DOI: 10.1007/s12015-025-10851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 04/07/2025]
Abstract
Many neurological diseases involving tissue damage cannot be treated with drug-based approaches, and the inaccessibility of human brain samples further hampers the study of these diseases. Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), provide an excellent model for studying neural development and function. PSCs can be differentiated into various neural cell types, providing a renewal source of functional human brain cells. Therefore, PSC-derived neural cells are increasingly used for multiple applications, including neurodevelopmental and neurotoxicological studies, neurological disease modeling, drug screening, and regenerative medicine. In addition, the neural cells generated from patient iPSCs can be used to study patient-specific disease signatures and progression. With the recent advances in genome editing technologies, it is possible to remove the disease-related mutations in the patient iPSCs to generate corrected iPSCs. The corrected iPSCs can differentiate into neural cells with normal physiological functions, which can be used for autologous transplantation. This review highlights the current progress in using PSCs to understand the fundamental principles of human neurodevelopment and dissect the molecular mechanisms of neurological diseases. This knowledge can be applied to develop better drugs and explore cell therapy options. We also discuss the basic requirements for developing cell transplantation therapies for neurological disorders and the current status of the ongoing clinical trials.
Collapse
Affiliation(s)
- Isha Verma
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India.
- Department of Neurology, University of Michigan, Ann Arbor, 48109, USA.
| | - Polani B Seshagiri
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
4
|
Sawamoto N, Doi D, Nakanishi E, Sawamura M, Kikuchi T, Yamakado H, Taruno Y, Shima A, Fushimi Y, Okada T, Kikuchi T, Morizane A, Hiramatsu S, Anazawa T, Shindo T, Ueno K, Morita S, Arakawa Y, Nakamoto Y, Miyamoto S, Takahashi R, Takahashi J. Phase I/II trial of iPS-cell-derived dopaminergic cells for Parkinson's disease. Nature 2025; 641:971-977. [PMID: 40240591 PMCID: PMC12095070 DOI: 10.1038/s41586-025-08700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/24/2025] [Indexed: 04/18/2025]
Abstract
Parkinson's disease is caused by the loss of dopamine neurons, causing motor symptoms. Initial cell therapies using fetal tissues showed promise but had complications and ethical concerns1-5. Pluripotent stem (PS) cells emerged as a promising alternative for developing safe and effective treatments6. In this phase I/II trial at Kyoto University Hospital, seven patients (ages 50-69) received bilateral transplantation of dopaminergic progenitors derived from induced PS (iPS) cells. Primary outcomes focused on safety and adverse events, while secondary outcomes assessed motor symptom changes and dopamine production for 24 months. There were no serious adverse events, with 73 mild to moderate events. Patients' anti-parkinsonian medication doses were maintained unless therapeutic adjustments were required, resulting in increased dyskinesia. Magnetic resonance imaging showed no graft overgrowth. Among six patients subjected to efficacy evaluation, four showed improvements in the Movement Disorder Society Unified Parkinson's Disease Rating Scale part III OFF score, and five showed improvements in the ON scores. The average changes of all six patients were 9.5 (20.4%) and 4.3 points (35.7%) for the OFF and ON scores, respectively. Hoehn-Yahr stages improved in four patients. Fluorine-18-L-dihydroxyphenylalanine (18F-DOPA) influx rate constant (Ki) values in the putamen increased by 44.7%, with higher increases in the high-dose group. Other measures showed minimal changes. This trial (jRCT2090220384) demonstrated that allogeneic iPS-cell-derived dopaminergic progenitors survived, produced dopamine and did not form tumours, therefore suggesting safety and potential clinical benefits for Parkinson's disease.
Collapse
Affiliation(s)
- Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Doi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Atsushi Shima
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohisa Okada
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tetsuhiro Kikuchi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Asuka Morizane
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Satoe Hiramatsu
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takayuki Anazawa
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takero Shindo
- Department of Hematology/Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Ueno
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
5
|
Takahashi R, Nakanishi E, Yamakado H, Sawamoto N, Takahashi J. Allogenic transplantation therapy of iPS cell-derived dopamine progenitors for Parkinson's disease -Current status of the Kyoto Trial and future perspectives. Parkinsonism Relat Disord 2025:107833. [PMID: 40307147 DOI: 10.1016/j.parkreldis.2025.107833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/04/2025] [Accepted: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Transplantation therapy using induced pluripotent stem cell (iPS) cell-derived dopamine (DA) progenitors for Parkinson's disease (PD) has attracted attention as an innovative treatment to restore DA neurons in PD, which leads to the improvement of motor disturbance. iPS cells are multipotent stem cells with very high proliferation activity, created by reprogramming mature somatic cells through the transduction of four transcription factors. Relative to fetal midbrain DA neurons, iPS cells have advantages in terms of ethical aspects and availability. On the other hand, the most serious concern associated with therapies with ES/iPS cells is the risk of tumor growth that is caused by the proliferation of undifferentiated ES/iPS cells. Human ES cells that differentiate into DA neurons have been shown to form teratomas. Another concern is graft-induced dyskinesia (GID). GID, which is likely caused by several factors including contamination with serotonergic neurons, developed in the recipients of fetal ventral midbrain (VM) in randomized controlled trials. To enrich the DA progenitor cells and eliminate unwanted cells, a protocol for sorting midbrain DA neurons with antibodies against CORIN, a marker for floor plates, was developed. CORIN-sorted dopamine progenitors were transplanted into the bilateral putamina of MPTP-treated Parkinson models of cynomolgus monkeys, resulting in 18F-DOPA PET-positive graft formation and motor improvement without tumor formation two years after the surgeries. Very recently, a phase I/II trial of iPSC-derived, CORIN-sorted dopaminergic cells for Parkinson's disease was completed (The Kyoto Trial) (Takahashi, 2020; Sawamoto et al., 2025) [1,2]. Based on the results of the trial, we would like to discuss the current status and future perspectives of iPS cell therapy for PD.
Collapse
Affiliation(s)
- Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Kyoto University Office of Research Acceleration, Kyoto, Japan.
| | - Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto, Japan
| |
Collapse
|
6
|
Okubo C, Nakamura M, Sato M, Shichino Y, Mito M, Takashima Y, Iwasaki S, Takahashi K. EIF3D safeguards the homeostasis of key signaling pathways in human primed pluripotency. SCIENCE ADVANCES 2025; 11:eadq5484. [PMID: 40203091 PMCID: PMC11980838 DOI: 10.1126/sciadv.adq5484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/04/2025] [Indexed: 04/11/2025]
Abstract
Although pluripotent stem cell (PSC) properties, such as differentiation and infinite proliferation, have been well documented within the frameworks of transcription factor networks, epigenomes, and signal transduction, they remain unclear and fragmented. Directing attention toward translational regulation as a bridge between these events can yield additional insights into previously unexplained mechanisms. Our functional CRISPR interference screen-based approach revealed that EIF3D, a translation initiation factor, is crucial for maintaining primed pluripotency. Loss of EIF3D disrupted the balance of pluripotency-associated signaling pathways, thereby compromising primed pluripotency. Moreover, EIF3D ensured robust proliferation by controlling the translation of various p53 regulators, which maintain low p53 activity in the undifferentiated state. In this way, EIF3D-mediated translation contributes to tuning the homeostasis of the primed pluripotency networks, ensuring the maintenance of an undifferentiated state with high proliferative potential. This study provides further insights into the translation network in maintaining pluripotency.
Collapse
Affiliation(s)
- Chikako Okubo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Michiko Nakamura
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Masae Sato
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, 351-0198, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan
| | - Kazutoshi Takahashi
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
7
|
Bao H, Yao Y, Tang W, Yang D. Advances in Cell Separation: Harnessing DNA Nanomaterials for High-Specificity Recognition and Isolation. CHEM & BIO ENGINEERING 2025; 2:171-181. [PMID: 40171128 PMCID: PMC11955853 DOI: 10.1021/cbe.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 04/03/2025]
Abstract
Advancements in cell separation are essential for understanding cellular phenotypes and functions, with implications for both research and therapeutic applications. This review examines the evolution of cell separation techniques, categorizing them into physical and affinity-based methods, with a primary focus on the latter due to its high specificity. Among affinity techniques, DNA nanomaterials have emerged as powerful tools for biomolecular recognition owing to their unique properties and diverse range of nanostructures. We discuss various DNA nanomaterials, including linear aptamers, multivalent DNA constructs, DNA origami, and DNA hydrogels and their roles in cell recognition and separation. Each section highlights the distinctive characteristics of these DNA nanostructures, providing examples from recent studies that demonstrate their applications in cell isolation and release. We also compare the four DNA nanomaterials, outlining their individual contributions and identifying the remaining challenges and opportunities for further development. We conclude that DNA nanotechnology holds great promise as a transformative solution for cell separation, particularly in the context of personalized therapeutics.
Collapse
Affiliation(s)
- Huimin Bao
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
| | - Yao Yao
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
| | - Wenqi Tang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
| | - Dayong Yang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
- Bioinformatics
Center of AMMS, Beijing, 100850, P.R. China
| |
Collapse
|
8
|
Holm Nygaard A, Schörling AL, Abay-Nørgaard Z, Hänninen E, Li Y, Ramón Santonja A, Rathore GS, Salvador A, Rusimbi C, Lauritzen KB, Zhang Y, Kirkeby A. Patterning effects of FGF17 and cAMP on generation of dopaminergic progenitors for cell replacement therapy in Parkinson's disease. Stem Cells 2025; 43:sxaf004. [PMID: 40071608 PMCID: PMC11976395 DOI: 10.1093/stmcls/sxaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/06/2025] [Indexed: 04/09/2025]
Abstract
Cell replacement therapies using human pluripotent stem cell-derived ventral midbrain (VM) dopaminergic (DA) progenitors are currently in clinical trials for treatment of Parkinson's disease (PD). Recapitulating developmental patterning cues, such as fibroblast growth factor 8 (FGF8), secreted at the midbrain-hindbrain boundary (MHB), is critical for the in vitro production of authentic VM DA progenitors. Here, we explored the application of alternative MHB-secreted FGF-family members, FGF17 and FGF18, for VM DA progenitor patterning. We show that while FGF17 and FGF18 both recapitulated VM DA progenitor patterning events, FGF17 induced expression of key VM DA progenitor markers at higher levels than FGF8 and transplanted FGF17-patterned progenitors fully reversed motor deficits in a rat PD model. Early activation of the cAMP pathway mimicked FGF17-induced patterning, although strong cAMP activation came at the expense of EN1 expression. In summary, we identified FGF17 as a promising alternative FGF candidate for robust VM DA progenitor patterning.
Collapse
Affiliation(s)
- Amalie Holm Nygaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alrik L Schörling
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Zehra Abay-Nørgaard
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Erno Hänninen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yuan Li
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Adrian Ramón Santonja
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Gaurav Singh Rathore
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alison Salvador
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Rusimbi
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine Bech Lauritzen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yu Zhang
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, SE-221 84 Lund, Sweden
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Fan B, Tanikawa S, Wang L, Nonoyama T, Oda Y, Tanei ZI, Gong JP, Tsuda M, Tanaka S. Establishment of a novel method for differentiating into dopaminergic neurons using charged hydrogels. Biochem Biophys Res Commun 2025; 747:151280. [PMID: 39798535 DOI: 10.1016/j.bbrc.2024.151280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease primarily affecting the central nervous system and impacting both the motor system and non-motor systems. Although administration of L-DOPA is effective, it is not a fundamental treatment and has side effects such as diurnal fluctuation and dyskinesia, highlighting the need for new treatment methods. There is a growing interest in dopaminergic neuron transplantation as a potential treatment. Dopaminergic neurons derived from pluripotent stem (iPS) cells provide a valuable source for transplantation therapies. Developing an efficient method to differentiate iPS cells into dopaminergic cells is essential for cell transplantation therapy. While Cell differentiation is typically controlled by the addition of specific reagents, the physical characteristics of culture substrate, especially in the charge and stiffness, are also crucial factors in regulating differentiation. In this research, we show that two newly developed electrically charged polymeric hydrogels composed of cationic (C) and anionic (A) monomers inratio of 1-9 and 2 to 8 can significantly promote Dopaminergic neuron differentiation. Our findings emphasize the importance of culture substrates in effective dopaminergic cell differentiation.
Collapse
Affiliation(s)
- Bin Fan
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| | - Lei Wang
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Takayuki Nonoyama
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Yashitaka Oda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Zen-Ichi Tanei
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Masumi Tsuda
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine, Hokkaido University, Sapporo, Japan; World Premier International Research Center Initiative, Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan.
| |
Collapse
|
10
|
Takahashi J. iPSC-based cell replacement therapy: from basic research to clinical application. Cytotherapy 2025:S1465-3249(25)00053-2. [PMID: 39969437 DOI: 10.1016/j.jcyt.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/26/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
The advancement of induced pluripotent stem cell (iPSC) technology has revolutionized regenerative medicine, enabling breakthroughs in disease modeling, drug discovery, and cell replacement therapies. This review examines the progression of iPSC-based regenerative medicine, focusing on cell replacement therapy and mechanisms like the Replacement Effect, which is crucial for long-term tissue regeneration. Using Parkinson's disease as a key example, it discusses the induction of midbrain dopaminergic neurons from iPSCs and the importance of precise signaling for safety and efficacy. By demonstrating the integration and safety of these cells, animal studies have paved the way for clinical trials. This review highlights the need for strategic collaboration among stakeholders-regulatory authorities, research and medical staff, and industry-to ensure successful clinical applications. iPSC technology's ongoing evolution holds significant promise for broader therapeutic applications and improved patient outcomes.
Collapse
Affiliation(s)
- Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
11
|
Ijomone OK, Oria RS, Ijomone OM, Aschner M, Bornhorst J. Dopaminergic Perturbation in the Aetiology of Neurodevelopmental Disorders. Mol Neurobiol 2025; 62:2420-2434. [PMID: 39110391 PMCID: PMC11772124 DOI: 10.1007/s12035-024-04418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 08/01/2024] [Indexed: 01/28/2025]
Abstract
Brain development may be influenced by both genetic and environmental factors, with potential consequences that may last through the lifespan. Alterations during neurogenesis are linked to neurodevelopmental cognitive disorders. Many neurotransmitters and their systems play a vital role in brain development, as most are present prior to synaptogenesis, and they are involved in the aetiology of many neurodevelopmental disorders. For instance, dopamine (DA) receptor expression begins at the early stages of development and matures at adolescence. The long maturation period suggests how important it is for the stabilisation and integration of neural circuits. DA and dopaminergic (DAergic) system perturbations have been implicated in the pathogenesis of several neurological and neuropsychiatric disorders. The DAergic system controls key cognitive and behavioural skills including emotional and motivated behaviour through DA as a neurotransmitter and through the DA neuron projections to major parts of the brain. In this review, we summarise the current understanding of the DAergic system's influence on neurodevelopment and its involvement in the aetiology and progression of major disorders of the developing brain including autism, schizophrenia, attention deficit hyperactivity disorder, down syndrome, and fragile X syndrome.
Collapse
Affiliation(s)
- Olayemi K Ijomone
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany.
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
| | - Rademene Sunday Oria
- Department of Anatomy, University of Cross River State, Okuku Campus, Cross River, Nigeria
| | - Omamuyovwi M Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Anatomy, University of Medical Sciences, Laje Road, Ondo, Ondo State, Nigeria.
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Science, University of Wuppertal, Wuppertal, Germany
| |
Collapse
|
12
|
Kim TW, Piao J, Bocchi VD, Koo SY, Choi SJ, Chaudhry F, Yang D, Cho HS, Hergenreder E, Perera LR, Joshi S, Mrad ZA, Claros N, Donohue SA, Frank AK, Walsh R, Mosharov EV, Betel D, Tabar V, Studer L. Enhanced yield and subtype identity of hPSC-derived midbrain dopamine neuron by modulation of WNT and FGF18 signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631400. [PMID: 39829874 PMCID: PMC11741396 DOI: 10.1101/2025.01.06.631400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
While clinical trials are ongoing using human pluripotent stem cell-derived midbrain dopamine (mDA) neuron precursor grafts in Parkinson's disease (PD), current protocols to derive mDA neurons remain suboptimal. In particular, the yield of TH+ mDA neurons after in vivo grafting and the expression of some mDA neuron and subtype-specific markers can be further improved. For example, characterization of mDA grafts by single cell transcriptomics has yielded only a small proportion of mDA neurons and a considerable fraction of contaminating cell populations. Here we present an optimized mDA neuron differentiation strategy that builds on our clinical grade ("Boost") protocol but includes the addition of FGF18 and IWP2 treatment ("Boost+") at the mDA neurogenesis stage. We demonstrate that Boost+ mDA neurons show higher expression of EN1, PITX3 and ALDH1A1. Improvements in both mDA neurons yield and transcriptional similarity to primary mDA neurons is observed both in vitro and in grafts. Furthermore, grafts are enriched in authentic A9 mDA neurons by single nucSeq. Functional studies in vitro demonstrate increased dopamine production and release and improved electrophysiological properties. In vivo analyses show increased percentages of TH+ mDA neurons resulting in efficient rescue of amphetamine induced rotation behavior in the 6-OHDA rat model and rescue of some motor deficits in non-drug induced assays, including the ladder rung assay that is not improved by Boost mDA neurons. The Boost+ conditions present an optimized protocol with advantages for disease modeling and mDA neuron grafting paradigms.
Collapse
|
13
|
Li X, Fang K, Wang F. Somatic cell reprogramming for Parkinson's disease treatment. IBRAIN 2025; 11:59-73. [PMID: 40103698 PMCID: PMC11911114 DOI: 10.1002/ibra.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 03/20/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by degeneration of dopamine neurons in the substantia nigra pars compacta. The patient exhibits a series of motor symptoms, such as static tremors, which impair their capacity to take care for themselves in daily life. In the late stage, the patient is unable to walk independently and is bedridden for an extended period of time, reducing their quality of life significantly. So far, treatment methods for PD mainly include drug therapy and deep brain stimulation. Pharmacotherapy is aimed at increasing dopamine (DA) levels; however, the treatment effect is more pronounced in the short term, and there is no benefit in improvement in the overall progression of the disease. In recent years, novel therapeutic strategies have been developed, such as cell reprogramming, trying to generate more DA in PD treatment. This review mainly discusses the advantages, methodology, cell origin, transformation efficiency, and practical application shortcomings of cell reprogramming therapy in PD strategy.
Collapse
Affiliation(s)
- Xiaozhuo Li
- School of Institute of Primate Translational Medicine Kunming University of Science and Technology Kunming China
| | - Kevin Fang
- Living Systems Institute University of Exeter Exeter UK
| | - Fengping Wang
- College of Traditional Chinese Medicine Shandong Second Medical University Weifang Shandong China
| |
Collapse
|
14
|
Ren H, Wang Y, Chen Y, Ma F, Shi Q, Wang Z, Gui Y, Liu J, Tang H. The therapeutic effects of induced pluripotent stem cell-derived mesenchymal stem cells on Parkinson's disease. IUBMB Life 2025; 77:e2936. [PMID: 39740935 DOI: 10.1002/iub.2936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/12/2024] [Indexed: 01/02/2025]
Abstract
Parkinson's disease (PD), characterized by progressive degeneration of dopaminergic neurons in substantia nigra, has no disease-modifying therapy. Mesenchymal stem cell (MSC) therapy has shown great promise as a disease-modifying solution for PD. Induced pluripotent stem cell-derived MSC (iMSC) not only has stronger neural repair function, but also helps solve the problem of MSC heterogeneity. So we evaluated the therapeutic effects of iMSCs on PD. iMSCs were administered by tail vein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced PD models of C57BL/6 mice. The results showed iMSCs increased body weights, inhibited the prolongation of latencies to descend in pole tests, the decrease of grip strength in grip strength tests and increase of open arm entries in elevated plus maze test, and showed a trend to alleviate striatal dopamine loss. They indicate iMSCs might improve functions partially by preserving striatal dopamine in PD. We for the first time (1) found that iMSC has therapeutic effects on PD; (2) tested specifically muscle strength in cell therapy for PD and found it increases muscle strength; (3) found cell therapy alleviated the increase of entries into the open arms in PD. It suggests iMSC is a promising candidate for clinical investigations and drug development for PD.
Collapse
Affiliation(s)
- Hao Ren
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yuwei Wang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yingying Chen
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Feilong Ma
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Qing Shi
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Zichen Wang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Yaoting Gui
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| | - Jianbo Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Huiru Tang
- Cheerland Watson Precision Medicine Ltd, Shenzhen, China
| |
Collapse
|
15
|
Hirai K, Saito H, Kato M, Kiyama M, Hanzawa H, Nakane A, Sekiya S, Yoshida K, Kishino A, Ikeda A, Kimura T, Takahashi J, Takeda S. Evaluation of induced pluripotent stem cell differentiation into neural progenitor cell using Raman spectra derived from extracellular vesicles in culture supernatants. J Biosci Bioeng 2025; 139:44-52. [PMID: 39419642 DOI: 10.1016/j.jbiosc.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Non-invasive cell culture monitoring technology is crucial to improve the manufacturing efficiency of cell products. We have found that extracellular vesicles (EVs) are secreted into the culture supernatants in the differentiation process from human induced pluripotent stem cells (iPSCs) to dopaminergic progenitor cells, and that the composition of EVs changes in accordance with the differentiation processes. In this study, we hypothesized that it is possible to evaluate the cultured cellular states by detecting compositional changes of EVs secreted from cultured cells with label-free Raman spectroscopy in a non-invasive manner. Therefore, Raman signal analysis derived from EV fractions isolated from culture supernatants throughout the differentiation process was conducted. iPSCs cultures were simultaneously implemented under a standard condition (control) and an artificial deviation condition inducing reductions in pluripotency by depleting FGF2 in culture medium (-FGF2), which is indispensable for maintaining the pluripotency. Subsequently, the differentiation step was conducted for each iPSCs culture under the same condition. As a result, it was found that under -FGF2, the expression level of the pluripotency marker NANOG decreased compared to that of the control and correlated with the identification results based on Raman signals with a correlation coefficient of 0.77. Lipid-derived Raman signals were extracted as identification factors, suggesting that changes in the lipid component of EV occur depending on the cellular states. From the above, we have found that the change in composition of EVs in the culture supernatant by detecting Raman signals would be a monitoring index of the cellular state of differentiation and pluripotency.
Collapse
Affiliation(s)
- Kakuro Hirai
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hikaru Saito
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Midori Kato
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Masaharu Kiyama
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroko Hanzawa
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Atsushi Nakane
- Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe KIMEC Center Building 5th Fl, 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Sayaka Sekiya
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Kenji Yoshida
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Akiyoshi Kishino
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Atsushi Ikeda
- Regenerative and Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe KIMEC Center Building 5th Fl, 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Toru Kimura
- Regenerative and Cellular Medicine Office, Sumitomo Pharma Co., Ltd., Tokyo Nihonbashi Tower, 2-7-1 Nihonbashi, Tokyo 103-6012, Japan
| | - Jun Takahashi
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Shizu Takeda
- Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Creative Lab for Innovation in Kobe 304, 6-3-7 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| |
Collapse
|
16
|
Barker RA, Björklund A, Parmar M. The history and status of dopamine cell therapies for Parkinson's disease. Bioessays 2024; 46:e2400118. [PMID: 39058892 PMCID: PMC11589688 DOI: 10.1002/bies.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
Parkinson's disease (PD) is characterized by the loss of the dopaminergic nigrostriatal pathway which has led to the successful development of drug therapies that replace or stimulate this network pharmacologically. Although these drugs work well in the early stages of the disease, over time they produce side effects along with less consistent clinical benefits to the person with Parkinson's (PwP). As such there has been much interest in repairing this pathway using transplants of dopamine neurons. This work which began 50 years ago this September is still ongoing and has now moved to first in human trials using human pluripotent stem cell-derived dopaminergic neurons. The results of these trials are eagerly awaited although proof of principle data has already come from trials using human fetal midbrain dopamine cell transplants. This data has shown that developing dopamine cells when transplanted in the brain of a PwP can survive long term with clinical benefits lasting decades and with restoration of normal dopaminergic innervation in the grafted striatum. In this article, we discuss the history of this field and how this has now led us to the recent stem cell trials for PwP.
Collapse
Affiliation(s)
- Roger A. Barker
- Department of Clinical Neurosciences and Cambridge Stem Cell InstituteJohn van Geest Centre for Brain RepairUniversity of CambridgeCambridgeUK
| | - Anders Björklund
- Department of Experimental Medical ScienceWallenberg Neuroscience CenterLund UniversityLundSweden
| | - Malin Parmar
- Department of Experimental Medical ScienceWallenberg Neuroscience CenterLund UniversityLundSweden
- Department of Clinical Sciences LundLund Stem Cell Center and Division of NeurologyLund UniversityLundSweden
| |
Collapse
|
17
|
Tanada S, Nakagomi T, Nakano-Doi A, Sawano T, Kubo S, Kuramoto Y, Uchida K, Yamahara K, Doe N, Yoshimura S. Human-Brain-Derived Ischemia-Induced Stem Cell Transplantation Is Associated with a Greater Neurological Functional Improvement Compared with Human-Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Mice After Stroke. Int J Mol Sci 2024; 25:12065. [PMID: 39596134 PMCID: PMC11593343 DOI: 10.3390/ijms252212065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/26/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
The transplantation of injury/ischemia-induced stem cells (iSCs) extracted from post-stroke human brains can improve the neurological functions of mice after stroke. However, the usefulness of iSCs as an alternative stem cell source remains unclear. The current study aimed to assess the efficacy of iSC and mesenchymal stem cell (MSC) transplantation. In this experiment, equal numbers of human brain-derived iSCs (h-iSCs) (5.0 × 104 cells/μL) and human bone marrow-derived MSCs (h-MSCs) (5.0 × 104 cells/μL) were intracranially transplanted into post-stroke mouse brains after middle cerebral artery occlusion. Results showed that not only h-iSC transplantation but also h-MSC transplantation activated endogenous neural stem/progenitor cells (NSPCs) around the grafted sites and promoted neurological functional improvement. However, mice that received h-iSC transplantation experienced improvement in a higher number of behavioral tasks compared with those that received h-MSC transplantation. To investigate the underlying mechanism, NSPCs extracted from the ischemic areas of post-stroke mouse brains were cocultured with h-iSCs or h-MSCs. After coincubation, NSPCs, h-iSCs, and h-MSCs were selectively collected via fluorescence-activated cell sorting. Next, their traits were analyzed via microarray analysis. The genes related to various neuronal lineages in NSPCs after coincubation with h-iSCs were enriched compared with those in NSPCs after coincubation with h-MSCs. In addition, the gene expression patterns of h-iSCs relative to those of h-MSCs showed that the expression of genes related to synapse formation and neurotransmitter-producing neurons increased more after coincubation with NSPCs. Hence, cell-cell interactions with NSPCs promoted transdifferentiation toward functional neurons predominantly in h-iSCs. In accordance with these findings, immunohistochemistry showed that the number of neuronal networks between NSPCs and h-iSCs was higher than that between NSPCs and h-MSCs. Therefore, compared with h-MSC transplantation, h-iSC transplantation is associated with a higher neurological functional improvement, presumably by more effectively modulating the fates of endogenous NSPCs and grafted h-iSCs themselves.
Collapse
Affiliation(s)
- Shuichi Tanada
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Yoji Kuramoto
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kazutaka Uchida
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| | - Kenichi Yamahara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (A.N.-D.); (S.K.); (K.Y.)
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan;
| | - Shinichi Yoshimura
- Department of Neurosurgery, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.T.); (Y.K.); (K.U.); (S.Y.)
| |
Collapse
|
18
|
Dong W, Liu S, Li S, Wang Z. Cell reprogramming therapy for Parkinson's disease. Neural Regen Res 2024; 19:2444-2455. [PMID: 38526281 PMCID: PMC11090434 DOI: 10.4103/1673-5374.390965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 10/08/2023] [Indexed: 03/26/2024] Open
Abstract
Parkinson's disease is typically characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Many studies have been performed based on the supplementation of lost dopaminergic neurons to treat Parkinson's disease. The initial strategy for cell replacement therapy used human fetal ventral midbrain and human embryonic stem cells to treat Parkinson's disease, which could substantially alleviate the symptoms of Parkinson's disease in clinical practice. However, ethical issues and tumor formation were limitations of its clinical application. Induced pluripotent stem cells can be acquired without sacrificing human embryos, which eliminates the huge ethical barriers of human stem cell therapy. Another widely considered neuronal regeneration strategy is to directly reprogram fibroblasts and astrocytes into neurons, without the need for intermediate proliferation states, thus avoiding issues of immune rejection and tumor formation. Both induced pluripotent stem cells and direct reprogramming of lineage cells have shown promising results in the treatment of Parkinson's disease. However, there are also ethical concerns and the risk of tumor formation that need to be addressed. This review highlights the current application status of cell reprogramming in the treatment of Parkinson's disease, focusing on the use of induced pluripotent stem cells in cell replacement therapy, including preclinical animal models and progress in clinical research. The review also discusses the advancements in direct reprogramming of lineage cells in the treatment of Parkinson's disease, as well as the controversy surrounding in vivo reprogramming. These findings suggest that cell reprogramming may hold great promise as a potential strategy for treating Parkinson's disease.
Collapse
Affiliation(s)
- Wenjing Dong
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shuyi Liu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shangang Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
19
|
Alexanian AR, Sorokin A, Duersteler M. Dopaminergic progenitors generated by small molecule approach survived, integrated, and promoted functional recovery in (6-OHDA) mouse model of Parkinson's disease. J Neurol Sci 2024; 465:123188. [PMID: 39178824 PMCID: PMC11412743 DOI: 10.1016/j.jns.2024.123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/26/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder resulting from the loss of dopamine-producing neurons in the brain, causing motor symptoms like tremors and stiffness. Although current treatments like medication and deep brain stimulation can alleviate symptoms, they don't address the root cause of neuron loss. Therefore, cell replacement therapy emerges as a promising treatment strategy. However, the generation of engraftable dopaminergic (DA) cells in clinically relevant quantities is still a challenge. Recent advances in cell reprogramming technologies open up vast possibilities to produce patient-specific cells of a desired type in therapeutic quantities. The main cell reprogramming strategies involve the enforced expression of individual or sets of genes through viral transduction or transfection, or through small molecules, known as the chemical approach, which is a much easier and safer method. In our previous studies, using a small molecule approach (combinations of epigenetic modifiers and SMAD inhibitors such asDorsomorphin and SB431542), we have been able to generate DA progenitors from human mesenchymal stem cells (hMSCs). The aim of this study was to further improve the method for the generation of DA progenitors and to test their therapeutic effect in an animal model of Parkinson's. The results showed that the addition of an autophagy enhancer (AE) to our DA cell induction protocol further increased the yield of DA progenitor cells. The results also showed that DA progenitors transplanted into the mouse model of PD survived, integrated, and improved PD motor symptoms. These data suggest that chemically-produced DA cells can be very promising and safe cellular therapeutics for PD.
Collapse
Affiliation(s)
- Arshak R Alexanian
- Cell Reprogramming & Therapeutics LLC, Wauwatosa (Milwaukee County), WI 53226, USA; Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States of America.
| | - Andrey Sorokin
- Department of Medicine, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States of America
| | - Megan Duersteler
- Cell Reprogramming & Therapeutics LLC, Wauwatosa (Milwaukee County), WI 53226, USA
| |
Collapse
|
20
|
Prudon N, Cordero-Espinoza L, Abarkan M, Gurchenkov B, Morel C, Lepleux M, De Luca V, Lartigue M, Cabanas H, Pujol N, Milvoy L, Morand P, Moncaubeig F, Wurtz H, Poinçot L, De Marco M, Jonckeau A, Pletenka J, Luquet E, Sovera A, Hardoüin J, Neves IJ, Machado-Hitau A, Schmit K, Piouceau L, Guilbert S, Manache-Alberici L, Lanero Fidalgo M, Dabée G, Dufourd T, Schroeder J, Alessandri K, Bezard E, Faggiani E, Feyeux M. Bioreactor-produced iPSCs-derived dopaminergic neuron-containing neural microtissues innervate and normalize rotational bias in a dose-dependent manner in a Parkinson rat model. Neurotherapeutics 2024; 21:e00436. [PMID: 39353832 PMCID: PMC11581877 DOI: 10.1016/j.neurot.2024.e00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
A breadth of preclinical studies now support the rationale of pluripotent stem cell-derived cell replacement therapies to alleviate motor symptoms in Parkinsonian patients. Replacement of the primary dysfunctional cell population in the disease, i.e. the A9 dopaminergic neurons, is the major focus of these therapies. To achieve this, most therapeutical approaches involve grafting single-cell suspensions of DA progenitors. However, most cells die during the transplantation process, as cells face anoïkis. One potential solution to address this challenge is to graft solid preparations, i.e. adopting a 3D format. Cryopreserving such a format remains a major hurdle and is not exempt from causing delays in the time to effect, as observed with cryopreserved single-cell DA progenitors. Here, we used a high-throughput cell-encapsulation technology coupled with bioreactors to provide a 3D culture environment enabling the directed differentiation of hiPSCs into neural microtissues. The proper patterning of these neural microtissues into a midbrain identity was confirmed using orthogonal methods, including qPCR, RNAseq, flow cytometry and immunofluorescent microscopy. The efficacy of the neural microtissues was demonstrated in a dose-dependent manner using a Parkinsonian rat model. The survival of the cells was confirmed by post-mortem histological analysis, characterised by the presence of human dopaminergic neurons projecting into the host striatum. The work reported here is the first bioproduction of a cell therapy for Parkinson's disease in a scalable bioreactor, leading to a full behavioural recovery 16 weeks after transplantation using cryopreserved 3D format.
Collapse
Affiliation(s)
- Nicolas Prudon
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; TreeFrog Therapeutics, Bât A, F-33600 Pessac, France.
| | | | | | | | - Chloé Morel
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| | | | | | | | | | - Nadège Pujol
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| | - Loanne Milvoy
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| | | | | | - Hélène Wurtz
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| | - Léa Poinçot
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| | | | | | | | - Elisa Luquet
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| | - Andrea Sovera
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| | | | | | | | | | | | | | | | | | - Guillaume Dabée
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; PIV-EXPE, Centre Broca, Université de Bordeaux, F-33000 Bordeaux, France
| | | | | | | | - Erwan Bezard
- Université de Bordeaux, CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | | | - Maxime Feyeux
- TreeFrog Therapeutics, Bât A, F-33600 Pessac, France
| |
Collapse
|
21
|
Nishimura K, Osaki H, Tezuka K, Nakashima D, Numata S, Masamizu Y. Recent advances and applications of human brain models. Front Neural Circuits 2024; 18:1453958. [PMID: 39161368 PMCID: PMC11330844 DOI: 10.3389/fncir.2024.1453958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Recent advances in human pluripotent stem cell (hPSC) technologies have prompted the emergence of new research fields and applications for human neurons and brain organoids. Brain organoids have gained attention as an in vitro model system that recapitulates the higher structure, cellular diversity and function of the brain to explore brain development, disease modeling, drug screening, and regenerative medicine. This progress has been accelerated by abundant interactions of brain organoid technology with various research fields. A cross-disciplinary approach with human brain organoid technology offers a higher-ordered advance for more accurately understanding the human brain. In this review, we summarize the status of neural induction in two- and three-dimensional culture systems from hPSCs and the modeling of neurodegenerative diseases using brain organoids. We also highlight the latest bioengineered technologies for the assembly of spatially higher-ordered neural tissues and prospects of brain organoid technology toward the understanding of the potential and abilities of the human brain.
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Kim MS, Kim H, Lee G. Precision Medicine in Parkinson's Disease Using Induced Pluripotent Stem Cells. Adv Healthc Mater 2024; 13:e2303041. [PMID: 38269602 DOI: 10.1002/adhm.202303041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Parkinson's disease (PD) is one of the most devastating neurological diseases; however, there is no effective cure yet. The availability of human induced pluripotent stem cells (iPSCs) provides unprecedented opportunities to understand the pathogenic mechanism and identification of new therapy for PD. Here a new model system of PD, including 2D human iPSC-derived midbrain dopaminergic (mDA) neurons, 3D iPSC-derived midbrain organoids (MOs) with cellular complexity, and more advanced microphysiological systems (MPS) with 3D organoids, is introduced. It is believed that successful integrations and applications of iPSC, organoid, and MPS technologies can bring new insight on PD's pathogenesis that will lead to more effective treatments for this debilitating disease.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hyesoo Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
23
|
Kim TW, Koo SY, Riessland M, Chaudhry F, Kolisnyk B, Cho HS, Russo MV, Saurat N, Mehta S, Garippa R, Betel D, Studer L. TNF-NF-κB-p53 axis restricts in vivo survival of hPSC-derived dopamine neurons. Cell 2024; 187:3671-3689.e23. [PMID: 38866017 PMCID: PMC11641762 DOI: 10.1016/j.cell.2024.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2023] [Accepted: 05/16/2024] [Indexed: 06/14/2024]
Abstract
Ongoing, early-stage clinical trials illustrate the translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, an unresolved challenge is the extensive cell death following transplantation. Here, we performed a pooled CRISPR-Cas9 screen to enhance postmitotic dopamine neuron survival in vivo. We identified p53-mediated apoptotic cell death as a major contributor to dopamine neuron loss and uncovered a causal link of tumor necrosis factor alpha (TNF-α)-nuclear factor κB (NF-κB) signaling in limiting cell survival. As a translationally relevant strategy to purify postmitotic dopamine neurons, we identified cell surface markers that enable purification without the need for genetic reporters. Combining cell sorting and treatment with adalimumab, a clinically approved TNF-α inhibitor, enabled efficient engraftment of postmitotic dopamine neurons with extensive reinnervation and functional recovery in a preclinical PD mouse model. Thus, transient TNF-α inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic hPSC-derived dopamine neurons in PD.
Collapse
Affiliation(s)
- Tae Wan Kim
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| | - So Yeon Koo
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Weill Cornell Neuroscience PhD Program, New York, NY, USA
| | - Markus Riessland
- Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794, USA
| | - Fayzan Chaudhry
- Tri-Institutional PhD program in Computational Biology, New York, NY, USA
| | - Benjamin Kolisnyk
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Hyein S Cho
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Marco Vincenzo Russo
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sanjoy Mehta
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing and Screening Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Doron Betel
- Division of Hematology & Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA; Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
24
|
Park TY, Jeon J, Cha Y, Kim KS. Past, present, and future of cell replacement therapy for parkinson's disease: a novel emphasis on host immune responses. Cell Res 2024; 34:479-492. [PMID: 38777859 PMCID: PMC11217403 DOI: 10.1038/s41422-024-00971-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Parkinson's disease (PD) stands as the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence continues to rise with the aging global population. Central to the pathophysiology of PD is the specific degeneration of midbrain dopamine neurons (mDANs) in the substantia nigra. Consequently, cell replacement therapy (CRT) has emerged as a promising treatment approach, initially supported by various open-label clinical studies employing fetal ventral mesencephalic (fVM) cells. Despite the initial favorable results, fVM cell therapy has intrinsic and logistical limitations that hinder its transition to a standard treatment for PD. Recent efforts in the field of cell therapy have shifted its focus towards the utilization of human pluripotent stem cells, including human embryonic stem cells and induced pluripotent stem cells, to surmount existing challenges. However, regardless of the transplantable cell sources (e.g., xenogeneic, allogeneic, or autologous), the poor and variable survival of implanted dopamine cells remains a major obstacle. Emerging evidence highlights the pivotal role of host immune responses following transplantation in influencing the survival of implanted mDANs, underscoring an important area for further research. In this comprehensive review, building upon insights derived from previous fVM transplantation studies, we delve into the functional ramifications of host immune responses on the survival and efficacy of grafted dopamine cells. Furthermore, we explore potential strategic approaches to modulate the host immune response, ultimately aiming for optimal outcomes in future clinical applications of CRT for PD.
Collapse
Affiliation(s)
- Tae-Yoon Park
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Jeha Jeon
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Young Cha
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Kwang-Soo Kim
- Molecular Neurobiology Laboratory, Department of Psychiatry and McLean Hospital, Harvard Medical School, Belmont, MA, USA.
- Program in Neuroscience, Harvard Medical School, Belmont, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard Medical School, Belmont, MA, USA.
| |
Collapse
|
25
|
Chang Z, Wang QY, Li LH, Jiang B, Zhou XM, Zhu H, Sun YP, Pan X, Tu XX, Wang W, Liu CY, Kuang HX. Potential Plausible Role of Stem Cell for Treating Depressive Disorder: a Retrospective Review. Mol Neurobiol 2024; 61:4454-4472. [PMID: 38097915 DOI: 10.1007/s12035-023-03843-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 07/11/2024]
Abstract
Depression poses a significant threat to global physical and mental health, impacting around 3.8% of the population with a rising incidence. Current treatment options primarily involve medication and psychological support, yet their effectiveness remains limited, contributing to high relapse rates. There is an urgent need for innovative and more efficacious treatment modalities. Stem cell therapy, a promising avenue in regenerative medicine for a spectrum of neurodegenerative conditions, has recently garnered attention for its potential application in depression. While much of this work remains preclinical, it has demonstrated considerable promise. Identified mechanisms underlying the antidepressant effects of stem cell therapy encompass the stimulation of neurotrophic factors, immune function modulation, and augmented monoamine levels. Nonetheless, these pathways and other undiscovered mechanisms necessitate further investigation. Depression fundamentally manifests as a neurodegenerative disorder. Given stem cell therapy's success in addressing a range of neurodegenerative pathologies, it opens the door to explore its application in depression treatment. This exploration may include repairing damaged nerves directly or indirectly and inhibiting neurotoxicity. Nevertheless, significant challenges must be overcome before stem cell therapies can be applied clinically. Successful resolution of these issues will ultimately determine the feasibility of incorporating stem cell therapies into the clinical landscape. This narrative review provides insights into the progress of research, potential avenues for exploration, and the prevailing challenges in the implementation of stem cell therapy for treatment of depression.
Collapse
Affiliation(s)
- Zhuo Chang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Qing-Yi Wang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Lu-Hao Li
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Bei Jiang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue-Ming Zhou
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Hui Zhu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Yan-Ping Sun
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Xue Pan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xu-Xu Tu
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China
| | - Wei Wang
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Chen-Yue Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hai-Xue Kuang
- Heilongjiang University of Chinese Medicine, Heping Road 26, Harbin, Heilongjiang, 150040, China.
| |
Collapse
|
26
|
Pereira MF, Shyti R, Testa G. In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline. Stem Cell Reports 2024; 19:767-795. [PMID: 38865969 PMCID: PMC11390705 DOI: 10.1016/j.stemcr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
27
|
Christiansen JR, Kirkeby A. Clinical translation of pluripotent stem cell-based therapies: successes and challenges. Development 2024; 151:dev202067. [PMID: 38564308 PMCID: PMC11057818 DOI: 10.1242/dev.202067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The translational stem cell research field has progressed immensely in the past decade. Development and refinement of differentiation protocols now allows the generation of a range of cell types, such as pancreatic β-cells and dopaminergic neurons, from human pluripotent stem cells (hPSCs) in an efficient and good manufacturing practice-compliant fashion. This has led to the initiation of several clinical trials using hPSC-derived cells to replace lost or dysfunctional cells, demonstrating evidence of both safety and efficacy. Here, we highlight successes from some of the hPSC-based trials reporting early signs of efficacy and discuss common challenges in clinical translation of cell therapies.
Collapse
Affiliation(s)
- Josefine Rågård Christiansen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen N, Denmark
- Wallenberg Center for Molecular Medicine, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden
| |
Collapse
|
28
|
Yang A, Chidiac R, Russo E, Steenland H, Pauli Q, Bonin R, Blazer LL, Adams JJ, Sidhu SS, Goeva A, Salahpour A, Angers S. Exploiting spatiotemporal regulation of FZD5 during neural patterning for efficient ventral midbrain specification. Development 2024; 151:dev202545. [PMID: 38358799 PMCID: PMC10946437 DOI: 10.1242/dev.202545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The Wnt/β-catenin signaling governs anterior-posterior neural patterning during development. Current human pluripotent stem cell (hPSC) differentiation protocols use a GSK3 inhibitor to activate Wnt signaling to promote posterior neural fate specification. However, GSK3 is a pleiotropic kinase involved in multiple signaling pathways and, as GSK3 inhibition occurs downstream in the signaling cascade, it bypasses potential opportunities for achieving specificity or regulation at the receptor level. Additionally, the specific roles of individual FZD receptors in anterior-posterior patterning are poorly understood. Here, we have characterized the cell surface expression of FZD receptors in neural progenitor cells with different regional identity. Our data reveal unique upregulation of FZD5 expression in anterior neural progenitors, and this expression is downregulated as cells adopt a posterior fate. This spatial regulation of FZD expression constitutes a previously unreported regulatory mechanism that adjusts the levels of β-catenin signaling along the anterior-posterior axis and possibly contributes to midbrain-hindbrain boundary formation. Stimulation of Wnt/β-catenin signaling in hPSCs, using a tetravalent antibody that selectively triggers FZD5 and LRP6 clustering, leads to midbrain progenitor differentiation and gives rise to functional dopaminergic neurons in vitro and in vivo.
Collapse
Affiliation(s)
- Andy Yang
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Rony Chidiac
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Emma Russo
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hendrik Steenland
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- NeuroTek Innovative Technology, Toronto, ON M6C 3A2, Canada
| | - Quinn Pauli
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Robert Bonin
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Levi L. Blazer
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jarrett J. Adams
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Sachdev S. Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Aleksandrina Goeva
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
- Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
29
|
Liang H, Liu P, Wang Z, Xiong H, Yin C, Zhao D, Wu C, Chen L. TREM2 gene induces differentiation of induced pluripotent stem cells into dopaminergic neurons and promotes neuronal repair via TGF-β activation in 6-OHDA-lesioned mouse model of Parkinson's disease. CNS Neurosci Ther 2024; 30:e14630. [PMID: 38348765 PMCID: PMC10862187 DOI: 10.1111/cns.14630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Induced pluripotent stem cells (iPSCs) hold a promising potential for rescuing dopaminergic neurons in therapy for Parkinson's disease (PD). This study clarifies a TREM2-dependent mechanism explaining the function of iPSC differentiation in neuronal repair of PD. METHODS PD-related differentially expressed genes were screened by bioinformatics analyses and their expression was verified using RT-qPCR in nigral tissues of 6-OHDA-lesioned mice. Following ectopic expression and depletion experiments in iPSCs, cell differentiation into dopaminergic neurons as well as the expression of dopaminergic neuronal markers TH and DAT was measured. Stereotaxic injection of 6-OHDA was used to develop a mouse model of PD, which was injected with iPSC suspension overexpressing TREM2 to verify the effect of TREM2 on neuronal repair. RESULTS TREM2 was poorly expressed in the nigral tissues of 6-OHDA-lesioned mice. In the presence of TREM2 overexpression, the iPSCs showed increased expression of dopaminergic neuronal markers TH and DAT, which facilitated the differentiation of iPSCs into dopaminergic neurons. Mechanistic investigations indicated that TREM2 activated the TGF-β pathway and induced iPSC differentiation into dopaminergic neurons. In vivo data showed that iPSCs overexpressing TREM2 enhanced neuronal repair in 6-OHDA-lesioned mice. CONCLUSION This work identifies a mechanistic insight for TREM2-mediated TGF-β activation in the regulation of neuronal repair in PD and suggests novel strategies for neurodegenerative disorders.
Collapse
Affiliation(s)
- Hanbai Liang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ping Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Zijing Wang
- Department of Gastroenterology and Hepatology, West China HospitalSichuan UniversityChengduChina
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Cheng Yin
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Dongdong Zhao
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Chunhui Wu
- School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Longyi Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| |
Collapse
|
30
|
Feng L, Li D, Tian Y, Zhao C, Sun Y, Kou X, Wu J, Wang L, Gu Q, Li W, Hao J, Hu B, Wang Y. One-step cell biomanufacturing platform: porous gelatin microcarrier beads promote human embryonic stem cell-derived midbrain dopaminergic progenitor cell differentiation in vitro and survival after transplantation in vivo. Neural Regen Res 2024; 19:458-464. [PMID: 37488911 PMCID: PMC10503631 DOI: 10.4103/1673-5374.377412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/07/2023] [Accepted: 04/10/2023] [Indexed: 07/26/2023] Open
Abstract
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson's disease. Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson's disease. However, transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche. Here, we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells. These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion, effectively maintaining axonal integrity in vitro. Importantly, midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts. Overall, our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
Collapse
Affiliation(s)
- Lin Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Da Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yao Tian
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Chengshun Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Yun Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Xiaolong Kou
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Liu Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Qi Gu
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jie Hao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yukai Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
31
|
Fu CL, Dong BC, Jiang X, Li D, Yao J. A cell therapy approach based on iPSC-derived midbrain organoids for the restoration of motor function in a Parkinson's disease mouse model. Heliyon 2024; 10:e24234. [PMID: 38293351 PMCID: PMC10826648 DOI: 10.1016/j.heliyon.2024.e24234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic (DA) neurons in the substantia nigra and loss of DA transmission in the striatum, thus making cell transplantation an effective treatment strategy. Here, we develop a cellular therapy based on induced pluripotent stem cell (iPSC)-derived midbrain organoids. By transplanting midbrain organoid cells into the striatum region of a 6-OHDA-lesioned PD mouse model, we found that the transplanted cells survived and highly efficiently differentiated into DA neurons. Further, using a dopamine sensor, we observed that the differentiated human DA neurons could efficiently release dopamine and were integrated into the neural network of the PD mice. Moreover, starting from four weeks after transplantation, the motor function of the transplanted mice could be significantly improved. Therefore, cell therapy based on iPSC-derived midbrain organoids can be a potential strategy for the clinical treatment of PD.
Collapse
Affiliation(s)
- Chong-Lei Fu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Shandong Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Bo-Cheng Dong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xi Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Dan Li
- Key Lab of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Arjmand B, Kokabi-Hamidpour S, Aghayan HR, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Goodarzi P, Nasli-Esfahani E, Nikandish M. Stem Cell-Based Modeling Protocol for Parkinson's Disease. Methods Mol Biol 2024; 2736:105-114. [PMID: 36749483 DOI: 10.1007/7651_2022_473] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, which is mainly characterized by unintended or uncontrollable body movements. Pathophysiologically, disturbances in the neurotransmission system of the brain like dopaminergic system and synaptic dysfunction are classified as top-rated causes of the onset of Parkinson's disease, which symptoms can be different according to the involvement of neurotransmission system type and the effect of the disease on the motor and non-motor systems. Although some pharmacological and non-pharmacological approaches have been applied to control and slow down the progression of the disease, a definitive cure has not yet been discovered. One of the factors involved in this issue is the lack of appropriate laboratory models to investigate the pathological mechanisms involved in the disease as well as various aspects of candidate drugs, which ultimately leads to the failure of drug discovery and development pipelines. To deal with these challenges, the application of stem cells, especially cellular reprogramming of somatic cells to human pluripotent stem cells, also known as induced pluripotent stem cells, has been able to promise a new chapter in the modeling of Parkinson's disease. Induced pluripotent stem cells have the stemness capability; therefore, they can differentiate into any type of cell such as nerve cells. Also, since these cells are obtained from the reprogramming of somatic cells in the patient's body, they maintain the patient's genetic content, which can play an important role in increasing the quality of disease modeling and the validity of the results of laboratory studies. Therefore, the procedure for modeling induced pluripotent stem cells for Parkinson's disease is explained in this chapter.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Iranian Cancer Control Center (MACSA), Tehran, Iran.
| | - Shayesteh Kokabi-Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Cardo LF, Monzón-Sandoval J, Li Z, Webber C, Li M. Single-Cell Transcriptomics and In Vitro Lineage Tracing Reveals Differential Susceptibility of Human iPSC-Derived Midbrain Dopaminergic Neurons in a Cellular Model of Parkinson's Disease. Cells 2023; 12:2860. [PMID: 38132179 PMCID: PMC10741976 DOI: 10.3390/cells12242860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Advances in stem cell technologies open up new avenues for modelling development and diseases. The success of these pursuits, however, relies on the use of cells most relevant to those targeted by the disease of interest, for example, midbrain dopaminergic neurons for Parkinson's disease. In the present study, we report the generation of a human induced pluripotent stem cell (iPSC) line capable of purifying and tracing nascent midbrain dopaminergic progenitors and their differentiated progeny via the expression of a Blue Fluorescent Protein (BFP). This was achieved by CRISPR/Cas9-assisted knock-in of BFP and Cre into the safe harbour locus AAVS1 and an early midbrain dopaminergic lineage marker gene LMX1A, respectively. Immunocytochemical analysis and single-cell RNA sequencing of iPSC-derived neural cultures confirm developmental recapitulation of the human fetal midbrain and high-quality midbrain cells. By modelling Parkinson's disease-related drug toxicity using 1-Methyl-4-phenylpyridinium (MPP+), we showed a preferential reduction of BFP+ cells, a finding demonstrated independently by cell death assays and single-cell transcriptomic analysis of MPP+ treated neural cultures. Together, these results highlight the importance of disease-relevant cell types in stem cell modelling.
Collapse
Affiliation(s)
- Lucia F. Cardo
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Jimena Monzón-Sandoval
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Zongze Li
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Caleb Webber
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK; (L.F.C.); (J.M.-S.); (Z.L.)
| | - Meng Li
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
34
|
Rifes P, Isaksson M, Rusimbi C, Ramón Santonja A, Nelander J, Laurell T, Kirkeby A. Identifying secreted biomarkers of dopaminergic ventral midbrain progenitor cells. Stem Cell Res Ther 2023; 14:354. [PMID: 38072935 PMCID: PMC10712201 DOI: 10.1186/s13287-023-03580-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Ventral midbrain (VM) dopaminergic progenitor cells derived from human pluripotent stem cells have the potential to replace endogenously lost dopamine neurons and are currently in preclinical and clinical development for treatment of Parkinson's Disease (PD). However, one main challenge in the quality control of the cells is that rostral and caudal VM progenitors are extremely similar transcriptionally though only the caudal VM cells give rise to dopaminergic (DA) neurons with functionality relevant for cell replacement in PD. Therefore, it is critical to develop assays which can rapidly and reliably discriminate rostral from caudal VM cells during clinical manufacturing. METHODS We performed shotgun proteomics on cell culture supernatants from rostral and caudal VM progenitor cells to search for novel secreted biomarkers specific to DA progenitors from the caudal VM. Key hits were validated by qRT-PCR and ELISA. RESULTS We identified and validated novel secreted markers enriched in caudal VM progenitor cultures (CPE, LGI1 and PDGFC), and found these markers to correlate strongly with the expression of EN1, which is a predictive marker for successful graft outcome in DA cell transplantation products. Other markers (CNTN2 and CORIN) were found to conversely be enriched in the non-dopaminergic rostral VM cultures. Key novel ELISA markers were further validated on supernatant samples from GMP-manufactured caudal VM batches. CONCLUSION As a non-invasive in-process quality control test for predicting correctly patterned batches of caudal VM DA cells during clinical manufacturing, we propose a dual ELISA panel measuring LGI1/CORIN ratios around day 16 of differentiation.
Collapse
Affiliation(s)
- Pedro Rifes
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Marc Isaksson
- Department of Biomedical Engineering, Lund University, Ole Römers Väg 3, 223 63, Lund, Sweden
- Department of Experimental Medical Science, Lund University, Sölvegatan 17, BMC-B11, 221 84, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Sölvegatan 17, BMC-B11, 221 84, Lund, Sweden
| | - Charlotte Rusimbi
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Adrián Ramón Santonja
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jenny Nelander
- Department of Experimental Medical Science, Lund University, Sölvegatan 17, BMC-B11, 221 84, Lund, Sweden
| | - Thomas Laurell
- Department of Biomedical Engineering, Lund University, Ole Römers Väg 3, 223 63, Lund, Sweden
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine - reNEW, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- Department of Neuroscience, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
- Department of Experimental Medical Science, Lund University, Sölvegatan 17, BMC-B11, 221 84, Lund, Sweden.
- Wallenberg Center for Molecular Medicine, Lund University, Sölvegatan 17, BMC-B11, 221 84, Lund, Sweden.
| |
Collapse
|
35
|
Liao YJ, Liao CH, Chen LR, Yang JR. Dopaminergic neurons derived from porcine induced pluripotent stem cell like cells function in the Lanyu pig model of Parkinson's disease. Anim Biotechnol 2023; 34:1283-1294. [PMID: 35152856 DOI: 10.1080/10495398.2021.2020130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The induced pluripotent stem cells (iPSCs) are able to differentiate into dopaminergic neurons and execute the therapeutic effects for Parkinson's disease (PD). Here, we established a animal model of PD in Lanyu pigs by injecting 5 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Next, the porcine iPSC-like cells (piPSC-like cells) were differentiated into D18 neuronal progenitors (D18 NPs) that were transplanted into the striatum to evaluate their therapeutic effects of PD. We showed that after 8 weeks of cell transplantation, the behavior score was significantly ameliorated and fully recovered at the 14th week of cell transplantation. The number of dopaminergic neurons was also significantly improved at the end of the experiment although the number was still about 50% lower than that in the control group. Our findings suggest that piPSC-like cell-derived D18 NPs exhibit a potential for the treatment of PD in the Lanyu pig model.
Collapse
Affiliation(s)
- Yu-Jing Liao
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Chia-Hsin Liao
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Rong Yang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Neipu, Pingtung, Taiwan
| |
Collapse
|
36
|
Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson's disease using human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1288168. [PMID: 37886394 PMCID: PMC10598731 DOI: 10.3389/fcell.2023.1288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) provide a valuable tool for studying human neural development and neurodegenerative diseases. The investigation of hPSC-based cell therapy, involving the differentiation of hPSCs into target cells and their transplantation into affected regions, is of particular interest. One neurodegenerative disease that is being extensively studied for hPSC-based cell therapy is Parkinson's disease (PD), the second most common among humans. Various research groups are focused on differentiating hPSCs into ventral midbrain dopaminergic (vmDA) progenitors, which have the potential to further differentiate into neurons closely resembling DA neurons found in the substantia nigra pars compacta (SNpc) after transplantation, providing a promising treatment option for PD. In vivo experiments, where hPSC-derived vmDA progenitor cells were transplanted into the striatum or SNpc of animal PD models, the transplanted cells demonstrated stable engraftment and resulted in behavioral recovery in the transplanted animals. Several differentiation protocols have been developed for this specific cell therapy. However, the lack of a reliable live-cell lineage identification method presents a significant obstacle in confirming the precise lineage of the differentiated cells intended for transplantation, as well as identifying potential contamination by non-vmDA progenitors. This deficiency increases the risk of adverse effects such as dyskinesias and tumorigenicity, highlighting the importance of addressing this issue before proceeding with transplantation. Ensuring the differentiation of hPSCs into the target cell lineage is a crucial step to guarantee precise therapeutic effects in cell therapy. To underscore the significance of lineage identification, this review focuses on the differentiation protocols of hPSC-derived vmDA progenitors developed by various research groups for PD treatment. Moreover, in vivo experimental results following transplantation were carefully analyzed. The encouraging outcomes from these experiments demonstrate the potential efficacy and safety of hPSC-derived vmDA progenitors for PD cell therapy. Additionally, the results of clinical trials involving the use of hPSC-derived vmDA progenitors for PD treatment were briefly reviewed, shedding light on the progress and challenges faced in translating this promising therapy into clinical practice.
Collapse
Affiliation(s)
- Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Inbeom Kwon
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Nishimura K, Ásgrímsdóttir ES, Yang S, Arenas E. A protocol for the differentiation of human embryonic stem cells into midbrain dopaminergic neurons. STAR Protoc 2023; 4:102355. [PMID: 37310863 PMCID: PMC10511858 DOI: 10.1016/j.xpro.2023.102355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 06/15/2023] Open
Abstract
Here, we present a protocol for the generation of functional midbrain dopaminergic (mDA) neurons from human embryonic stem cells (hESCs), which mimics the development of the human ventral midbrain. We describe steps for hESC proliferation, induction of mDA progenitors, freezing stocks of mDA progenitors as an intermediate starting point to reduce the time to make mDA neurons, and maturation of mDA neurons. The entire protocol is feeder-free and uses chemically defined materials. For complete details on the use and execution of this protocol, please refer to Nishimura et al. (2023).1.
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden; Laboratory of Functional Brain Circuit Construction, Graduate School of Brain Science, Doshisha University, Kyotanabe 610-0394, Japan.
| | - Emilía Sif Ásgrímsdóttir
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Shanzheng Yang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
38
|
Sugiyama-Nakagiri Y, Yamashita S, Taniguchi Y, Shimono C, Sekiguchi K. Laminin fragments conjugated with perlecan's growth factor-binding domain differentiate human induced pluripotent stem cells into skin-derived precursor cells. Sci Rep 2023; 13:14556. [PMID: 37666868 PMCID: PMC10477235 DOI: 10.1038/s41598-023-41701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 08/30/2023] [Indexed: 09/06/2023] Open
Abstract
Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings.
Collapse
Affiliation(s)
| | - Shiho Yamashita
- Kao Corporation, 2602, Akabane Ichikai-Machi, Haga-gun, Tochigi, 321-3497, Japan
| | - Yukimasa Taniguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Chisei Shimono
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
39
|
Nakashima Y, Iguchi H, Shimizu E, Le MN, Takakura K, Nakamura Y, Yanagisawa T, Sanghavi R, Haneda S, Tsukahara M. Improved Production of Induced Pluripotent Stem Cells Using Dot Pattern Culture Plates. Tissue Eng Part C Methods 2023; 29:410-423. [PMID: 37427413 PMCID: PMC10517333 DOI: 10.1089/ten.tec.2023.0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/01/2023] [Indexed: 07/11/2023] Open
Abstract
The rate of cell proliferation is a crucial factor in cell production under good manufacturing practice (GMP) control. In this study, we identified a culture system for induced pluripotent cells (iPSCs) that supports cell proliferation and viability and maintains the cells in an undifferentiated state even at 8 days after seeding. This system involves the use of dot pattern culture plates that have been coated with a chemically defined scaffold which has high biocompatibility. Under cell starvation conditions, where medium exchange was not performed for 7 days or where the amount of medium exchange was reduced to half or a quarter, iPSC viability and lack of differentiation were maintained. The rate of cell viability in this culture system was greater than generally obtained by standard culture methods. The cells in this compartmentalized culture system could be induced to differentiate in a controlled and consistent manner: differentiation of endoderm occurred in a controlled and consistent manner: endoderm, mesoderm, and ectoderm could be consistently induced to differentiate in the cultures. In conclusion, we have developed a culture system that supports high viability in iPSCs and allows their controlled differentiation. This system has the potential for use in GMP-based production of iPSCs for clinical purposes.
Collapse
Affiliation(s)
- Yoshiki Nakashima
- Research and Development Center, Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Kyoto, Japan
| | - Hiroki Iguchi
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Eiko Shimizu
- Research and Development Center, Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Kyoto, Japan
- Kyoto University iCeMS Institute for Integrated Cell-Material Sciences, Kyoto, Japan
| | - Minh N.T. Le
- Kyoto University iCeMS Institute for Integrated Cell-Material Sciences, Kyoto, Japan
| | - Kenta Takakura
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Yuta Nakamura
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Teruhiko Yanagisawa
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Rutvi Sanghavi
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Satoshi Haneda
- Life Science Development Center Advanced Technology Institute R&D Center Corporate, SEKISUI CHEMICAL CO., LTD., Osaka, Japan
| | - Masayoshi Tsukahara
- Research and Development Center, Kyoto University Center for iPS Cell Research and Application Foundation (CiRA Foundation), Kyoto, Japan
| |
Collapse
|
40
|
Toh HSY, Choo XY, Sun AX. Midbrain organoids-development and applications in Parkinson's disease. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad009. [PMID: 38596240 PMCID: PMC10913847 DOI: 10.1093/oons/kvad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/31/2023] [Indexed: 04/11/2024]
Abstract
Human brain development is spatially and temporally complex. Insufficient access to human brain tissue and inadequacy of animal models has limited the study of brain development and neurodegenerative diseases. Recent advancements of brain organoid technology have created novel opportunities to model human-specific neurodevelopment and brain diseases. In this review, we discuss the use of brain organoids to model the midbrain and Parkinson's disease. We critically evaluate the extent of recapitulation of PD pathology by organoids and discuss areas of future development that may lead to the model to become a next-generation, personalized therapeutic strategy for PD and beyond.
Collapse
Affiliation(s)
- Hilary S Y Toh
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Xin Yi Choo
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
| | - Alfred Xuyang Sun
- Neuroscience & Behavioural Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore
- National Neuroscience Institute, 11 Jln Tan Tock Seng, Singapore
| |
Collapse
|
41
|
Taga S, Suga H, Nakano T, Kuwahara A, Inoshita N, Kodani Y, Nagasaki H, Sato Y, Tsumura Y, Sakakibara M, Soen M, Miwata T, Ozaki H, Kano M, Watari K, Ikeda A, Yamanaka M, Takahashi Y, Kitamoto S, Kawaguchi Y, Miyata T, Kobayashi T, Sugiyama M, Onoue T, Yasuda Y, Hagiwara D, Iwama S, Tomigahara Y, Kimura T, Arima H. Generation and purification of ACTH-secreting hPSC-derived pituitary cells for effective transplantation. Stem Cell Reports 2023; 18:1657-1671. [PMID: 37295423 PMCID: PMC10444568 DOI: 10.1016/j.stemcr.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Pituitary organoids are promising graft sources for transplantation in treatment of hypopituitarism. Building on development of self-organizing culture to generate pituitary-hypothalamic organoids (PHOs) using human pluripotent stem cells (hPSCs), we established techniques to generate PHOs using feeder-free hPSCs and to purify pituitary cells. The PHOs were uniformly and reliably generated through preconditioning of undifferentiated hPSCs and modulation of Wnt and TGF-β signaling after differentiation. Cell sorting using EpCAM, a pituitary cell-surface marker, successfully purified pituitary cells, reducing off-target cell numbers. EpCAM-expressing purified pituitary cells reaggregated to form three-dimensional pituitary spheres (3D-pituitaries). These exhibited high adrenocorticotropic hormone (ACTH) secretory capacity and responded to both positive and negative regulators. When transplanted into hypopituitary mice, the 3D-pituitaries engrafted, improved ACTH levels, and responded to in vivo stimuli. This method of generating purified pituitary tissue opens new avenues of research for pituitary regenerative medicine.
Collapse
Affiliation(s)
- Shiori Taga
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan; Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Hidetaka Suga
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan.
| | - Tokushige Nakano
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Atsushi Kuwahara
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Naoko Inoshita
- Department of Pathology, Moriyama Memorial Hospital, 4-3-1 Kitakasai, Edogawa-ku, Tokyo 134-0081, Japan
| | - Yu Kodani
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hiroshi Nagasaki
- Department of Physiology, School of Medicine, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Yoshitaka Sato
- Department of Virology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Yusuke Tsumura
- Department of Pediatrics, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Mayu Sakakibara
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Mika Soen
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Tsutomu Miwata
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Hajime Ozaki
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Mayuko Kano
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa 216-8511, Japan
| | - Kenji Watari
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Atsushi Ikeda
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Mitsugu Yamanaka
- Drug Research Division, Sumitomo Pharma Co., Ltd., Osaka 554-0022, Japan
| | - Yasuhiko Takahashi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan
| | - Yohei Kawaguchi
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Takashi Miyata
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Tomoko Kobayashi
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Mariko Sugiyama
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Onoue
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Daisuke Hagiwara
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Shintaro Iwama
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| | - Yoshitaka Tomigahara
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Osaka 554-8558, Japan; Nihon Medi-Physics Co., Ltd., Koto-ku, Tokyo 136-0075, Japan
| | - Toru Kimura
- Regenerative & Cellular Medicine Kobe Center, Sumitomo Pharma Co., Ltd., Kobe, Hyogo 650-0047, Japan
| | - Hiroshi Arima
- Department of Endocrinology and Diabetes, Graduate School of Medicine, Nagoya University, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
42
|
Nakamura R, Nonaka R, Oyama G, Jo T, Kamo H, Nuermaimaiti M, Akamatsu W, Ishikawa KI, Hattori N. A defined method for differentiating human iPSCs into midbrain dopaminergic progenitors that safely restore motor deficits in Parkinson's disease. Front Neurosci 2023; 17:1202027. [PMID: 37502682 PMCID: PMC10368972 DOI: 10.3389/fnins.2023.1202027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative condition that primarily affects motor functions; it is caused by the loss of midbrain dopaminergic (mDA) neurons. The therapeutic effects of transplanting human-induced pluripotent stem cell (iPSC)-derived mDA neural progenitor cells in animal PD models are known and are being evaluated in an ongoing clinical trial. However, However, improvements in the safety and efficiency of differentiation-inducing methods are crucial for providing a larger scale of cell therapy studies. This study aimed to investigate the usefulness of dopaminergic progenitor cells derived from human iPSCs by our previously reported method, which promotes differentiation and neuronal maturation by treating iPSCs with three inhibitors at the start of induction. Methods Healthy subject-derived iPS cells were induced into mDA progenitor cells by the CTraS-mediated method we previously reported, and their proprieties and dopaminergic differentiation efficiency were examined in vitro. Then, the induced mDA progenitors were transplanted into 6-hydroxydopamine-lesioned PD model mice, and their efficacy in improving motor function, cell viability, and differentiation ability in vivo was evaluated for 16 weeks. Results Approximately ≥80% of cells induced by this method without sorting expressed mDA progenitor markers and differentiated primarily into A9 dopaminergic neurons in vitro. After transplantation in 6-hydroxydopamine-lesioned PD model mice, more than 90% of the engrafted cells differentiated into the lineage of mDA neurons, and approximately 15% developed into mature mDA neurons without tumour formation. The grafted PD model mice also demonstrated significantly improved motor functions. Conclusion This study suggests that the differentiation protocol for the preparation of mDA progenitors is a promising option for cell therapy in patients with PD.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Risa Nonaka
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Genko Oyama
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Takayuki Jo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Hikaru Kamo
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Maierdanjiang Nuermaimaiti
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Wado Akamatsu
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kei-ichi Ishikawa
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Faculty of Medicine, Juntendo University, Tokyo, Japan
- Department of Diagnosis, Prevention and Treatment of Dementia, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Data of Parkinson’s Disease, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Research and Development for Organoids, School of Medicine, Juntendo University, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
43
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
44
|
Zheng X, Han D, Liu W, Wang X, Pan N, Wang Y, Chen Z. Human iPSC-derived midbrain organoids functionally integrate into striatum circuits and restore motor function in a mouse model of Parkinson's disease. Theranostics 2023; 13:2673-2692. [PMID: 37215566 PMCID: PMC10196819 DOI: 10.7150/thno.80271] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/15/2023] [Indexed: 05/24/2023] Open
Abstract
Rationale: Parkinson's disease (PD) is a prevalent neurodegenerative disorder that is characterized by degeneration of dopaminergic neurons (DA) at the substantia nigra pas compacta (SNpc). Cell therapy has been proposed as a potential treatment option for PD, with the aim of replenishing the lost DA neurons and restoring motor function. Fetal ventral mesencephalon tissues (fVM) and stem cell-derived DA precursors cultured in 2-dimentional (2-D) culture conditions have shown promising therapeutic outcomes in animal models and clinical trials. Recently, human induced pluripotent stem cells (hiPSC)-derived human midbrain organoids (hMOs) cultured in 3-dimentional (3-D) culture conditions have emerged as a novel source of graft that combines the strengths of fVM tissues and 2-D DA cells. Methods: 3-D hMOs were induced from three distinct hiPSC lines. hMOs at various stages of differentiation were transplanted as tissue pieces into the striatum of naïve immunodeficient mouse brains, with the aim of identifying the most suitable stage of hMOs for cellular therapy. The hMOs at Day 15 were determined to be the most appropriate stage and were transplanted into a PD mouse model to assess cell survival, differentiation, and axonal innervation in vivo. Behavioral tests were conducted to evaluate functional restoration following hMO treatment and to compare the therapeutic effects between 2-D and 3-D cultures. Rabies virus were introduced to identify the host presynaptic input onto the transplanted cells. Results: hMOs showed a relatively homogeneous cell composition, mostly consisting of dopaminergic cells of midbrain lineage. Analysis conducted 12 weeks post-transplantation of day 15 hMOs revealed that 14.11% of the engrafted cells expressed TH+ and over 90% of these cells were co-labeled with GIRK2+, indicating the survival and maturation of A9 mDA neurons in the striatum of PD mice. Transplantation of hMOs led to a reversal of motor function and establishment of bidirectional connections with natural brain target regions, without any incidence of tumor formation or graft overgrowth. Conclusion: The findings of this study highlight the potential of hMOs as safe and efficacious donor graft sources for cell therapy to treat PD.
Collapse
Affiliation(s)
- Xin Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Deqiang Han
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Weihua Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Xueyao Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Na Pan
- The Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- The Department of Neurology, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
45
|
Skidmore S, Barker RA. Challenges in the clinical advancement of cell therapies for Parkinson's disease. Nat Biomed Eng 2023; 7:370-386. [PMID: 36635420 PMCID: PMC7615223 DOI: 10.1038/s41551-022-00987-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 11/04/2022] [Indexed: 01/14/2023]
Abstract
Cell therapies as potential treatments for Parkinson's disease first gained traction in the 1980s, owing to the clinical success of trials that used transplants of foetal midbrain dopaminergic tissue. However, the poor standardization of the tissue for grafting, and constraints on its availability and ethical use, have hindered this treatment strategy. Recent advances in stem-cell technologies and in the understanding of the development of dopaminergic neurons have enabled preclinical advancements of promising stem-cell therapies. To move these therapies to the clinic, appropriate levels of safety screening, as well as optimization of the cell products and the scalability of their manufacturing, will be required. In this Review, we discuss how challenges pertaining to cell sources, functional and safety testing, manufacturing and storage, and clinical-trial design are being addressed to advance the translational and clinical development of cell therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Sophie Skidmore
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK
| | - Roger A Barker
- Wellcome and MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, UK.
- John van Geest Centre for Brain Repair, Department of Clinical Neuroscience, For vie Site, Cambridge, UK.
| |
Collapse
|
46
|
Kim TW, Koo SY, Riessland M, Cho H, Chaudhry F, Kolisnyk B, Russo MV, Saurat N, Mehta S, Garippa R, Betel D, Studer L. TNF-NFkB-p53 axis restricts in vivo survival of hPSC-derived dopamine neuron. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534819. [PMID: 37034664 PMCID: PMC10081262 DOI: 10.1101/2023.03.29.534819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ongoing, first-in-human clinical trials illustrate the feasibility and translational potential of human pluripotent stem cell (hPSC)-based cell therapies in Parkinson's disease (PD). However, a major unresolved challenge in the field is the extensive cell death following transplantation with <10% of grafted dopamine neurons surviving. Here, we performed a pooled CRISPR/Cas9 screen to enhance survival of postmitotic dopamine neurons in vivo . We identified p53-mediated apoptotic cell death as major contributor to dopamine neuron loss and uncovered a causal link of TNFa-NFκB signaling in limiting cell survival. As a translationally applicable strategy to purify postmitotic dopamine neurons, we performed a cell surface marker screen that enabled purification without the need for genetic reporters. Combining cell sorting with adalimumab pretreatment, a clinically approved and widely used TNFa inhibitor, enabled efficient engraftment of postmitotic dopamine neurons leading to extensive re-innervation and functional recovery in a preclinical PD mouse model. Thus, transient TNFa inhibition presents a clinically relevant strategy to enhance survival and enable engraftment of postmitotic human PSC-derived dopamine neurons in PD. Highlights In vivo CRISPR-Cas9 screen identifies p53 limiting survival of grafted human dopamine neurons. TNFα-NFκB pathway mediates p53-dependent human dopamine neuron deathCell surface marker screen to enrich human dopamine neurons for translational use. FDA approved TNF-alpha inhibitor rescues in vivo dopamine neuron survival with in vivo function.
Collapse
|
47
|
Morizane A. Cell therapy for Parkinson's disease with induced pluripotent stem cells. Inflamm Regen 2023; 43:16. [PMID: 36843101 PMCID: PMC9969678 DOI: 10.1186/s41232-023-00269-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/20/2023] [Indexed: 02/28/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and a prime target of cell therapies. In fact, aborted fetal tissue has been used as donor material for such therapies since the 1980s. These cell therapies, however, suffer from several problems, such as a short supply of donor materials, quality instability of the tissues, and ethical restrictions. The advancement of stem cell technologies has enabled the production of donor cells from pluripotent stem cells with unlimited scale, stable quality, and less ethical problems. Several research groups have established protocols to induce dopamine neural progenitors from pluripotent stem cells in a clinically compatible manner and confirmed efficacy and safety in non-clinical studies. Based on the results from these non-clinical studies, several clinical trials of pluripotent stem cell-based therapies for PD have begun. In the context of immune rejection, there are several modes of stem cell-based therapies: autologous transplantation, allogeneic transplantation without human leukocyte antigen-matching, and allogeneic transplantation with matching. In this mini-review, several practical points of stem cell-based therapies for PD are discussed.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Regenerative Medicine, Center for Clinical Research and Innovation, Kobe City Medical Center General Hospital, Kobe, Japan. .,Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
48
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
49
|
Modulation of Notch Signaling at Early Stages of Differentiation of Human Induced Pluripotent Stem Cells to Dopaminergic Neurons. Int J Mol Sci 2023; 24:ijms24021429. [PMID: 36674941 PMCID: PMC9867149 DOI: 10.3390/ijms24021429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Elaboration of protocols for differentiation of human pluripotent stem cells to dopamine neurons is an important issue for development of cell replacement therapy for Parkinson's disease. A number of protocols have been already developed; however, their efficiency and specificity still can be improved. Investigating the role of signaling cascades, important for neurogenesis, can help to solve this problem and to provide a deeper understanding of their role in neuronal development. Notch signaling plays an essential role in development and maintenance of the central nervous system after birth. In our study, we analyzed the effect of Notch activation and inhibition at the early stages of differentiation of human induced pluripotent stem cells to dopaminergic neurons. We found that, during the first seven days of differentiation, the cells were not sensitive to the Notch inhibition. On the contrary, activation of Notch signaling during the same time period led to significant changes and was associated with an increase in expression of genes, specific for caudal parts of the brain, a decrease of expression of genes, specific for forebrain, as well as a decrease of expression of genes, important for the formation of axons and dendrites and microtubule stabilizing proteins.
Collapse
|
50
|
Nishimura K, Yang S, Lee KW, Ásgrímsdóttir ES, Nikouei K, Paslawski W, Gnodde S, Lyu G, Hu L, Saltó C, Svenningsson P, Hjerling-Leffler J, Linnarsson S, Arenas E. Single-cell transcriptomics reveals correct developmental dynamics and high-quality midbrain cell types by improved hESC differentiation. Stem Cell Reports 2023; 18:337-353. [PMID: 36400027 PMCID: PMC9860082 DOI: 10.1016/j.stemcr.2022.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022] Open
Abstract
Stem cell technologies provide new opportunities for modeling cells in health and disease and for regenerative medicine. In both cases, developmental knowledge and defining the molecular properties and quality of the cell types is essential. In this study, we identify developmental factors important for the differentiation of human embryonic stem cells (hESCs) into functional midbrain dopaminergic (mDA) neurons. We found that laminin-511, and dual canonical and non-canonical WNT activation followed by GSK3β inhibition plus FGF8b, improved midbrain patterning. In addition, neurogenesis and differentiation were enhanced by activation of liver X receptors and inhibition of fibroblast growth factor signaling. Moreover, single-cell RNA-sequencing analysis revealed a developmental dynamics similar to that of the endogenous human ventral midbrain and the emergence of high-quality molecularly defined midbrain cell types, including mDA neurons. Our study identifies novel factors important for human midbrain development and opens the door for a future application of molecularly defined hESC-derived cell types in Parkinson disease.
Collapse
Affiliation(s)
- Kaneyasu Nishimura
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Shanzheng Yang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ka Wai Lee
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Emilía Sif Ásgrímsdóttir
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Kasra Nikouei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Wojciech Paslawski
- Department of Clinical Neuroscience, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Sabine Gnodde
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Guochang Lyu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lijuan Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Carmen Saltó
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska University Hospital, 171 77 Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Sten Linnarsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ernest Arenas
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|