1
|
One Size Fits All?: Ethical Considerations for Examining Efficacy in First-in-Human Pluripotent Stem Cell Studies. Mol Ther 2018; 24:2039-2042. [PMID: 27966562 DOI: 10.1038/mt.2016.202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
2
|
Advancing Ethical Stem Cell Research with CRISPR. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0137-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Allon I, Ben-Yehudah A, Dekel R, Solbakk JH, Weltring KM, Siegal G. Ethical issues in nanomedicine: Tempest in a teapot? MEDICINE, HEALTH CARE, AND PHILOSOPHY 2017; 20:3-11. [PMID: 27522374 DOI: 10.1007/s11019-016-9720-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Nanomedicine offers remarkable options for new therapeutic avenues. As methods in nanomedicine advance, ethical questions conjunctly arise. Nanomedicine is an exceptional niche in several aspects as it reflects risks and uncertainties not encountered in other areas of medical research or practice. Nanomedicine partially overlaps, partially interlocks and partially exceeds other medical disciplines. Some interpreters agree that advances in nanotechnology may pose varied ethical challenges, whilst others argue that these challenges are not new and that nanotechnology basically echoes recurrent bioethical dilemmas. The purpose of this article is to discuss some of the ethical issues related to nanomedicine and to reflect on the question whether nanomedicine generates ethical challenges of new and unique nature. Such a determination should have implications on regulatory processes and professional conducts and protocols in the future.
Collapse
Affiliation(s)
- Irit Allon
- Chief Scientists Office, Ministry of Health, 39 Yirmiyahu St., Jerusalem, Israel.
- Department of Oral Pathology and Oral Medicine, Tel-Aviv University, Tel Aviv, Israel.
| | - Ahmi Ben-Yehudah
- Chief Scientists Office, Ministry of Health, 39 Yirmiyahu St., Jerusalem, Israel
| | - Raz Dekel
- Head of Occupational Medicine Services, Ministry of Health, Tel Aviv, Israel
| | - Jan-Helge Solbakk
- Centre for Medical Ethics Faculty, Medicine University of Oslo, Oslo, Norway
| | | | - Gil Siegal
- University of Virginia School of Law, Charlottesville, VA, USA
- Gertner Institute of Public Policy, Ministry of Health, Ono Academic College, Kiryat Ono, Israel
- Center for Health Law, Bioethics and Health Policy, Ono Academic College, Kiryat Ono, Israel
| |
Collapse
|
4
|
Barazzetti G, Hurst SA, Mauron A. Adapting Preclinical Benchmarks for First-in-Human Trials of Human Embryonic Stem Cell-Based Therapies. Stem Cells Transl Med 2016; 5:1058-66. [PMID: 27334488 PMCID: PMC4954447 DOI: 10.5966/sctm.2015-0222] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 03/07/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED : As research on human embryonic stem cell (hESC)-based therapies is moving from the laboratory to the clinic, there is an urgent need to assess when it can be ethically justified to make the step from preclinical studies to the first protocols involving human subjects. We examined existing regulatory frameworks stating preclinical requirements relevant to the move to first-in-human (FIH) trials and assessed how they may be applied in the context of hESC-based interventions to best protect research participants. Our findings show that some preclinical benchmarks require rethinking (i.e., identity, purity), while others need to be specified (i.e., potency, viability), owing to the distinctive dynamic heterogeneity of hESC-based products, which increases uncertainty and persistence of safety risks and allows for limited predictions of effects in vivo. Rethinking or adaptation of how to apply preclinical benchmarks in specific cases will be required repeatedly for different hESC-based products. This process would benefit from mutual learning if researchers included these components in the description of their methods in publications. SIGNIFICANCE To design translational research with an eye to protecting human participants in early trials, researchers and regulators need to start their efforts at the preclinical stage. Existing regulatory frameworks for preclinical research, however, are not really adapted to this in the case of stem cell translational medicine. This article reviews existing regulatory frameworks for preclinical requirements and assesses how their underlying principles may best be applied in the context of human embryonic stem cell-based interventions for the therapy of Parkinson's disease. This research will help to address the question of when it is ethically justified to start first-in-human trials in stem cell translational medicine.
Collapse
Affiliation(s)
- Gaia Barazzetti
- Institut Universitaire d'Histoire de la Medicine et de la Santé Publique (IUHMSP), University of Lausanne-CHUV Lausanne University Hospital, Lausanne, Switzerland
| | - Samia A Hurst
- iEH2-Institut Ethique Histoire Humanités, Geneva University Medical School, Geneva, Switzerland
| | - Alexandre Mauron
- iEH2-Institut Ethique Histoire Humanités, Geneva University Medical School, Geneva, Switzerland
| |
Collapse
|
5
|
Nishio M, Nakahara M, Yuo A, Saeki K. Human pluripotent stem cells: Towards therapeutic development for the treatment of lifestyle diseases. World J Stem Cells 2016; 8:56-61. [PMID: 26981171 PMCID: PMC4766251 DOI: 10.4252/wjsc.v8.i2.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/09/2015] [Accepted: 01/11/2016] [Indexed: 02/06/2023] Open
Abstract
There are two types of human pluripotent stem cells: Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), both of which launched themselves on clinical trials after having taken measures to overcome problems: Blocking rejections by immunosuppressants regarding ESCs and minimizing the risk of tumorigenicity by depleting exogenous gene components regarding iPSCs. It is generally assumed that clinical applications of human pluripotent stem cells should be limited to those cases where there are no alternative measures for treatments because of the risk in transplanting those cells to living bodies. Regarding lifestyle diseases, we have already several therapeutic options, and thus, development of human pluripotent stem cell-based therapeutics tends to be avoided. Nevertheless, human pluripotent stem cells can contribute to the development of new therapeutics in this field. As we will show, there is a case where only a short-term presence of human pluripotent stem-derived cells can exert long-term therapeutic effects even after they are rejected. In those cases, immunologically rejections of ESC- or allogenic iPSC-derived cells may produce beneficial outcomes by nullifying the risk of tumorigenesis without deterioration of therapeutic effects. Another utility of human pluripotent stem cells is the provision of an innovative tool for drug discovery that are otherwise unavailable. For example, clinical specimens of human classical brown adipocytes (BAs), which has been attracting a great deal of attention as a new target of drug discovery for the treatment of metabolic disorders, are unobtainable from living individuals due to scarcity, fragility and ethical problems. However, BA can easily be produced from human pluripotent stem cells. In this review, we will contemplate potential contribution of human pluripotent stem cells to therapeutic development for lifestyle diseases.
Collapse
|
6
|
Komura T, Kato K, Konagaya S, Nakaji-Hirabayashi T, Iwata H. Optimization of surface-immobilized extracellular matrices for the proliferation of neural progenitor cells derived from induced pluripotent stem cells. Biotechnol Bioeng 2015; 112:2388-96. [DOI: 10.1002/bit.25636] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 04/17/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Takashi Komura
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Koichi Kato
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Shuhei Konagaya
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Tadashi Nakaji-Hirabayashi
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| | - Hiroo Iwata
- Institute for Frontier Medical Sciences; Kyoto University; 53 Kawahara-cho, Shogoin, Sakyo-ku Kyoto 606-8507 Japan
| |
Collapse
|
7
|
Banja JD. Ethical considerations in stem cell research on neurologic and orthopedic conditions. PM R 2015; 7:S66-S75. [PMID: 25595666 DOI: 10.1016/j.pmrj.2014.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/07/2023]
Abstract
The range and gravity of ethical considerations in stem cell research are remarkable and, quite possibly, unprecedented. From the point of securing stem cells for implantation, through the translational and first-in-humans process, and then proceeding through clinical trials culminating in product or service line launch, the entire research trajectory is replete with risk, uncertainty, and problems overweighing foreseeable harms against hoped-for benefits. This article offers an overview of some of the most salient ethical challenges of stem cell research, including ones involving moral status, the intersection of research risks and informed consent processes, methodologic considerations in early phase 1 trials, the temptation to exaggerate the benefits of research discoveries, managing conflicts of interest, and the ethical obligation to conduct various monitoring practices throughout a trial, which could last years. The article will conclude with a glimpse into the future of these technologies wherein the need for ethical scrutiny will likely not diminish.
Collapse
Affiliation(s)
- John Dennis Banja
- Center for Ethics, Emory University, 1531 Dickie Drive, Room 184, Atlanta, GA 30322
| |
Collapse
|
8
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 11/21/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin - the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a 'multifunctional nanoplatform' that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive 'magnetic cell targeting' to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- />School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- />Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
9
|
Jenkins SI, Yiu HHP, Rosseinsky MJ, Chari DM. Magnetic nanoparticles for oligodendrocyte precursor cell transplantation therapies: progress and challenges. MOLECULAR AND CELLULAR THERAPIES 2014; 2:23. [PMID: 26056590 PMCID: PMC4452053 DOI: 10.1186/2052-8426-2-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/20/2014] [Indexed: 01/12/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) have shown high promise as a transplant population to promote regeneration in the central nervous system, specifically, for the production of myelin – the protective sheath around nerve fibers. While clinical trials for these cells have commenced in some areas, there are currently key barriers to the translation of neural cell therapies. These include the ability to (a) image transplant populations in vivo; (b) genetically engineer transplant cells to augment their repair potential; and (c) safely target cells to sites of pathology. Here, we review the evidence that magnetic nanoparticles (MNPs) are a ‘multifunctional nanoplatform’ that can aid in safely addressing these translational challenges in neural cell/OPC therapy: by facilitating real-time and post-mortem assessment of transplant cell biodistribution, and biomolecule delivery to transplant cells, as well as non-invasive ‘magnetic cell targeting’ to injury sites by application of high gradient fields. We identify key issues relating to the standardization and reporting of physicochemical and biological data in the field; we consider that it will be essential to systematically address these issues in order to fully evaluate the utility of the MNP platform for neural cell transplantation, and to develop efficacious neurocompatible particles for translational applications.
Collapse
Affiliation(s)
- Stuart I Jenkins
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| | - Humphrey H P Yiu
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | | | - Divya M Chari
- Cellular and Neural Engineering Group, Institute for Science and Technology in Medicine Keele University, Stoke-on-Trent, Staffordshire ST5 5BG UK
| |
Collapse
|
10
|
Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 2013; 114:25-57. [PMID: 24269804 DOI: 10.1016/j.pneurobio.2013.11.002] [Citation(s) in RCA: 555] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that affects thousands of individuals each year. Over the past decades an enormous progress has been made in our understanding of the molecular and cellular events generated by SCI, providing insights into crucial mechanisms that contribute to tissue damage and regenerative failure of injured neurons. Current treatment options for SCI include the use of high dose methylprednisolone, surgical interventions to stabilize and decompress the spinal cord, and rehabilitative care. Nonetheless, SCI is still a harmful condition for which there is yet no cure. Cellular, molecular, rehabilitative training and combinatorial therapies have shown promising results in animal models. Nevertheless, work remains to be done to ascertain whether any of these therapies can safely improve patient's condition after human SCI. This review provides an extensive overview of SCI research, as well as its clinical component. It starts covering areas from physiology and anatomy of the spinal cord, neuropathology of the SCI, current clinical options, neuronal plasticity after SCI, animal models and techniques to assess recovery, focusing the subsequent discussion on a variety of promising neuroprotective, cell-based and combinatorial therapeutic approaches that have recently moved, or are close, to clinical testing.
Collapse
Affiliation(s)
- Nuno A Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
11
|
Dissociations in the meaning of risk between health-care professionals and individuals with spinal cord injury. Spinal Cord 2013; 51:909-12. [PMID: 24042987 DOI: 10.1038/sc.2013.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/25/2013] [Accepted: 07/28/2013] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Risks have been a central concern in stem cell research overall, and in clinical trials of individuals with spinal cord injury (ISCIs) in particular. We sought to elucidate how two important stakeholder groups-health-care professionals (HCPs) and ISCIs-view and value both the physical and non-physical risks of stem cell interventions. SETTING The study was conducted in Canada, and included participants from both Canada and the United States America. STUDY DESIGN We used semi-structured interviews to gain perspectives on risk from HCPs and ISCIs. METHODS We applied a constant comparative analytic strategy to derive themes from the discourse collected through the interviews. RESULTS We identified three major themes about risk from 12 HCP and 24 ISCI participants: focus, rationale and approach. The salient components of the themes differed: HCPs focus on the physical causes of risks, and the ISCIs on their downstream consequences as well as on non-physical risks; HCPs are concerned about evidence, and ISCIs about experience; and HCPs approach risk narrowly, whereas the approach of ISCIs is more broad and contextualized. CONCLUSION Although major themes were common to the two stakeholder groups, the components of the themes were dissociable and illustrate differences in what HCPs and ISCIs worry about, why they worry and how they approach their worries. We draw upon these findings to make recommendations for improving risk communication and informed consent for stem cell research for spinal cord injury.
Collapse
|
12
|
Hewson SM, Fehlings LN, Messih M, Fehlings MG. The challenges of translating stem cells for spinal cord injury and related disorders: what are the barriers and opportunities? Expert Rev Neurother 2013; 13:143-50. [PMID: 23368801 DOI: 10.1586/ern.12.157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stem cell therapies have significant potential to treat spinal cord injury (SCI), but it remains difficult to translate these therapies from 'bench to bedside'. Identifying barriers to translation and understanding how these barriers are viewed by stakeholders in the field of stem cell research are key steps to clinical translation. The Stem Cell Global Blueprint Conference, held in Toronto (ON, Canada) presented a unique opportunity to analyze the perspectives of multiple stakeholders on the future of stem cell therapies for SCI treatment. This article is an analysis of data collected at the conference, including a consensus-building process and pre- and in-conference questionnaires. The authors used these data to assess current perceptions of stem cell research and compared the findings with the literature. The authors identified the major barriers according to a wide range of stakeholders and what strategies they suggested to overcome these obstacles, with the aim of forwarding discussion on stem cell research. It is not a systematic review of the area, but rather a presentation of expert opinion with literature citations to give context and support to their arguments and suggestions. The authors believe that the international SCI community is ready for larger-scale clinical translation, which will require the continued cooperation of all stakeholders in the stem cell and SCI communities.
Collapse
|
13
|
Eijkholt M, Kwon BK, Mizgalewicz A, Illes J. Decision-making in stem cell trials for spinal cord injury: the role of networks and peers. Regen Med 2013; 7:513-22. [PMID: 22817625 DOI: 10.2217/rme.12.32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AIMS The purpose of this study was to characterize the self-perceived role of professionals and personal caregivers in decision-making about participation in stem cell clinical trials by individuals in early post-spinal cord injury time-points. MATERIALS & METHODS Data were obtained from focus groups and semi-structured individual interviews from two networks: healthcare professionals (e.g., physicians, allied healthcare workers) and personal contacts (family and friends). We transcribed audio-recorded data in extenso and analyzed transcripts using the qualitative method of constant comparison. RESULTS Results from more than 60 h of data suggest that adequate decision support is difficult to achieve for individuals during the subacute phase of injury. Three major obstacles prevent this goal: the personal dimensions of risk; limited insights into the pathophysiology and recovery process; and deference of each network to the other. CONCLUSION The data suggest that novel strategies for decision-making processes, such as those involving peer support, are needed to enrich the knowledge base of all stakeholders. The results further underscore the importance of the role that both the academic and private sector play in ensuring the protection of human subjects in these trials.
Collapse
Affiliation(s)
- Marleen Eijkholt
- National Core for Neuroethics, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | | | | | | |
Collapse
|
14
|
Kimmelman J. A theoretical framework for early human studies: uncertainty, intervention ensembles, and boundaries. Trials 2012; 13:173. [PMID: 22999017 PMCID: PMC3551836 DOI: 10.1186/1745-6215-13-173] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/07/2012] [Indexed: 11/13/2022] Open
Abstract
Clinical development of novel therapeutics begins with a coordinated sequence of early phase clinical trials. Such early human studies confront a series of methodological and ethical challenges. In what follows, I propose a theoretical framework for early human studies aimed at informing the negotiation of these challenges. At the outset of clinical development, researchers confront a virtually undifferentiated landscape of uncertainty with respect to three variables: outcomes, their probability of occurrence, and operation dimensions needed to effectuate favorable outcomes. Early human trials transform this uncertain landscape into one where there are grounds for belief about risk and benefit for various combined operation dimensions. To accomplish this, studies set out with two aims. First, they identify a set of operation dimensions that, when combined as a package (intervention ensemble), elicits a reasonable probability of a target outcome. Second, they define the boundaries of dimension values within an intervention ensemble. This latter aim entails exposing at least some volunteers in early studies to treatments that are inactive or excessive. I provide examples that illustrate the way early human studies discover and delimit intervention ensembles, and close by offering some implications of this framework for ethics, methodology, and efficiency in clinical development of new interventions.
Collapse
Affiliation(s)
- Jonathan Kimmelman
- Biomedical Ethics Unit/Experimental Medicine, McGill University, 3647 Peel Street, Montreal, QB H3A 1X1, Canada.
| |
Collapse
|
15
|
Lukovic D, Moreno Manzano V, Stojkovic M, Bhattacharya SS, Erceg S. Concise Review: Human Pluripotent Stem Cells in the Treatment of Spinal Cord Injury. Stem Cells 2012; 30:1787-92. [DOI: 10.1002/stem.1159] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Fu X, Xu Y. Challenges to the clinical application of pluripotent stem cells: towards genomic and functional stability. Genome Med 2012; 4:55. [PMID: 22741526 PMCID: PMC3698533 DOI: 10.1186/gm354] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human embryonic stem cells (hESCs) can undergo unlimited self-renewal and are pluripotent, retaining the ability to differentiate into all cell types in the body. As a renewable source of various types of human cells, hESCs hold great therapeutic potential. Although significant advances have been achieved in defining the conditions needed to differentiate hESCs into various types of biologically active cells, many challenges remain in the clinical development of hESC-based cell therapy, such as the immune rejection of allogeneic hESC-derived cells by recipients. Breakthroughs in the generation of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells with defined factors, raise the hope that autologous cells derived from patient-specific iPSCs can be transplanted without immune rejection. However, recent genomic studies have revealed epigenetic and genetic abnormalities associated with induced pluripotency, a risk of teratomas, and immunogenicity of some iPSC derivatives. These findings have raised safety concerns for iPSC-based therapy. Here, we review recent advances in understanding the genomic and functional stability of human pluripotent stem cells, current challenges to their clinical application and the progress that has been made to overcome these challenges.
Collapse
Affiliation(s)
- Xuemei Fu
- Chengdu Women's and Children's Central Hospital, Chengdu, Sichuan, China ; Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yang Xu
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Wilcox JT, Cadotte D, Fehlings MG. Spinal cord clinical trials and the role for bioengineering. Neurosci Lett 2012; 519:93-102. [PMID: 22366402 DOI: 10.1016/j.neulet.2012.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 12/31/2022]
Abstract
There is considerable need for bringing effective therapies for spinal cord injury (SCI) to the clinic. Excellent medical and surgical management has mitigated poor prognoses after SCI; however, few advances have been made to return lost function. Bioengineering approaches have shown great promise in preclinical rodent models, yet there remains a large translational gap to carry these forward in human trials. Herein, we provide a framework of human clinical trials, an overview of past trials for SCI, as well as bioengineered approaches that include: directly applied pharmacologics, cellular transplantation, biomaterials and functional neurorehabilitation. Success of novel therapies will require the correct application of comprehensive preclinical studies with well-designed and expertly conducted human clinical trials. While biologics and bioengineered strategies are widely considered to represent the high potential benefits for those who have sustained a spinal injury, few such therapies have been thoroughly tested with appreciable efficacy for use in human SCI. With these considerations, we propose that bioengineered strategies are poised to enter clinical trials.
Collapse
Affiliation(s)
- Jared T Wilcox
- Institute of Medical Science, University of Toronto, Toronto, Canada M5S 1A8
| | | | | |
Collapse
|
18
|
Affiliation(s)
- R Vawda
- Department of University Health Network, Toronto Western Hospital, Toronto, Canada, ON M5T 2S8
| | - J Wilcox
- Department of University Health Network, Toronto Western Hospital, Toronto, Canada, ON M5T 2S8
| | - MG Fehlings
- Department of University Health Network, Toronto Western Hospital, Toronto, Canada, ON M5T 2S8
| |
Collapse
|
19
|
Matthews KRW. Global update: USA. Regen Med 2011; 6:136-9. [PMID: 21999276 DOI: 10.2217/rme.11.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The NIH, which has an annual budget of over US$31 billion, is the world's largest biomedical research agency and is a major strength for science in the USA. Despite the political nature of stem cell research, this area of science has flourished across the country. In 2010, the NIH funded approximately US$1.3 billion in stem cell research. According to the ISI Web of Science, more than 4000 US-authored stem cell publications were produced in 2010 - approximately 40% of the world total. The average citation rate was 4.12 per article, with six articles amassing 100 citations in less than 18 months after release.
Collapse
Affiliation(s)
- Kirstin R W Matthews
- James A Baker III Institute for Public Policy, Rice University, 6100 Main Street, MS-40, Houston, TX 77005, USA.
| |
Collapse
|
20
|
Abstract
More than 1 million people in the United States live with a spinal cord injury (SCI). Despite medical advances, many patients with SCIs still experience substantial neurological disability, with loss of motor, sensory, and autonomic function. Cell therapy is ideally suited to address the multifactorial nature of the secondary events following SCI. Remarkable advances in our understanding of the pathophysiology of SCI, structural and functional magnetic resonance imaging, image-guided micro-neurosurgical techniques, and transplantable cell biology have enabled the use of cell-based regenerative techniques in the clinic. It is important to note that there are more than a dozen recently completed, ongoing, or recruiting cell therapy clinical trials for SCI that reflect the views of many key stakeholders. The field of regenerative neuroscience has reached a stage in which the clinical trials are scientifically and ethically justified. Although experimental models and analysis methods and techniques continue to evolve, no model will completely replicate the human condition. It is recognized that more work with cervical models of contusive/compressive SCI are required in parallel with clinical trials. It is also important that the clinical translation of advances made through well-established and validated experimental approaches in animal models move forward to meet the compelling needs of individuals with SCI and to advance the field of regenerative neuroscience. However, it is imperative that such efforts at translation be done in the most rigorous and informed fashion to determine safety and possible efficacy, and to provide key information to clinicians and basic scientists, which will allow improvements in regenerative techniques and the validation and refinement of existing preclinical animal models and research approaches. The field of regenerative neuroscience should not be stalled at the animal model stage, but instead the clinical trials need to be focused, safe, and ethical, backed up by a robust, translationally relevant preclinical research strategy.
Collapse
Affiliation(s)
- Michael G. Fehlings
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| | - Reaz Vawda
- University Health Network, Toronto Western Hospital, Toronto, ON M5T 2S8 Canada
| |
Collapse
|
21
|
Watson RA, Yeung TM. What is the potential of oligodendrocyte progenitor cells to successfully treat human spinal cord injury? BMC Neurol 2011; 11:113. [PMID: 21943254 PMCID: PMC3189870 DOI: 10.1186/1471-2377-11-113] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/23/2011] [Indexed: 12/28/2022] Open
Abstract
Background Spinal cord injury is a serious and debilitating condition, affecting millions of people worldwide. Long seen as a permanent injury, recent advances in stem cell research have brought closer the possibility of repairing the spinal cord. One such approach involves injecting oligodendrocyte progenitor cells, derived from human embryonic stem cells, into the injured spinal cord in the hope that they will initiate repair. A phase I clinical trial of this therapy was started in mid 2010 and is currently underway. Discussion The theory underlying this approach is that these myelinating progenitors will phenotypically replace myelin lost during injury whilst helping to promote a repair environment in the lesion. However, the importance of demyelination in the pathogenesis of human spinal cord injury is a contentious issue and a body of literature suggests that it is only a minor factor in the overall injury process. Summary This review examines the validity of the theory underpinning the on-going clinical trial as well as analysing published data from animal models and finally discussing issues surrounding safety and purity in order to assess the potential of this approach to successfully treat acute human spinal cord injury.
Collapse
Affiliation(s)
- Robert A Watson
- Green Templeton College, Woodstock Road, Oxford, OX2 6HG, UK.
| | | |
Collapse
|