1
|
Trevisan B, Rodriguez M, Medder H, Lankford S, Combs R, Owen J, Atala A, Porada CD, Almeida-Porada G. Autologous bone marrow-derived MSCs engineered to express oFVIII-FLAG engraft in adult sheep and produce an effective increase in plasma FVIII levels. Front Immunol 2022; 13:1070476. [PMID: 36532079 PMCID: PMC9755880 DOI: 10.3389/fimmu.2022.1070476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
Introduction Hemophilia A (HA) is the most common X-linked bleeding disorder, occurring in 1 in 5,000 live male births and affecting >1 million individuals worldwide. Although advances in protein-based HA therapeutics have improved health outcomes, current standard-of-care requires infusion 2-3 times per week for life, and 30% of patients develop inhibitors, significantly increasing morbidity and mortality. There are thus unmet medical needs requiring novel approaches to treat HA. Methods We tested, in a highly translational large animal (sheep) model, whether the unique immunological and biological properties of autologous bone marrow (BM)-derived mesenchymal stromal cells (MSCs) could enable them to serve as cellular delivery vehicles to provide long-term expression of FVIII, avoiding the need for frequent infusions. Results We show that autologous BM-MSCs can be isolated, transduced with a lentivector to produce high levels of ovine (o)FVIII, extensively expanded, and transplanted into adult animals safely. The transplanted cells engraft in multiple organs, and they stably produce and secrete sufficient quantities of FVIII to yield elevated plasma FVIII levels for at least 15 weeks. Discussion These studies thus highlight the promise of cellular-based gene delivery approaches for treating HA.
Collapse
Affiliation(s)
- Brady Trevisan
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Martin Rodriguez
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Hailey Medder
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Shannon Lankford
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Rebecca Combs
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - John Owen
- Special Hematology Laboratory, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States,*Correspondence: Graça Almeida-Porada,
| |
Collapse
|
2
|
Stem C, Rodman C, Ramamurthy RM, George S, Meares D, Farland A, Atala A, Doering CB, Spencer HT, Porada CD, Almeida-Porada G. Investigating Optimal Autologous Cellular Platforms for Prenatal or Perinatal Factor VIII Delivery to Treat Hemophilia A. Front Cell Dev Biol 2021; 9:678117. [PMID: 34447745 PMCID: PMC8383113 DOI: 10.3389/fcell.2021.678117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Patients with the severe form of hemophilia A (HA) present with a severe phenotype, and can suffer from life-threatening, spontaneous hemorrhaging. While prophylactic FVIII infusions have revolutionized the clinical management of HA, this treatment is short-lived, expensive, and it is not available to many A patients worldwide. In the present study, we evaluated a panel of readily available cell types for their suitability as cellular vehicles to deliver long-lasting FVIII replacement following transduction with a retroviral vector encoding a B domain-deleted human F8 transgene. Given the immune hurdles that currently plague factor replacement therapy, we focused our investigation on cell types that we deemed to be most relevant to either prenatal or very early postnatal treatment and that could, ideally, be autologously derived. Our findings identify several promising candidates for use as cell-based FVIII delivery vehicles and lay the groundwork for future mechanistic studies to delineate bottlenecks to efficient production and secretion of FVIII following genetic-modification.
Collapse
Affiliation(s)
- Christopher Stem
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher Rodman
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Ritu M. Ramamurthy
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sunil George
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Diane Meares
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Andrew Farland
- Special Hematology Laboratory, Wake Forest Baptist Medical Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Christopher B. Doering
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - H. Trent Spencer
- Department of Pediatrics, Aflac Cancer and Blood Disorders Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Christopher D. Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
3
|
O'Connell AE, Guseh S, Lapteva L, Cummings CL, Wilkins-Haug L, Chan J, Peranteau WH, Almeida-Porada G, Kourembanas S. Gene and Stem Cell Therapies for Fetal Care: A Review. JAMA Pediatr 2020; 174:985-991. [PMID: 32597943 PMCID: PMC10620667 DOI: 10.1001/jamapediatrics.2020.1519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Gene and stem cell therapies have become viable therapeutic options for many postnatal disorders. For select conditions, prenatal application would provide improved outcomes. The fetal state allows for several theoretical advantages over postnatal therapy, including immune immaturity and cellular niche accessibility. Observations Advances in prenatal diagnostic accuracy and surgical precision, as well as improvements in stem cell and gene therapy methods, have made prenatal gene and stem cell therapy realistic. Studies in mouse models and early human trials demonstrate the feasibility of these approaches. Additional efforts are under way to streamline fetal applications of stem cell and gene therapy while carefully considering best ethical practice and following established regulatory pathways. Conclusions and Relevance Fetal stem cell and gene therapy bring important therapeutic opportunities for select disorders that present in the fetal and neonatal periods. While this field is in its infancy, these therapies are starting to be available clinically, and clinicians should be aware of their benefits and challenges.
Collapse
Affiliation(s)
- Amy E O'Connell
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Stephanie Guseh
- Division of Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Larissa Lapteva
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Christy L Cummings
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| | - Louise Wilkins-Haug
- Division of Maternal Fetal Medicine and Reproductive Genetics, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jerry Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore
- Duke-NUS Medical School, Academic Program in Obstetrics and Gynaecology, Singapore
| | - William H Peranteau
- Division of General, Thoracic and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Fetal Research and Therapy Program, Winston Salem, North Carolina
| | - Stella Kourembanas
- Division of Newborn Medicine, Boston Children's Hospital, Boston, Massachusetts
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Defining the Optimal FVIII Transgene for Placental Cell-Based Gene Therapy to Treat Hemophilia A. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:465-477. [PMID: 32258210 PMCID: PMC7109377 DOI: 10.1016/j.omtm.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The delivery of factor VIII (FVIII) through gene and/or cellular platforms has emerged as a promising hemophilia A treatment. Herein, we investigated the suitability of human placental cells (PLCs) as delivery vehicles for FVIII and determined an optimal FVIII transgene to produce/secrete therapeutic FVIII levels from these cells. Using three PLC cell banks we demonstrated that PLCs constitutively secreted low levels of FVIII, suggesting their suitability as a transgenic FVIII production platform. Furthermore, PLCs significantly increased FVIII secretion after transduction with a lentiviral vector (LV) encoding a myeloid codon-optimized bioengineered FVIII containing high-expression elements from porcine FVIII. Importantly, transduced PLCs did not upregulate cellular stress or innate immunity molecules, demonstrating that after transduction and FVIII production/secretion, PLCs retained low immunogenicity and cell stress. When LV encoding five different bioengineered FVIII transgenes were compared for transduction efficiency, FVIII production, and secretion, data showed that PLCs transduced with LV encoding hybrid human/porcine FVIII transgenes secreted substantially higher levels of FVIII than did LV encoding B domain-deleted human FVIII. In addition, data showed that in PLCs, myeloid codon optimization is needed to increase FVIII secretion to therapeutic levels. These studies have identified an optimal combination of FVIII transgene and cell source to achieve clinically meaningful levels of secreted FVIII.
Collapse
|
5
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
6
|
Mesenchymal stem cells to treat type 1 diabetes. Biochim Biophys Acta Mol Basis Dis 2018; 1866:165315. [PMID: 30508575 DOI: 10.1016/j.bbadis.2018.10.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
What is clear is we are in the era of the stem cell and its potential in ameliorating human disease. Our perspective is generated from an in vivo model in a large animal that offers significant advantages (complete transplantation tolerance, large size and long life span). This review is an effort to meld our preclinical observations with others for the reader and to outline potential avenues to improve the present outlook for patients with diabetes. This effort exams the history or background of stem cell research in the laboratory and the clinic, types of stem cells, pluripotency or lack thereof based on a variety of pre-clinical investigations attempting endocrine pancreas recovery using stem cell transplantation. The focus is on the use of hematopoietic and mesenchymal stem cells. This review will also examine recent clinical experience following stem cell transplantation in patients with type 1 diabetes.
Collapse
|
7
|
Almeida-Porada G, Rodman C, Kuhlman B, Brudvik E, Moon J, George S, Guida P, Sajuthi SP, Langefeld CD, Walker SJ, Wilson PF, Porada CD. Exposure of the Bone Marrow Microenvironment to Simulated Solar and Galactic Cosmic Radiation Induces Biological Bystander Effects on Human Hematopoiesis. Stem Cells Dev 2018; 27:1237-1256. [PMID: 29698131 DOI: 10.1089/scd.2018.0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The stem cell compartment of the hematopoietic system constitutes one of the most radiosensitive tissues of the body and leukemias represent one of the most frequent radiogenic cancers with short latency periods. As such, leukemias may pose a particular threat to astronauts during prolonged space missions. Control of hematopoiesis is tightly governed by a specialized bone marrow (BM) microenvironment/niche. As such, any environmental insult that damages cells of this niche would be expected to produce pronounced effects on the types and functionality of hematopoietic/immune cells generated. We recently reported that direct exposure of human hematopoietic stem cells (HSC) to simulated solar energetic particle (SEP) and galactic cosmic ray (GCR) radiation dramatically altered the differentiative potential of these cells, and that simulated GCR exposures can directly induce DNA damage and mutations within human HSC, which led to leukemic transformation when these cells repopulated murine recipients. In this study, we performed the first in-depth examination to define changes that occur in mesenchymal stem cells present in the human BM niche following exposure to accelerated protons and iron ions and assess the impact these changes have upon human hematopoiesis. Our data provide compelling evidence that simulated SEP/GCR exposures can also contribute to defective hematopoiesis/immunity through so-called "biological bystander effects" by damaging the stromal cells that comprise the human marrow microenvironment, thereby altering their ability to support normal hematopoiesis.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Christopher Rodman
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Bradford Kuhlman
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Egil Brudvik
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - John Moon
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Sunil George
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Peter Guida
- 2 Biological, Environmental, and Climate Sciences Department, Brookhaven National Laboratory , Upton, New York
| | - Satria P Sajuthi
- 3 Division of Public Health Sciences, Department of Biostatistical Sciences, Center for Public Health Genomics , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carl D Langefeld
- 3 Division of Public Health Sciences, Department of Biostatistical Sciences, Center for Public Health Genomics , Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Stephen J Walker
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| | - Paul F Wilson
- 4 Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center , Sacramento, California
| | - Christopher D Porada
- 1 Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine , Winston-Salem, North Carolina
| |
Collapse
|
8
|
Babich B. Ivan Illich's Medical Nemesis and the 'age of the show': On the Expropriation of Death. Nurs Philos 2017; 19. [PMID: 29271600 DOI: 10.1111/nup.12187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
What Ivan Illich regarded in his Medical Nemesis as the 'expropriation of health' takes place on the surfaces and in the spaces of the screens all around us, including our cell phones but also the patient monitors and (increasingly) the iPads that intervene between nurse and patient. To explore what Illich called the 'age of the show', this essay uses film examples, like Creed and the controversial documentary Vaxxed, and the television series Nurse Jackie. Rocky's cancer in his last film (submitting to chemo to 'fight' cancer) highlights what Illich along with Petr Skrabanek called the 'expropriation of death'. In contrast to what Illich denotes as 'Umsonstigkeit' - grace or gift, given undeservedly, i.e., gratuitously - medical science tends to be tempted by what Illich terms scientistic 'black magic', taking over (expropriating) the life and the death of the patient in increasingly technological ways, a point underscored in the concluding section on the commercial prospects of xenotransplants using factory farm or mass-produced human-pig mosaics or chimeras.
Collapse
Affiliation(s)
- Babette Babich
- Department of Philosophy, Fordham University, New York, NY, USA
| |
Collapse
|
9
|
Almeida-Porada G, Atala A, Porada CD. In utero stem cell transplantation and gene therapy: rationale, history, and recent advances toward clinical application. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16020. [PMID: 27069953 PMCID: PMC4813605 DOI: 10.1038/mtm.2016.20] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput molecular testing have made it possible to diagnose most genetic disorders relatively early in gestation with minimal risk to the fetus. These advances should soon allow widespread prenatal screening for the majority of human genetic diseases, opening the door to the possibility of treatment/correction prior to birth. In addition to the obvious psychological and financial benefits of curing a disease in utero, and thereby enabling the birth of a healthy infant, there are multiple biological advantages unique to fetal development, which provide compelling rationale for performing potentially curative treatments, such as stem cell transplantation or gene therapy, prior to birth. Herein, we briefly review the fields of in utero transplantation (IUTx) and in utero gene therapy and discuss the biological hurdles that have thus far restricted success of IUTx to patients with immunodeficiencies. We then highlight several recent experimental breakthroughs in immunology, hematopoietic/marrow ontogeny, and in utero cell delivery, which have collectively provided means of overcoming these barriers, thus setting the stage for clinical application of these highly promising therapies in the near future.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine , Winston Salem, North Carolina, USA
| |
Collapse
|
10
|
Porada CD, Atala AJ, Almeida-Porada G. The hematopoietic system in the context of regenerative medicine. Methods 2015; 99:44-61. [PMID: 26319943 DOI: 10.1016/j.ymeth.2015.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/06/2015] [Accepted: 08/23/2015] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) represent the prototype stem cell within the body. Since their discovery, HSC have been the focus of intensive research, and have proven invaluable clinically to restore hematopoiesis following inadvertent radiation exposure and following radio/chemotherapy to eliminate hematologic tumors. While they were originally discovered in the bone marrow, HSC can also be isolated from umbilical cord blood and can be "mobilized" peripheral blood, making them readily available in relatively large quantities. While their ability to repopulate the entire hematopoietic system would already guarantee HSC a valuable place in regenerative medicine, the finding that hematopoietic chimerism can induce immunological tolerance to solid organs and correct autoimmune diseases has dramatically broadened their clinical utility. The demonstration that these cells, through a variety of mechanisms, can also promote repair/regeneration of non-hematopoietic tissues as diverse as liver, heart, and brain has further increased their clinical value. The goal of this review is to provide the reader with a brief glimpse into the remarkable potential HSC possess, and to highlight their tremendous value as therapeutics in regenerative medicine.
Collapse
Affiliation(s)
- Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Anthony J Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
11
|
Gabriel N, Samuel R, Jayandharan GR. Targeted delivery of AAV-transduced mesenchymal stromal cells to hepatic tissue forex vivogene therapy. J Tissue Eng Regen Med 2015; 11:1354-1364. [DOI: 10.1002/term.2034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/02/2015] [Accepted: 04/21/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Nishanth Gabriel
- Department of Haematology; Christian Medical College; Vellore Tamil Nadu India
| | - Rekha Samuel
- Centre for Stem Cell Research; Christian Medical College; Vellore Tamil Nadu India
| | - Giridhara R. Jayandharan
- Department of Haematology; Christian Medical College; Vellore Tamil Nadu India
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology; Kanpur Uttar Pradesh India
| |
Collapse
|
12
|
Porada CD, Rodman C, Ignacio G, Atala A, Almeida-Porada G. Hemophilia A: an ideal disease to correct in utero. Front Pharmacol 2014; 5:276. [PMID: 25566073 PMCID: PMC4263089 DOI: 10.3389/fphar.2014.00276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/27/2014] [Indexed: 01/13/2023] Open
Abstract
Hemophilia A (HA) is the most frequent inheritable defect of the coagulation proteins. The current standard of care for patients with HA is prophylactic factor infusion, which is comprised of regular (2-3 times per week) intravenous infusions of recombinant or plasma-derived FVIII to maintain hemostasis. While this treatment has greatly increased the quality of life and lengthened the life expectancy for many HA patients, its high cost, the need for lifelong infusions, and the fact that it is unavailable to roughly 75% of the world's HA patients make this type of treatment far from ideal. In addition, this lifesaving therapy suffers from a high risk of treatment failure due to immune response to the infused FVIII. There is thus a need for novel treatments, such as those using stem cells and/or gene therapy, which have the potential to mediate long-term correction or permanent cure following a single intervention. In the present review, we discuss the clinical feasibility and unique advantages that an in utero approach to treating HA could offer, placing special emphasis on a new sheep model of HA we have developed and on the use of mesenchymal stromal cells (MSC) as cellular vehicles for delivering the FVIII gene.
Collapse
Affiliation(s)
| | | | | | | | - Graça Almeida-Porada
- Regenerative Medicine, Wake Forest Institute for Regenerative MedicineWinston-Salem, NC, USA
| |
Collapse
|
13
|
Katoonizadeh A, Poustchi H, Malekzadeh R. Hepatic progenitor cells in liver regeneration: current advances and clinical perspectives. Liver Int 2014; 34:1464-1472. [PMID: 24750779 DOI: 10.1111/liv.12573] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 04/17/2014] [Indexed: 12/12/2022]
Abstract
When there is a massive loss of hepatocytes and/or an inhibition in the proliferative capacity of the mature hepatocytes, activation of a dormant cell population of resident hepatic progenitor cells (HPCs) occurs. Depending on the type of liver damage HPCs generate new hepatocytes and biliary cells to repopulate the liver placing them as potential candidates for cell therapy in human liver failure. Liver injury specific mechanisms through which HPCs differentiate towards mature epithelial cell types are recently become understood. Such new insights will enable us not only to direct HPCs behaviour for therapeutic purposes, but also to develop clinically feasible methods for in vivo differentiation of other stem cell types towards functional hepatocytes. This review aimed to provide the current improved knowledge of the role of HPCs niche and its signals in directing the behaviour and fate of HPCs and to translate this basic knowledge of HPCs activation/differentiation into its clinical applications.
Collapse
Affiliation(s)
- Aezam Katoonizadeh
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
14
|
Almeida-Porada G, Soland M, Boura J, Porada CD. Regenerative medicine: prospects for the treatment of inflammatory bowel disease. Regen Med 2014; 8:631-44. [PMID: 23998755 DOI: 10.2217/rme.13.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This article reviews the current understanding of the processes driving the development and progression of inflammatory bowel disease (IBD), discusses how the dynamic crosstalk between resident microorganisms, host cells and the immune system is required in order to maintain immune homeostasis, and considers innovative strategies that allow the modification or modulation of the intestinal microorganismal community as a potential approach for treating IBD. This article next rationalizes the use of cell-based regenerative medicine as treatment for IBD, discusses the obstacles hindering its success, summarizes some of the results of recent clinical trials employing these therapies, and discusses ongoing work to enhance mesenchymal stem/stromal cells, making them better suited to the task of repairing the damage within the IBD gut.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | | | | | | |
Collapse
|
15
|
Soland MA, Keyes LR, Bayne R, Moon J, Porada CD, St. Jeor S, Almeida-Porada G. Perivascular stromal cells as a potential reservoir of human cytomegalovirus. Am J Transplant 2014; 14:820-30. [PMID: 24592822 PMCID: PMC4046334 DOI: 10.1111/ajt.12642] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 12/04/2013] [Accepted: 12/23/2013] [Indexed: 01/25/2023]
Abstract
Human cytomegalovirus (HCMV) infection is an important cause of morbidity and mortality among both solid organ and hematopoietic stem cell transplant recipients. Identification of cells throughout the body that can potentially serve as a viral reservoir is essential to dissect mechanisms of cell tropism and latency and to develop novel therapies. Here, we tested and compared the permissivity of liver-, brain-, lung (LNG)- and bone marrow (BM)-derived perivascular mesenchymal stromal cells (MSC) to HCMV infection and their ability to propagate and produce infectious virus. Perivascular MSC isolated from the different organs have in common the expression of CD146 and Stro-1. While all these cells were permissive to HCMV infection, the highest rate of HCMV infection was seen with LNG-MSC, as determined by viral copy number and production of viral particles by these cells. In addition, we showed that, although the supernatants from each of the HCMV-infected cultures contained infectious virus, the viral copy number and the quantity and timing of virus production varied among the various organ-specific MSC. Furthermore, using quantitative polymerase chain reaction, we were able to detect HCMV DNA in BM-MSC isolated from 7 out of 19 healthy, HCMV-seropositive adults, suggesting that BM-derived perivascular stromal cells may constitute an unrecognized natural HCMV reservoir.
Collapse
Affiliation(s)
- M. A. Soland
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - L. R. Keyes
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV
| | - R. Bayne
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - J. Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - C. D. Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - S. St. Jeor
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno, NV
| | - G. Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC,Corresponding author: Graça Almeida-Porada,
| |
Collapse
|
16
|
The mesenchymal stem cells derived from transgenic mice carrying human coagulation factor VIII can correct phenotype in hemophilia A mice. J Genet Genomics 2013; 40:617-28. [PMID: 24377868 DOI: 10.1016/j.jgg.2013.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022]
Abstract
Hemophilia A (HA) is an inherited X-linked recessive bleeding disorder caused by coagulant factor VIII (FVIII) deficiency. Previous studies showed that introduction of mesenchymal stem cells (MSCs) modified by FVIII-expressing retrovirus may result in phenotypic correction of HA animals. This study aimed at the investigation of an alternative gene therapy strategy that may lead to sustained FVIII transgene expression in HA mice. B-domain-deleted human FVIII (hFVIIIBD) vector was microinjected into single-cell embryos of wild-type mice to generate a transgenic mouse line, from which hFVIIIBD-MSCs were isolated, followed by transplantation into HA mice. RT-PCR and real-time PCR analysis demonstrated the expression of hFVIIIBD in multi-organs of recipient HA mice. Immunohistochemistry showed the presence of hFVIIIBD positive staining in multi-organs of recipient HA mice. ELISA indicated that plasma hFVIIIBD level in recipient mice reached its peak (77 ng/mL) at the 3rd week after implantation, and achieved sustained expression during the 5-week observation period. Plasma FVIII activities of recipient HA mice increased from 0% to 32% after hFVIIIBD-MSCs transplantation. APTT (activated partial thromboplastin time) value decreased in hFVIIIBD-MSCs transplanted HA mice compared with untreated HA mice (45.5 s vs. 91.3 s). Our study demonstrated an effective phenotypic correction in HA mice using genetically modified MSCs from hFVIIIBD transgenic mice.
Collapse
|
17
|
Glavaski-Joksimovic A, Bohn MC. Mesenchymal stem cells and neuroregeneration in Parkinson's disease. Exp Neurol 2013; 247:25-38. [DOI: 10.1016/j.expneurol.2013.03.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
|
18
|
Abstract
The paracrine theory has recently changed the view of the biological action of stem cells and of the subsequent potential application of stem cells in regenerative medicine. Indeed, most of the beneficial effects of stem-cell-based therapy have been attributed to soluble factors released from stem cells. In this context, MVs (microvesicles) released as exosomes from the endosomal compartment, or as shedding vesicles from the cell surface, may play a relevant role in the intercellular communication between stem and injured cells. By transferring proteins, bioactive lipids, mRNA and microRNA, MVs act as vehicles of information that may lead to alteration of the phenotype of recipient cells. The exchange of information between stem cells and tissue-injured cells is reciprocal. The MV-mediated transfer of tissue-specific information from the injured cells to stem cells may reprogramme the latter to gain phenotypic and functional characteristics of the cell of origin. On the other hand, MVs released from stem cells may confer a stem-cell-like phenotype to injured cells, with the consequent activation of self-regenerative programmes. In fact, MVs released from stem cells retain several biological activities that are able to reproduce the beneficial effects of stem cells in a variety of experimental models.
Collapse
|
19
|
Pixley JS, Zanjani ED. In utero transplantation: Disparate ramifications. World J Stem Cells 2013; 5:43-52. [PMID: 23671718 PMCID: PMC3648645 DOI: 10.4252/wjsc.v5.i2.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 01/07/2013] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
In utero stem cell transplantation, which promises treatment for a host of genetic disorders early in gestation before disease effect stems from Ray Owen’s seminal observation that self-tolerance, is acquired during gestation. To date, in utero transplantation (IUT) has proved useful in characterizing the hematopoietic stem cell. Recent observations support its use as an in vivo method to further understanding of self-tolerance. Preclinical development continues for its application as a treatment for childhood hematolymphoid diseases. In addition, IUT may offer therapeutic options in the treatment of diabetes among other diseases. Thus IUT serves as a technique or system important in both a basic and applied format. This review summarizes these findings.
Collapse
|
20
|
Sanada C, Kuo CJ, Colletti EJ, Soland M, Mokhtari S, Knovich MA, Owen J, Zanjani ED, Porada CD, Almeida-Porada G. Mesenchymal stem cells contribute to endogenous FVIII:c production. J Cell Physiol 2013; 228:1010-6. [PMID: 23042590 DOI: 10.1002/jcp.24247] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/26/2012] [Indexed: 11/08/2022]
Abstract
Besides the liver, it has been difficult to identify which organ(s) and/or cellular component(s) contribute significantly to the production of human FVIII:c (FVIII). Thus far, only endothelial cells have been shown to constitute a robust extrahepatic source of FVIII, possibly explaining both the diverse presence of FVIII mRNA in the body, and the observed increase in FVIII levels during liver failure. Here, we investigate whether human mesenchymal stem cells (MSC), ubiquitously present in different organs, could also contribute to FVIII production. MSC isolated from human lung, liver, brain, and bone marrow expressed FVIII message as determined by quantitative-RT-PCR. Using an antibody specific for FVIII, confocal microscopy, and umbilical cord-derived endothelial cells (HUVEC) as a negative control, we demonstrated that, in MSC, FVIII protein was not stored in granules; rather, it localized to the perinuclear region. Furthermore, functional FVIII was detected in MSC supernatants and cell lysates by aPTT and chromogenic assays. These results demonstrate that MSC can contribute at low levels to the functional FVIII pool, and advance the understanding of the physiology of FVIII production and secretion.
Collapse
Affiliation(s)
- Chad Sanada
- Department of Animal Biotechnology, University of Nevada, Reno, NV, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mesenchymal stem cells engineered to inhibit complement-mediated damage. PLoS One 2013; 8:e60461. [PMID: 23555976 PMCID: PMC3608620 DOI: 10.1371/journal.pone.0060461] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/26/2013] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cells (MSC) preferentially migrate to damaged tissues and, due to their immunomodulatory and trophic properties, contribute to tissue repair. Although MSC express molecules, such as membrane cofactor protein (CD46), complement decay-accelerating factor (CD55), and protectin (CD59), which confer protection from complement-mediated lysis, MSC are recruited and activated by anaphylatoxins after transplantation, potentially causing MSC death and limiting therapeutic benefit. We have previously demonstrated that transduction of MSC with a retrovirus encoding HCMV-US proteins resulted in higher levels of MSC engraftment due to decreased HLA-I expression. Here, we investigate whether engineering MSC to express US2 (MSC-US2), US3 (MSC-US3), US6 (MSC-US6), or US11 (MSC-US11) HCMV proteins can alter complement recognition, thereby better protecting MSC from complement attack and lysis. HCMV-US proteins increased MSC CD59 expression at different levels as determined by flow cytometric evaluation of the median fluorescence intensity ratio (MFI). A significant increase in CD59 expression was seen in MSC-US2, MSC-US3, and MSC-US6, but not in MSC-US11. Only MSC-US2 displayed increased expression of CD46, while US2 and US3 proteins were both able to augment the percentage of MSC expressing this molecule. Regardless of the HCMV protein expressed, none changed CD55 MFI; however, expression of US6, US11, and US2 each increased the percentage of MSC that were positive for this molecule. Because US2 protein was the most efficient in up-regulating all three complement regulatory proteins, we used a functional complement-mediated cytotoxicity assay to investigate whether MSC-US2 were protected from complement-mediated lysis. We demonstrated that over-expression of the US2 protein reduced complement lysis by 59.10±12.89% when compared to untransduced MSC. This is the first report, to our knowledge, describing a role of HCMV-US proteins in complement evasion, and our data shows that over-expression of US2 protein on MSC could serve as a strategy to protect these cells from complement lysis.
Collapse
|
22
|
Colletti E, El Shabrawy D, Soland M, Yamagami T, Mokhtari S, Osborne C, Schlauch K, Zanjani ED, Porada CD, Almeida-Porada G. EphB2 isolates a human marrow stromal cell subpopulation with enhanced ability to contribute to the resident intestinal cellular pool. FASEB J 2013; 27:2111-21. [PMID: 23413357 DOI: 10.1096/fj.12-205054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To identify human bone marrow stromal cell (BMSC) subsets with enhanced ability to engraft/contribute to the resident intestinal cellular pool, we transplanted clonally derived BMSCs into fetal sheep. Analysis at 75 d post-transplantation showed 2 of the 6 clones engrafting the intestine at 4- to 5-fold higher levels (5.03±0.089 and 5.04±0.15%, respectively) than the other clones (P<0.01), correlating with the percentage of donor-derived Musashi-1(+) (12.01-14.17 vs. 1.2-3.8%; P<0.01) or leucine-rich repeat-containing G-protein coupled receptor 5 (Lgr5)(+) cells within the intestinal stem cell (ISC) region. Phenotypic and transcriptome analysis determined that the clones with enhanced intestinal contribution expressed high levels of Ephrin type B receptor 2 (EphB2). Intestinal explants demonstrated proliferation of the engrafted cells and ability to generate crypt-like structures in vitro still expressing EphB2. Additional transplants based on BMSC EphB2 expression demonstrated that, at 7 d post-transplant, the EphB2(high) BMSCs engrafted in the ISC region at levels of 2.1 ± 0.2%, while control EphB2(low) BMSCs engrafted at 0.3 ± 0.1% (P<0.01). Therefore we identified a marker for isolating and culturing an expandable subpopulation of BMSCs with enhanced intestinal homing and contribution to the ISC region.
Collapse
Affiliation(s)
- Evan Colletti
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Porada CD, Almeida-Porada G. Treatment of Hemophilia A in Utero and Postnatally using Sheep as a Model for Cell and Gene Delivery. ACTA ACUST UNITED AC 2013; S1. [PMID: 23264887 DOI: 10.4172/2157-7412.s1-011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemophilia A represents the most common inheritable deficiency of the coagulation proteins. Current state-of- the-art treatment consists of frequent prophylactic infusions of plasma-derived or recombinant FVIII protein to maintain hemostasis, and has greatly increased life expectancy and quality of life for many hemophilia A patients. This treatment approach is, however, far from ideal, due to the need for lifelong intravenous infusions, the high treatment cost, and the fact that it is unavailable to a large percentage of the world's hemophiliacs. There is thus a need for novel treatments that can promise long-term or permanent correction. In contrast to existing protein based therapeutics, gene therapy offers to provide a permanent cure following few, or even a single, treatment. In the present paper, we review ongoing work towards this end, focusing on studies we have performed in a large animal model. Some of the key topics covered in this review include the unique opportunities sheep offer as a model system, the re-establishment and clinical and molecular characterization of a line of sheep with severe hemophilia A, the advantages and feasibility of treating a disease like hemophilia A in utero, and the use of Mesenchymal Stem Cells (MSC) as cellular delivery vehicles for the FVIII gene. The review finishes with a brief discussion of our recent success correcting ovine hemophilia A with a postnatal transplant with gene-modified MSC, and the limitations of this approach that remain to be overcome.
Collapse
|
24
|
Wood JA, Colletti E, Mead LE, Ingram D, Porada CD, Zanjani ED, Yoder MC, Almeida-Porada G. Distinct contribution of human cord blood-derived endothelial colony forming cells to liver and gut in a fetal sheep model. Hepatology 2012; 56:1086-96. [PMID: 22488442 PMCID: PMC3396735 DOI: 10.1002/hep.25753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/23/2012] [Indexed: 12/22/2022]
Abstract
UNLABELLED Although the vasculogenic potential of circulating and cord blood (CB)-derived endothelial colony-forming cells (ECFC) has been demonstrated in vitro and in vivo, little is known about the inherent biologic ability of these cells to home to different organs and contribute to tissue-specific cell populations. Here we used a fetal sheep model of in utero transplantation to investigate and compare the intrinsic ability of human CB-derived ECFC to migrate to the liver and to the intestine, and to define ECFC's intrinsic ability to integrate and contribute to the cytoarchitecture of these same organs. ECFCs were transplanted by an intraperitoneal or intrahepatic route (IH) into fetal sheep at concentrations ranging from 1.1-2.6 × 10(6) cells/fetus. Recipients were evaluated at 85 days posttransplant for donor (human) cells using flow cytometry and confocal microscopy. We found that, regardless of the route of injection, and despite the IH delivery of ECFC, the overall liver engraftment was low, but a significant percentage of cells were located in the perivascular regions and retained the expression of hallmark endothelial makers. By contrast, ECFC migrated preferentially to the intestinal crypt region and contributed significantly to the myofibroblast population. Furthermore, ECFC expressing CD133 and CD117 lodged in areas where endogenous cells expressed those same phenotypes. CONCLUSION ECFC inherently constitute a potential source of cells for the treatment of intestinal diseases, but strategies to increase the numbers of ECFC persisting within the hepatic parenchyma are needed in order to enhance ECFC therapeutic potential for this organ.
Collapse
Affiliation(s)
- Joshua A. Wood
- Dept. of Animal Biotechnology, University of Nevada, Reno, USA
| | - Evan Colletti
- Dept. of Animal Biotechnology, University of Nevada, Reno, USA
| | - Laura E. Mead
- Dept. of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - David Ingram
- Dept. of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | | | | | - Mervin C. Yoder
- Dept. of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
,Corresponding Authors: Graça Almeida-Porada, M.D., Ph.D., Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083 USA. Phone: (336) 713-1630; FAX: (336) 713-7290 Mervin C. Yoder, M.D. Department of Pediatrics, Herman B Wells Center for Pediatric Research Indiana University School of Medicine, Indianapolis, Ind., USA Phone: (317) 274-4738; FAX: (317) 274-8679
| | - Graça Almeida-Porada
- Dept. of Animal Biotechnology, University of Nevada, Reno, USA
,Corresponding Authors: Graça Almeida-Porada, M.D., Ph.D., Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem, NC 27157-1083 USA. Phone: (336) 713-1630; FAX: (336) 713-7290 Mervin C. Yoder, M.D. Department of Pediatrics, Herman B Wells Center for Pediatric Research Indiana University School of Medicine, Indianapolis, Ind., USA Phone: (317) 274-4738; FAX: (317) 274-8679
| |
Collapse
|
25
|
McVey M, Tabuchi A, Kuebler WM. Microparticles and acute lung injury. Am J Physiol Lung Cell Mol Physiol 2012; 303:L364-81. [PMID: 22728467 DOI: 10.1152/ajplung.00354.2011] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The pathophysiology of acute lung injury (ALI) and its most severe form, acute respiratory distress syndrome (ARDS), is characterized by increased vascular and epithelial permeability, hypercoagulation and hypofibrinolysis, inflammation, and immune modulation. These detrimental changes are orchestrated by cross talk between a complex network of cells, mediators, and signaling pathways. A rapidly growing number of studies have reported the appearance of distinct populations of microparticles (MPs) in both the vascular and alveolar compartments in animal models of ALI/ARDS or respective patient populations, where they may serve as diagnostic and prognostic biomarkers. MPs are small cytosolic vesicles with an intact lipid bilayer that can be released by a variety of vascular, parenchymal, or blood cells and that contain membrane and cytosolic proteins, organelles, lipids, and RNA supplied from and characteristic for their respective parental cells. Owing to this endowment, MPs can effectively interact with other cell types via fusion, receptor-mediated interaction, uptake, or mediator release, thereby acting as intrinsic stimulators, modulators, or even attenuators in a variety of disease processes. This review summarizes current knowledge on the formation and potential functional role of different MPs in inflammatory diseases with a specific focus on ALI/ARDS. ALI has been associated with the formation of MPs from such diverse cellular origins as platelets, neutrophils, monocytes, lymphocytes, red blood cells, and endothelial and epithelial cells. Because of their considerable heterogeneity in terms of origin and functional properties, MPs may contribute via both harmful and beneficial effects to the characteristic pathological features of ALI/ARDS. A better understanding of the formation, function, and relevance of MPs may give rise to new promising therapeutic strategies to modulate coagulation, inflammation, endothelial function, and permeability either through removal or inhibition of "detrimental" MPs or through administration or stimulation of "favorable" MPs.
Collapse
Affiliation(s)
- Mark McVey
- The Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
26
|
Gurudutta GU, Satija NK, Singh VK, Verma YK, Gupta P, Tripathi RP. Stem cell therapy: a novel & futuristic treatment modality for disaster injuries. Indian J Med Res 2012; 135:15-25. [PMID: 22382178 PMCID: PMC3307178 DOI: 10.4103/0971-5916.93419] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy hold the potential to meet the demand for transplant cells/tissues needed for treating damages resulting from both natural and man-made disasters. Pluripotency makes embryonic stem cells and induced pluripotent stem cells ideal for use, but their teratogenic character is a major hindrance. Therapeutic benefits of bone marrow transplantation are well known but characterizing the potentialities of haematopoietic and mesenchymal cells is essential. Haematopoietic stem cells (HSCs) have been used for treating both haematopoietic and non-haematopoietic disorders. Ease of isolation, in vitro expansion, and hypoimmunogenecity have brought mesenchymal stem cells (MSCs) into limelight. Though differentiation of MSCs into tissue-specific cells has been reported, differentiation-independent mechanisms seem to play a more significant role in tissue repair which need to be addressed further. The safety and feasibility of MSCs have been demonstrated in clinical trials, and their use in combination with HSC for radiation injury treatment seems to have extended benefit. Therefore, using stem cells for treatment of disaster injuries along with the conventional medical practice would likely accelerate the repair process and improve the quality of life of the victim.
Collapse
Affiliation(s)
- G U Gurudutta
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences, Delhi, India.
| | | | | | | | | | | |
Collapse
|
27
|
Soland MA, Bego MG, Colletti E, Porada CD, Zanjani ED, St Jeor S, Almeida-Porada G. Modulation of human mesenchymal stem cell immunogenicity through forced expression of human cytomegalovirus us proteins. PLoS One 2012; 7:e36163. [PMID: 22666319 PMCID: PMC3364258 DOI: 10.1371/journal.pone.0036163] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/01/2012] [Indexed: 12/22/2022] Open
Abstract
Background Mesenchymal stem cells (MSC) are promising candidates for cell therapy, as they migrate to areas of injury, differentiate into a broad range of specialized cells, and have immunomodulatory properties. However, MSC are not invisible to the recipient's immune system, and upon in vivo administration, allogeneic MSC are able to trigger immune responses, resulting in rejection of the transplanted cells, precluding their full therapeutic potential. Human cytomegalovirus (HCMV) has developed several strategies to evade cytotoxic T lymphocyte (CTL) and Natural Killer (NK) cell recognition. Our goal is to exploit HCMV immunological evasion strategies to reduce MSC immunogenicity. Methodology/Principal Findings We genetically engineered human MSC to express HCMV proteins known to downregulate HLA-I expression, and investigated whether modified MSC were protected from CTL and NK attack. Flow cytometric analysis showed that amongst the US proteins tested, US6 and US11 efficiently reduced MSC HLA-I expression, and mixed lymphocyte reaction demonstrated a corresponding decrease in human and sheep mononuclear cell proliferation. NK killing assays showed that the decrease in HLA-I expression did not result in increased NK cytotoxicity, and that at certain NK∶MSC ratios, US11 conferred protection from NK cytotoxic effects. Transplantation of MSC-US6 or MSC-US11 into pre-immune fetal sheep resulted in increased liver engraftment when compared to control MSC, as demonstrated by qPCR and immunofluorescence analyses. Conclusions and Significance These data demonstrate that engineering MSC to express US6 and US11 can be used as a means of decreasing recognition of MSC by the immune system, allowing higher levels of engraftment in an allogeneic transplantation setting. Since one of the major factors responsible for the failure of allogeneic-donor MSC to engraft is the mismatch of HLA-I molecules between the donor and the recipient, MSC-US6 and MSC-US11 could constitute an off-the-shelf product to overcome donor-recipient HLA-I mismatch.
Collapse
Affiliation(s)
- Melisa A Soland
- Department of Animal Biotechnology, University of Nevada, Reno, Nevada, United States of America
| | | | | | | | | | | | | |
Collapse
|
28
|
Wood JA, Chung DJ, Park SA, Zwingenberger AL, Reilly CM, Ly I, Walker NJ, Vernau W, Hayashi K, Wisner ER, Cannon MS, Kass PH, Cherry SR, Borjesson DL, Russell P, Murphy CJ. Periocular and intra-articular injection of canine adipose-derived mesenchymal stem cells: an in vivo imaging and migration study. J Ocul Pharmacol Ther 2011; 28:307-17. [PMID: 22175793 DOI: 10.1089/jop.2011.0166] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Immune-mediated diseases affect millions of people worldwide with an economic impact measured in the billions of dollars. Mesenchymal stem cells (MSCs) are being investigated in the treatment of certain immune mediated diseases, but their application in the treatment of the majority of these disorders remains largely unexplored. Keratoconjunctivitis sicca can occur as a result of progressive immune-mediated destruction of lacrimal tissue in dogs and humans, and immune-mediated joint disease is common to both species. In dogs, allogeneic MSC engraftment and migration have yet to be investigated in vivo in the context of repeated injections. METHODS With these aims in mind, the engraftment of allogeneic canine MSCs after an injection into the periocular and intra-articular regions was followed in vivo using magnetic resonance and fluorescent imaging. RESULTS The cells were shown to be resident near the site of the injection for a minimum of 2 weeks. Analysis of 61 tissues demonstrated preferential migration and subsequent engraftment of MSCs in the thymus as well as the gastrointestinal tract. These results also detail a novel in vivo imaging technique and demonstrate the differential spatial distribution of MSCs after migration away from the sites of local delivery. CONCLUSION The active engraftment of the MSCs in combination with their previously documented immunomodulatory capabilities suggests the potential for therapeutic benefit in using MSCs for the treatment of periocular and joint diseases with immune involvement.
Collapse
Affiliation(s)
- Joshua A Wood
- Department of Surgical and Radiological Sciences, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Porada CD, Sanada C, Kuo CJ, Colletti E, Mandeville W, Hasenau J, Zanjani ED, Moot R, Doering C, Spencer HT, Almeida-Porada G. Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC. Exp Hematol 2011; 39:1124-1135.e4. [PMID: 21906573 DOI: 10.1016/j.exphem.2011.09.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/30/2011] [Indexed: 11/26/2022]
Abstract
We recently re-established a line of sheep that accurately mimics the clinical symptoms and genetics of severe hemophilia A (HA). Here, we tested a novel, nonablative transplantation therapy in two pediatric HA animals. Paternal mesenchymal stem cells (MSC) were transduced with a porcine FVIII-encoding lentivector and transplanted via the intraperitoneal route without preconditioning. At the time of transplantation, these animals had received multiple human FVIII treatments for various spontaneous bleeds and had developed debilitating hemarthroses, which produced severe defects in posture and gait. Transplantation of transduced MSC resolved all existent hemarthroses, and spontaneous bleeds ceased. Damaged joints recovered fully; the animals regained normal posture and gait and resumed normal activity. Despite achieving factor-independence, a sharp rise in pre-existent Bethesda titers occurred following transplantation, decreasing the effectiveness and duration of therapy. Postmortem examination revealed widespread engraftment, with MSC present within the lung, liver, intestine, and thymus, but particularly within joints affected at the time of transplantation, suggesting MSC homed to sites of ongoing injury/inflammation to release FVIII, explaining the dramatic improvement in hemarthrotic joints. In summary, this novel, nonablative MSC transplantation was straightforward, safe, and converted life-threatening, debilitating HA to a moderate phenotype in a large animal model.
Collapse
|
30
|
Wang W, Jin P, Wang L, Yang Z, Hu S, Gao B, Zhang H. Impact of Escaped Bone Marrow Mesenchymal Stromal Cells on Extracardiac Organs after Intramyocardial Implantation in a Rat Myocardial Infarction Model. Cell Transplant 2010; 19:1599-607. [PMID: 20719070 DOI: 10.3727/096368910x513982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cell escape occurs after intramyocardial injection for treatment of myocardial infarction (MI) and then the migrated cells might be entrapped by extracardiac organs. We investigated the fate of migrated bone marrow-derived mesenchymal stromal cells (MSCs) and their impact on lung, liver, and spleen. MI model was created by coronary artery ligation in female Lewis rats. Three weeks after the ligation, bromodeoxyuridine (BrdU)-labeled male MSCs were directly injected into the infarcted area in the cell transplantation group ( n = 22). The same volume of phosphate-buffered solution (PBS) was injected in the control group ( n = 21). In the sham group ( n = 10) intramyocardial injection of the same volume of PBS was performed in healthy rats. Four weeks later, echocardiography was performed and the cell retention was evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Immunohistochemistry study was performed to identify the migrated cells. Heart function was improved after the cell injection. qRT-PCR results showed the percentage of retained cells in heart, spleen, liver, and lung ranked 3.63 ± 0.48%, 0.77 ± 0.13%, 0.68 ± 0.10%, 0.62 ± 0.11%, respectively, after cell transplantation. The implanted MSCs that escaped to liver, spleen, and lung did not differentiate into fibroblast, myofibroblast, or alveolar epithelial cells. However, the migrated MSCs in liver expressed functional hepatocyte marker. In conclusion, cell migration after intramyocardial injection did not result in deterioration of lung, liver, and spleen function. Our study might pave the way for new safety investigation of emerging cell resources and their impact on target and untargeted organs.
Collapse
Affiliation(s)
- Wei Wang
- Department of Thoracic and Cardiovascular Surgery, Second Hospital Of Lanzhou University, Lanzhou, China
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peifeng Jin
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department Of Thoracic And Cardiovascular Surgery, First Affiliated Hospital Of Wenzhou Medical College, Wenzhou, China
| | - Lei Wang
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic and Cardiovascular Surgery, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Zhikai Yang
- Department of Thoracic and Cardiovascular Surgery, Second Hospital Of Lanzhou University, Lanzhou, China
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingren Gao
- Department of Thoracic and Cardiovascular Surgery, Second Hospital Of Lanzhou University, Lanzhou, China
| | - Hao Zhang
- Department of Surgery and Research Center for Cardiac Regenerative Medicine, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Porada CD, Almeida-Porada G. Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 2010; 62:1156-66. [PMID: 20828588 DOI: 10.1016/j.addr.2010.08.010] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) possess a set of several fairly unique properties which make them ideally suited both for cellular therapies/regenerative medicine, and as vehicles for gene and drug delivery. These include: 1) relative ease of isolation; 2) the ability to differentiate into a wide variety of seemingly functional cell types of both mesenchymal and non-mesenchymal origin; 3) the ability to be extensively expanded in culture without a loss of differentiative capacity; 4) they are not only hypoimmunogenic, but they produce immunosuppression upon transplantation; 5) their pronounced anti-inflammatory properties; and 6) their ability to home to damaged tissues, tumors, and metastases following in vivo administration. In this review, we summarize the latest research in the use of mesenchymal stem cells in regenerative medicine, as immunomodulatory/anti-inflammatory agents, and as vehicles for transferring both therapeutic genes in genetic disease and genes designed to destroy malignant cells.
Collapse
|
32
|
Almeida-Porada G, Zanjani ED, Porada CD. Bone marrow stem cells and liver regeneration. Exp Hematol 2010; 38:574-80. [PMID: 20417684 PMCID: PMC2882990 DOI: 10.1016/j.exphem.2010.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 12/11/2022]
Abstract
Development of new approaches to treat patients with hepatic diseases that can eliminate the need for liver transplantation is imperative. Use of cell therapy as a means of repopulating the liver has several advantages over whole-organ transplantation because it would be less invasive, less immunogenic, and would allow the use, in some instances, of autologous-derived cells. Stem/progenitor cells that would be ideal for liver repopulation would need to have characteristics such as availability and ease of isolation, the ability to be expanded in vitro, ensuring adequate numbers of cells, susceptibility to modification by viral vector transduction/genetic recombination, to correct any underlying genetic defects, and the ability of restoring liver function following transplantation. Bone marrow-derived stem cells, such as hematopoietic, mesenchymal and endothelial progenitor cells possess some or most of these characteristics, making them ideal candidates for liver regenerative therapies. Here, we will summarize the ability of each of these stem cell populations to give rise to functional hepatic elements that could mediate repair in patients with liver damage/disease.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Department of Animal Biotechnology, University of Nevada, Reno, Reno, NV 89557-0104, USA.
| | | | | |
Collapse
|
33
|
Asanuma H, Meldrum DR, Meldrum KK. Therapeutic Applications of Mesenchymal Stem Cells to Repair Kidney Injury. J Urol 2010; 184:26-33. [DOI: 10.1016/j.juro.2010.03.050] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroshi Asanuma
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Daniel R. Meldrum
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kirstan K. Meldrum
- Department of Urology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
34
|
Ersek A, Pixley JS, Goodrich AD, Porada CD, Almeida-Porada G, Thain DS, Zanjani ED. Persistent circulating human insulin in sheep transplanted in utero with human mesenchymal stem cells. Exp Hematol 2010; 38:311-20. [PMID: 20170708 PMCID: PMC2854135 DOI: 10.1016/j.exphem.2010.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2009] [Revised: 02/07/2010] [Accepted: 02/09/2010] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine if mesenchymal stem cells (MSC) derived from human fetal pancreatic tissue (pMSC) would engraft and differentiate in sheep pancreas following transplantation in utero. MATERIALS AND METHODS A three-step culture system was established for generating human fetal pMSC. Sheep fetuses were transplanted during the fetal transplant receptivity period with human pMSC and evaluated for in situ and functional engraftment in their pancreas, liver, and bone marrow. RESULTS Isolation and expansion of adherent cells from the human fetal pancreas yielded a cell population with morphologic and phenotypic characteristics similar to MSC derived from bone marrow. This putative stem cell population could undergo multilineage differentiation in vitro. Three to 27 months after fetal transplantation, the pancreatic engraftment frequency (chimeric index) was 79%, while functional engraftment was noted in 50% of transplanted sheep. Hepatic and marrow engraftment and expression was noted as well. CONCLUSION We have established a procedure for isolation of human fetal pMSC that display characteristics similar to bone marrow-derived MSC. In vivo results suggest the pMSC engraft, differentiate, and secrete human insulin from the sheep pancreas.
Collapse
Affiliation(s)
- Adel Ersek
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - John S. Pixley
- Division of Rheumatology/Immunology, Department of Internal Medicine, University of Nevada School of Medicine / VA Sierra Health Care System, Reno, Nevada 89502-2597, USA
| | - A. Daisy Goodrich
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - Christopher D. Porada
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - Graca Almeida-Porada
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - David S. Thain
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| | - Esmail D. Zanjani
- Department of Animal Biotechnology, University of Nevada Reno, Mail Stop 202, 1664 North Virginia St, Reno, NV 89557, USA
| |
Collapse
|