1
|
Gallego-Navarro C, Jaggers J, Burkhart HM, Carlo WF, Morales DL, Qureshi MY, Rossano JW, Hagen CE, Seisler DK, Peral SC, Nelson TJ. Autologous umbilical cord blood mononuclear cell therapy for hypoplastic left heart syndrome: a nonrandomized control trial of the efficacy and safety of intramyocardial injections. Stem Cell Res Ther 2025; 16:215. [PMID: 40312733 PMCID: PMC12044795 DOI: 10.1186/s13287-025-04316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Preliminary phase I clinical trial results revealed that autologous umbilical cord blood-derived mononuclear cells (UCB-MNCs) preserved right ventricular cardiac function. To establish the efficacy of intramyocardial injections of an autologous UCB-MNC product at the time of stage II palliation surgery in patients with hypoplastic left heart syndrome (HLHS). METHODS A phase IIb, multicenter, open-label, nonrandomized study was conducted. Ninety-five children (fifty treated and forty-five controls) with HLHS and its variants, a history of stage I palliation surgery, and planned stage II palliation surgery at less than thirteen months were enrolled. We assessed coprimary efficacy endpoints for changes in right ventricular cardiac function through fractional area changes and longitudinal and circumferential strain, both in the short term (three months) and long term (twelve months). Second, we assessed changes in biomarkers of cardiac injury. Safety endpoints included severe adverse events (SAEs), changes in overall health through vital signs, and cumulative hospitalization. RESULTS Assessment of our coprimary efficacy endpoints revealed an unfavorable change in longitudinal cardiac strain in the treatment group compared with an improvement in strain in the control group (unadjusted p =.032) in the short term. No differences were observed between the groups in terms of other coprimary efficacy endpoints in the short or long term. A secondary assessment of biomarkers of cardiac injury revealed higher troponin T levels in the treatment group at three and six hours postsurgery. Regarding safety, no deaths related to the administered product or delivery procedure were reported. The treatment group presented a greater incidence (20%) of at least one SAE than the control group at three months (p =.048). Additionally, no statistically significant differences were found for the other safety endpoints. CONCLUSION Intramyocardial injections of autologous UCB-MNC products into the right ventricular myocardium during stage II palliation surgery failed to enhance cardiac function in patients with hypoplastic left heart syndrome. REGISTERED ON CLINICALTRIALS.GOV: Registered on ClinicalTrials.gov (NCT03779711) on 12/04/2018; URL: https://clinicaltrials.gov/ct2/show/NCT0377971 .
Collapse
Affiliation(s)
- Carlos Gallego-Navarro
- Division of Cardiovascular Diseases, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
| | - James Jaggers
- Division of Congenital Heart Surgery, Heart Institute, Children's Hospital Colorado, University of Colorado Denver Anschutz Medical Campus, Denver, CO, USA
| | - Harold M Burkhart
- Division of Cardiac, Thoracic and Vascular Surgery, University of Oklahoma Health Sciences, Oklahoma, USA
| | - Waldemar F Carlo
- Division of Pediatric Cardiology, University of Alabama Birmingham, Birmingham, AL, USA
| | - David L Morales
- Division of Congenital Heart Surgery, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - M Yasir Qureshi
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Joseph W Rossano
- Department of Pediatrics, Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, USA
| | | | - Drew K Seisler
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
| | - Susana Cantero Peral
- Division of Cardiovascular Diseases, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA
| | - Timothy J Nelson
- Division of Cardiovascular Diseases, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
- Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Rochester, Rochester, MN, USA.
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA.
- HeartWorks Inc. Rochester, Rochester, MN, USA.
- General Internal Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Binsila B, Tomcy TA, Krishnappa B, Sadikh M, Ramachandran N, Kolte AP, Selvaraju S. Comparison of different freezing rates on post-thaw viability, proliferation, and stemness of sheep spermatogonial stem cells. Cryobiology 2025; 118:105203. [PMID: 39863038 DOI: 10.1016/j.cryobiol.2025.105203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/12/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
The application of spermatogonial stem cells (SSC) will be more effective and feasible following the successful cryopreservation and transfer of SSCs in livestock. Like other cells, SSCs are also sensitive to cryoinjury; hence composition of the cryomedia and freezing protocols need to be optimized. The present study aims to optimize the best freezing rates by minimising the ice crystallization and dehydration effect in order to maximize the post-thaw SSCs survivability and stemness characteristics. Three different freezing protocols with varied cooling profiles, cooling profile 1 (isopropanol based freezing): 1 °C/min from 0 °C to -10 °C, 0.5 °C/min up to -40 °C, further reduced to 0.25 °C/min up to -50 °C and 0.1 °C/min to -60 °C; cooling profile 2 (using programmable freezer): 1 °C/min up to 4 °C, 0.3 °C/min up to -8 °C, and cooled at 0.5 °C/min to -50 °C, further decrease to -90 °C (8 °C/min) and cooling profile 3 (uncontrolled rapid freezing): 3.3 °C/min from 0 °C to -10 °C, 5 °C/min up to -40 °C, 2 °C/min to -50 °C and 1.2 °C/min up to -60 °C, were compared for cryopreservation efficiency. The overall viability (91.41 ± 2.00 % Vs 74.59 ± 2.34 %), stemness activity (1.34 ± 0.095 OD units Vs 0.356 ± 0.026 OD units), and proliferation rate (0.849 ± 0.019 OD units Vs 0.749 ± 0.015 OD units) of post-thaw SSC culture irrespective of the freezing regimes were significantly decreased when compared to pre-freeze SSC culture characteristics. The post-thaw viability was significantly greater in cooling profile 1 (79.64 ± 4.1 %) when compared to cooling profile 2 (69.72 ± 2.4 %) and cooling profile 3 (75.43 ± 4.8 %). Also, cooling profile 1 yielded greater (p < 0.05) post-thaw stemness activity (0.456 ± 0.044 OD units) when compared to other methods. The study suggests that the cooling profile 1 using isopropanol based freezing can be recommended for preservation of viability and stemness characteristics of SSCs.
Collapse
Affiliation(s)
- Balakrishnan Binsila
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India, 560030.
| | - Tomy A Tomcy
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India, 560030
| | - Balaganur Krishnappa
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India, 560030
| | - Muhammed Sadikh
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India, 560030
| | - Natesan Ramachandran
- Bioenergetics and Environmental Science Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India, 560030
| | - Atul P Kolte
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India, 560030
| | - Sellappan Selvaraju
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bangalore, India, 560030
| |
Collapse
|
3
|
Li YL, Chen EG, Ren BB. Umbilical cord-derived mesenchymal stromal cells: Promising therapy for heart failure. World J Cardiol 2025; 17:101153. [PMID: 39866217 PMCID: PMC11755126 DOI: 10.4330/wjc.v17.i1.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 01/21/2025] Open
Abstract
Heart failure (HF) is a complex syndrome characterized by the reduced capacity of the heart to adequately fill or eject blood. Currently, HF remains a leading cause of morbidity and mortality worldwide, imposing a substantial burden on global healthcare systems. Recent advancements have highlighted the therapeutic potential of mesenchymal stromal cells (MSCs) in managing HF. Notably, umbilical cord-derived MSCs (UC-MSCs) have demonstrated superior clinical potential compared to traditional bone marrow-derived MSCs; this is evident in their non-invasive collection process, higher proliferation efficacy, and lower immunogenicity and tumorigenicity, as substantiated by preclinical studies. Although the feasibility and safety of UC-MSCs have been tested in animal models, the application of UC-MSCs in HF treatment remains challenged by issues such as inaccurate targeted migration and low survival rates of UC-MSCs. Therefore, further research and clinical trials are imperative to advance the clinical application of UC-MSCs.
Collapse
Affiliation(s)
- Ya-Lun Li
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
- Medical College, Zhejiang University, Hangzhou 310063, Zhejiang Province, China
| | - En-Guo Chen
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China
| | - Bing-Bing Ren
- Department of Pulmonary and Critical Care Medicine, Regional Medical Center for National Institute of Respiratory Disease, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang Province, China.
| |
Collapse
|
4
|
Sharma P, Maurya DK. Wharton's jelly mesenchymal stem cells: Future regenerative medicine for clinical applications in mitigation of radiation injury. World J Stem Cells 2024; 16:742-759. [PMID: 39086560 PMCID: PMC11287430 DOI: 10.4252/wjsc.v16.i7.742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Wharton's jelly mesenchymal stem cells (WJ-MSCs) are gaining significant attention in regenerative medicine for their potential to treat degenerative diseases and mitigate radiation injuries. WJ-MSCs are more naïve and have a better safety profile, making them suitable for both autologous and allogeneic transplantations. This review highlights the regenerative potential of WJ-MSCs and their clinical applications in mitigating various types of radiation injuries. In this review, we will also describe why WJ-MSCs will become one of the most probable stem cells for future regenerative medicine along with a balanced view on their strengths and weaknesses. Finally, the most updated literature related to both preclinical and clinical usage of WJ-MSCs for their potential application in the regeneration of tissues and organs will also be compiled.
Collapse
Affiliation(s)
- Prashasti Sharma
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Dharmendra Kumar Maurya
- Life Sciences, Homi Bhabha National Institute, Mumbai 400094, Maharashtra, India
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India.
| |
Collapse
|
5
|
Subramanian A, Ip CHL, Qin W, Liu X, W D Carter S, Oguz G, Ramasamy A, E Illanes S, Biswas A, G Perron G, L Fee E, W L Li S, K Y Seah M, A Choolani M, W Kemp M. Simulated lunar microgravity transiently arrests growth and induces osteocyte-chondrocyte lineage differentiation in human Wharton's jelly stem cells. NPJ Microgravity 2024; 10:51. [PMID: 38704360 PMCID: PMC11069510 DOI: 10.1038/s41526-024-00397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Human Wharton's jelly stem cells (hWJSCs) are multipotent stem cells that are extensively employed in biotechnology applications. However, the impact of simulated lunar microgravity (sμG) on the growth, differentiation, and viability of this cell population is incompletely characterized. We aimed to determine whether acute (72 h) exposure to sμG elicited changes in growth and lineage differentiation in hWJSCs and if putative changes were maintained once exposure to terrestrial gravity (1.0 G) was restored. hWJSCs were cultured under standard 1.0 G conditions prior to being passaged and cultured under sμG (0.16 G) using a random positioning machine. Relative to control, hWJSCs cultured under sμG exhibited marked reductions in growth but not viability. Cell population expression of characteristic stemness markers (CD 73, 90, 105) was significantly reduced under sμG conditions. hWJSCs had 308 significantly upregulated and 328 significantly downregulated genes when compared to 1.0 G culture conditions. Key markers of cell replication, including MKI67, were inhibited. Significant upregulation of osteocyte-chondrocyte lineage markers, including SERPINI1, MSX2, TFPI2, BMP6, COMP, TMEM119, LUM, HGF, CHI3L1 and SPP1, and downregulation of cell fate regulators, including DNMT1 and EZH2, were detected in sμG-exposed hWJSCs. When returned to 1.0 G for 3 days, sμG-exposed hWJSCs had accelerated growth, and expression of stemness markers increased, approaching normal (i.e. 95%) levels. Our data support earlier findings that acute sμG significantly reduces the cell division potential of hWJSCs and suggest that acute sμG-exposure induces reversible changes in cell growth accompanied by osteocyte-chondrocyte changes in lineage differentiation.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Chelsea Han Lin Ip
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Wei Qin
- Department of Obstetrics and Gynecology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, No. 46 Chongxin Road, 541002, Guilin City, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiawen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital Guangzhou Medical University, 511436, Guangzhou, P.R. China
| | - Sean W D Carter
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Gokce Oguz
- Genome Institute of Singapore (GIS). Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore (GIS). Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Sebastian E Illanes
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, 7620001, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Gabriel G Perron
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Sarah W L Li
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Michelle K Y Seah
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Mahesh A Choolani
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, NUS Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Department of Obstetrics and Gynaecology, National University Hospital, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, WA, Australia.
- Women and Infants Research Foundation, King Edward Memorial Hospital, Subiaco, WA, Australia.
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, 980-8574, Japan.
| |
Collapse
|
6
|
Maličev E, Jazbec K. An Overview of Mesenchymal Stem Cell Heterogeneity and Concentration. Pharmaceuticals (Basel) 2024; 17:350. [PMID: 38543135 PMCID: PMC10975472 DOI: 10.3390/ph17030350] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 03/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are of great interest in cell therapies due to the immunomodulatory and other effects they have after autologous or allogeneic transplantation. In most clinical applications, a high number of MSCs is required; therefore, the isolated MSC population must be expanded in the cell culture until the desired number is reached. Analysing freshly isolated MSCs is challenging due to their rareness and heterogeneity, which is noticeable among donors, tissues, and cell subpopulations. Although the phenotype of MSCs in tissue can differ from those of cultured cells, phenotyping and counting are usually performed only after MSC proliferation. As MSC applicability is a developing and growing field, there is a need to implement phenotyping and counting methods for freshly isolated MSCs, especially in new one-step procedures where isolated cells are implanted immediately without cell culturing. Only by analysing harvested cells can we correctly evaluate such studies. This review describes multilevel heterogeneity and concentrations of MSCs and different strategies for phenotype determination and enumeration of freshly isolated MSCs.
Collapse
Affiliation(s)
- Elvira Maličev
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia
| | - Katerina Jazbec
- Blood Transfusion Centre of Slovenia, Šlajmerjeva 6, 1000 Ljubljana, Slovenia;
| |
Collapse
|
7
|
Acuto S, Lo Iacono M, Baiamonte E, Lo Re R, Maggio A, Cavalieri V. An optimized procedure for preparation of conditioned medium from Wharton's jelly mesenchymal stromal cells isolated from umbilical cord. Front Mol Biosci 2023; 10:1273814. [PMID: 37854039 PMCID: PMC10580810 DOI: 10.3389/fmolb.2023.1273814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
Cell-free therapy based on conditioned medium derived from mesenchymal stromal cells (MSCs) has gained attention in the field of protective and regenerative medicine. However, the exact composition and properties of MSC-derived conditioned media can vary greatly depending on multiple parameters, which hamper standardization. In this study, we have optimized a procedure for preparation of conditioned medium starting from efficient isolation, propagation and characterization of MSCs from human umbilical cord, using a culture medium supplemented with human platelet lysate as an alternative source to fetal bovine serum. Our procedure successfully maximizes the yield of viable MSCs that maintain canonical key features. Importantly, under these conditions, the compositional profile and biological effects elicited by the conditioned medium preparations derived from these MSC populations do not depend on donor individuality. Moreover, approximately 120 L of conditioned medium could be obtained from a single umbilical cord, which provides a suitable framework to produce industrial amounts of toxic-free conditioned medium with predictable composition.
Collapse
Affiliation(s)
- Santina Acuto
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Melania Lo Iacono
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Elena Baiamonte
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Rosa Lo Re
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Aurelio Maggio
- Campus of Haematology Franco e Piera Cutino, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Vincenzo Cavalieri
- Laboratory of Molecular Biology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STeBiCeF), University of Palermo, Palermo, Italy
| |
Collapse
|
8
|
Mahdavi-Jouibari F, Parseh B, Kazeminejad E, Khosravi A. Hopes and opportunities of stem cells from human exfoliated deciduous teeth (SHED) in cartilage tissue regeneration. Front Bioeng Biotechnol 2023; 11:1021024. [PMID: 36860887 PMCID: PMC9968979 DOI: 10.3389/fbioe.2023.1021024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Cartilage lesions are common conditions, affecting elderly and non-athletic populations. Despite recent advances, cartilage regeneration remains a major challenge today. The absence of an inflammatory response following damage and the inability of stem cells to penetrate into the healing site due to the absence of blood and lymph vessels are assumed to hinder joint repair. Stem cell-based regeneration and tissue engineering have opened new horizons for treatment. With advances in biological sciences, especially stem cell research, the function of various growth factors in the regulation of cell proliferation and differentiation has been established. Mesenchymal stem cells (MSCs) isolated from different tissues have been shown to increase into therapeutically relevant cell numbers and differentiate into mature chondrocytes. As MSCs can differentiate and become engrafted inside the host, they are considered suitable candidates for cartilage regeneration. Stem cells from human exfoliated deciduous teeth (SHED) provide a novel and non-invasive source of MSCs. Due to their simple isolation, chondrogenic differentiation potential, and minimal immunogenicity, they can be an interesting option for cartilage regeneration. Recent studies have reported that SHED-derived secretome contains biomolecules and compounds that efficiently promote regeneration in damaged tissues, including cartilage. Overall, this review highlighted the advances and challenges of cartilage regeneration using stem cell-based therapies by focusing on SHED.
Collapse
Affiliation(s)
- Forough Mahdavi-Jouibari
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Benyamin Parseh
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezatolah Kazeminejad
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Dental Research Center, Golestan University of Medical Sciences, Gorgan, Iran,*Correspondence: Ezatolah Kazeminejad, Dr. ; Ayyoob Khosravi,
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran,Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran,*Correspondence: Ezatolah Kazeminejad, Dr. ; Ayyoob Khosravi,
| |
Collapse
|
9
|
Wang Q, Wang Y, Chang C, Ma F, Peng D, Yang S, An Y, Deng Q, Wang Q, Gao F, Wang F, Tang H, Qi X, Jiang X, Cai D, Zhou G. Comparative analysis of mesenchymal stem/stromal cells derived from human induced pluripotent stem cells and the cognate umbilical cord mesenchymal stem/stromal cells. Heliyon 2023; 9:e12683. [PMID: 36647346 PMCID: PMC9840238 DOI: 10.1016/j.heliyon.2022.e12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) show tremendous potential for regenerative medicine due to their self-renewal, multi-differentiation and immunomodulatory capabilities. Largely studies had indicated conventional tissue-derived MSCs have considerable limited expandability and donor variability which hinders further application. Induced pluripotent stem cell (iPSCs)-derived MSCs (iMSCs) have created exciting source for standardized cellular therapy. However, the cellular and molecular differences between iMSCs and the cognate tissue-derived MSCs remains poorly explored. In this study, we first successfully reprogrammed human umbilical cords-derived mesenchymal stem/stromal cells (UMSCs) into iPSCs by using the cocktails of mRNA. Subsequently, iPSCs were further differentiated into iMSCs in xeno-free induction medium. Then, iMSCs were compared with the donor matched UMSCs by assessing proliferative state, differentiation capability, immunomodulatory potential through immunohistochemical analysis, flow cytometric analysis, transcriptome sequencing analysis, and combine with coculture with immune cell population. The results showed that iMSCs exhibited high expression of MSCs positive-makers CD73, CD90, CD105 and lack expression of negative-maker cocktails CD34, CD45, CD11b, CD19, HLA-DR; also successfully differentiated into osteocytes, chondrocytes and adipocytes. Further, the iMSCs were similar with their parental UMSCs in cell proliferative state detected by the CCK-8 assay, and in cell rejuvenation state assessed by β-Galactosidase staining and telomerase activity related mRNA and protein analysis. However, iMSCs exhibited similarity to resident MSCs in Homeobox (Hox) genes expression profile and presented better neural differentiation potential by activation of NESTIN related pathway. Moreover, iMSCs owned enhanced immunosuppression capacity through downregulation pools of pro-inflammatory factors, including IL6, IL1B etc. and upregulation anti-inflammatory factors NOS1, TGFB etc. signals. In summary, our study provides an attractive cell source for basic research and offers fundamental biological insight of iMSCs-based therapy.
Collapse
Affiliation(s)
- Quanlei Wang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China,Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yuwei Wang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China
| | - Chongfei Chang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Feilong Ma
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Dongxiu Peng
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Shun Yang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | | | - Qiuting Deng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qixiao Wang
- Department of Oral and Maxillofacial Surgery, The First People's Hospital of Huaihua, University of South China, Huaihua, Hunan, China
| | - Fei Gao
- China Food and Drug Administration, Beijing, China
| | - Fei Wang
- The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China
| | - Huiru Tang
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Xiaoming Jiang
- The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China,Corresponding author. The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China.
| | - Dongqing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China,Corresponding author. Key Laboratory of Regenerative Medicine of Ministry of Education, Biology Postdoctoral Research Station, Jinan University, Guangzhou, China.
| | - Guangqian Zhou
- Cheerland Danlun Biopharma Co. Ltd., Dapeng New District, Shenzhen, China,Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Science Center, Shenzhen University, Shenzhen, China,The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China,Corresponding author. The SZU-Cheerland Institute for Advanced and Innovative Medicine, Shenzhen, China.
| |
Collapse
|
10
|
Yamatani Y, Nakai K. Comprehensive comparison of gene expression diversity among a variety of human stem cells. NAR Genom Bioinform 2022; 4:lqac087. [PMID: 36458020 PMCID: PMC9706419 DOI: 10.1093/nargab/lqac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Several factors, including tissue origins and culture conditions, affect the gene expression of undifferentiated stem cells. However, understanding the basic identity across different stem cells has not been pursued well despite its importance in stem cell biology. Thus, we aimed to rank the relative importance of multiple factors to gene expression profile among undifferentiated human stem cells by analyzing publicly available RNA-seq datasets. We first conducted batch effect correction to avoid undefined variance in the dataset as possible. Then, we highlighted the relative impact of biological and technical factors among undifferentiated stem cell types: a more influence on tissue origins in induced pluripotent stem cells than in other stem cell types; a stronger impact of culture condition in embryonic stem cells and somatic stem cell types, including mesenchymal stem cells and hematopoietic stem cells. In addition, we found that a characteristic gene module, enriched in histones, exhibits higher expression across different stem cell types that were annotated by specific culture conditions. This tendency was also observed in mouse stem cell RNA-seq data. Our findings would help to obtain general insights into stem cell quality, such as the balance of differentiation potentials that undifferentiated stem cells possess.
Collapse
Affiliation(s)
- Yukiyo Yamatani
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
11
|
Xiao X, Li W, Xu Z, Sun Z, Ye H, Wu Y, Zhang Y, Xie L, Jiang D, Jia R, Wang X. Extracellular vesicles from human umbilical cord mesenchymal stem cells reduce lipopolysaccharide-induced spinal cord injury neuronal apoptosis by mediating miR-29b-3p/PTEN. Connect Tissue Res 2022; 63:634-649. [PMID: 35603476 DOI: 10.1080/03008207.2022.2060826] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE This study investigated the molecular mechanism of whether hUC-MSCs-EVs repressed PTEN expression and activated the PI3K/AKT pathway through miR-29b-3p, thus inhibiting LPS-induced neuronal injury. METHODS hUC-MSCs were cultured and then identified. Cell morphology was observed. Alizarin red, oil red O, and alcian blue staining were used for inducing osteogenesis, adipogenesis, and chondrogenesis. EVs were extracted from hUC-MSCs and identified by transmission electron microscope observation and Western blot. SCI neuron model was established by 24h lipopolysaccharide (LPS) induction. After the cells were cultured with EVs without any treatment, uptake of EVs by SCI neurons, miR-29b-3p expression, cell viability, apoptosis, caspase-3, cleaved caspase-3, caspase 9, Bcl-2, PTEN, PI3K, AKT, and p-Akt protein levels, caspase 3 and caspase 9 activities, and inflammatory factors IL-6 and IL-1β levels were detected by immunofluorescence labeling, RT-qPCR, MTT, flow cytometry, Western blot, caspase 3 and caspase 9 activity detection kits, and ELISA. The binding sites between PTEN and miR-29b-3p were predicted by the database and verified by dual-luciferase assay. RESULTS LPS-induced SCI cell model was successfully established, and hUC-MSCs-EVs inhibited LPS-induced apoptosis of injured spinal cord neurons. EVs transferred miR-29b-3p into LPS-induced injured neurons. miR-29b-3p silencing reversed EV effects on reducing LPS-induced neuronal apoptosis. miR-29b-3p reduced LPS-induced neuronal apoptosis by targeting PTEN. After EVs-miR-inhi and si-PTEN treatment, inhibition of the PI3K/AKT pathway reversed hUC-MSCs-EVs effects on reducing LPS-induced neuronal apoptosis. CONCLUSION hUC-MSCs-EVs activated the PI3K/AKT pathway by carrying miR-29b-3p into SCI neurons and silencing PTEN, thus reducing neuronal apoptosis.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Weiwei Li
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Zhenchao Xu
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Zhicheng Sun
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Hongru Ye
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Yunqi Wu
- Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Changsha City, Hunan Province, China
| | - Yilu Zhang
- Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Changsha City, Hunan Province, China
| | - Liqiong Xie
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Dingyu Jiang
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Runze Jia
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China
| | - Xiyang Wang
- Department of Spine Surgery, The Xiangya Hospital of Central-South University, Changsha City, Hunan Province, China.,Hunan Engineering Laboratory of Advanced Artificial Osteo-materials, Changsha City, Hunan Province, China
| |
Collapse
|
12
|
Poliwoda S, Noor N, Downs E, Schaaf A, Cantwell A, Ganti L, Kaye AD, Mosel LI, Carroll CB, Viswanath O, Urits I. Stem cells: a comprehensive review of origins and emerging clinical roles in medical practice. Orthop Rev (Pavia) 2022; 14:37498. [PMID: 36034728 PMCID: PMC9404248 DOI: 10.52965/001c.37498] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/10/2023] Open
Abstract
Stem cells are types of cells that have unique ability to self-renew and to differentiate into more than one cell lineage. They are considered building blocks of tissues and organs. Over recent decades, they have been studied and utilized for repair and regenerative medicine. One way to classify these cells is based on their differentiation capacity. Totipotent stem cells can give rise to any cell of an embryo but also to extra-embryonic tissue as well. Pluripotent stem cells are limited to any of the three embryonic germ layers; however, they cannot differentiate into extra-embryonic tissue. Multipotent stem cells can only differentiate into one germ line tissue. Oligopotent and unipotent stem cells are seen in adult organ tissues that have committed to a cell lineage. Another way to differentiate these cells is based on their origins. Stem cells can be extracted from different sources, including bone marrow, amniotic cells, adipose tissue, umbilical cord, and placental tissue. Stem cells began their role in modern regenerative medicine in the 1950's with the first bone marrow transplantation occurring in 1956. Stem cell therapies are at present indicated for a range of clinical conditions beyond traditional origins to treat genetic blood diseases and have seen substantial success. In this regard, emerging use for stem cells is their potential to treat pain states and neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Stem cells offer hope in neurodegeneration to replace neurons damaged during certain disease states. This review compares stem cells arising from these different sources of origin and include clinical roles for stem cells in modern medical practice.
Collapse
Affiliation(s)
| | - Nazir Noor
- Department of Anesthesiology, Mount Sinai Medical Center
| | - Evan Downs
- LSU Health Science Center Shreveport School of Medicine, Shreveport, LA
| | - Amanda Schaaf
- University of Arizona College of Medicine-Phoenix, Phoenix, AZ
| | | | - Latha Ganti
- Department of Emergency Medicine, University of Central Florida
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| | - Luke I Mosel
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| | - Caroline B Carroll
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Innovative Pain and Wellness, Creighton University School of Medicine
| | - Ivan Urits
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport
| |
Collapse
|
13
|
Zheng K, Ma Y, Chiu C, Pang Y, Gao J, Zhang C, Du D. Co-culture pellet of human Wharton's jelly mesenchymal stem cells and rat costal chondrocytes as a candidate for articular cartilage regeneration: in vitro and in vivo study. Stem Cell Res Ther 2022; 13:386. [PMID: 35907866 PMCID: PMC9338579 DOI: 10.1186/s13287-022-03094-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Seeding cells are key factors in cell-based cartilage tissue regeneration. Monoculture of either chondrocyte or mesenchymal stem cells has several limitations. In recent years, co-culture strategies have provided potential solutions. In this study, directly co-cultured rat costal chondrocytes (CCs) and human Wharton's jelly mesenchymal stem (hWJMSCs) cells were evaluated as a candidate to regenerate articular cartilage. METHODS Rat CCs are directly co-cultured with hWJMSCs in a pellet model at different ratios (3:1, 1:1, 1:3) for 21 days. The monoculture pellets were used as controls. RT-qPCR, biochemical assays, histological staining and evaluations were performed to analyze the chondrogenic differentiation of each group. The 1:1 ratio co-culture pellet group together with monoculture controls were implanted into the osteochondral defects made on the femoral grooves of the rats for 4, 8, 12 weeks. Then, macroscopic and histological evaluations were performed. RESULTS Compared to rat CCs pellet group, 3:1 and 1:1 ratio group demonstrated similar extracellular matrix production but less hypertrophy intendency. Immunochemistry staining found the consistent results. RT-PCR analysis indicated that chondrogenesis was promoted in co-cultured rat CCs, while expressions of hypertrophic genes were inhibited. However, hWJMSCs showed only slightly improved in chondrogenesis but not significantly different in hypertrophic expressions. In vivo experiments showed that all the pellets filled the defects but co-culture pellets demonstrated reduced hypertrophy, better surrounding cartilage integration and appropriate subchondral bone remodeling. CONCLUSION Co-culture of rat CCs and hWJMSCs demonstrated stable chondrogenic phenotype and decreased hypertrophic intendency in both vitro and vivo. These results suggest this co-culture combination as a promising candidate in articular cartilage regeneration.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yiyang Ma
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Chiu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
14
|
Ma H, Weng F, Wang L, Tong X, Yao Y, Li H. Extracellular vesicle-mediated delivery of miR-127-3p inhibits the proliferation and invasion of choriocarcinoma cells by targeting ITGA6. Exp Cell Res 2022; 414:113098. [DOI: 10.1016/j.yexcr.2022.113098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
|
15
|
Zheng S, Gao Y, Chen K, Liu Y, Xia N, Fang F. A Robust and Highly Efficient Approach for Isolation of Mesenchymal Stem Cells From Wharton's Jelly for Tissue Repair. Cell Transplant 2022; 31:9636897221084354. [PMID: 35313748 PMCID: PMC8943591 DOI: 10.1177/09636897221084354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Mesenchymal stem cells derived from umbilical cord Wharton's Jelly (WJ-MSCs) are emerging as promising therapeutics for a variety of diseases due to their ability of regeneration and immunomodulation, and their non-tumorigenic and non-immunogenic properties. Although multiple protocols have been developed for WJ-MSC isolation, insufficient cell numbers, heterogeneous cell population, and variations in procedures between different laboratories impede further clinical applications. Here, we compared six widely used WJ-MSC isolation methods regarding cell morphology, yield, purity, proliferation rate, and differentiation potential. Based on these analyses, we identified that the inefficiency of the extracellular matrix digestion results in low cell yield. Thus, we developed a new method called "Mince-Soak-Digest (MSD)" to isolate MSCs from WJ by incorporating a soaking step to facilitate the digestion of the extracellular matrix and release of the cells. Our newly developed method generates significantly higher cell yield (4- to 10-fold higher) than six widely used methods that we tested with high purity and consistency. Importantly, by transplantation of WJ-MSCs to the rat uterus, we repair the endometrial injury and restore the fertility of the rats. In conclusion, our results provide a robust and highly efficient approach for the isolation of WJ-MSCs to restore injured tissue. The higher efficiency of MSD assures the abundance of WJ-MSCs for clinical applications. Furthermore, the reliability of MSD contributes to the standardization of WJ-MSC isolation, which eliminates the discrepancies due to isolation procedures, thus facilitating the evaluation of the efficacy of WJ-MSCs across various human clinical applications.
Collapse
Affiliation(s)
- Shengxia Zheng
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanyan Gao
- Anhui Tianlun Infertility Specialist Hospital, Hefei, China
| | - Kai Chen
- Wannan Medical College, Wuhu, China
| | - Yusheng Liu
- Anhui Tianlun Infertility Specialist Hospital, Hefei, China
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
16
|
Abbasi S, Bazyar R, Saremi MA, Alishiri G, Seyyedsani N, Farhoudi Sefidan Jadid M, Khorrami A, Golmarz PE, Jahangirzadeh G, Bedoustan AB, Isazadeh A, Hajazimian S, Amoodizaj FF. Wharton jelly stem cells inhibits AGS gastric cancer cells through induction of apoptosis and modification of MAPK and NF-κB signaling pathways. Tissue Cell 2021; 73:101597. [PMID: 34358919 DOI: 10.1016/j.tice.2021.101597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Gastric cancer) GC) is one of the most common cancer with high mortality worldwide. The human Wharton's jelly stem cells (hWJSCs) can inhibit several cancer cells through several molecular pathways. Therefore, the present study aimed to investigate anticancer effects of hWJSCs conditioned medium (hWJSC-CM) and cell-free lysate (hWJSC-CL) against of GC cell line AGS and underlying signaling pathways. METHODS In this study, we evaluated the effects of hWJSC-CM and hWJSC-CL on viability, proliferation, migration, invasion, apoptosis, and MAPK and NF-κB signaling pathways in AGS cells. Moreover, mRNA expression of genes involved in apoptosis (BAX, BCL2, SMAC, and SURVIVIN), as well as expression of proteins involved in NF-κB and MAPK signaling pathways were evaluated. RESULTS The obtained results showed that the hWJSC-CM and hWJSC-CL decreased viability, migration, and invasion of GC cell line AGS in a concentration and time dependent manner. We observed that the hWJSC-CM and hWJSC-CL induced apoptosis pathway through regulation of apoptosis involved genes mRNA expression. In addition, the hWJSC-CM and hWJSC-CL suppressed NF-κB signaling pathways as well as promoted MAPK signaling pathways. CONCLUSION In general, our study suggested that the hWJSC-CM and hWJSC-CL inhibits proliferation and viability of GC cell line AGS through induction of apoptosis, as well as modification of NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Samaneh Abbasi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Reza Bazyar
- Personalized Medicine Research Center of AmitisGen, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Saremi
- Personalized Medicine Research Center of AmitisGen, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamhoseen Alishiri
- Department of Rheumatology, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nasrin Seyyedsani
- Department of Genetics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Afshin Khorrami
- Young Researchers and Elit Club, Varamin-Pishva Branch, Islamic Azad University, Varamin, Pishva, Iran
| | | | | | | | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
17
|
Rahmani-Moghadam E, Zarrin V, Mahmoodzadeh A, Owrang M, Talaei-Khozani T. Comparison of the Characteristics of Breast Milk-derived Stem Cells with the Stem Cells Derived from the Other Sources: A Comparative Review. Curr Stem Cell Res Ther 2021; 17:71-90. [PMID: 34161214 DOI: 10.2174/1574888x16666210622125309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/14/2021] [Accepted: 03/28/2021] [Indexed: 11/22/2022]
Abstract
Breast milk (BrM) not only supplies nutrition, but it also contains a diverse population of cells. It has been estimated that up to 6% of the cells in human milk possess the characteristics of mesenchymal stem cells (MSC). Available data also indicate that these cells are multipotent and capable of self-renewal and differentiation with other cells. In this review, we have compared different characteristics, such as CD markers, differentiation capacity, and morphology of stem cells, derived from human breast milk (hBr-MSC) with human bone marrow (hBMSC), Wharton's jelly (WJMSC), and human adipose tissue (hADMSC). Through the literature review, it was revealed that human breast milk-derived stem cells specifically express a group of cell surface markers, including CD14, CD31, CD45, and CD86. Importantly, a group of markers, CD13, CD29, CD44, CD105, CD106, CD146, and CD166, were identified, which were common in the four sources of stem cells. WJMSC, hBMSC, hADMSC, and hBr-MSC are potently able to differentiate into the mesoderm, ectoderm, and endoderm cell lineages. The ability of hBr-MSCs todifferentiate into the neural stem cells, neurons, adipocyte, hepatocyte, chondrocyte, osteocyte, and cardiomyocytes has made these cells a promising source of stem cells in regenerative medicine, while isolation of stem cells from the commonly used sources, such as bone marrow, requires invasive procedures. Although autologous breast milk-derived stem cells are an accessible source for women who are in the lactation period, breast milk can be considered as a source of stem cells with high differentiation potential without any ethical concern.
Collapse
Affiliation(s)
- Ebrahim Rahmani-Moghadam
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahideh Zarrin
- Laboratory for Stem Cell Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marzieh Owrang
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Department of Anatomical sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
18
|
Bandekar M, Maurya DK, Sharma D, Sandur SK. Preclinical Studies and Clinical Prospects of Wharton's Jelly-Derived MSC for Treatment of Acute Radiation Syndrome. CURRENT STEM CELL REPORTS 2021; 7:85-94. [PMID: 33936933 PMCID: PMC8080090 DOI: 10.1007/s40778-021-00188-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Purpose of Review Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) have received widespread attention from researchers owing to the remarkable benefits offered by these cells over other stem cells. The primitive nature of WJ-MSCs, ease of isolation, differentiation ability, and immuno-modulatory nature make these cells superior to bone marrow MSCs and ideal to treat various human ailments. This review explores ability of WJ-MSCs to mitigate acute radiation syndrome caused by planned or unplanned radiation exposure. Recent Findings Recent reports suggest that WJ-MSCs home to damaged tissues in irradiated host and mitigate radiation induced damage to radiosensitive tissues such as hematopoietic and gastrointestinal systems. WJ-MSCs and conditioned media were found to protect mice from radiation induced mortality and also prevent radiation dermatitis. Local irradiation-induced lung toxicity in mice was significantly reduced by CXCR4 over-expressing WJ-MSCs. Summary Emerging evidences support safety and effectiveness of WJ-MSCs for treatment of acute radiation syndrome and lung injury after planned or accidental exposure. Additionally, conditioned media collected after culturing WJ-MSCs can also be used for mitigation of radiation dermatitis. Clinical translation of these findings would be possible after careful evaluation of resilience, effectiveness, and molecular mechanism of action of xenogeneic WJ-MSCs in non-human primates.
Collapse
Affiliation(s)
- Mayuri Bandekar
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,University of Mumbai, Kalina, Mumbai, 400098 India
| | - Dharmendra K Maurya
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Santosh K Sandur
- Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| |
Collapse
|
19
|
Lindsay SL, Barnett SC. Therapeutic Potential of Niche-Specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair. Cells 2021; 10:cells10040901. [PMID: 33919910 PMCID: PMC8070966 DOI: 10.3390/cells10040901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The use of mesenchymal stem/stromal cells (MSCs) for transplant-mediated repair represents an important and promising therapeutic strategy after spinal cord injury (SCI). The appeal of MSCs has been fuelled by their ease of isolation, immunosuppressive properties, and low immunogenicity, alongside the large variety of available tissue sources. However, despite reported similarities in vitro, MSCs sourced from distinct tissues may not have comparable biological properties in vivo. There is accumulating evidence that stemness, plasticity, immunogenicity, and adaptability of stem cells is largely controlled by tissue niche. The extrinsic impact of cellular niche for MSC repair potential is therefore important, not least because of its impact on ex vivo expansion for therapeutic purposes. It is likely certain niche-targeted MSCs are more suited for SCI transplant-mediated repair due to their intrinsic capabilities, such as inherent neurogenic properties. In addition, the various MSC anatomical locations means that differences in harvest and culture procedures can make cross-comparison of pre-clinical data difficult. Since a clinical grade MSC product is inextricably linked with its manufacture, it is imperative that cells can be made relatively easily using appropriate materials. We discuss these issues and highlight the importance of identifying the appropriate niche-specific MSC type for SCI repair.
Collapse
|
20
|
Wang Q, Li J, Wang S, Deng Q, Wang K, Dai X, An Y, Dong G, Ke W, Chen F, Liu L, Yang H, Du Y, Zhao W, Shang Z. Single-cell transcriptome profiling reveals molecular heterogeneity in human umbilical cord tissue and culture-expanded mesenchymal stem cells. FEBS J 2021; 288:5311-5330. [PMID: 33763993 DOI: 10.1111/febs.15834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/22/2021] [Indexed: 01/08/2023]
Abstract
Human umbilical cord-derived mesenchymal stem/stromal cells (UMSCs) demonstrate great therapeutic potential in regenerative medicine. The use of UMSCs for clinical applications requires high quantity and good quality of cells usually by in vitro expansion. However, the heterogeneity and the characteristics of cultured UMSCs and the cognate human umbilical cord tissue at single-cell resolution remain poorly defined. In this study, we created a single-cell transcriptome profile of human umbilical cord tissue and the cognate culture-expanded UMSCs. Based on the inferred characteristics of cell clusters and trajectory analysis, we identified three subgroups in culture-expanded UMSCs and putative novel transcription factors (TFs) in regulating UMSC state transition. Further, putative ligand-receptor interaction analysis demonstrated that cellular interactions most frequently occurred in epithelial-like cells with other cell groups in umbilical cord tissue. Moreover, we dissected the transcriptomic differences of in vitro and in vivo subgroups and inferred the telomere-related molecules and pathways that might be activated in UMSCs for cell expansion in vitro. Our study provides a comprehensive and integrative study of the transcriptomics of human umbilical cord tissue and their cognate-cultured counterparts, which paves the way for a deeper understanding of cellular heterogeneity and offers fundamental biological insight of UMSCs-based cell therapy.
Collapse
Affiliation(s)
- Quanlei Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, China
| | - Jinlu Li
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Shengpeng Wang
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Qiuting Deng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Kuixing Wang
- BGI-Shenzhen, China.,Shenzhen BGI Cell Technology Co., Ltd, China
| | - Xi Dai
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | | | - Guoyi Dong
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China.,BGI-Shenzhen, China
| | - Weilin Ke
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, China
| | - Fang Chen
- BGI-Shenzhen, China.,MGI, BGI-Shenzhen, China
| | | | - Huanming Yang
- BGI-Shenzhen, China.,James D. Watson Institute of Genome Sciences, Hangzhou, China
| | | | - Weihua Zhao
- Department of Obstetrics, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, China
| | - Zhouchun Shang
- BGI-Shenzhen, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, China.,MGI, BGI-Shenzhen, China.,BGI College, Northwest University, Xi'an, China
| |
Collapse
|
21
|
Huwaikem MAH, Kalamegam G, Alrefaei G, Ahmed F, Kadam R, Qadah T, Sait KHW, Pushparaj PN. Human Wharton's Jelly Stem Cell Secretions Inhibit Human Leukemic Cell Line K562 in vitro by Inducing Cell Cycle Arrest and Apoptosis. Front Cell Dev Biol 2021; 9:614988. [PMID: 33869169 PMCID: PMC8044948 DOI: 10.3389/fcell.2021.614988] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 11/22/2022] Open
Abstract
Emerging resistance to the tyrosine kinase inhibitors that target the BCR-ABL1 oncoprotein has prompted research for novel therapeutics against chronic myeloid leukemia (CML). Herein, we evaluated the tumor inhibitory properties of the human Wharton’s jelly stem cells (hWJSCs) co-culture (hWJSC-CC) and their extracts, namely, the hWJSC-conditioned medium (hWJSC-CM; 100%) and hWJSC-lysate (hWJSC-L; 15 μg/ml), on a CML cell line K562 in vitro. The hWJSCs expressed mesenchymal stem cell (MSC)-related cluster of differentiation (CD) markers and demonstrated mesodermal tissue differentiation potential. The cell metabolic activity showed a mean maximal decrease in the K562 cells by 49.12, 41.98, and 68.80% following treatment with the hWJSC-CC, hWJSC-CM, and hWJSC-L, respectively, at 72 h. The sub-G1 population in the cell cycle was decreased by 3.2, 4.5, and 3.8% following treatment with the hWJSC-CC, hWJSC-CM, and hWJSC-L, whereas the G2/M cell population was increased by 13.7 and 12.5% with the hWJSC-CM and hWJSC-L, respectively, at 48 h. Annexin V–allophycocyanin (APC) assay showed an increase in the apoptotic cells by 4.0, 3.9, and 4.5% at 48 h. The expression of pro-apoptotic BAX and CASP3 genes were increased, whereas BIRC5 (Survivin) was decreased compared with the control. The pro-inflammation-related genes, namely, IFN-γ, TNF-α, IL-1β, IL-6, IL-8, and IL-12A, were decreased, whereas the anti-inflammatory genes, namely, IL-4 and IL-10, were increased following treatment with the hWJSC-CC, hWJSC-CM, and hWJSC-L at 48 h. Multiplex bead-based cytokine assay also demonstrated decreases in the pro-inflammatory cytokines (IFN-γ, TNF-α, IL-1β, IL-6, and IL-12) and an increase in the anti-inflammatory cytokine (IL-10) compared with the control. The pro-inflammatory cytokine IL-8 showed an increase with the hWJSC-CC and decreases with both the hWJSC-CM and the hWJSC-L. The hWJSCs and their extracts inhibited the K562 cells by causing cell cycle arrest and inducing apoptosis via the soluble cellular factors. However, an in vivo evaluation is necessary to unravel the true potential of the hWJSCs and their extracts before its use in CML inhibition.
Collapse
Affiliation(s)
- Muneerah A H Huwaikem
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Gauthaman Kalamegam
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghadeer Alrefaei
- Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia.,Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roaa Kadam
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Talal Qadah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalid H W Sait
- Department of Obstetrics and Gynaecology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter N Pushparaj
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Tang Y, Zhou Y, Li HJ. Advances in mesenchymal stem cell exosomes: a review. Stem Cell Res Ther 2021; 12:71. [PMID: 33468232 PMCID: PMC7814175 DOI: 10.1186/s13287-021-02138-7] [Citation(s) in RCA: 193] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Stem cells can be used for regenerative medicine and as treatments for disease. The application of tissue engineering-related transplantation, stem cells, and local changes in the microenvironment is expected to solve major medical problems. Currently, most studies focus on tissue repair and regeneration, and mesenchymal stem cells (MSCs) are among the most common research topics. MSCs are applicable as seed cells, and they represent one of the current hot topics in regenerative medicine research. However, due to storage limitations and because cell senescence occurs during in vitro expansion, their clinical application is challenging. Exosomes, which are secreted by MSCs through paracrine signalling, not only have the same effects as MSCs, but they also have the advantages of targeted delivery, low immunogenicity, and high repairability. This article reviews the acquisition methods, characteristics, biological functions, and clinical applications of exosomes.
Collapse
Affiliation(s)
- Yaya Tang
- Key Laboratory of Vaccine Research and Development for Major Infectious Diseases of Yunnan Province, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 People’s Republic of China
- Kunming Medical University, Kunming, 650500 People’s Republic of China
| | - Yan Zhou
- Key Laboratory of Vaccine Research and Development for Major Infectious Diseases of Yunnan Province, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 People’s Republic of China
| | - Hong-Jun Li
- Key Laboratory of Vaccine Research and Development for Major Infectious Diseases of Yunnan Province, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118 People’s Republic of China
| |
Collapse
|
23
|
Lin HD, Fong CY, Biswas A, Bongso A. Allogeneic human umbilical cord Wharton's jelly stem cells increase several-fold the expansion of human cord blood CD34+ cells both in vitro and in vivo. Stem Cell Res Ther 2020; 11:527. [PMID: 33298170 PMCID: PMC7724853 DOI: 10.1186/s13287-020-02048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background The transplantation of human umbilical cord blood (UCB) CD34+ cells has been successfully used to treat hematological disorders but one major limitation has been the low cell numbers available. Mesenchymal stem cells (MSCs) lying within the bone marrow in vivo behave like a scaffold on which CD34+ cells interact and proliferate. We therefore evaluated the use of allogeneic MSCs from the human UC Wharton’s jelly (hWJSCs) as stromal support for the ex vivo expansion of CD34+ cells. Methods We performed an in-depth evaluation of the primitiveness, migration, adhesion, maturation, mitochondrial behavior, and pathway mechanisms of this platform using conventional assays followed by the evaluation of engraftment potential of the expanded CD34+ cells in an in vivo murine model. Results We demonstrate that hWJSCs and its conditioned medium (hWJSC-CM) support the production of significantly high fold changes of CD34+, CD34+CD133+, CD34+CD90+, CD34+ALDH+, CD34+CD45+, and CD34+CD49f+ cells after 7 days of interaction when compared to controls. In the presence of hWJSCs or hWJSC-CM, the CD34+ cells produced significantly more primitive CFU-GEMM colonies, HoxB4, and HoxA9 gene expression and lower percentages of CD34+CXCR4+ cells. There were also significantly higher N-cadherin+ cell numbers and increased cell migration in transwell migration assays. The CD34+ cells expanded with hWJSCs had significantly lower mitochondrial mass, mitochondrial membrane potential, and oxidative stress. Green Mitotracker-tagged mitochondria from CD34+ cells were observed lying within red CellTracker-tagged hWJSCs under confocal microscopy indicating mitochondrial transfer via tunneling nanotubes. CD34+ cells expanded with hWJSCs and hWJSC-CM showed significantly reduced oxidative phosphorylation (ATP6VIH and NDUFA10) and increased glycolytic (HIF-1a and HK-1) pathway-related gene expression. CD34+ cells expanded with hWJSCs for 7 days showed significant greater CD45+ cell chimerism in the bone marrow of primary and secondary irradiated mice when transplanted intravenously. Conclusions In this report, we confirmed that allogeneic hWJSCs provide an attractive platform for the ex vivo expansion of high fold numbers of UCB CD34+ cells while keeping them primitive. Allogeneic hWJSCs are readily available in abundance from discarded UCs, can be easily frozen in cord blood banks, thawed, and then used as a platform for UCB-HSC expansion if numbers are inadequate.
Collapse
Affiliation(s)
- Hao Daniel Lin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
24
|
Kalamegam G, Alfakeeh SM, Bahmaid AO, AlHuwait EA, Gari MA, Abbas MM, Ahmed F, Abu-Elmagd M, Pushparaj PN. In vitro Evaluation of the Anti-inflammatory Effects of Thymoquinone in Osteoarthritis and in silico Analysis of Inter-Related Pathways in Age-Related Degenerative Diseases. Front Cell Dev Biol 2020; 8:646. [PMID: 32793594 PMCID: PMC7391788 DOI: 10.3389/fcell.2020.00646] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation is a common underlying factor in osteoarthritis (OA) and most age-related degenerative diseases. As conventional therapies help only in partial alleviation of symptoms in OA, stem cell-based therapies and herbal supplements are being widely explored. Thymoquinone (TQ), an active ingredient of Nigella sativa is reported to have immunomodulatory, anti-inflammatory and antioxidant properties. We evaluated the effects of TQ on bone marrow MSCs (BM-MSCs) derived from OA patients and its interrelated pathways in inflammation and age-related degenerative diseases using Ingenuity Pathway Analysis (IPA) as well as possible molecular targets using SwissTargetPrediction. BM-MSCs were derived from OA patients and their stemness properties were characterized by studying the MSCs related CD surface marker expression and differentiation into adipocytes, osteoblasts, and chondrocytes. Treatment with TQ (100 nM-5 μM) demonstrated cell death, especially at higher concentrations. MTT assay demonstrated a significant concentration-dependent decrease in cell viability which ranged from 20.04% to 69.76% with higher doses (300 nM, 1 μM, and 5 μM), especially at 48h and 72h. Additional cell viability testing with CellTiter-Blue also demonstrated a significant concentration-dependent decrease in cell viability which ranged from 27.80 to 73.67% with higher doses (300 nM, 1 μM, 3 μM, and 5 μM). Gene expression analysis following treatment of BM-MSCs with TQ (1 and 3 μM) for 48h showed upregulation of the anti-inflammatory genes IL-4 and IL-10. In contrast, the pro-inflammatory genes namely IFN-γ, TNF-α, COX-2, IL-6, IL-8, IL-16, and IL-12A although were upregulated, compared to the lower concentration of TQ (1 μM) they were all decreased at 3 μM. The pro-apoptotic BAX gene was downregulated while the SURVIVIN gene was upregulated. IPA of the molecular interaction of TQ in inflammation and age-related degenerative diseases identified canonical pathways directly related to synaptogenesis, neuroinflammation, TGF-β, and interleukin signaling. Further screening led to the identification of 36 molecules that are involved in apoptosis, cell cycle regulation, cytokines, chemokines, and growth factors. SwissTargetPrediction of TQ identified potential molecular targets with high probability. TQ exerted anti-inflammatory effects and therefore can be a useful adjuvant along with conventional therapies against inflammation in OA and other age-related degenerative diseases.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Medicine, Asian Institute of Medicine, Science and Technology, AIMST University, Bedong, Malaysia
| | - Saadiah M Alfakeeh
- Department of Biochemistry, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afnan Omar Bahmaid
- Department of Biochemistry, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Etimad A AlHuwait
- Department of Biochemistry, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mamdouh A Gari
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M Abbas
- Sheikh Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis by Stem Cells, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Orthopaedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammed Abu-Elmagd
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Stem Cells Unit, Centre of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Biosynthesis, characterization and evaluation of the supportive properties and biocompatibility of DBM nanoparticles on a tissue-engineered nerve conduit from decellularized sciatic nerve. Regen Ther 2020; 14:315-321. [PMID: 32467828 PMCID: PMC7243182 DOI: 10.1016/j.reth.2020.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/13/2020] [Accepted: 03/11/2020] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the supporting effects of nano-demineralized bone matrix on the cultivation of Wharton's jelly stem cells on acellularized nerve scaffold. Demineralized bone matrix nanoparticles were prepared and characterized by several experiments. Decellularized sciatic nerve scaffolds were prepared and their efficiency was evaluated using histological stainings and biomechanical testing. Results of histological staining indicated that the integrity of the extra cellular matrix components was preserved. Also, the growth and viability of WJSCs on the scaffolds were significantly higher in DBM nanoparticle groups. We conclude that supportive properties of nano-DBM groups showed better cell viability and a suitable microenvironment for proliferation, retention, and adhesion of cells compared with other groups.
Collapse
|
26
|
Fu X, Xu B, Jiang J, Du X, Yu X, Yan Y, Li S, Inglis BM, Ma H, Wang H, Pei X, Si W. Effects of cryopreservation and long-term culture on biological characteristics and proteomic profiles of human umbilical cord-derived mesenchymal stem cells. Clin Proteomics 2020; 17:15. [PMID: 32489333 PMCID: PMC7247169 DOI: 10.1186/s12014-020-09279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Human umbilical cord-derived MSCs (hUC-MSCs) have been identified as promising seeding cells in tissue engineering and clinical applications of regenerative medicine due to their advantages of simple acquisition procedure and the capability to come from a young tissue donor over the other MSCs sources. In clinical applications, large scale production is required and optimal cryopreservation and culture conditions are essential to autologous and allogeneic transplantation in the future. However, the influence of cryopreserved post-thaw and long-term culture on hUC-MSCs remains unknown, especially in terms of specific protein expression. Therefore, biological characteristics and proteomic profiles of hUC-MSCs after cryopreserving and long-term culturing were investigated. METHODS Firstly, hUC-MSCs were isolated from human umbilical cord tissues and identified through morphology, surface markers and tri-lineage differentiation potential at passage 3, and then the biological characteristics and proteomic profiles were detected and compared after cryopreserving and long-term culturing at passage 4 and continuously cultured to passage 10 with detection occurring here as well. The proteomic profiles were tested by using the isobaric tags for relative and absolute quantification (iTRAQ) labeling technique and differential protein were confirmed by mass spectrometry. RESULTS The results showed no significant differences in phenotypes including morphology, surface marker and tri-lineage differentiation potential but have obvious changes in translation level, which is involved in metabolism, cell cycle and other pathways. CONCLUSION This suggests that protein expression may be used as an indicator of hUC-MSCs security testing before applying in clinical settings, and it is also expected to provide the foundation or standardization guide of hUC-MSCs applications in regenerative medicine.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Jiang Jiang
- Department of Obstetrics, The First People’s Hospital of Yunnan Province, Kunming, 650032 China
| | - Xing Du
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiaoli Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Shanshan Li
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Briauna Marie Inglis
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| | - Huiming Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Hongyan Wang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004 China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, 650500 China
| |
Collapse
|
27
|
Hypoxic Wharton's Jelly Stem Cell Conditioned Medium Induces Immunogenic Cell Death in Lymphoma Cells. Stem Cells Int 2020; 2020:4670948. [PMID: 32377203 PMCID: PMC7189315 DOI: 10.1155/2020/4670948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells from Wharton's jelly of the human umbilical cord (hWJSCs), and the conditioned medium (hWJSC-CM) prepared from them, were shown to be tumoricidal on many cancers. However, these tumoricidal effects were observed in hWJSCs grown under normoxic conditions of 21% oxygen in the laboratory. Since oxygen concentrations in the stem cell niche or physiological microenvironment are hypoxic and help to maintain stemness properties, the objective of this work was to evaluate whether there were differences in the tumoricidal properties of hWJSC-CM grown in 21% O2 (normoxic) or 5% O2 (hypoxic) environments. The results showed that hWJSCs grown under normoxic or hypoxic conditions showed no distinct morphological differences in culture and remained positive in trilineage differentiation into adipocytes, osteocytes, and chondrocytes. Hypoxic hWJSCs expressed the mesenchymal stem cell surface markers CD105, CD90, CD73, CD146, and CD108 similar to normoxic hWJSCs but were negative for the hematopoietic markers CD14, CD19, CD34, CD45, CD117, and HLA-DR. Hypoxic hWJSC-CM produced a significantly greater reduction in cell viability and a significantly greater increase in apoptosis, oxidative stress, and lipid peroxidation in human lymphoma cells compared to normoxic hWJSC-CM. Hypoxic hWJSC-CM also produced significantly greater expression of immunogenic cell death (ICD) hallmarks such as surface-bound calreticulin, HSP70, HSP90, and high mobility group binding 1 proteins and significantly decreased expression of the defense molecules CD47 and PD-L1. This study showed that the tumoricidal effect of hypoxic hWJSC-CM was superior to normoxic hWJSC-CM and should be the preferred choice of preparing hWJSC-CM for the induction of ICD on lymphoma cells.
Collapse
|
28
|
Song JS, Hong KT, Kim NM, Park HS, Choi NH. Human umbilical cord blood-derived mesenchymal stem cell implantation for osteoarthritis of the knee. Arch Orthop Trauma Surg 2020; 140:503-509. [PMID: 31980879 DOI: 10.1007/s00402-020-03349-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION This study aimed to investigate the clinical outcomes after human umbilical cord blood-derived mesenchymal stem cell (hUCB-MSC) implantation for medial compartment (MC) osteoarthritis of the knee. MATERIALS AND METHODS Inclusion criteria were patients older than 60 years, with a kissing lesion of the MC, a full-thickness chondral defect ≥ 4 cm2 of the medial femoral condyle (MFC), and a varus deformity ≥ 3° on a long cassette scanogram. The mean age was 64.9 ± 4.4 years and the mean chondral defect of the MFC was 7.2 ± 1.9 cm2. A mixture of sodium hyaluronate and hUCB-MSC was implanted into the chondral defect and a high tibial osteotomy was performed in all patients. International Knee Documentation Committee (IKDC), visual analog scale (VAS), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores were evaluated preoperatively and 1 year and 2 years postoperatively. Cartilage regeneration was evaluated in 14 (56%) patients by second-look arthroscopy at 1 year postoperatively. RESULTS Twenty-five patients underwent hUBC-MSC implantation. IKDC, VAS, and WOMAC scores at 1 year and 2 years improved significantly compared to preoperative scores. These scores at 1 year and 2 years were not significantly different between the body mass index (BMI) < 25 group and BMI ≥ 25 group. However, the < 65-year-old group showed superior IKDC scores at 1 year and 2 years and VAS score at 2 years than the ≥ 65-year-old group. Younger age and larger size of the chondral defect were associated with a significantly greater improvement in IKDC, VAS and WOMAC scores at 2 years. Second-look arthroscopy demonstrated International Cartilage Repair Society-Cartilage Repair Assessment grade I in six (42.9%) patients and grade II in eight (57.1%). CONCLUSIONS hUCB-MSC implantation regenerated cartilage satisfactorily and showed satisfactory clinical outcomes in patients older than 60 years who had MC osteoarthritis.
Collapse
Affiliation(s)
- Jun-Seob Song
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Ki-Taek Hong
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Na-Min Kim
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Han-Soo Park
- Department of Orthopaedic Surgery, Seoul JS Hospital, Seoul, South Korea
| | - Nam-Hong Choi
- Department of Orthopaedic Surgery, Eulji Medical Center, Seoul, South Korea.
| |
Collapse
|
29
|
Arjunan S, Gan SU, Choolani M, Raj V, Lim J, Biswas A, Bongso A, Fong CY. Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium. Stem Cell Res Ther 2020; 11:78. [PMID: 32085797 PMCID: PMC7035736 DOI: 10.1186/s13287-020-01609-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Background Keloid formation occurs in Caucasian, African, and Asian populations and is a severe psychosocial burden on patients. There is no permanent treatment for this problem as its pathogenesis is not properly understood. Furthermore, differences in keloid behavior between ethnic groups are not known. It has been hypothesized that keloids behave like benign tumors because of their uncontrolled growth. The present study evaluated the tumoricidal properties of human Wharton’s jelly stem cell-conditioned medium (hWJSC-CM) on fresh Asian keloid cells (AKCs). Methods Human Wharton’s jelly stem cells (hWJSCs) and AKCs were isolated based on our previous methods. hWJSCs and human skin fibroblasts (HSF) (controls) were used to collect hWJSC-CM and HSF-conditioned medium (HSF-CM). AKCs were treated with hWJSC-CM and HSF-CM in vitro and in vivo in a human keloid xenograft SCID mouse model. The inhibitory effect of hWJSC-CM on AKCs was tested in vitro using various assays and in vivo for attenuation/abrogation of AKC tumors created in a xenograft mouse model. Results qRT-PCR analysis showed that the genes FN1, MMP1, and VCAN were significantly upregulated in AKCs and ANXA1, ASPN, IGFBP7, LGALS1, and PTN downregulated. AKCs exposed to hWJSC-CM in vitro showed significant decreases in cell viability and proliferation, increases in Annexin V-FITC+ cell numbers, interruptions of the cell cycle at Sub-G1 and G2/M phases, altered CD marker expression, downregulated anti-apoptotic-related genes, and upregulated pro-apoptotic and autophagy-related genes compared to controls. When AKCs were administered together with hWJSC-CM into immunodeficient mice there were no keloid tumors formed in 7 mice (n = 10) compared to the untreated control mice. When hWJSC-CM was injected directly into keloid tumors created in mice there were significant reductions in keloid tumor volumes and weights in 30 days. Conclusions hWJSC-CM inhibited the growth of AKCs in vitro and in xenograft mice, and it may be a potential novel treatment for keloids in the human. The specific molecule(s) in hWJSC-CM that induce the anti-keloid effect need to be identified, characterized, and tested separately in larger preclinical and clinical studies.
Collapse
Affiliation(s)
- Subramanian Arjunan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Shu Uin Gan
- Department of Surgery, Kent Ridge, 119228, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Vaishnevi Raj
- Department of Medicine, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Jane Lim
- Department of Surgery, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Chui Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore.
| |
Collapse
|
30
|
Inhibition of Cervical Cancer Cell Line Hela by Human Wharton’s Jelly Stem Cells Through Induction of Apoptosis. ACTA ACUST UNITED AC 2020. [DOI: 10.5812/gct.99206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Alrefaei GI, Alkarim SA, Abduljabbar HS. Impact of Mothers' Age on Telomere Length and Human Telomerase Reverse Transcriptase Expression in Human Fetal Membrane-Derived Mesenchymal Stem Cells. Stem Cells Dev 2019; 28:1632-1645. [PMID: 31650883 DOI: 10.1089/scd.2019.0144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Age-related cellular changes and limited replicative capacity of adult mesenchymal stem cells (MSCs) are few of the challenges confronting stem cell research. MSCs from human fetal membranes (hFM-MSCs), including placental, umbilical cord, and amniotic membrane, are considered an alternative to adult MSCs. However, the effect of mothers' age on hFM-MSC cellular properties is still not clearly established. This study aimed to evaluate the effect of mothers' age on hFM-MSC telomere length, telomerase activity, and proliferation ability in three different age groups: GI (20-29 years), GII (30-39 years), and GIII (≥40 years). hFM samples were collected from pregnant women ≤37 weeks after obtaining consent. hFM-MSCs were isolated and cultured to characterize them by flow cytometry and assess proliferation by MTT assay and doubling time. Telomere length and expression levels of human telomerase reverse transcriptase were assessed by quantitative real-time polymerase chain reaction (qRT-RCR). hFM-MSCs in the three age groups were spindle-shaped, plastic-adherent, and exhibited high proliferation rates and strong expression of hMSC markers. GI showed the longest telomere length in hMSCs in various FM regions, whereas GIII showed the highest level of telomerase expression. There was no difference in telomere length between GII and GIII, and both groups showed the same hMSC characteristics. In conclusion, although the hFM-MSCs derived from different fetal membranes maintained the MSC characteristics in all study groups, the hFM-MSCs of older mothers had shorter telomeres and higher telomerase activity and proliferation rate than did those derived from younger mothers. Thus, the hFM-MSCs of older mothers could be unsuitable for expansion in vitro or stem cell therapy. Determination of telomere length and telomerase expression level of hFM might help characterizing and understanding the biological differences of hFM-MSCs in different age groups.
Collapse
Affiliation(s)
- Ghadeer I Alrefaei
- Biology Department, Faculty of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Saleh A Alkarim
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hassan S Abduljabbar
- Obstetrics and Gynecology Department, King Abdulaziz University Hospital, Jeddah, Saudi Arabia.,Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Raj V, Claudine S, Subramanian A, Tam K, Biswas A, Bongso A, Fong CY. Histological, immunohistochemical, and genomic evaluation of excisional and diabetic wounds treated with human Wharton's jelly stem cells with and without a nanocarrier. J Cell Biochem 2019; 120:11222-11240. [PMID: 30706534 DOI: 10.1002/jcb.28398] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/15/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
We showed in previous studies that human umbilical cord Wharton's jelly stem cells (hWJSCs) improved the healing rates of excisional and diabetic wounds in the mouse model. As an extension of those studies, we report here the more detailed quantitative histological, immunohistochemical, and genomic evaluation of biopsies from those excisional and diabetic wounds in an attempt to understand the mechanisms of the enhanced wound healing aided by hWJSCs. Bright-field microscopic observations and ImageJ software analysis on histological sections of the excisional and diabetic wound biopsies collected at different time points showed that the thickness of the epidermis and dermis, and positive picrosirius-red stained areas for collagen, were significantly greater in the presence of hWJSCs compared with controls (P < 0.05). Immunohistochemistry of the diabetic wound biopsies showed increased positive staining for the vascular endothelial marker CD31 and cell proliferation marker Ki67 in the presence of hWJSCs and its conditioned medium (hWJSC-CM). Quantitative real-time polymerase chain reaction showed upregulation of groups of genes involved in extracellular matrix regulation, collagen biosynthesis, angiogenesis, antifibrosis, granulation, and immunomodulation in the presence of hWJSCs. Taken together, the results demonstrated that hWJSCs and hWJSC-CM that contains the paracrine secretions of hWJSCs, enhance the healing of excisional and diabetic wounds via re-epithelialization, collagen deposition, angiogenesis, and immunomodulation. The inclusion of an Aloe vera-polycaprolactone (AV/PCL) nanocarrier did not significantly change the effect of the hWJSCs. However, the topical application of an AV/PCL nanocarrier impregnated with hWJSCs is convenient and less invasive than the administration of hWJSC injections into wounds.
Collapse
Affiliation(s)
- Vaishnevi Raj
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Stephanie Claudine
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Kimberley Tam
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance in Research and Technology, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| |
Collapse
|
33
|
Vawda R, Badner A, Hong J, Mikhail M, Lakhani A, Dragas R, Xhima K, Barretto T, Librach CL, Fehlings MG. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury. Stem Cells Transl Med 2019; 8:639-649. [PMID: 30912623 PMCID: PMC6591557 DOI: 10.1002/sctm.18-0192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Localized vascular disruption after traumatic spinal cord injury (SCI) triggers a cascade of secondary events, including inflammation, gliosis, and scarring, that can further impact recovery. In addition to immunomodulatory and neurotrophic properties, mesenchymal stromal cells (MSCs) possess pericytic characteristics. These features make MSCs an ideal candidate for acute cell therapy targeting vascular disruption, which could reduce the severity of secondary injury, enhance tissue preservation and repair, and ultimately promote functional recovery. A moderately severe cervical clip compression/contusion injury was induced at C7‐T1 in adult female rats, followed by an intravenous tail vein infusion 1 hour post‐SCI of (a) term‐birth human umbilical cord perivascular cells (HUCPVCs); (b) first‐trimester human umbilical cord perivascular cells (FTM HUCPVCs); (c) adult bone marrow mesenchymal stem cells; or (d) vehicle control. Weekly behavioral testing was performed. Rats were sacrificed at 24 hours or 10 weeks post‐SCI and immunohistochemistry and ultrasound imaging were performed. Both term and FTM HUCPVC‐infused rats displayed improved (p < .05) grip strength compared with vehicle controls. However, only FTM HUCPVC‐infusion led to significant weight gain. All cell infusion treatments resulted in reduced glial scarring (p < .05). Cell infusion also led to increased axonal, myelin, and vascular densities (p < .05). Although post‐traumatic cavity volume was reduced with cell infusion, this did not reach significance. Taken together, we demonstrate selective long‐term functional recovery alongside histological improvements with HUCPVC infusion in a clinically relevant model of cervical SCI. Our findings highlight the potential of these cells for acute therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Reaz Vawda
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alam Lakhani
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | - Rachel Dragas
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kristiana Xhima
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery and Spinal Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
Kalamegam G, Sait KHW, Anfinan N, Kadam R, Ahmed F, Rasool M, Naseer MI, Pushparaj PN, Al-Qahtani M. Cytokines secreted by human Wharton's jelly stem cells inhibit the proliferation of ovarian cancer (OVCAR3) cells in vitro. Oncol Lett 2019; 17:4521-4531. [PMID: 30944641 PMCID: PMC6444458 DOI: 10.3892/ol.2019.10094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/23/2019] [Indexed: 12/27/2022] Open
Abstract
Cytokines enhance tumour cell recognition via cytotoxic effector cells and are therefore effectively used in cancer immunotherapy. Mesenchymal stem cells have efficient homing potential and have been used to target and inhibit various types of cancer mediated by the release of soluble/bioactive factors. Initial evaluation of the human Wharton's jelly stem cell conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against an ovarian cancer cell line (OVCAR3) demonstrated their inhibitory effect in vitro. The secreted cytokine profile was then studied to understand whether the OVCAR3 inhibitory effect was mediated by the cytokines. Expression of cytokines in OVCAR3 following 48 h treatment with hWJSC extracts, namely the hWJSC-CM (50%) and hWJSC-CL (10 µg/ml), was evaluated using multiplex cytokine assay. Paclitaxel (5 nM) was used as a positive control. Cytokines tumour necrosis factor α, interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13, IL-17, IL-1β and granulocyte colony-stimulating factor, reported to be involved in tumour growth, invasion and migration, were significantly decreased. Cytokines with antitumour effects, namely IL-1 receptor antagonist (IL-1RA), IL-2, IL-2 receptor, IL-5, IL-7, IL-12, IL-15, interferon (IFN)-α and IFN-γ, were mildly increased or decreased. Only the increases in IL-1RA (with paclitaxel, hWJSC-CM and hWJSC-CL) and granulocyte-macrophage colony-stimulating factor (with hWJSC-CL) were statistically significant. The chemokines monocyte chemoattractant protein 1, macrophage inflammatory protein (MIP)-1α, MIP-1β and Regulated Upon Activation, Normally T-Expressed, and Secreted were significantly decreased while monokine induced by IFN-γ, IFN-γ induced protein 10 and Eotaxin demonstrated mild decreases. The growth factors basic fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor were significantly decreased. Heatmaps demonstrated differential fold changes in cytokines and hierarchical cluster analysis revealed 3 major and 7 minor sub-clusters of associated cytokines, chemokines and growth factors. In conclusion, the hWJSC extracts decreased the expression of oncogenic cytokines, chemokines and growth factors, which mediated the inhibition of OVCAR3 cells in vitro.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.,Faculty of Medicine, AIMST University, Bedong, Kedah 08100, Malaysia
| | - Khalid Hussein Wali Sait
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 22252, Kingdom of Saudi Arabia
| | - Nisreen Anfinan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University Hospital, Jeddah 22252, Kingdom of Saudi Arabia
| | - Roaa Kadam
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad Imran Naseer
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
35
|
Barrett AN, Fong CY, Subramanian A, Liu W, Feng Y, Choolani M, Biswas A, Rajapakse JC, Bongso A. Human Wharton's Jelly Mesenchymal Stem Cells Show Unique Gene Expression Compared with Bone Marrow Mesenchymal Stem Cells Using Single-Cell RNA-Sequencing. Stem Cells Dev 2019; 28:196-211. [PMID: 30484393 DOI: 10.1089/scd.2018.0132] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human Wharton's jelly stem cells (hWJSCs) isolated from the human umbilical cord are a unique population of mesenchymal stem cells (MSCs) with significant clinical utility. Their broad differentiation potential, high rate of proliferation, ready availability from discarded cords, and prolonged maintenance of stemness properties in culture make them an attractive alternative source of MSCs with therapeutic value compared with human bone marrow MSCs (hBMMSCs). We aimed to characterize the differences in gene expression profiles between these two stem cell types using single-cell RNA sequencing (scRNA-Seq) to determine which pathways are involved in conferring hWJSCs with their unique properties. We identified 436 significantly differentially expressed genes between the two cell types, playing roles in processes, including immunomodulation, angiogenesis, wound healing, apoptosis, antitumor activity, and chemotaxis. Expression of immune molecules is particularly high in hWJSCs compared with hBMMSCs. These differences in gene expression may help to explain many of the advantages that hWJSCs have over hBMMSCs for clinical application. Although cell surface protein marker expression indicates that isolated hWJSCs and hBMMSCs are both homogenous populations, using scRNA-Seq we can clearly identify extreme variability in expression levels between individual cells within a certain cell type. If the cells are examined as bulk populations, it is not possible to appreciate that a single cell may be making a major unique contribution to the apparent overall expression level. We demonstrated how the fine tuning of expression within hWJSCs and hBMMSCs may be achieved by expression of molecules with opposing function between two cells. We hypothesize that a greater understanding of these differences in gene expression between the two cell types may aid in the development of new therapies using hWJSCs.
Collapse
Affiliation(s)
- Angela N Barrett
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Chui-Yee Fong
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arjunan Subramanian
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Wenting Liu
- 2 Division of Human Genetics, Genome Institute of Singapore, Singapore, Singapore
| | - Yirui Feng
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mahesh Choolani
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Arijit Biswas
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| | - Jagath C Rajapakse
- 3 School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ariff Bongso
- 1 Department of Obstetrics and Gynaecology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
36
|
Kalamegam G, Sait KHW, Ahmed F, Kadam R, Pushparaj PN, Anfinan N, Rasool M, Jamal MS, Abu-Elmagd M, Al-Qahtani M. Human Wharton's Jelly Stem Cell (hWJSC) Extracts Inhibit Ovarian Cancer Cell Lines OVCAR3 and SKOV3 in vitro by Inducing Cell Cycle Arrest and Apoptosis. Front Oncol 2018; 8:592. [PMID: 30581772 PMCID: PMC6293270 DOI: 10.3389/fonc.2018.00592] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/26/2018] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer is a highly lethal and the second highest in mortality among gynecological cancers. Stem cells either naïve or engineered are reported to inhibit various human cancers in both in-vitro and in-vivo. Herein we report the cancer inhibitory properties of human Wharton's jelly stem cell (hWJSC) extracts, namely its conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against two ovarian cancer cell lines (OVCAR3 and SKOV3) in-vitro. Cell metabolic activity assay of OVCAR3 and SKOV3 cells treated with hWJSC-CM (12.5, 25, 50, 75, 100%) and hWJSC-CL (5, 10, 15, 30, and 50 μg/ml) demonstrated concentration dependent inhibition at 24-72 h. Morphological analysis of OVCAR3 and SKOV3 cells treated with hWJSC-CM (50, 75, 100%) and hWJSC-CL (15, 30, and 50 μg/ml) for 24-72 h showed cell shrinkage, membrane damage/blebbings and cell death. Cell cycle assay demonstrated an increase in the sub-G1 and G2M phases of cell cycle following treatment with hWJSC-CM (50, 75, 100%) and hWJSC-CL (10, 15, and 30 μg/ml) at 48 h. Both OVCAR3 and SKOV3 cells demonstrated mild positive expression of activated caspase 3 following treatment with hWJSC-CM (50%) and hWJSC-CL (15 μg/ml) for 24 h. Cell migration of OVCAR3 and SKOV3 cells were inhibited following treatment with hWJSC-CM (50%) and hWJSC-CL (15 μg/ml) for 48 h. Tumor spheres (TS) of OVCAR3 and SKOV3 treated with hWJSC-CM (50, 75, 100%) and hWJSC-CL (10, 15, 30 μg/ml) for 48 h showed altered surface changes including vacuolations and reduction in size of TS. TS of OVCAR3 and SKOV3 also showed the presence of few ovarian cancer stem cells (CSCs) in minimal numbers following treatment with hWJSC-CM (50%) or hWJSC-CL (15 μg/ml) for 48 h. Real-time gene expression analysis of OVCAR3 and SKOV3 treated with hWJSC-CM (50%) or hWJSC-CL (15 μg/ml) for 48 h demonstrated decreased expression of cell cycle regulatory genes (cyclin A2, Cyclin E1), prostaglandin receptor signaling genes (EP2, EP4) and the pro-inflmmatory genes (IL-6, TNF-α) compared to untreated controls. The results indicate that hWJSC-CM and hWJSC-CL inhibit ovarian cancer cells at mild to moderate levels by inducing cellular changes, cell cycle arrest, apoptosis, decreasing the expression of CSC markers and related genes regulation. Therefore, the stem cell factors in hWJSCs extracts can be useful in cancer management.
Collapse
Affiliation(s)
- Gauthaman Kalamegam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Medicine, Asian Institute of Medicine, Science and Technology (AIMST) University, Bedong, Malaysia
| | - Khalid Hussein Wali Sait
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Roaa Kadam
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nisreen Anfinan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Sarwar Jamal
- King Fahad Medical Research Centre (KFMRC), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammed Abu-Elmagd
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed Al-Qahtani
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Christodoulou I, Goulielmaki M, Devetzi M, Panagiotidis M, Koliakos G, Zoumpourlis V. Mesenchymal stem cells in preclinical cancer cytotherapy: a systematic review. Stem Cell Res Ther 2018; 9:336. [PMID: 30526687 PMCID: PMC6286545 DOI: 10.1186/s13287-018-1078-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSC) comprise a heterogeneous population of rapidly proliferating cells that can be isolated from adult (e.g., bone marrow, adipose tissue) as well as fetal (e.g., umbilical cord) tissues (termed bone marrow (BM)-, adipose tissue (AT)-, and umbilical cord (UC)-MSC, respectively) and are capable of differentiation into a wide range of non-hematopoietic cell types. An additional, unique attribute of MSC is their ability to home to tumor sites and to interact with the local supportive microenvironment which rapidly conceptualized into MSC-based experimental cancer cytotherapy at the turn of the century. Towards this purpose, both naïve (unmodified) and genetically modified MSC (GM-MSC; used as delivery vehicles for the controlled expression and release of antitumorigenic molecules) have been employed using well-established in vitro and in vivo cancer models, albeit with variable success. The first approach is hampered by contradictory findings regarding the effects of naïve MSC of different origins on tumor growth and metastasis, largely attributed to inherent biological heterogeneity of MSC as well as experimental discrepancies. In the second case, although the anti-cancer effect of GM-MSC is markedly improved over that of naïve cells, it is yet apparent that some protocols are more efficient against some types of cancer than others. Regardless, in order to maximize therapeutic consistency and efficacy, a deeper understanding of the complex interaction between MSC and the tumor microenvironment is required, as well as examination of the role of key experimental parameters in shaping the final cytotherapy outcome. This systematic review represents, to the best of our knowledge, the first thorough evaluation of the impact of experimental anti-cancer therapies based on MSC of human origin (with special focus on human BM-/AT-/UC-MSC). Importantly, we dissect the commonalities and differences as well as address the shortcomings of work accumulated over the last two decades and discuss how this information can serve as a guide map for optimal experimental design implementation ultimately aiding the effective transition into clinical trials.
Collapse
Affiliation(s)
- Ioannis Christodoulou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Maria Goulielmaki
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | - Marina Devetzi
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece
| | | | | | - Vassilis Zoumpourlis
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation (NHRF), Konstantinou 48 Av., 116 35, Athens, Greece.
| |
Collapse
|
38
|
Bharti D, Shivakumar SB, Park JK, Ullah I, Subbarao RB, Park JS, Lee SL, Park BW, Rho GJ. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Cell Tissue Res 2017; 372:51-65. [PMID: 29204746 PMCID: PMC5862947 DOI: 10.1007/s00441-017-2699-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Easy isolation, lack of ethical issues, high proliferation, multi-lineage differentiation potential and immunomodulatory properties of umbilical cord (UC)-derived mesenchymal stem cells (MSCs) make them a valuable tool in stem cell research. Recently, Wharton’s jelly (WJ) was proven as the best MSC source among various compartments of UC. However, it is still unclear whether or not Wharton’s jelly-derived MSCs (WJMSCs) from different parts of the whole cord exhibit the same characteristics. There may be varied MSCs present in different parts of WJ throughout the length of the UC. For this purpose, using an explant attachment method, WJMSCs were isolated from three different parts of the UC, mainly present towards the placenta (mother part), the center of the whole cord (central part) and the part attached to the fetus (baby part). WJMSCs from all three parts were maintained in normal growth conditions (10% ADMEM) and analyzed for mesenchymal markers, pluripotent genes, proliferation rate and tri-lineage differentiation potential. All WJMSCs were highly proliferative, positively expressed CD90, CD105, CD73 and vimentin, while not expressing CD34, CD45, CD14, CD19 or HLA-DR, differentiated into adipocytes, osteocytes and chondrocytes and expressed pluripotency markers OCT-4, SOX-2 and NANOG at gene and protein levels. Furthermore, MSCs derived from all the parts were shown to have potency towards hepatocyte-like cell differentiation. Human bone marrow-derived MSCs were used as a positive control. Finally, we conclude that WJMSCs derived from all the parts are valuable sources and can be efficiently used in various fields of regenerative medicine.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Kwon Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea. .,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
39
|
Mushahary D, Spittler A, Kasper C, Weber V, Charwat V. Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry A 2017; 93:19-31. [PMID: 29072818 DOI: 10.1002/cyto.a.23242] [Citation(s) in RCA: 386] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) exhibit a high self-renewal capacity, multilineage differentiation potential and immunomodulatory properties. This set of exceptional features makes them an attractive tool for research and clinical application. However, MSC are far from being a uniform cell type, which makes standardization difficult. The exact properties of human MSC (hMSC) can vary greatly depending on multiple parameters including tissue source, isolation method and medium composition. In this review we address the most important influence factors. We highlight variations in the differentiation potential of MSC from different tissue sources. Furthermore, we compare enzymatic isolation strategies with explants cultures focusing on adipose tissue and umbilical cords as two relevant examples. Additionally, we address effects of medium composition and serum supplementation on MSC expansion and differentiation. The lack of standardized methods for hMSC isolation and cultivation mandates careful evaluation of different protocols regarding efficiency and cell quality. MSC characterization based on a set of minimal criteria defined by the International Society for Cellular Therapy is a widely accepted practice, and additional testing for MSC functionality can provide valuable supplementary information. The MSC secretome has been identified as an important signaling mechanism to affect other cells. In this context, extracellular vesicles (EVs) are attracting increasing interest. The thorough characterization of MSC-derived EVs and their interaction with target cells is a crucial step toward a more complete understanding of MSC-derived EV functionality. Here, we focus on flow cytometric approaches to characterize free as well as cell bound EVs and address potential differences in the bioactivity of EVs derived from stem cells from different sources. © 2017 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Dolly Mushahary
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Andreas Spittler
- Core Facility Flow Cytometry & Surgical Research Laboratories, Medical University of Vienna, 1090 Vienna, Austria
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, 3500 Krems, Austria
| | - Verena Charwat
- Department of Biotechnology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
40
|
Induction of Immunogenic Cell Death in Lymphoma Cells by Wharton’s Jelly Mesenchymal Stem Cell Conditioned Medium. Stem Cell Rev Rep 2017; 13:801-816. [DOI: 10.1007/s12015-017-9767-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Amrithraj AI, Kodali A, Nguyen L, Teo AKK, Chang CW, Karnani N, Ng KL, Gluckman PD, Chong YS, Stünkel W. Gestational Diabetes Alters Functions in Offspring's Umbilical Cord Cells With Implications for Cardiovascular Health. Endocrinology 2017; 158:2102-2112. [PMID: 28431037 DOI: 10.1210/en.2016-1889] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 04/14/2017] [Indexed: 01/19/2023]
Abstract
Because noncommunicable diseases such as type 2 diabetes mellitus have their roots in prenatal development and conditions such as maternal gestational diabetes mellitus (GDM), we aimed to test this hypothesis in primary cells derived from the offspring of mothers with GDM compared with control subjects. We have assessed primary umbilical cord-derived cells such as human umbilical vein endothelial cells (HUVECs) and Wharton's jelly-derived mesenchymal stem cells from the offspring of mothers with and without GDM. We have compared the primary isolates in cell-based assays measuring proliferation, mitochondrial oxygen consumption, and the ability to support blood vessel growth. We conducted gene expression microarray studies with subsequent pathway analysis and candidate gene validation. We observed striking differences between the two groups, such as lower metabolic rates and impairment of endothelial tube formation in cells with GDM background. HUVECs from subjects with maternal GDM have lower expression of the antiapoptotic protein BCL-xL, suggesting compromised angiogenic capabilities. Comparative gene expression analysis revealed blood vessel formation as a major pathway enriched in the GDM-derived HUVECs with the surface marker CD44 as a gene underexpressed in the GDM group. Functional validation of CD44 revealed that it regulates tube formation in HUVECs, thereby providing insights into a pathway imprinted in primary umbilical cord-derived cells from GDM offspring. Our data demonstrate that primary cells isolated from the umbilical cord of offspring born to mothers with GDM maintain metabolic and molecular imprints of maternal hyperglycemia, reflecting an increased risk for cardiovascular disease later in life.
Collapse
Affiliation(s)
- Ajith Isaac Amrithraj
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Anjaneyulu Kodali
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| | - Linh Nguyen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673
| | - Cheng Wei Chang
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| | - Kai Lyn Ng
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
- Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Walter Stünkel
- Singapore Institute for Clinical Sciences, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore 117609
| |
Collapse
|
42
|
Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50:e12334. [PMID: 28144997 PMCID: PMC6529062 DOI: 10.1111/cpr.12334] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Faculty of PharmacyHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
43
|
Fellows CR, Matta C, Zakany R, Khan IM, Mobasheri A. Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair. Front Genet 2016; 7:213. [PMID: 28066501 PMCID: PMC5167763 DOI: 10.3389/fgene.2016.00213] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/22/2016] [Indexed: 01/15/2023] Open
Abstract
Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple "one size fits all," but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue.
Collapse
Affiliation(s)
| | - Csaba Matta
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Roza Zakany
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of DebrecenDebrecen, Hungary
| | - Ilyas M. Khan
- Centre for NanoHealth, Swansea University Medical SchoolSwansea, UK
| | - Ali Mobasheri
- Faculty of Health and Medical Sciences, University of SurreyGuildford, UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Queen's Medical CentreNottingham, UK
- King Fahd Medical Research Center, King AbdulAziz UniversityJeddah, Saudi Arabia
- Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz UniversityJeddah, Saudi Arabia
| |
Collapse
|
44
|
Fong CY, Biswas A, Stunkel W, Chong YS, Bongso A. Tissues Derived From Reprogrammed Wharton's Jelly Stem Cells of the Umbilical Cord Provide an Ideal Platform to Study the Effects of Glucose, Zika Virus, and Other Agents on the Fetus. J Cell Biochem 2016; 118:437-441. [DOI: 10.1002/jcb.25733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| | - Walter Stunkel
- Singapore Institute of Clinical Sciences; Singapore Singapore
| | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
- Singapore Institute of Clinical Sciences; Singapore Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology; National University Health System; National University of Singapore; Singapore Singapore
| |
Collapse
|
45
|
Torkaman M, Ghollasi M, Mohammadnia-Afrouzi M, Salimi A, Amari A. The effect of transplanted human Wharton's jelly mesenchymal stem cells treated with IFN-γ on experimental autoimmune encephalomyelitis mice. Cell Immunol 2016; 311:1-12. [PMID: 27697286 DOI: 10.1016/j.cellimm.2016.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/26/2016] [Accepted: 09/26/2016] [Indexed: 12/29/2022]
Abstract
Interferon gamma (IFN-γ) increases the immunosuppressive property of human Wharton's jelly mesenchymal stem cells (hWJ-MSCs). In this study, we evaluated the therapeutic effects of IFN-γ primed WJ-MSCs in EAE mice. IFN-γ primed WJ-MSCs were injected on days 3 and 11 after EAE induction. 21 days after EAE induction, splenocytes and cervical lymph node cells were isolated and cell proliferation, secretion of inflammatory cytokines and frequency of regulatory T-cells was measured. On day 50 of the study, cell infiltration and gene expression of inflammatory cytokines in brain of mice were studied. Leukocyte infiltration and symptoms were significantly reduced in IFN-γ primed WJ-MSCs treated group compared to other groups. These cells showed significantly reduced proliferation and increased Treg cells as well as decreased secretion and gene expression of inflammatory cytokines in EAE mice. Our data suggest that IFN-γ may be used to stimulate the immunomodulatory property of WJ-MSCs in clinical situations.
Collapse
Affiliation(s)
- Mohammad Torkaman
- Department of Pediatrics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran.
| | | | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Afshin Amari
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
46
|
Shivakumar SB, Bharti D, Subbarao RB, Jang SJ, Park JS, Ullah I, Park JK, Byun JH, Park BW, Rho GJ. DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. J Cell Biochem 2016; 117:2397-412. [PMID: 27038129 PMCID: PMC5094545 DOI: 10.1002/jcb.25563] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/31/2016] [Indexed: 01/09/2023]
Abstract
The facile nature of mesenchymal stem cell (MSC) acquisition in relatively large numbers has made Wharton's jelly (WJ) tissue an alternative source of MSCs for regenerative medicine. However, freezing of such tissue using dimethyl sulfoxide (DMSO) for future use impedes its clinical utility. In this study, we compared the effect of two different cryoprotectants (DMSO and cocktail solution) on post-thaw cell behavior upon freezing of WJ tissue following two different freezing protocols (Conventional [-1°C/min] and programmed). The programmed method showed higher cell survival rate compared to conventional method of freezing. Further, cocktail solution showed better cryoprotection than DMSO. Post-thaw growth characteristics and stem cell behavior of Wharton's jelly mesenchymal stem cells (WJMSCs) from WJ tissue cryopreserved with a cocktail solution in conjunction with programmed method (Prog-Cock) were comparable with WJMSCs from fresh WJ tissue. They preserved their expression of surface markers, pluripotent factors, and successfully differentiated in vitro into osteocytes, adipocytes, chondrocytes, and hepatocytes. They also produced lesser annexin-V-positive cells compared to cells from WJ tissue stored using cocktail solution in conjunction with the conventional method (Conv-Cock). Real-time PCR and Western blot analysis of post-thaw WJMSCs from Conv-Cock group showed significantly increased expression of pro-apoptotic factors (BAX, p53, and p21) and reduced expression of anti-apoptotic factor (BCL2) compared to WJMSCs from the fresh and Prog-Cock group. Therefore, we conclude that freezing of fresh WJ tissue using cocktail solution in conjunction with programmed freezing method allows for an efficient WJ tissue banking for future MSC-based regenerative therapies. J. Cell. Biochem. 117: 2397-2412, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| | - Ji-Kwon Park
- Department of Obstetrics and Gynecology, School of Medicine, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, 660-702, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea.,Research Institute of Life Sciences, Gyeongsang National University, 501, Jinju-daero, Jinju, 660-701, Republic of Korea
| |
Collapse
|
47
|
Caballero M, Morse JC, Halevi AE, Emodi O, Pharaon MR, Wood JS, van Aalst JA. Juvenile Swine Surgical Alveolar Cleft Model to Test Novel Autologous Stem Cell Therapies. Tissue Eng Part C Methods 2016; 21:898-908. [PMID: 25837453 DOI: 10.1089/ten.tec.2014.0646] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation. Five-week-old pigs (n=6) underwent surgically created maxillary (alveolar) defects to determine critical-sized defect and the quality of treatment outcomes with rib, iliac crest cancellous bone, and tissue-engineered scaffolds. Pigs were sacrificed at 1 month. Computed tomography scans were obtained at days 0 and 30, at the time of euthanasia. Histological evaluation was performed on newly formed bone within the surgical defect. A 1 cm surgically created defect healed with no treatment, the 2 cm defect did not heal. A subsequently created 1.7 cm defect, physiologically similar to a congenitally occurring alveolar cleft in humans, from the central incisor to the canine, similarly did not heal. Rib graft treatment did not incorporate into adjacent normal bone; cancellous bone and the tissue-engineered graft healed the critical-sized defect. This work establishes a juvenile swine alveolar cleft model with critical-sized defect approaching 1.7 cm. Both cancellous bone and tissue engineered graft generated bridging bone formation in the surgically created alveolar cleft defect.
Collapse
Affiliation(s)
- Montserrat Caballero
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Justin C Morse
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | | | - Omri Emodi
- 4 Oral and Maxillofacial Surgery, Rambam Medical Center , Haifa, Israel
| | - Michael R Pharaon
- 5 Plastic Surgery, Kapiolani Hospital for Women and Children , Honolulu, Hawaii
| | - Jeyhan S Wood
- 2 Plastic and Reconstructive Surgery, The University of North Carolina School of Medicine , Chapel Hill, North Carolina
| | - John A van Aalst
- 1 Plastic Surgery, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
48
|
Leow SC, Poschmann J, Too PG, Yin J, Joseph R, McFarlane C, Dogra S, Shabbir A, Ingham PW, Prabhakar S, Leow MKS, Lee YS, Ng KL, Chong YS, Gluckman PD, Stünkel W. The transcription factor SOX6 contributes to the developmental origins of obesity by promoting adipogenesis. Development 2016; 143:950-61. [PMID: 26893351 DOI: 10.1242/dev.131573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022]
Abstract
An association between impaired fetal growth and the postnatal development of obesity has been established. Here, by comparing adipocytes differentiated from mesenchymal stem cells (MSCs) taken from the umbilical cord and derived from normal and growth-restricted neonates, we identified the transcription factor SOX6 as highly expressed only in growth-restricted individuals. We found that SOX6 regulates adipogenesis in vertebrate species by activating adipogenic regulators including PPARγ, C/EBPα and MEST. We further show that SOX6 interacts with β-catenin in adipocytes, suggesting an inhibition of WNT/β-catenin signaling, thereby promoting adipogenesis. The upstream regulatory region of the MEST gene in MSCs from growth-restricted subjects harbors hypomethylated CpGs next to SOX6 binding motifs, and we found that SOX6 binding is impaired by adjacent CpG methylation. In summary, we report that SOX6 is a novel regulator of adipogenesis synergizing with epigenetic mechanisms.
Collapse
Affiliation(s)
- Shi Chi Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Jeremie Poschmann
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore 138672
| | - Peh Gek Too
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Juan Yin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore 636921
| | - Roy Joseph
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Craig McFarlane
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Shaillay Dogra
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| | - Asim Shabbir
- Department of Surgery, National University Hospital, National University of Singapore, Singapore 119074
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore 636921 Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore, Singapore 138673
| | - Shyam Prabhakar
- Genome Institute of Singapore, Agency for Science Technology and Research (A*STAR), Singapore, Singapore 138672
| | - Melvin K S Leow
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore 308433
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Kai Lyn Ng
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609 Liggins Institute, University of Auckland, Auckland 1142, New Zealand
| | - Walter Stünkel
- Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore, Singapore 117609
| |
Collapse
|
49
|
Fong CY, Subramanian A, Biswas A, Bongso A. Freezing of Fresh Wharton's Jelly From Human Umbilical Cords Yields High Post-Thaw Mesenchymal Stem Cell Numbers for Cell-Based Therapies. J Cell Biochem 2015; 117:815-27. [PMID: 26365815 DOI: 10.1002/jcb.25375] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 01/02/2023]
Abstract
Some cord blood banks freeze entire pieces of UC (mixed cord, MC) which after post-thaw yields mixed heterogeneous populations of mesenchymal stem cells (MSCs) from all its microanatomical compartments. Freezing of such entire tissues results in sub-optimal post-thaw cell recovery because of poor cryoprotectant diffusion and intracellular ice-formation, heat and water transport issues, and damage to intercellular junctions. To develop a simple method of harvesting pure homogeneous MSCs for cord blood banks, we compared the post-thaw behavior of three groups of frozen UC tissues: (i) freshly harvested WJ without cell separation; (ii) MSCs isolated from WJ (WJSC); and (iii) MC, WJ, and WJSC produced high post-thaw cell survival rates (93.52 ± 6.12% to 90.83 ± 4.51%) and epithelioid monolayers within 24 h in primary culture whereas post-thaw MC explants showed slow growth with mixed epithelioid and fibroblastic cell outgrowths after several days. Viability and proliferation rates of post-thawed WJ and hWJSC were significantly greater than MC. Post-thaw WJ and WJSC produced significantly greater CD24(+) and CD108(+) fluorescence intensities and significantly lower CD40(+) contaminants. Post-thaw WJ and WJSC produced significantly lesser annexin-V-positive and sub-G1 cells and greater degrees of osteogenic and chondrogenic differentiation compared to MC. qRT-PCR analysis of post-thaw MC showed significant decreases in anti-apoptotic gene expression (SURVIVIN, BCL2) and increases in pro-apoptotic (BAX) and cell cycle regulator genes (P53, P21, ROCK 1) compared to WJ and WJSC. We conclude that freezing of fresh WJ is a simple and reliable method of generating large numbers of clinically utilizable MSCs for cell-based therapies.
Collapse
Affiliation(s)
- Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, 119228, Singapore
| |
Collapse
|
50
|
Subramanian A, Fong CY, Biswas A, Bongso A. Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton's Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells. PLoS One 2015; 10:e0127992. [PMID: 26061052 PMCID: PMC4464659 DOI: 10.1371/journal.pone.0127992] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/19/2015] [Indexed: 02/06/2023] Open
Abstract
The human umbilical cord (UC) is an attractive source of mesenchymal stem cells (MSCs) with unique advantages over other MSC sources. They have been isolated from different compartments of the UC but there has been no rigorous comparison to identify the compartment with the best clinical utility. We compared the histology, fresh and cultured cell numbers, morphology, proliferation, viability, stemness characteristics and differentiation potential of cells from the amnion (AM), subamnion (SA), perivascular (PV), Wharton’s jelly (WJ) and mixed cord (MC) of five UCs. The WJ occupied the largest area in the UC from which 4.61 ± 0.57 x 106 /cm fresh cells could be isolated without culture compared to AM, SA, PV and MC that required culture. The WJ and PV had significantly lesser CD40+ non-stem cell contaminants (26-27%) compared to SA, AM and MC (51-70%). Cells from all compartments were proliferative, expressed the typical MSC-CD, HLA, and ESC markers, telomerase, had normal karyotypes and differentiated into adipocyte, chondrocyte and osteocyte lineages. The cells from WJ showed significantly greater CD24+ and CD108+ numbers and fluorescence intensities that discriminate between MSCs and non-stem cell mesenchymal cells, were negative for the fibroblast-specific and activating-proteins (FSP, FAP) and showed greater osteogenic and chondrogenic differentiation potential compared to AM, SA, PV and MC. Cells from the WJ offer the best clinical utility as (i) they have less non-stem cell contaminants (ii) can be generated in large numbers with minimal culture avoiding changes in phenotype, (iii) their derivation is quick and easy to standardize, (iv) they are rich in stemness characteristics and (v) have high differentiation potential. Our results show that when isolating MSCs from the UC, the WJ should be the preferred compartment, and a standardized method of derivation must be used so as to make meaningful comparisons of data between research groups.
Collapse
Affiliation(s)
- Arjunan Subramanian
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Chui-Yee Fong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Arijit Biswas
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
| | - Ariff Bongso
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Kent Ridge, Singapore, 119228, Singapore
- * E-mail:
| |
Collapse
|