1
|
Wang P, Liu P, Ding Y, Zhang G, Wang N, Sun X, Li M, Li M, Bao X, Chen X. Transplantation of human neural stem cells repairs neural circuits and restores neurological function in the stroke-injured brain. Neural Regen Res 2026; 21:1162-1171. [PMID: 39589171 DOI: 10.4103/nrr.nrr-d-24-00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/08/2024] [Indexed: 11/27/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202603000-00040/figure1/v/2025-06-16T082406Z/r/image-tiff Exogenous neural stem cell transplantation has become one of the most promising treatment methods for chronic stroke. Recent studies have shown that most ischemia-reperfusion model rats recover spontaneously after injury, which limits the ability to observe long-term behavioral recovery. Here, we used a severe stroke rat model with 150 minutes of ischemia, which produced severe behavioral deficiencies that persisted at 12 weeks, to study the therapeutic effect of neural stem cells on neural restoration in chronic stroke. Our study showed that stroke model rats treated with human neural stem cells had long-term sustained recovery of motor function, reduced infarction volume, long-term human neural stem cell survival, and improved local inflammatory environment and angiogenesis. We also demonstrated that transplanted human neural stem cells differentiated into mature neurons in vivo , formed stable functional synaptic connections with host neurons, and exhibited the electrophysiological properties of functional mature neurons, indicating that they replaced the damaged host neurons. The findings showed that human fetal-derived neural stem cells had long-term effects for neurological recovery in a model of severe stroke, which suggests that human neural stem cells-based therapy may be effective for repairing damaged neural circuits in stroke patients.
Collapse
Affiliation(s)
- Peipei Wang
- Beijing Yinfeng Dingcheng Biological Engineering Technology Co., Ltd., Beijing, China
| | - Peng Liu
- Beijing Yinfeng Dingcheng Biological Engineering Technology Co., Ltd., Beijing, China
| | - Yingying Ding
- Beijing Yinfeng Dingcheng Biological Engineering Technology Co., Ltd., Beijing, China
| | - Guirong Zhang
- Yinfeng Biological Group., Ltd., Jinan, Shandong Province, China
| | - Nan Wang
- Beijing Yinfeng Dingcheng Biological Engineering Technology Co., Ltd., Beijing, China
| | - Xiaodong Sun
- Beijing Yinfeng Dingcheng Biological Engineering Technology Co., Ltd., Beijing, China
| | - Mingyue Li
- Yinfeng Biological Group., Ltd., Jinan, Shandong Province, China
| | - Mo Li
- Beijing Yinfeng Dingcheng Biological Engineering Technology Co., Ltd., Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Chen
- Beijing Yinfeng Dingcheng Biological Engineering Technology Co., Ltd., Beijing, China
| |
Collapse
|
2
|
Liu Y, Ding X, Jia S, Gu X. Current understanding and prospects for targeting neurogenesis in the treatment of cognitive impairment. Neural Regen Res 2026; 21:141-155. [PMID: 39820472 PMCID: PMC12094536 DOI: 10.4103/nrr.nrr-d-24-00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/24/2024] [Accepted: 10/31/2024] [Indexed: 01/19/2025] Open
Abstract
Adult hippocampal neurogenesis is linked to memory formation in the adult brain, with new neurons in the hippocampus exhibiting greater plasticity during their immature stages compared to mature neurons. Abnormal adult hippocampal neurogenesis is closely associated with cognitive impairment in central nervous system diseases. Targeting and regulating adult hippocampal neurogenesis have been shown to improve cognitive deficits. This review aims to expand the current understanding and prospects of targeting neurogenesis in the treatment of cognitive impairment. Recent research indicates the presence of abnormalities in AHN in several diseases associated with cognitive impairment, including cerebrovascular diseases, Alzheimer's disease, aging-related conditions, and issues related to anesthesia and surgery. The role of these abnormalities in the cognitive deficits caused by these diseases has been widely recognized, and targeting AHN is considered a promising approach for treating cognitive impairment. However, the underlying mechanisms of this role are not yet fully understood, and the effectiveness of targeting abnormal adult hippocampal neurogenesis for treatment remains limited, with a need for further development of treatment methods and detection techniques. By reviewing recent studies, we classify the potential mechanisms of adult hippocampal neurogenesis abnormalities into four categories: immunity, energy metabolism, aging, and pathological states. In immunity-related mechanisms, abnormalities in meningeal, brain, and peripheral immunity can disrupt normal adult hippocampal neurogenesis. Lipid metabolism and mitochondrial function disorders are significant energy metabolism factors that lead to abnormal adult hippocampal neurogenesis. During aging, the inflammatory state of the neurogenic niche and the expression of aging-related microRNAs contribute to reduced adult hippocampal neurogenesis and cognitive impairment in older adult patients. Pathological states of the body and emotional disorders may also result in abnormal adult hippocampal neurogenesis. Among the current strategies used to enhance this form of neurogenesis, physical therapies such as exercise, transcutaneous electrical nerve stimulation, and enriched environments have proven effective. Dietary interventions, including energy intake restriction and nutrient optimization, have shown efficacy in both basic research and clinical trials. However, drug treatments, such as antidepressants and stem cell therapy, are primarily reported in basic research, with limited clinical application. The relationship between abnormal adult hippocampal neurogenesis and cognitive impairment has garnered widespread attention, and targeting the former may be an important strategy for treating the latter. However, the mechanisms underlying abnormal adult hippocampal neurogenesis remain unclear, and treatments are lacking. This highlights the need for greater focus on translating research findings into clinical practice.
Collapse
Affiliation(s)
- Ye Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| | - Xibing Ding
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Shushan Jia
- Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| | - Xiyao Gu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
- Second School of Clinical Medicine of Binzhou Medical University, Yantai, Shandong Province, China
| |
Collapse
|
3
|
Geng R, Wang Y, Wang R, Wu J, Bao X. Enhanced neurogenesis after ischemic stroke: The interplay between endogenous and exogenous stem cells. Neural Regen Res 2026; 21:212-223. [PMID: 39820432 PMCID: PMC12094570 DOI: 10.4103/nrr.nrr-d-24-00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 01/19/2025] Open
Abstract
Ischemic stroke is a significant global health crisis, frequently resulting in disability or death, with limited therapeutic interventions available. Although various intrinsic reparative processes are initiated within the ischemic brain, these mechanisms are often insufficient to restore neuronal functionality. This has led to intensive investigation into the use of exogenous stem cells as a potential therapeutic option. This comprehensive review outlines the ontogeny and mechanisms of activation of endogenous neural stem cells within the adult brain following ischemic events, with focus on the impact of stem cell-based therapies on neural stem cells. Exogenous stem cells have been shown to enhance the proliferation of endogenous neural stem cells via direct cell-to-cell contact and through the secretion of growth factors and exosomes. Additionally, implanted stem cells may recruit host stem cells from their niches to the infarct area by establishing so-called "biobridges." Furthermore, xenogeneic and allogeneic stem cells can modify the microenvironment of the infarcted brain tissue through immunomodulatory and angiogenic effects, thereby supporting endogenous neuroregeneration. Given the convergence of regulatory pathways between exogenous and endogenous stem cells and the necessity for a supportive microenvironment, we discuss three strategies to simultaneously enhance the therapeutic efficacy of both cell types. These approaches include: (1) co-administration of various growth factors and pharmacological agents alongside stem cell transplantation to reduce stem cell apoptosis; (2) synergistic administration of stem cells and their exosomes to amplify paracrine effects; and (3) integration of stem cells within hydrogels, which provide a protective scaffold for the implanted cells while facilitating the regeneration of neural tissue and the reconstitution of neural circuits. This comprehensive review highlights the interactions and shared regulatory mechanisms between endogenous neural stem cells and exogenously implanted stem cells and may offer new insights for improving the efficacy of stem cell-based therapies in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ruxu Geng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuhe Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jun Wu
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Beijing, China
| |
Collapse
|
4
|
Yin W, Jiang Y, Ma G, Mbituyimana B, Xu J, Shi Z, Yang G, Chen H. A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy. Bioact Mater 2025; 49:39-62. [PMID: 40124600 PMCID: PMC11928985 DOI: 10.1016/j.bioactmat.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 03/25/2025] Open
Abstract
Ischemic stroke (IS), a cerebrovascular disease, is the leading cause of physical disability and death worldwide. Tissue plasminogen activator (tPA) and thrombectomy are limited by a narrow therapeutic time window. Although strategies such as drug therapies and cellular therapies have been used in preclinical trials, some important issues in clinical translation have not been addressed: low stem cell survival and drug delivery limited by the blood-brain barrier (BBB). Among the therapeutic options currently sought, carrier-based hydrogels hold great promise for the repair and regeneration of neural tissue in the treatment of ischemic stroke. The advantage lies in the ability to deliver drugs and cells to designated parts of the brain in an injectable manner to enhance therapeutic efficacy. Here, this article provides an overview of the use of carrier-based hydrogels in ischemic stroke therapy and focuses on the use of hydrogel scaffolds containing bioactive molecules and stem cells. In addition to this, we provide a more in-depth summary of the composition, physicochemical properties and physiological functions of the materials themselves. Finally, we also outline the prospects and challenges for clinical translation of hydrogel therapy for IS.
Collapse
Affiliation(s)
- Wenqi Yin
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuchi Jiang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guangrui Ma
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bricard Mbituyimana
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
5
|
Gaston-Breton R, Disdier C, Hagberg H, Mabondzo A. Hypoxia-ischemia and sexual dimorphism: modeling mitochondrial dysfunction using brain organoids. Cell Biosci 2025; 15:67. [PMID: 40413513 PMCID: PMC12103005 DOI: 10.1186/s13578-025-01402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/27/2025] [Indexed: 05/27/2025] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a leading cause of neurodevelopmental morbidities in full-term infants. There is strong evidence of sexual differences in hypoxic-ischemic (HI) injury where male neonates are at higher risk as they are subject to more pronounced neurological deficits and death than females. The cellular and molecular mechanisms underlying these sexual discrepancies in HI injury are poorly understood. Mitochondrial dysregulation has been increasingly explored in brain diseases and represents a major target during HI events. In this review, we discuss (1) different mitochondrial functions in the central nervous system (2), mitochondrial dysregulation in the context of HI injury (3), sex-dependent mitochondrial pathways in HIE and (4) modeling of mitochondrial dysfunction using human brain organoids. Gaining insight into these novel aspects of mitochondrial function will offer valuable understanding of brain development and neurological disorders such as HI injury, paving the way for the discovery and creation of new treatment approaches.
Collapse
Affiliation(s)
- Romane Gaston-Breton
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique (LENIT), Gif-sur-Yvette cedex, 91191, France
| | - Clémence Disdier
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique (LENIT), Gif-sur-Yvette cedex, 91191, France
| | | | - Aloïse Mabondzo
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique (LENIT), Gif-sur-Yvette cedex, 91191, France.
| |
Collapse
|
6
|
Han J, Xu Y, Zhou Y, Zhu N, Gao J, Huang L. Therapeutic Hypothermia and Recombinant Erythropoietin Mitigate Brain Microvascular Endothelial Cell Dysfunction via Modulating the Pentose Phosphate Pathway. J Mol Neurosci 2025; 75:65. [PMID: 40343581 DOI: 10.1007/s12031-025-02356-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 04/21/2025] [Indexed: 05/11/2025]
Abstract
Neonatal brains are particularly vulnerable to oxidative stress, making the pentose phosphate pathway (PPP) pivotal in damage limitation. This study aimed to confirm the mechanism of erythropoietin combined with therapeutic hypothermia (TH) in hypoxic-ischemic brain damage (HIBD). Neonatal HIBD rat models were employed and the impacts of erythropoietin and TH on behavior, cerebral infarction, pathology, and microvascular were evaluated. Following that, the assessments of inflammation, oxidative stress, apoptosis, and the level of glucose-6-phosphate dehydrogenase (G6PD, rate-limiting enzyme in the PPP) proceeded. Human brain microvascular endothelial cells (HBMECs) underwent oxygen-glucose deprivation (OGD) and were treated with TH and G6PD inhibitor RRx-001. The impacts of the G6PD inhibitor on HBMEC function and barrier were evaluated. Simultaneous administration of TH and EPO reduced pathological damage and attenuated microvascular loss. In addition, this combination therapy had anti-inflammatory, antioxidant, and anti-apoptotic properties, and enhanced G6PD activity, both in vivo and in vitro. Inhibition of G6PD disrupted the protective effects of TH and EPO on the patency of the PPP and the function of HBMECs, and barrier integrity was further broken. This study reveals that the combination of TH and EPO mitigates microvascular endothelial cell dysfunction via partially modulating the PPP, thus preserving barrier integrity.
Collapse
Affiliation(s)
- Jinan Han
- Department of Pediatrics, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
| | - Ying Xu
- Department of Pediatrics, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
| | - Yan Zhou
- Department of Pediatrics, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
| | - Ning Zhu
- Department of Pediatrics, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
| | - Jiazhen Gao
- Department of Pediatrics, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China
| | - Li Huang
- Department of Pediatrics, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
7
|
Wang BQ, Duan YY, Chen M, Ma YF, Chen R, Huang C, Gao F, Xu R, Duan CM. Endothelial Cell Integrin α6 Regulates Vascular Remodeling Through the PI3K/Akt-eNOS-VEGFA Axis After Stroke. Neurosci Bull 2025:10.1007/s12264-025-01403-6. [PMID: 40316875 DOI: 10.1007/s12264-025-01403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/28/2024] [Indexed: 05/04/2025] Open
Abstract
The angiogenic response is essential for the repair of ischemic brain tissue. Integrin α6 (Itga6) expression has been shown to increase under hypoxic conditions and is expressed exclusively in vascular structures; however, its role in post-ischemic angiogenesis remains poorly understood. In this study, we demonstrate that mice with endothelial cell-specific knockout of Itga6 exhibit reduced neovascularization, reduced pericyte coverage on microvessels, and accelerated breakdown of microvascular integrity in the peri-infarct area. In vitro, endothelial cells with ITGA6 knockdown display reduced proliferation, migration, and tube-formation. Mechanistically, we demonstrated that ITGA6 regulates post-stroke angiogenesis through the PI3K/Akt-eNOS-VEGFA axis. Importantly, the specific overexpression of Itga6 in endothelial cells significantly enhanced neovascularization and enhanced the integrity of microvessels, leading to improved functional recovery. Our results suggest that endothelial cell Itga6 plays a crucial role in key steps of post-stroke angiogenesis, and may represent a promising therapeutic target for promoting recovery after stroke.
Collapse
Affiliation(s)
- Bing-Qiao Wang
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Yang-Ying Duan
- Department of Ultrasound Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mao Chen
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Yu-Fan Ma
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Ru Chen
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Cheng Huang
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Fei Gao
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China
| | - Rui Xu
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China.
| | - Chun-Mei Duan
- Department of Neurology, Xinqiao Hospital, The Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
8
|
Bu Y, Li S, Ye T, Wang Y, Song M, Chen J. Volatile oil of Acori tatarinowii rhizoma: potential candidate drugs for mitigating dementia. Front Pharmacol 2025; 16:1552801. [PMID: 40337511 PMCID: PMC12055781 DOI: 10.3389/fphar.2025.1552801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Objective This study aims to elucidate the mitigating effects of the volatile oil of Acori tatarinowii rhizoma (ATR) on dementia, in order to provide a reference for future research and applications of the volatile oil of ATR in the field of dementia. Materials and methods A search strategy was developed using terms such as "Acori tatarinowii rhizoma," "Acorus tatarinowii Schott," "Asarone," and "Dementia." The literature search was conducted in PubMed, Web of Science, and Google Scholar, and studies not meeting the inclusion criteria were excluded. This study summarizes the main metabolites, active ingredients, toxicological properties, and pharmacokinetic characteristics of the volatile oil from ATR in mitigating dementia, with a particular focus on its potential mechanisms of action. Furthermore, the study highlights the limitations of existing research and offers insights into future research directions. Results The volatile oil of ATR mitigates dementia through multiple pathways, including reducing abnormal protein aggregation, promoting neurogenesis, inhibiting neuronal apoptosis, regulating neurotransmitters, improving synaptic function, modulating autophagy, countering cellular stress, reducing neuroinflammation, and alleviating vascular risk factors. Conclusion The multi-pathway pharmacological effects of the volatile oil of ATR are well-aligned with the complex mechanisms of dementia progression, highlighting its significant therapeutic potential for anti-dementia applications. This provides new perspectives for the development of more effective anti-dementia drugs. Nonetheless, further rigorous and high-quality preclinical and clinical investigations are required to address key issues, including the chemical characterization of the volatile oil of ATR, potential synergistic effects among active ingredients, toxicity profiles, and definitive clinical efficacy.
Collapse
Affiliation(s)
- Yifan Bu
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Songzhe Li
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ting Ye
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuqing Wang
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingrong Song
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Chen
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Reginensi D, Ortiz DA, Denis B, Castillo S, Burillo A, Khoury N, Xu J, Dam ML, Escobar AAH, Dave KR, Perez-Pinzon MA, Gittens RA. Region-specific brain decellularized extracellular matrix promotes cell recovery in an in vitro model of stroke. Sci Rep 2025; 15:11921. [PMID: 40195414 PMCID: PMC11976941 DOI: 10.1038/s41598-025-95656-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Brain decellularized extracellular matrix (ECM) can be an attractive scaffold capable of mimicking the native ecosystem of the central nervous system tissue. We studied the in vitro response of neural cultures exposed to region-specific brain decellularized ECM scaffolds from three distinct neuroanatomical sections: cortex, cerebellum and remaining areas. First, each brain region was evaluated with the isotropic fractionator method to understand the cellular composition of the different cerebral areas. Second, the cerebral regions were subjected to the decellularization process and their respective characterization using molecular, histological, and ultrastructural techniques. Third, the levels of neurotrophic factors in the decellularized brain scaffold were analyzed. Fourth, we studied the region-specific brain decellularized ECM as a mimetic platform for the maturation of PC12 cells, as a unidirectional model of differentiation. Finally, in vitro studies were carried out to evaluate the cell recovery capacity of brain decellularized ECM under stroke-mimetic conditions. Our results show that region-specific brain decellularized ECM can serve as a biomimetic scaffold capable of promoting the growth of neural lineage cells and, in addition, it possesses a combination of structural and biochemical signals (e.g., neurotrophic factors) that are capable of inducing cell phenotypic changes and promote viability and cell recovery in a stroke/ischemia model in vitro.
Collapse
Affiliation(s)
- Diego Reginensi
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
- Advanced Therapies, School of Medicine, Universidad de Panamá (UP), Panama, Panama
- Tissue Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Américas (UDELAS), Panama, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama, Panama
- Sistema Nacional de Investigación (SNI-SENACYT), Panama, Panama
| | - Didio Alberto Ortiz
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
| | - Bernardino Denis
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
- Sistema Nacional de Investigación (SNI-SENACYT), Panama, Panama
- MD-PhD Program in Clinical and Biomedical Research, School of Medicine, UP, Panama, Panama
| | - Solangel Castillo
- Advanced Therapies, School of Medicine, Universidad de Panamá (UP), Panama, Panama
- Tissue Engineering, Faculty of Biosciences and Public Health, Universidad Especializada de las Américas (UDELAS), Panama, Panama
| | - Andrea Burillo
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
| | - Nathalie Khoury
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jing Xu
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria Lucia Dam
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
| | - Anthony A Hurtado Escobar
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama
- Biomedical Engineering, Faculty of Health Sciences and Engineering, Universidad Latina de Panama (ULATINA), Panama, Panama
| | - Kunjan R Dave
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miguel A Perez-Pinzon
- Neuroscience Program, University of Miami Miller School of Medicine, Miami, FL, USA
- Neurology Department, The Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rolando A Gittens
- Center for Biodiversity and Drug Discovery, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), Panama, Panama.
- Sistema Nacional de Investigación (SNI-SENACYT), Panama, Panama.
- MD-PhD Program in Clinical and Biomedical Research, School of Medicine, UP, Panama, Panama.
- Instituto Técnico Superior Especializado (ITSE), Ave. Domingo Diaz, Tocumen Panama, Republic of Panama.
- Centro de Investigación e Innovación Educativa, Ciencia y Tecnología (CiiECYT-AIP), Panama, Panama.
| |
Collapse
|
10
|
Xue H, Ding Z, Chen X, Yang X, Jia Y, Zhao P, Wu Z. Dexmedetomidine Improves Long-term Neurological Outcomes by Promoting Oligodendrocyte Genesis and Myelination in Neonatal Rats Following Hypoxic-ischemic Brain Injury. Mol Neurobiol 2025; 62:4866-4880. [PMID: 39496877 DOI: 10.1007/s12035-024-04564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024]
Abstract
Neonatal hypoxic-ischemic brain injury (HIBI) can lead to white matter damage, which significantly contributes to cognitive dysfunction, emotional disorders, and sensorimotor impairments. Although dexmedetomidine enhances neurobehavioral outcomes, its impact on oligodendrocyte genesis and myelination following hypoxic-ischemic events, as well as the underlying mechanisms, remain poorly understood. Dexmedetomidine was administered 15 min post-HIBI. We assessed neurobehavioral deficits using various tests: surface righting, negative geotaxis, forelimb grip strength, cliff avoidance, sensory reflexes, novel object recognition, T-maze, and three-chamber social interaction. We also investigated the relationship between myelination and neurobehavioral outcomes. Measurements included oligodendrocyte precursor cell (OPC) proliferation and survival 24 h post-injury, early myelination, and oligodendrocyte differentiation by postnatal day 14. Furthermore, we evaluated microglial activation towards the M2 phenotype and the extent of neuroinflammation during the acute phase. Dexmedetomidine significantly ameliorated long-term neurological deficits caused by HIBI. Pearson linear regression analysis revealed a strong correlation between long-term neurological outcomes and myelin maturity. The treatment notably mitigated the long-term deterioration of myelin formation and maturation following HIBI. This protective effect was primarily due to enhanced OPC proliferation and survival post-HIBI during the acute phase and, to a lesser extent, to the modulation of microglial activity towards the M2 phenotype and a reduction in neuroinflammation. Dexmedetomidine offers substantial protection against long-term neurobehavioral disabilities induced by HIBI, primarily by revitalizing the impaired survival and maturation of oligodendrocyte progenitor cells and promoting myelination.
Collapse
Affiliation(s)
- Hang Xue
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zixuan Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaoyan Chen
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xu Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yufei Jia
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
11
|
Seong KJ, Mun BR, Kim S, Choi WS, Lee SJ, Jung JY, Kim WJ. IKKβ inhibits cognitive memory and adult hippocampal neurogenesis by modulating the β-catenin pathway. Life Sci 2025; 366-367:123490. [PMID: 39983813 DOI: 10.1016/j.lfs.2025.123490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
AIM The IKKβ signaling pathway regulates NF-κB, influencing inflammation and cell survival in the brain. Radial glia cells are crucial for hippocampal neurogenesis and cognition. However, the role and mechanisms of IKKβ in modulating radial glia behavior and its impact on memory and neurogenesis remain unclear. Further studies are needed to understand how alterations in this pathway affect hippocampal function. MAIN METHODS The role of IKKβ in memory and hippocampal neurogenesis was examined using GFAP-CreERT2/IKKβflox/flox mice with IKKβ knockdown in radial glia cells. IKKβ expression, NSC proliferation, and differentiation were assessed by immunohistochemistry. NF-κB and β-catenin interactions were evaluated by immunoprecipitation. Cultured adult hippocampal NSCs, with IKKβ or β-catenin shRNA transfection, were analyzed by flow cytometry and western blot to examine stem cell characteristics, NF-κB signaling, cell cycle, and β-catenin pathways. KEY FINDINGS Our results showed IKKβ cKD increased exploratory activity in the open-field and hyperactivity in the Y-maze, as well as enhanced spatial memory in the object location and Morris water maze tests. It also promoted adult hippocampal NSC proliferation by upregulating positive and inhibiting negative cell cycle regulators. Neuronal differentiation was enhanced, affecting β-catenin signaling and NeuroD1 expression. Additionally, IKKβ cKD promoted NSC survival, as shown by decreased cleaved caspase-3 and reduced Bax and cytochrome c in the hippocampus. SIGNIFICANCE These findings suggest that in hippocampal NSCs, IKKβ inhibits locomotion, cognitive function, and adult hippocampal neurogenesis by suppressing the β-catenin signaling, highlighting its key role in decreasing hippocampal neurogenesis and cognitive function through NF-κB signaling in adult NSCs.
Collapse
Affiliation(s)
- Kyung-Joo Seong
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Bo-Ram Mun
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Shintae Kim
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sung Joong Lee
- Dental Research Institute, Department of Physiology and Neuroscience, School of Dentistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Yeon Jung
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Won-Jae Kim
- Dental Science Research Institute, Stem cell Secretome Research Center, Hard-tissue Biointerface Research Center, Department of Oral Physiology, School of Dentistry, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
12
|
Gong J, Li J, Li J, He A, Ren B, Zhao M, Li K, Zhang Y, He M, Liu Y, Wang Z. Impact of Microglia-Derived Extracellular Vesicles on Resident Central Nervous System Cell Populations After Acute Brain Injury Under Various External Stimuli Conditions. Mol Neurobiol 2025:10.1007/s12035-025-04858-w. [PMID: 40126599 DOI: 10.1007/s12035-025-04858-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Acute brain injuries (ABI) caused by various emergencies can lead to structural and functional damage to brain tissue. Common causes include traumatic brain injury, cerebral hemorrhage, ischemic stroke, and heat stroke. Globally, ABI represent a significant portion of neurosurgical cases. Previous studies have emphasized the significant therapeutic potential of stem cell-derived extracellular vesicles (EVs). Recent research indicates that EVs extracted from resident cells in the central nervous system (CNS) also show therapeutic potential following brain injury. Microglia, as innate immune cells of the CNS, respond to changes in the internal environment by altering their phenotype and secreting EVs that impact various CNS cells, including neurons, astrocytes, oligodendrocytes, endothelial cells, neural stem cells (NSCs), and microglia themselves. Notably, under different external stimuli, microglia can either promote neuronal survival, angiogenesis, and myelin regeneration while reducing glial scarring and inflammation, or they can exert opposite effects. This review summarizes and evaluates the current research findings on how microglia-derived EVs influence various CNS cells after ABI under different external stimuli. It analyzes the interaction mechanisms between EVs and resident CNS cells and discusses potential future research directions and clinical applications.
Collapse
Affiliation(s)
- Junjie Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jing Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Jian Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Anqi He
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
- Department of Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Bingcheng Ren
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mingyu Zhao
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Kexin Li
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuchi Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Mengyao He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China
| | - Yuheng Liu
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| | - Zengguang Wang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.
- Ministry of Education and Tianjin, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin, China.
| |
Collapse
|
13
|
Xue LL, Cheng J, Du RL, Luo BY, Chen L, Xiao QX, Zhou HS, She HQ, Wang SF, Chen TB, Hu CY, He YQ, Wang TH, Xiong LL. Bone marrow mesenchymal stem cells alleviate neurological dysfunction by reducing autophagy damage via downregulation of SYNPO2 in neonatal hypoxic-ischemic encephalopathy rats. Cell Death Dis 2025; 16:131. [PMID: 40000609 PMCID: PMC11862179 DOI: 10.1038/s41419-025-07439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is worsened by autophagy-induced neuronal damage, with SYNPO2 playing a key role in this process. This study investigates the involvement of SYNPO2 in neuronal autophagy and explores the potential of bone marrow mesenchymal stem cells (BMSCs) to alleviate HIE-induced dysfunction by inhibiting SYNPO2-mediated autophagy. Using in vitro and in vivo neonatal HIE models, we observed an upregulation of SYNPO2 expression, accompanied by increased neuronal injury and aggregation of autophagy-related proteins. Intervention with BMSCs effectively reduced SYNPO2 expression, and SYNPO2 depression mitigated neuroautophagic damage and improved neurological dysfunctions. Moreover, SYNPO2 overexpression exacerbated neuroautophagy despite BMSC treatment, while SYNPO2 depletion notably reduced neuroautophagic damage and alleviated cognitive impairments, retaining the neuroprotective efficacy of BMSC treatment. These findings confirm the role of BMSCs in attenuating HIE injury by suppressing neuroautophagy and provide insights into the mechanistic involvement of SYNPO2. Ultimately, this study identifies SYNPO2 as a novel therapeutic target for neonatal HIE and supports the clinical potential of BMSCs in HIE management.
Collapse
Affiliation(s)
- Lu- Lu Xue
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Jie Cheng
- Center for Reproductive Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ruo-Lan Du
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Bo-Yan Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li Chen
- Department of Neurosurgery, Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiu-Xia Xiao
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Hong-Su Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Hong-Qing She
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Shi-Feng Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Ting-Bao Chen
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Chang-Yan Hu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Qi He
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| | - Liu-Lin Xiong
- Department of Anesthesiology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
14
|
Santos M, Moreira JAF, Santos SS, Solá S. Sustaining Brain Youth by Neural Stem Cells: Physiological and Therapeutic Perspectives. Mol Neurobiol 2025:10.1007/s12035-025-04774-z. [PMID: 39985708 DOI: 10.1007/s12035-025-04774-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
In the last two decades, stem cells (SCs) have attracted considerable interest for their research value and therapeutic potential in many fields, namely in neuroscience. On the other hand, the discovery of adult neurogenesis, the process by which new neurons are generated in the adult brain, challenged the traditional view that the brain is a static structure after development. The recent findings showing that adult neurogenesis has a significant role in brain plasticity, learning and memory, and emotional behavior, together with the fact that it is strongly dependent on several external and internal factors, have sparked more interest in this area. The mechanisms of adult neural stem cell (NSC) regulation, the physiological role of NSC-mediated neuroplasticity throughout life, and the most recent NSC-based therapeutic applications will be concisely reviewed. Noteworthy, due to their multipotency, self-renewal potential, and ability to secrete growth and immunomodulatory factors, NSCs have been mainly suggested for (1) transplantation, (2) neurotoxicology tests, and (3) drug screening approaches. The clinical trials of NSC-based therapy for different neurologic conditions are, nonetheless, mostly in the early phases and have not yet demonstrated conclusive efficacy or safety. Here, we provide an outlook of the major challenges and limitations, as well as some promising directions that could help to move toward stem cell widespread use in the treatment and prevention of several neurological disorders.
Collapse
Affiliation(s)
- Matilde Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - João A Ferreira Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| |
Collapse
|
15
|
Wang Y, Wang Z, Wang L, Sun Y, Song H, Cheng X, He X, Gao Z, Sun Y. Human Induced Pluripotent Stem Cells: Directed Differentiation Methods and Applications in Brain Diseases. J Neurosci Res 2025; 103:e70027. [PMID: 39935271 DOI: 10.1002/jnr.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/08/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Human induced pluripotent stem cells (hiPSCs), similar to embryonic stem cells, are a class of pluripotent stem cells with the potential to differentiate into various kinds of cells. Because the application of hiPSCs obtained by reprogramming patients' somatic cells in the treatment of brain diseases bypasses the ethical constraints on the use of embryonic stem cells and mitigates immune rejection, hiPSCs have profound clinical application prospects. In this review, we first summarized the differentiation methods of hiPSCs into different kinds of neurons, and secondly discussed the application of hiPSCs in several brain disease models, so as to provide a reference for the future application of hiPSCs in the studies and treatment of brain diseases.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Ziping Wang
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China
- Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, Hebei province, China
| | - Yanping Sun
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Huijia Song
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- New Drug Research & Development Co., Ltd., North China Pharmaceutical Group Corporation, Shijiazhuang, China
| | - Xiaoliang He
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Pharmaceutical and Chemical Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
- Hebei Pharmaceutical and Chemical Technology Innovation Center, Hebei University of Science and Technology, Shijiazhuang, China
- State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
16
|
Li T, Xing HM, Qian HD, Gao Q, Xu SL, Ma H, Chi ZL. Small extracellular vesicles derived from human induced pluripotent stem cell-differentiated neural progenitor cells mitigate retinal ganglion cell degeneration in a mouse model of optic nerve injury. Neural Regen Res 2025; 20:587-597. [PMID: 38819069 PMCID: PMC11317950 DOI: 10.4103/nrr.nrr-d-23-01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00034/figure1/v/2024-05-28T214302Z/r/image-tiff Several studies have found that transplantation of neural progenitor cells (NPCs) promotes the survival of injured neurons. However, a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application. Small extracellular vesicles (sEVs) contain bioactive molecules for neuronal protection and regeneration. Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases. In this study, we intravitreally transplanted sEVs derived from human induced pluripotent stem cells (hiPSCs) and hiPSCs-differentiated NPCs (hiPSC-NPC) in a mouse model of optic nerve crush. Our results show that these intravitreally injected sEVs were ingested by retinal cells, especially those localized in the ganglion cell layer. Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration, and regulated the retinal microenvironment by inhibiting excessive activation of microglia. Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells, which had protective effects on RGCs after optic nerve injury. These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hui-Min Xing
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hai-Dong Qian
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiao Gao
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Sheng-Lan Xu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hua Ma
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zai-Long Chi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
17
|
Tang X, Deng P, Li L, He Y, Wang J, Hao D, Yang H. Advances in genetically modified neural stem cell therapy for central nervous system injury and neurological diseases. Stem Cell Res Ther 2024; 15:482. [PMID: 39696712 DOI: 10.1186/s13287-024-04089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Neural stem cells (NSCs) have increasingly been recognized as the most promising candidates for cell-based therapies for the central nervous system (CNS) injuries, primarily due to their pluripotent differentiation capabilities, as well as their remarkable secretory and homing properties. In recent years, extensive research efforts have been initiated to explore the therapeutic potential of NSC transplantation for CNS injuries, yielding significant advancements. Nevertheless, owing to the formation of adverse microenvironment at post-injury leading to suboptimal survival, differentiation, and integration within the host neural network of transplanted NSCs, NSC-based transplantation therapies often fall short of achieving optimal therapeutic outcomes. To address this challenge, genetic modification has been developed an attractive strategy to improve the outcomes of NSC therapies. This is mainly attributed to its potential to not only enhance the differentiation capacity of NSCs but also to boost a range of biological activities, such as the secretion of bioactive factors, anti-inflammatory effects, anti-apoptotic properties, immunomodulation, antioxidative functions, and angiogenesis. Furthermore, genetic modification empowers NSCs to play a more robust neuroprotective role in the context of nerve injury. In this review, we will provide an overview of recent advances in the roles and mechanisms of NSCs genetically modified with various therapeutic genes in the treatment of neural injuries and neural disorders. Also, an update on current technical parameters suitable for NSC transplantation and functional recovery in clinical studies are summarized.
Collapse
Affiliation(s)
- Xiangwen Tang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Peng Deng
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Lin Li
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuqing He
- Basic Medical School Academy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinchao Wang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Hao Yang
- Translational Medicine Center, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
| |
Collapse
|
18
|
Chen J, Dai XY, Malhi KK, Xu XW, Tang YX, Li XW, Li JL. A New Insight into the Mechanism of Atrazine-Induced Neurotoxicity: Triggering Neural Stem Cell Senescence by Activating the Integrated Stress Response Pathway. RESEARCH (WASHINGTON, D.C.) 2024; 7:0547. [PMID: 39679284 PMCID: PMC11638487 DOI: 10.34133/research.0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
Atrazine (AT), a widely utilized chemical herbicide, causes widespread contamination of agricultural water bodies. Recently, exposure to AT has been linked to the development of age-related neurodegenerative diseases (NDs), suggesting its neurotoxicity potential. As an endocrine disruptor, AT targets the hypothalamus, a crucial part of the neuroendocrine system. However, the toxicological mechanism of AT exposure to the hypothalamus and its correlation with ND development remain unexplored. Our results indicated that AT exposure caused significant morphological and structural damage to the hypothalamus, leading to the loss of mature and intact neurons and microglial activation. Furthermore, hypothalamic neural stem cells (HtNSCs) were recruited to areas of neuronal damage caused by AT. Through in vivo and in vitro experiments, we clarified the outcomes of AT-induced HtNSC recruitment alongside the loss of mature/intact neurons. Mechanistically, AT induces senescence in these recruited HtNSCs by activating integrated stress response signaling. This consequently hinders the repair of damaged neurons by inhibiting HtNSC proliferation and differentiation. Overall, our findings underscore the pivotal role of the integrated stress response pathway in AT-induced HtNSC senescence and hypothalamic damage. Additionally, the present study offers novel perspectives to understand the mechanisms of AT-induced neurotoxicity and provides preliminary evidence linking AT contamination to the development of NDs.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology,
Jiangxi Agricultural University, Nanchang 330045, P.R. China
| | - Kanwar K. Malhi
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiang-Wen Xu
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Xi Tang
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Xiao-Wei Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine,
Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment,
Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
19
|
Wang X, Zang J, Yang Y, Li K, Ye D, Wang Z, Wang Q, Wu Y, Luan Z. Human neural stem cells transplanted during the sequelae phase alleviate motor deficits in a rat model of cerebral palsy. Cytotherapy 2024; 26:1491-1504. [PMID: 39186025 DOI: 10.1016/j.jcyt.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
AIMS Cerebral palsy (CP) is the most common physical disability in children, yet lacks an ideal animal model or effective treatment. This study aimed to develop a reliable CP model in neonatal rats and explore the effectiveness and underlying mechanisms of human neural stem cells (hNSCs) transplantation during the sequelae phase of CP. METHODS Vasoconstrictor endothelin-1 (ET-1) was administered intracranially to the motor cortex and striatum of rats on postnatal day 5 to establish a CP model. hNSCs (5 × 105/5 μL) pretreated with hypoxia (5% O2 for 24 h) were transplanted near the infarct 3 weeks after ET-1 injury (the sequelae phase). The distribution and differentiation of hNSCs were observed after transplantation. Changes in neurotrophic factors, neurogenesis, angiogenesis, axonal plasticity, and motor function were analyzed. RESULTS Neurobehavioral tests showed poor muscle strength and postural control in young ET-1 rats. Motor deficits of the left forelimb and gait abnormalities persisted into adulthood. Histopathological findings and MRI indicated the atrophy of the cortex, striatum, and adjacent corpus callosum in ET-1 rats. At 56 days after transplantation, hNSCs were widely distributed in the ipsilateral hemisphere, and differentiated into neurons, oligodendrocytes and astrocytes. Transplantation of hNSCs increased BDNF and VEGF expression, EdU+ cell number in the SVZ area, RECA-1+ vessel density and GAP-43 intensity around the lesion in ET-1 rats. The cylinder test revealed a significant increase in the left forelimb motor function from 28 days after transplantation, and the staircase and CatWalk tests showed improvements in fine motor function and gait parameters. CONCLUSIONS Intracerebral injection of ET-1 modelled key functional and histopathological features of CP. hNSCs transplanted during the sequelae phase of CP resulted in long-term improvement in motor performance, possibly attributed to its capacity to stimulate neurotrophic factors, facilitate neurogenesis, angiogenesis, and promote axonal plasticity.
Collapse
Affiliation(s)
- Xiaohua Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048; Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 226001
| | - Jing Zang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Yinxiang Yang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Ke Li
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Dou Ye
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Zhaoyan Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Qian Wang
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China, 226001.
| | - Zuo Luan
- Department of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China, 100048.
| |
Collapse
|
20
|
Chen J, Dai XY, Li XW, Tang YX, Xu XW, Li JL. Lycopene mitigates atrazine-induced hypothalamic neural stem cell senescence by modulating the integrated stress response pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156114. [PMID: 39418974 DOI: 10.1016/j.phymed.2024.156114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Atrazine, a widely used herbicide, has become a major pollutant in agricultural water bodies. Pesticide contamination, including atrazine, is linked to a high incidence of age-related neurodegenerative diseases, suggesting its neurotoxic potential. Lycopene, a potent antioxidant, is renowned for its diverse pharmacological effects, especially its neuroprotective properties. However, the underlying pharmacological mechanisms of lycopene and its impact on potential pathways against atrazine-induced hypothalamic damage have not been elucidated. PURPOSE Our study aimed to elucidate how lycopene ameliorates hypothalamic injury triggered by atrazine exposure, with a special focus on the pluripotency of neural stem cells (NSCs) and pathways involved in cell senescence. METHODS Mice were administered lycopene and/or atrazine via gavage for 21 days. The C17.2 NSC cell line and specific molecular inhibitors were utilized to examine the potential protective effects of lycopene in vitro. Morphological changes and ultrastructural damage in the hypothalamus were observed by hematoxylin-eosin staining and transmission electron microscopy, respectively. The mechanisms of action of lycopene were explored through various methods, including senescence β-galactosidase staining, multiplex immunofluorescence, Western blotting and qRT‒PCR. RESULTS Our results indicated that lycopene notably ameliorated atrazine-induced histological and ultrastructural damage, as well as the loss of intact and mature neurons in mouse hypothalami. Additionally, hypothalamic NSCs (HtNSCs) and microglia were recruited to areas of neuronal injury after atrazine exposure; intriguingly, lycopene treatment reduced this recruitment. Through in vivo and in vitro assays, we elucidated the outcomes of atrazine-induced HtNSC recruitment and neuronal loss, along with the neuroprotective mechanisms of lycopene. Mechanistically, lycopene prevents atrazine-induced senescence in HtNSCs and enhances their proliferation and differentiation by inhibiting the integrated stress response (ISR) signaling pathway, thus promoting the renewal of damaged neurons in the hypothalamus. CONCLUSIONS Collectively, the results of the present study reveal, for the first time, that lycopene mitigates atrazine-induced HtNSC senescence by modulating the ISR signaling pathway. These findings offer novel insights into the role of lycopene in preventing and alleviating NSC senescence and suggest its potential development as a new therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Yan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang 330045, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Xi Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiang-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
21
|
Karsuntseva EK, Voronova AD, Andretsova SS, Shishkina VS, Chadin AV, Fursa GA, Fedorov AV, Reshetov IV, Stepanova OV, Chekhonin VP. The Effect of Transplantation of Ensheathing Cells of the Olfactory Mucosa into the Hippocampal Area on the Restoration of Cognitive Abilities in Rats with Experimental Alzheimer's Disease. Bull Exp Biol Med 2024:10.1007/s10517-024-06293-8. [PMID: 39578278 DOI: 10.1007/s10517-024-06293-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 11/24/2024]
Abstract
Alzheimer's disease was induced in female Wistar rats by bilateral injection of β-amyloid fragment 1-42 into the hippocampal region. After 8 weeks, ensheathing cells of the olfactory mucosa were transplanted into the hippocampus at the same stereotactic coordinates. These cells survived for 8 weeks; large clusters of cells were observed on week 4. On weeks 3-5 after transplantation of ensheathing cells, experimental animals demonstrated a significant cognitive improvement (memory and spatial orientation). The obtained results create prerequisites for further studies of ensheathing cells as a potential cell product for personalized therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- E K Karsuntseva
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A D Voronova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - S S Andretsova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | - V S Shishkina
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Chadin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - G A Fursa
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Fedorov
- Lomonosov Moscow State University, Moscow, Russia
| | - I V Reshetov
- Academy of Postgraduate Education, Federal Research and Clinical Center of Specialized Types of Health Care and Medical Technology, Federal Medical-Biological Agency of Russia, Moscow, Russia
- I. M. Sechenov First Moscow State Medical University (Sechenov University, Ministry of Health of the Russian Federation, Moscow, Russia
| | - O V Stepanova
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Centre of Cardiology named after academician E. I. Chazov, Ministry of Health of the Russian Federation, Moscow, Russia
| | - V P Chekhonin
- V. Serbsky National Medical Research Centre for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
22
|
Wang M, Xing S, Liu Y, An Z, Liu X, Liu T, Zhang H, Dai Y, Yang H, Wang Y, Wang Y. 2-Acetylacteoside improves recovery after ischemic stroke by promoting neurogenesis via the PI3K/Akt pathway. Free Radic Biol Med 2024; 225:415-429. [PMID: 39396583 DOI: 10.1016/j.freeradbiomed.2024.10.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
Ischemic stroke induces adult neurogenesis in the subventricular zone (SVZ), even in elderly patients. Harnessing of this neuroregenerative response presents the therapeutic potential for post-stroke recovery. We found that phenylethanoid glycosides (PhGs) derived from Cistanche deserticola aid neural repair after stroke by promoting neurogenesis. Among these, 2-acetylacteoside had the most potent on the proliferation of neural stem cells (NSCs) in vitro. Furthermore, 2-acetylacteoside was shown to alleviate neural dysfunction by increase neurogenesis both in vivo and in vitro. RNA-sequencing analysis highlighted differentially expressed genes within the PI3K/Akt signaling pathway. The candidate target Akt was validated as being regulated by 2-acetylacteoside, which, in turn, enhanced the proliferation and differentiation of cultured NSCs after oxygen-glucose deprivation/reoxygenation (OGD/R), as evidenced by Western blot analysis. Subsequent analysis using cultured NSCs from adult subventricular zones (SVZ) confirmed that 2-acetylacteoside enhanced the expression of phosphorylated Akt (p-Akt), and its effect on NSC neurogenesis was shown to be dependent on the PI3K/Akt pathway. In summary, our findings elucidate for the first time the role of 2-acetylacteoside in enhancing neurological recovery, primarily by promoting neurogenesis via Akt activation following ischemic brain injury, which offers a novel strategy for long-term cerebrological recovery in ischemic stroke.
Collapse
Affiliation(s)
- Meng Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Songyu Xing
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China
| | - Yang Liu
- ICU, Nanjing Gaochun People's Hospital, 53 Maoshan Road, Gaochun District, Nanjing, 211300, China
| | - Zongren An
- ICU, Nanjing Gaochun People's Hospital, 53 Maoshan Road, Gaochun District, Nanjing, 211300, China
| | - Xu Liu
- Qilu Medical University, Shandong, 255300, China
| | - Tao Liu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ying Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, 211166, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, 211166, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
23
|
Tian M, Ma X, Lu Q, Xue G, Li L, Wu A, Zang H, Nie L. Study on the mechanism of ischemic stroke treatment based on network pharmacology and Raman spectroscopy in the larval zebrafish model, Calculus Bovis as a case. Int Immunopharmacol 2024; 141:112914. [PMID: 39181017 DOI: 10.1016/j.intimp.2024.112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
Calculus Bovis (C. bovis) is a precious traditional Chinese medicine of animal origin, and it is one of the traditional medicines for treating cerebral inflammatory diseases such as stroke. However, the pharmacological action of C. bovis on ischemic stroke (IS) and its mechanism are still unclear. The purpose of this study was to investigate the potential mechanism to treat IS. Chemical constituents of different varieties of C. bovis were analyzed and confirmed by HPLC-MS/MS technique. We constructed a component and corresponding target network and drug-disease target protein-protein interaction (PPI) network. GO and KEGG enrichment analysis were performed. The molecular docking of the main compound with the target protein. Subsequently, the potential mechanism of therapy for IS was verified in vivo by zebrafish model. We introduced Raman spectroscopy to detect changes in the biochemical composition of zebrafish. 13 active chemical constituents and 129 potential targets were selected. 122 KEGG signaling pathways were obtained. The binding energy of the main compounds is less than -4.5. The results of animal experiments showed that C. bovis could significantly improve Ponatinib-induced IS, decrease the aggregation degree of brain macrophages, reduce the number of macrophage migrations, and significantly increase the expression level of NR3C1. Raman information indicated that the biochemical composition in the brain of the Ponatinib-induced group shifted to the control group. The mechanism may be related to anti-inflammatory process and regulation of lipid metabolism. This study demonstrates that Raman spectroscopy has great potential as a drug evaluation tool in living larval zebrafish.
Collapse
Affiliation(s)
- Mengyin Tian
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Xiaobo Ma
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Qingqing Lu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Gao Xue
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Lian Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Aoli Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China.
| | - Lei Nie
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Chemical Biology (Ministry of Education), Shandong University, Jinan, Shandong 250012, China; National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
24
|
Wu M, Xu Y, Ji X, Zhou Y, Li Y, Feng B, Cheng Q, He H, Peng X, Zhou W, Chen Y, Xiong M. Transplanted deep-layer cortical neuroblasts integrate into host neural circuits and alleviate motor defects in hypoxic-ischemic encephalopathy injured mice. Stem Cell Res Ther 2024; 15:422. [PMID: 39533375 PMCID: PMC11558921 DOI: 10.1186/s13287-024-04049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal disability and mortality. Although intensive studies and therapeutic approaches, there are limited restorative treatments till now. Human embryonic stem cell (hESCs)-derived cortical neural progenitors have shown great potentials in ischemic stroke in adult brain. However, it is unclear whether they are feasible for cortical reconstruction in immature brain with hypoxic-ischemic encephalopathy. METHODS By using embryonic body (EB) neural differentiation method combined with DAPT pre-treatment and quantitative cell transplantation, human cortical neuroblasts were obtained and transplanted into the cortex of hypoxic-ischemic injured brain with different dosages 2 weeks after surgery. Then, immunostaining, whole-cell patch clamp recordings and behavioral testing were applied to explore the graft survival and proliferation, fate commitment of cortical neuroblasts in vitro, neural circuit reconstruction and the therapeutic effects of cortical neuroblasts in HIE brain. RESULTS Transplantation of human cortical neural progenitor cells (hCNPs) in HIE-injured cortex exhibited long-term graft overgrowth. DAPT pre-treatment successfully synchronized hCNPs from different developmental stages (day 17, day 21, day 28) to deep layer cortical neuroblasts which survived well in HIE injured brain and greatly prevented graft overgrowth after transplantation. Importantly, the cortical neuroblasts primarily differentiated into deep-layer cortical neurons and extended long axons to their projection targets, such as the cortex, striatum, thalamus, and internal capsule in both ipsilateral and contralateral HIE-injured brain. The transplanted cortical neurons established synapses with host cortical neurons and exhibited spontaneous excitatory or inhibitory post-synaptic currents (sEPSCs or sIPSCs) five months post-transplantation. Rotarod and open field tests showed greatly improved animal behavior by intra-cortex transplantation of deep layer cortical neuroblasts in HIE injured brain. CONCLUSIONS Transplanted hESCs derived cortical neuroblasts survive, project to endogenous targets, and integrate into host cortical neural circuits to rescue animal behavior in the HIE-injured brain without graft overgrowth, providing a novel and safe cell replacement strategy for the future treatment of HIE.
Collapse
Affiliation(s)
- Mengnan Wu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yuan Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xiaoli Ji
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yingying Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ban Feng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian Cheng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hui He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xingsheng Peng
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Wenhao Zhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510005, China
| | - Yuejun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Yuan M, Tang Y, Huang T, Ke L, Huang E. In situ direct reprogramming of astrocytes to neurons via polypyrimidine tract-binding protein 1 knockdown in a mouse model of ischemic stroke. Neural Regen Res 2024; 19:2240-2248. [PMID: 38488558 PMCID: PMC11034579 DOI: 10.4103/1673-5374.390957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/09/2023] [Accepted: 10/16/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00025/figure1/v/2024-02-06T055622Z/r/image-tiff In situ direct reprogramming technology can directly convert endogenous glial cells into functional neurons in vivo for central nervous system repair. Polypyrimidine tract-binding protein 1 (PTB) knockdown has been shown to reprogram astrocytes to functional neurons in situ. In this study, we used AAV-PHP.eB-GFAP-shPTB to knockdown PTB in a mouse model of ischemic stroke induced by endothelin-1, and investigated the effects of GFAP-shPTB-mediated direct reprogramming to neurons. Our results showed that in the mouse model of ischemic stroke, PTB knockdown effectively reprogrammed GFAP-positive cells to neurons in ischemic foci, restored neural tissue structure, reduced inflammatory response, and improved behavioral function. These findings validate the effectiveness of in situ transdifferentiation of astrocytes, and suggest that the approach may be a promising strategy for stroke treatment.
Collapse
Affiliation(s)
- Meng Yuan
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yao Tang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Scientific Research Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Tianwen Huang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Vascular Aging, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lining Ke
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Human Anatomy, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| | - En Huang
- Key Laboratory of Brain Aging and Neurodegenerative Diseases of Fujian Province, Fujian Medical University, Fuzhou, Fujian Province, China
- Scientific Research Center, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
26
|
Jiang N, Yang T, Han H, Shui J, Hou M, Wei W, Kumar G, Song L, Ma C, Li X, Ding Z. Exploring Research Trend and Hotspots on Oxidative Stress in Ischemic Stroke (2001-2022): Insights from Bibliometric. Mol Neurobiol 2024; 61:6200-6216. [PMID: 38285289 DOI: 10.1007/s12035-023-03909-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
Oxidative stress is widely involved in the pathological process of ischemic stroke and ischemia-reperfusion. Several research have demonstrated that eliminating or reducing oxidative stress can alleviate the pathological changes of ischemic stroke. However, current clinical antioxidant treatment did not always perform as expected. This bibliometric research aims to identify research trends, topics, hotspots, and evolution on oxidative stress in the field of ischemic stroke, and to find potentially antioxidant strategies in future clinical treatment. Relevant publications were searched from the Web of Science (WOS) Core Collection databases (2001-2022). VOSviewer was used to visualize and analyze the development trends and hotspots. In the field of oxidative stress and ischemic stroke, the number of publications increased significantly from 2001 to 2022. China and the USA were the leading countries for publication output. The most prolific institutions were Stanford University. Journal of Cerebral Blood Flow and Metabolism and Stroke were the most cited journals. The research topics in this field include inflammation with oxidative stress, mitochondrial damage with oxidative stress, oxidative stress in reperfusion injury, oxidative stress in cognitive impairment and basic research and clinical translation of oxidative stress. Moreover, "NLRP3 inflammasome," "autophagy," "mitophagy," "miRNA," "ferroptosis," and "signaling pathway" are the emerging research hotspots in recent years. At present, multi-target regulation focusing on multi-mechanism crosstalk has progressed across this period, while challenges come from the transformation of basic research to clinical application. New detection technology and new nanomaterials are expected to integrate oxidative stress into the clinical treatment of ischemic stroke better.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Ting Yang
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Hongxia Han
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
| | - Jing Shui
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
| | - Miaomiao Hou
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, 030032, Shanxi, China
| | - Wenyue Wei
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, 999077, Hong Kong SAR, China
| | - Lijuan Song
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China
| | - Cungen Ma
- Institute of Brain Science, Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases, Medical School of Shanxi Datong University, Datong, 037009, Shanxi Province, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| | - Xinyi Li
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- Shanxi Cardiovascular Hospital, Shanxi Medical University, Taiyuan, 030024, Shanxi, China.
| | - Zhibin Ding
- Department of Neurology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, Shanxi, China.
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine, Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, 030619, Shanxi, China.
| |
Collapse
|
27
|
Capobianco DL, De Zio R, Profico DC, Gelati M, Simone L, D'Erchia AM, Di Palma F, Mormone E, Bernardi P, Sbarbati A, Gerbino A, Pesole G, Vescovi AL, Svelto M, Pisani F. Human neural stem cells derived from fetal human brain communicate with each other and rescue ischemic neuronal cells through tunneling nanotubes. Cell Death Dis 2024; 15:639. [PMID: 39217148 PMCID: PMC11365985 DOI: 10.1038/s41419-024-07005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Pre-clinical trials have demonstrated the neuroprotective effects of transplanted human neural stem cells (hNSCs) during the post-ischemic phase. However, the exact neuroprotective mechanism remains unclear. Tunneling nanotubes (TNTs) are long plasma membrane bridges that physically connect distant cells, enabling the intercellular transfer of mitochondria and contributing to post-ischemic repair processes. Whether hNSCs communicate through TNTs and their role in post-ischemic neuroprotection remains unknown. In this study, non-immortalized hNSC lines derived from fetal human brain tissues were examined to explore these possibilities and assess the post-ischemic neuroprotection potential of these hNSCs. Using Tau-STED super-resolution confocal microscopy, live cell time-lapse fluorescence microscopy, electron microscopy, and direct or non-contact homotypic co-cultures, we demonstrated that hNSCs generate nestin-positive TNTs in both 3D neurospheres and 2D cultures, through which they transfer functional mitochondria. Co-culturing hNSCs with differentiated SH-SY5Y (dSH-SY5Y) revealed heterotypic TNTs allowing mitochondrial transfer from hNSCs to dSH-SY5Y. To investigate the role of heterotypic TNTs in post-ischemic neuroprotection, dSH-SY5Y were subjected to oxygen-glucose deprivation (OGD) followed by reoxygenation (OGD/R) with or without hNSCs in direct or non-contact co-cultures. Compared to normoxia, OGD/R dSH-SY5Y became apoptotic with impaired electrical activity. When OGD/R dSH-SY5Y were co-cultured in direct contact with hNSCs, heterotypic TNTs enabled the transfer of functional mitochondria from hNSCs to OGD/R dSH-SY5Y, rescuing them from apoptosis and restoring the bioelectrical profile toward normoxic dSH-SY5Y. This complete neuroprotection did not occur in the non-contact co-culture. In summary, our data reveal the presence of a functional TNTs network containing nestin within hNSCs, demonstrate the involvement of TNTs in post-ischemic neuroprotection mediated by hNSCs, and highlight the strong efficacy of our hNSC lines in post-ischemic neuroprotection. Human neural stem cells (hNSCs) communicate with each other and rescue ischemic neurons through nestin-positive tunneling nanotubes (TNTs). A Functional mitochondria are exchanged via TNTs between hNSCs. B hNSCs transfer functional mitochondria to ischemic neurons through TNTs, rescuing neurons from ischemia/reperfusion ROS-dependent apoptosis.
Collapse
Affiliation(s)
- D L Capobianco
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - R De Zio
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - D C Profico
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - M Gelati
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - L Simone
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - A M D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
| | - F Di Palma
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - E Mormone
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
| | - P Bernardi
- Department of Neurosciences, Biomedicine and Movement Sciences. Unit of Human Anatomy, University of Verona, Verona, Italy
| | - A Sbarbati
- Department of Neurosciences, Biomedicine and Movement Sciences. Unit of Human Anatomy, University of Verona, Verona, Italy
| | - A Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - G Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
| | - A L Vescovi
- Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni, Rotondo, Foggia, Italy
- Faculty of Medicine, Link Campus University, Rome, Italy
| | - M Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM) CNR, Bari, Italy
- National Institute of Biostructures and Biosystems (INBB), Rome, Italy
| | - F Pisani
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
28
|
Wang Y, Chang C, Wang R, Li X, Bao X. The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke. Neural Regen Res 2024; 19:1998-2003. [PMID: 38227528 DOI: 10.4103/1673-5374.390959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 01/17/2024] Open
Abstract
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.
Collapse
Affiliation(s)
- Yiqing Wang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuheng Chang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
29
|
Deng K, Hu DX, Zhang WJ. Application of cell transplantation in the treatment of neuropathic pain. Neuroscience 2024; 554:43-51. [PMID: 38986736 DOI: 10.1016/j.neuroscience.2024.06.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/15/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024]
Abstract
Nerve injury can not only lead to sensory and motor dysfunction, but also be complicated with neuropathic pain (NPP), which brings great psychosomatic injury to patients. At present, there is no effective treatment for NPP. Based on the functional characteristics of cell transplantation in nerve regeneration and injury repair, cell therapy has been used in the exploratory treatment of NPP and has become a promising treatment of NPP. In this article, we discuss the current mainstream cell types for the treatment of NPP, including Schwann cells, olfactory ensheathing cells, neural stem cells and mesenchymal stem cells in the treatment of NPP. These bioactive cells transplanted into the host have pharmacological properties of decreasing pain threshold and relieving NPP by exerting nutritional support, neuroprotection, immune regulation, promoting axonal regeneration, and remyelination. Cell transplantation can also change the microenvironment around the nerve injury, which is conducive to the survival of neurons. It can effectively relieve pain by repairing the injured nerve and rebuilding the nerve function. At present, some preclinical and clinical studies have shown that some encouraging results have been achieved in NPP treatment based on cell transplantation. Therefore, we discussed the feasible strategy of cell transplantation as a treatment of NPP and the problems and challenges that need to be solved in the current application of cell transplantation in NPP therapy.
Collapse
Affiliation(s)
- Kan Deng
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China; Ji an College, Ji an City, Jiangxi Province, China
| | - Dong-Xia Hu
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China
| | - Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
30
|
Ni J, Zhao J, Chen H, Liu W, Le M, Guo X, Dong X. 2,3-Diphosphoglyceric Acid Alleviating Hypoxic-Ischemic Brain Damage through p38 MAPK Modulation. Int J Mol Sci 2024; 25:8877. [PMID: 39201562 PMCID: PMC11354455 DOI: 10.3390/ijms25168877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a critical condition characterized by significant brain damage due to insufficient blood flow and oxygen delivery at birth, leading to high rates of neonatal mortality and long-term neurological deficits worldwide. 2,3-Diphosphoglyceric acid (2,3-DPG), a small molecule metabolite prevalent in erythrocytes, plays an important role in regulating oxygen delivery, but its potential neuroprotective role in hypoxic-ischemic brain damage (HIBD) has yet to be fully elucidated. Our research reveals that the administration of 2,3-DPG effectively reduces neuron damage caused by hypoxia-ischemia (HI) both in vitro and in vivo. We observed a notable decrease in HI-induced neuronal cell apoptosis, attributed to the downregulation of Bax and cleaved-caspase 3, alongside an upregulation of Bcl-2 expression. Furthermore, 2,3-DPG significantly alleviates oxidative stress and mitochondrial damage induced by oxygen-glucose deprivation/reperfusion (OGD/R). The administration of 2,3-DPG in rats subjected to HIBD resulted in a marked reduction in brain edema and infarct volume, achieved through the suppression of neuronal apoptosis and neuroinflammation. Using RNA-seq analysis, we validated that 2,3-DPG offers protection against neuronal apoptosis under HI conditions by modulating the p38 MAPK pathway. These insights indicated that 2,3-DPG might act as a promising novel therapeutic candidate for HIE.
Collapse
Affiliation(s)
| | | | | | | | | | - Xirong Guo
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| | - Xiaohua Dong
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China; (J.N.); (J.Z.); (H.C.); (W.L.); (M.L.)
| |
Collapse
|
31
|
Luo J, Feng Y, Hong Z, Yin M, Zheng H, Zhang L, Hu X. High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke. Neural Regen Res 2024; 19:1772-1780. [PMID: 38103244 PMCID: PMC10960276 DOI: 10.4103/1673-5374.389303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/14/2023] [Accepted: 09/18/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00031/figure1/v/2023-12-16T180322Z/r/image-tiff Proliferation of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage. Transcranial magnetic stimulation (TMS) has recently emerged as a tool for inducing endogenous neural stem cell regeneration, but its underlying mechanisms remain unclear. In this study, we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells. Additionally, repetitive TMS reduced the volume of cerebral infarction in a rat model of ischemic stroke caused by middle cerebral artery occlusion, improved rat cognitive function, and promoted the proliferation of neural stem cells in the ischemic penumbra. RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia. Furthermore, PCR analysis revealed that repetitive TMS promoted AKT phosphorylation, leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4. This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway, which ultimately promotes the proliferation of neural stem cells. Subsequently, we validated the effect of repetitive TMS on AKT phosphorylation. We found that repetitive TMS promoted Ca2+ influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway, thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway. These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+ influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway. This study has produced pioneering results on the intrinsic mechanism of repetitive TMS to promote neural function recovery after ischemic stroke. These results provide a strong scientific foundation for the clinical application of repetitive TMS. Moreover, repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications, but also provide an effective platform for the expansion of neural stem cells.
Collapse
Affiliation(s)
- Jing Luo
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan Feng
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhongqiu Hong
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Mingyu Yin
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Liying Zhang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiquan Hu
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
32
|
Xiao H, Chen W, Lu D, Shi G, Xia X, Yao S. GDF15 regulated by HDAC2 exerts suppressive effects on oxygen-glucose deprivation/reoxygenation-induced neuronal cell pyroptosis via the NLRP3 inflammasome. Toxicol Res (Camb) 2024; 13:tfae112. [PMID: 39070057 PMCID: PMC11270593 DOI: 10.1093/toxres/tfae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/02/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
Background Pyroptosis, inflammation-related programed cell death mediated by NLRP3 inflammasome, is involved in the pathogenesis of cerebral hypoxic-ischemic injury. Our study aims to explore the biological role of growth differentiation factor (GDF)15 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced neuronal pyroptosis. Methods HT22 neurons were subjected to OGD/R to simulate cerebral hypoxic-ischemic injury. Cells were transfected with plasmids to overexpress GDF15, or lentiviral-based shRNAs constructs to silence GDF15. ELISA assay was used to detect GDF15, IL-1β, IL-18, and neuron specific enolase (NSE) levels. Cell pyroptosis was measured by flow cytometery. Chromatin immunoprecipitation assay was used to detect interaction of H3K27ac with GDF15 promoter. GDF15, NLRP3, Caspase-1 p20 and GSDMD-N expressions were measured by Western blotting. Results Patients with malignant middle cerebral artery infarction showed decreased GDF15, but increased IL-1β, IL-18, and NSE levels in serum compared to healthy controls. OGD/R treatment caused significant increases in the levels of IL-1β, IL-18 and NSE, percentages of pyroptotic cells, and expressions of NLRP3, Caspase-1 p20, and GSDMD in HT22 cells, which were markedly reversed by GDF15 overexpression. However, GDF15 knockdown resulted in neuronal injury similar to those observed in OGD/R treatment. The GDF15 knockdown-induced effects were counteracted by treatment with NLRP3 inhibitor. OGD/R decreased the enrichment of H3K27ac in the promoter of GDF15 to down-regulate GDF15, but was compromised by co-treatment with HDAC2 inhibitor. Conclusion Our data demonstrates that GDF15 attenuates OGD/R-induced pyroptosis through NLRP3 inflammasome. HDAC2 is involved in mediating OGD-induced GDF15 down-regulation via H3K27ac modification. GDF15 overexpression and HDAC2 inhibition hold potential as useful therapeutic strategies for neuroprotection.
Collapse
Affiliation(s)
- Hua Xiao
- Medical College of Soochow University, No. 1, Shizi Street, Gusu District, Suzhou 215000, China
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Wei Chen
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Darong Lu
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Guixin Shi
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Xiangping Xia
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| | - Shengtao Yao
- Department of Neurosurgery, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi 563000, China
| |
Collapse
|
33
|
Wang Z, Huang C, Shi Z, Liu H, Han X, Chen Z, Li S, Wang Z, Huang J. A taurine-based hydrogel with the neuroprotective effect and the ability to promote neural stem cell proliferation. BIOMATERIALS ADVANCES 2024; 161:213895. [PMID: 38795474 DOI: 10.1016/j.bioadv.2024.213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
Ischemic stroke, a cerebrovascular disease caused by arterial occlusion in the brain, can lead to brain impairment and even death. Stem cell therapies have shown positive advantages to treat ischemic stroke because of their extended time window, but the cell viability is poor when transplanted into the brain directly. Therefore, a new hydrogel GelMA-T was developed by introducing taurine on GelMA to transplant neural stem cells. The GelMA-T displayed the desired photocuring ability, micropore structure, and cytocompatibility. Its compressive modulus was more similar to neural tissue compared to that of GelMA. The GelMA-T could protect SH-SY5Y cells from injury induced by OGD/R. Furthermore, the NE-4C cells showed better proliferation performance in GelMA-T than that in GelMA during both 2D and 3D cultures. All results demonstrate that GelMA-T possesses a neuroprotective effect for ischemia/reperfusion injury against ischemic stroke and plays a positive role in promoting NSC proliferation. The novel hydrogel is anticipated to function as cell vehicles for the transplantation of neural stem cells into the stroke cavity, aiming to treat ischemic stroke.
Collapse
Affiliation(s)
- Zhichao Wang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanzhen Huang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Zhenyu Shi
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Hanlian Liu
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China.
| | - Xu Han
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhuang Chen
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Shuying Li
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhen Wang
- School of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jun Huang
- Centre for Advanced Jet Engineering Technology (CaJET), Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Ministry of Education), National Experimental Teaching Demonstration Center for Mechanical Engineering (Shandong University), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
34
|
Xiao QX, Geng MJ, Sun YF, Pi Y, Xiong LL. Stem Cell Therapy in Neonatal Hypoxic-Ischemic Encephalopathy and Cerebral Palsy: a Bibliometric Analysis and New Strategy. Mol Neurobiol 2024; 61:4538-4564. [PMID: 38102517 DOI: 10.1007/s12035-023-03848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
The aim of this study was to identify related scientific outputs and emerging topics of stem cells in neonatal hypoxic-ischemic encephalopathy (NHIE) and cerebral palsy (CP) through bibliometrics and literature review. All relevant publications on stem cell therapy for NHIE and CP were screened from websites and analyzed research trends. VOSviewer and CiteSpace were applied to visualize and quantitatively analyze the published literature to provide objective presentation and prediction. In addition, the clinical trials, published articles, and projects of the National Natural Science Foundation of China associated with stem cell therapy for NHIE and CP were summarized. A total of 294 publications were associated with stem cell therapy for NHIE and CP. Most publications and citations came from the USA and China. Monash University and University Medical Center Utrecht produced the most publications. Pediatric research published the most studies on stem cell therapy for NHIE and CP. Heijnen C and Kavelaars A published the most articles. Cluster analyses show that current research trend is more inclined toward the repair mechanism and clinical translation of stem cell therapy for NHIE and CP. By summarizing various studies of stem cells in NHIE and CP, it is indicated that this research direction is a hot topic at present. Furthermore, organoid transplantation, as an emerging and new therapeutic approach, brings new hope for the treatment of NHIE and CP. This study comprehensively summarized and analyzed the research trend of global stem cell therapy for NHIE and CP. It has shown a marked increase in stem cell therapy for NHIE and CP research. In the future, more efforts will be made on exploring stem cell or organoid therapy for NHIE and CP and more valuable related mechanisms of action to achieve clinical translation as soon as possible.
Collapse
Affiliation(s)
- Qiu-Xia Xiao
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Min-Jian Geng
- Department of Anesthesiology, Nanchong Central Hospital, Nanchong, 637000, Sichuan, China
| | - Yi-Fei Sun
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Pi
- Department of Anesthesiology, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Liu-Lin Xiong
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
35
|
Fan YY, Li Y, Tian XY, Wang YJ, Huo J, Guo BL, Chen R, Yang CH, Li Y, Zhang HF, Niu BL, Zhang MS. Delayed Chronic Acidic Postconditioning Improves Poststroke Motor Functional Recovery and Brain Tissue Repair by Activating Proton-Sensing TDAG8. Transl Stroke Res 2024; 15:620-635. [PMID: 36853417 DOI: 10.1007/s12975-023-01143-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Acidic postconditioning by transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects in the acute phase of stroke. However, the effects of delayed chronic acidic postconditioning (DCAPC) initiated during the subacute phase of stroke or other acute brain injuries are unknown. Mice received daily DCAPC by inhaling 5%/10%/20% CO2 for various durations (three cycles of 10- or 20-min CO2 inhalation/10-min break) at days 3-7, 7-21, or 3-21 after photothrombotic stroke. Grid-walk, cylinder, and gait tests were used to assess motor function. DCAPC with all CO2 concentrations significantly promoted motor functional recovery, even when DCAPC was delayed for 3-7 days. DCAPC enhanced the puncta density of GAP-43 (a marker of axon growth and regeneration) and synaptophysin (a marker of synaptogenesis) and reduced the amoeboid microglia number, glial scar thickness and mRNA expression of CD16 and CD32 (markers of proinflammatory M1 microglia) compared with those of the stroke group. Cerebral blood flow (CBF) increased in response to DCAPC. Furthermore, the mRNA expression of TDAG8 (a proton-activated G-protein-coupled receptor) was increased during the subacute phase of stroke, while DCAPC effects were blocked by systemic knockout of TDAG8, except for those on CBF. DCAPC reproduced the benefits by re-expressing TDAG8 in the peri-infarct cortex of TDAG8-/- mice infected with HBAAV2/9-CMV-TDAG8-3flag-ZsGreen. Taken together, we first showed that DCAPC promoted functional recovery and brain tissue repair after stroke with a wide therapeutic time window of at least 7 days after stroke. Brain-derived TDAG8 is a direct target of DCAPC that induces neuroreparative effects.
Collapse
Affiliation(s)
- Yan-Ying Fan
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao-Ying Tian
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ying-Jing Wang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Huo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Lu Guo
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Cai-Hong Yang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Yan Li
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Hui-Feng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Bao-Long Niu
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Ming-Sheng Zhang
- Department of Pharmacology, Basic Medical Sciences Center, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
36
|
Zhu Z, Zhang Q, Feng J, Zebaze Dongmo S, Zhang Q, Huang S, Liu X, Zhang G, Chen L. Neural Stem Cell-Derived Small Extracellular Vesicles: key Players in Ischemic Stroke Therapy - A Comprehensive Literature Review. Int J Nanomedicine 2024; 19:4279-4295. [PMID: 38766658 PMCID: PMC11102074 DOI: 10.2147/ijn.s451642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Ischemic stroke, being a prominent contributor to global disability and mortality, lacks an efficacious therapeutic approach in current clinical settings. Neural stem cells (NSCs) are a type of stem cell that are only found inside the nervous system. These cells can differentiate into various kinds of cells, potentially regenerating or restoring neural networks within areas of the brain that have been destroyed. This review begins by providing an introduction to the existing therapeutic approaches for ischemic stroke, followed by an examination of the promise and limits associated with the utilization of NSCs for the treatment of ischemic stroke. Subsequently, a comprehensive overview was conducted to synthesize the existing literature on the underlying processes of neural stem cell-derived small extracellular vesicles (NSC-sEVs) transplantation therapy in the context of ischemic stroke. These mechanisms encompass neuroprotection, inflammatory response suppression, and endogenous nerve and vascular regeneration facilitation. Nevertheless, the clinical translation of NSC-sEVs is hindered by challenges such as inadequate targeting efficacy and insufficient content loading. In light of these limitations, we have compiled an overview of the advancements in utilizing modified NSC-sEVs for treating ischemic stroke based on current methods of extracellular vesicle modification. In conclusion, examining NSC-sEVs-based therapeutic approaches is anticipated to be prominent in both fundamental and applied investigations about ischemic stroke.
Collapse
Affiliation(s)
- Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jia Feng
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Sonia Zebaze Dongmo
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qianqian Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaowen Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Guilong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
37
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
38
|
Zhang S, Cui K, Li Y, Fan Y, Wang D, Yao X, Fang B. The m 6A methylation and expression profiles of mouse neural stem cells after hypoxia/reoxygenation. Stem Cell Res Ther 2024; 15:43. [PMID: 38360659 PMCID: PMC10870567 DOI: 10.1186/s13287-024-03658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion injury to the central nervous system often causes severe complications. The activation of endogenous neural stem cells (NSCs) is considered a promising therapeutic strategy for nerve repair. However, the specific biological processes and molecular mechanisms of NSC activation remain unclear, and the role of N6-methyladenosine (m6A) methylation modification in this process has not been explored. METHODS NSCs were subjected to hypoxia/reoxygenation (H/R) to simulate ischemia-reperfusion in vivo. m6A RNA methylation quantitative kit was used to measure the total RNA m6A methylation level. Quantitative real-time PCR was used to detect methyltransferase and demethylase mRNA expression levels. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted for NSCs in control and H/R groups, and the sequencing results were analyzed using bioinformatics. Finally, the migration ability of NSCs was identified by wound healing assays, and the proliferative capacity of NSCs was assessed using the cell counting kit-8, EdU assays and cell spheroidization assays. RESULTS Overall of m6A modification level and Mettl14 mRNA expression increased in NSCs after H/R treatment. The m6A methylation and expression profiles of mRNAs in NSCs after H/R are described for the first time. Through the joint analysis of MeRIP-seq and RNA-seq results, we verified the proliferation of NSCs after H/R, which was regulated by m6A methylation modification. Seven hub genes were identified to play key roles in the regulatory process. Knockdown of Mettl14 significantly inhibited the proliferation of NSCs. In addition, separate analysis of the MeRIP-seq results suggested that m6A methylation regulates cell migration and differentiation in ways other than affecting mRNA expression. Subsequent experiments confirmed the migration ability of NSCs was suppressed by knockdown of Mettl14. CONCLUSION The biological behaviors of NSCs after H/R are closely related to m6A methylation of mRNAs, and Mettl14 was confirmed to be involved in cell proliferation and migration.
Collapse
Affiliation(s)
- Shaoqiong Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Kaile Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yiting Fan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Dongxu Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Xingen Yao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Bo Fang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
39
|
Buchlak QD, Esmaili N, Moore J. Opportunities for developing neural stem cell treatments for acute ischemic stroke: A systematic review and gap analysis. J Clin Neurosci 2024; 120:64-75. [PMID: 38199150 DOI: 10.1016/j.jocn.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ischemic stroke is a leading cause of disability and death. Current treatments are limited. Stem cell therapy has been highlighted as a potentially effective treatment to mitigate damage and restore function, but efficacy results are mixed. This study aimed to systematically review the literature on stem cell therapies for early acute ischemic stroke; and identify opportunities for future research to facilitate the development of an effective stem cell-based treatment. Original research published within the last 10 years that focused on the evaluation of a stem cell-based treatment for acute ischemic stroke in adult patients or subjects was included. Risk of bias was assessed using the SYRCLE and Cochrane risk of bias tools for animal and human studies, respectively. 3,396 articles were screened, 58 full-text articles were reviewed and 33 met inclusion criteria. Many studies appeared to be at risk of bias. Study designs and results were heterogeneous. Most studies were preclinical and involved stem cell administration within 24 hours. Seven studies tested the effects of multiple administration timepoints and one investigated repeat dosing. Six studies were conducted in humans and stem cell administration ranged from 24 hours to 90 days post stroke. Most studies employed the use of mesenchymal stem cells. The most appropriate cell delivery method appeared to be intra-arterial. Evidence suggests that stem cell therapy may be associated with beneficial effects. A literature gap analysis identified numerous opportunities for treatment development.
Collapse
Affiliation(s)
- Quinlan D Buchlak
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia; School of Medicine, University of Notre Dame Australia, Sydney, NSW, Australia.
| | - Nazanin Esmaili
- School of Medicine, University of Notre Dame Australia, Sydney, NSW, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Justin Moore
- Department of Neurosurgery, Monash Health, Melbourne, VIC, Australia; Department of Surgery, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Guo W, Liu K, Wang Y, Ge X, Ma Y, Qin J, Zhang C, Zhao Y, Shi C. Neurotrophins and neural stem cells in posttraumatic brain injury repair. Animal Model Exp Med 2024; 7:12-23. [PMID: 38018458 PMCID: PMC10961886 DOI: 10.1002/ame2.12363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Traumatic brain injury (TBI) is the main cause of disability, mental health disorder, and even death, with its incidence and social costs rising steadily. Although different treatment strategies have been developed and tested to mitigate neurological decline, a definitive cure for these conditions remains elusive. Studies have revealed that various neurotrophins represented by the brain-derived neurotrophic factor are the key regulators of neuroinflammation, apoptosis, blood-brain barrier permeability, neurite regeneration, and memory function. These factors are instrumental in alleviating neuroinflammation and promoting neuroregeneration. In addition, neural stem cells (NSC) contribute to nerve repair through inherent neuroprotective and immunomodulatory properties, the release of neurotrophins, the activation of endogenous NSCs, and intercellular signaling. Notably, innovative research proposals are emerging to combine BDNF and NSCs, enabling them to synergistically complement and promote each other in facilitating injury repair and improving neuron differentiation after TBI. In this review, we summarize the mechanism of neurotrophins in promoting neurogenesis and restoring neural function after TBI, comprehensively explore the potential therapeutic effects of various neurotrophins in basic research on TBI, and investigate their interaction with NSCs. This endeavor aims to provide a valuable insight into the clinical treatment and transformation of neurotrophins in TBI, thereby promoting the progress of TBI therapeutics.
Collapse
Affiliation(s)
- Wenwen Guo
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Ke Liu
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Yinghua Wang
- Medical College of Yan'an UniversityYan'anP.R. China
| | - Xu Ge
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Yifan Ma
- Gansu University of Traditional Chinese MedicineLanzhouP.R. China
| | - Jing Qin
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Caiqin Zhang
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Ya Zhao
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| | - Changhong Shi
- Laboratory Animal CenterFourth Military Medical UniversityXi'anP.R. China
| |
Collapse
|
41
|
Qi L, Wang F, Sun X, Li H, Zhang K, Li J. Recent advances in tissue repair of the blood-brain barrier after stroke. J Tissue Eng 2024; 15:20417314241226551. [PMID: 38304736 PMCID: PMC10832427 DOI: 10.1177/20417314241226551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
The selective permeability of the blood-brain barrier (BBB) enables the necessary exchange of substances between the brain parenchyma and circulating blood and is important for the normal functioning of the central nervous system. Ischemic stroke inflicts damage upon the BBB, triggering adverse stroke outcomes such as cerebral edema, hemorrhagic transformation, and aggravated neuroinflammation. Therefore, effective repair of the damaged BBB after stroke and neovascularization that allows for the unique selective transfer of substances from the BBB after stroke is necessary and important for the recovery of brain function. This review focuses on four important therapies that have effects of BBB tissue repair after stroke in the last seven years. Most of these new therapies show increased expression of BBB tight-junction proteins, and some show beneficial results in terms of enhanced pericyte coverage at the injured vessels. This review also briefly outlines three effective classes of approaches and their mechanisms for promoting neoangiogenesis following a stroke.
Collapse
Affiliation(s)
- Liujie Qi
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Fei Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Xiaojing Sun
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Hang Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, PR China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
42
|
Ghosh S, Bhatti GK, Sharma PK, Kandimalla R, Mastana SS, Bhatti JS. Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:6. [PMID: 38104307 PMCID: PMC11397842 DOI: 10.1007/s10571-023-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations. This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.
Collapse
Affiliation(s)
- Sushruta Ghosh
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University, Rajasthan, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, CSIR-Indian Institute of Technology, Hyderabad, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India.
| |
Collapse
|
43
|
Ying C, Zhang J, Zhang H, Gao S, Guo X, Lin J, Wu H, Hong Y. Stem cells in central nervous system diseases: Promising therapeutic strategies. Exp Neurol 2023; 369:114543. [PMID: 37743001 DOI: 10.1016/j.expneurol.2023.114543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Central nervous system (CNS) diseases are a leading cause of death and disability. Due to CNS neurons have no self-renewal and regenerative ability as they mature, their loss after injury or disease is irreversible and often leads to functional impairments. Unfortunately, therapeutic options for CNS diseases are still limited, and effective treatments for these notorious diseases are warranted to be explored. At present, stem cell therapy has emerged as a potential therapeutic strategy for improving the prognosis of CNS diseases. Accumulating preclinical and clinical evidences have demonstrated that multiple molecular mechanisms, such as cell replacement, immunoregulation and neurotrophic effect, underlie the use of stem cell therapy for CNS diseases. However, several issues have yet to be addressed to support its clinical application. Thus, this review article aims to summarize the role and underlying mechanisms of stem cell therapy in treating CNS diseases. And it is worthy of further evaluation for the potential therapeutic applications of stem cell treatment in CNS disease.
Collapse
Affiliation(s)
- Caidi Ying
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jiahao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haocheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Jun Lin
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yuan Hong
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
44
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
45
|
Markowska A, Koziorowski D, Szlufik S. Microglia and Stem Cells for Ischemic Stroke Treatment-Mechanisms, Current Status, and Therapeutic Challenges. FRONT BIOSCI-LANDMRK 2023; 28:269. [PMID: 37919085 DOI: 10.31083/j.fbl2810269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023]
Abstract
Ischemic stroke is one of the major causes of death and disability. Since the currently used treatment option of reperfusion therapy has several limitations, ongoing research is focusing on the neuroprotective effects of microglia and stem cells. By exerting the bystander effect, secreting exosomes and forming biobridges, mesenchymal stem cells (MSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and multilineage-differentiating stress-enduring cells (Muse cells) have been shown to stimulate neurogenesis, angiogenesis, cell migration, and reduce neuroinflammation. Exosome-based therapy is now being extensively researched due to its many advantageous properties over cell therapy, such as lower immunogenicity, no risk of blood vessel occlusion, and ease of storage and modification. However, although preclinical studies have shown promising therapeutic outcomes, clinical trials have been associated with several translational challenges. This review explores the therapeutic effects of preconditioned microglia as well as various factors secreted in stem cell-derived extracellular vesicles with their mechanisms of action explained. Furthermore, an overview of preclinical and clinical studies is presented, explaining the main challenges of microglia and stem cell therapies, and providing potential solutions. In particular, a highlight is the use of novel stem cell therapy of Muse cells, which bypasses many of the conventional stem cell limitations. The paper concludes with suggestions for directions in future neuroprotective research.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| |
Collapse
|
46
|
Tan R, Hu X, Wang X, Sun M, Cai Z, Zhang Z, Fu Y, Chen X, An J, Lu H. Leptin Promotes the Proliferation and Neuronal Differentiation of Neural Stem Cells through the Cooperative Action of MAPK/ERK1/2, JAK2/STAT3 and PI3K/AKT Signaling Pathways. Int J Mol Sci 2023; 24:15151. [PMID: 37894835 PMCID: PMC10606644 DOI: 10.3390/ijms242015151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The potential of neural stem cells (NSCs) for neurological disorders the treatment has relied in large part upon identifying the NSCs fate decision. The hormone leptin has been reported to be a crucial regulator of brain development, able to influence the glial and neural development, yet, the underlying mechanism of leptin acting on NSCs' biological characteristics is still poorly understood. This study aims to investigate the role of leptin in the biological properties of NSCs. In this study, we investigate the possibility that leptin may regulate the NSCs' fate decision, which may promote the proliferation and neuronal differentiation of NSCs and thus act positively in neurological disorders. NSCs from the embryonic cerebral cortex were used in this study. We used CCK-8 assay, ki67 immunostaining, and FACS analysis to confirm that 25-100 ng/mL leptin promotes the proliferation of NSCs in a concentration-dependent pattern. This change was accompanied by the upregulation of p-AKT and p-ERK1/2, which are the classical downstream signaling pathways of leptin receptors b (LepRb). Inhibition of PI3K/AKT or MAPK/ERK signaling pathways both abolished the effect of leptin-induced proliferation. Moreover, leptin also enhanced the directed neuronal differentiation of NSCs. A blockade of the PI3K/AKT pathway reversed leptin-stimulated neurogenesis, while a blockade of JAK2/STAT3 had no effect on it. Taken together, our results support a role for leptin in regulating the fate of NSCs differentiation and promoting NSCs proliferation, which could be a promising approach for brain repair via regulating the biological characteristics of NSCs.
Collapse
Affiliation(s)
- Ruolan Tan
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xiaoxuan Hu
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xinyi Wang
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Meiqi Sun
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Zhenlu Cai
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Zixuan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Yali Fu
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China
| | - Xinlin Chen
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Jing An
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| | - Haixia Lu
- Department of Neurobiology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (R.T.); (X.H.); (X.W.); (M.S.); (Z.C.); (Z.Z.); (Y.F.); (X.C.)
| |
Collapse
|
47
|
Yao H, Shi H, Jiang C, Fan M, Zhang Y, Qian W, Lin R. L-Fucose promotes enteric nervous system regeneration in type 1 diabetic mice by inhibiting SMAD2 signaling pathway in enteric neural precursor cells. Cell Commun Signal 2023; 21:273. [PMID: 37798789 PMCID: PMC10552466 DOI: 10.1186/s12964-023-01311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Diabetes can lead to extensive damage to the enteric nervous system (ENS), causing gastrointestinal motility disorders. However, there is currently a lack of effective treatments for diabetes-induced ENS damage. Enteric neural precursor cells (ENPCs) closely regulate the structural and functional integrity of the ENS. L-Fucose, is a dietary sugar that has been showed to effectively ameliorate central nervous system injuries, but its potential for ameliorating ENS damage and the involvement of ENPCs in this process remains uncertain. METHODS Genetically engineered mice were generated for lineage tracing of ENPCs in vivo. Using diabetic mice in vivo and high glucose-treated primary ENPCs in vitro, the effects of L-Fucose on the injured ENS and ENPCs was evaluated by assessing gastrointestinal motility, ENS structure, and the differentiation of ENPCs. The key signaling pathways in regulating neurogenesis and neural precursor cells properties, transforming growth factor-β (TGF-β) and its downstream signaling pathways were further examined to clarify the potential mechanism of L-Fucose on the injured ENS and ENPCs. RESULTS L-Fucose improved gastrointestinal motility in diabetic mice, including increased defecation frequency (p < 0.05), reduced total gastrointestinal transmission time (p < 0.001) and bead expulsion time (p < 0.05), as well as enhanced spontaneous contractility and electric field stimulation-induced contraction response in isolated colonic muscle strips (p < 0.001). The decrease in the number of neurons and glial cells in the ENS of diabetic mice were reversed by L-Fucose treatment. More importantly, L-Fucose treatment significantly promoted the proportion of ENPCs differentiated into neurons and glial cells both in vitro and in vivo, accompanied by inhibiting SMAD2 phosphorylation. CONCLUSIONS L-Fucose could promote neurogenesis and gliogenesis derived from ENPCs by inhibiting the SMAD2 signaling, thus facilitating ENS regeneration and gastrointestinal motility recovery in type 1 diabetic mice. Video Abstract.
Collapse
Affiliation(s)
- Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yurui Zhang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
48
|
Wang Z, Zhang S, Du J, Lachance BB, Chen S, Polster BM, Jia X. Neuroprotection of NSC Therapy is Superior to Glibenclamide in Cardiac Arrest-Induced Brain Injury via Neuroinflammation Regulation. Transl Stroke Res 2023; 14:723-739. [PMID: 35921049 PMCID: PMC9895128 DOI: 10.1007/s12975-022-01047-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/05/2022] [Indexed: 02/05/2023]
Abstract
Cardiac arrest (CA) is common and devastating, and neuroprotective therapies for brain injury after CA remain limited. Neuroinflammation has been a target for two promising but underdeveloped post-CA therapies: neural stem cell (NSC) engrafting and glibenclamide (GBC). It is critical to understand whether one therapy has superior efficacy over the other and to further understand their immunomodulatory mechanisms. In this study, we aimed to evaluate and compare the therapeutic effects of NSC and GBC therapies post-CA. In in vitro studies, BV2 cells underwent oxygen-glucose deprivation (OGD) for three hours and were then treated with GBC or co-cultured with human NSCs (hNSCs). Microglial polarization phenotype and TLR4/NLRP3 inflammatory pathway proteins were detected by immunofluorescence staining. Twenty-four Wistar rats were randomly assigned to three groups (control, GBC, and hNSCs, N = 8/group). After 8 min of asphyxial CA, GBC was injected intraperitoneally or hNSCs were administered intranasally in the treatment groups. Neurological-deficit scores (NDSs) were assessed at 24, 48, and 72 h after return of spontaneous circulation (ROSC). Immunofluorescence was used to track hNSCs and quantitatively evaluate microglial activation subtype and polarization. The expression of TLR4/NLRP3 pathway-related proteins was quantified via Western blot. The in vitro studies showed the highest proportion of activated BV2 cells with an increased expression of TLR4/NLRP3 signaling proteins were found in the OGD group compared to OGD + GBC and OGD + hNSCs groups. NDS showed significant improvement after CA in hNSC and GBC groups compared to controls, and hNSC treatment was superior to GBC treatment. The hNSC group had more inactive morphology and anti-inflammatory phenotype of microglia. The quantified expression of TLR4/NLRP3 pathway-related proteins was significantly suppressed by both treatments, and the suppression was more significant in the hNSC group compared to the GBC group. hNSC and GBC therapy regulate microglial activation and the neuroinflammatory response in the brain after CA through TLR4/NLRP3 signaling and exert multiple neuroprotective effects, including improved neurological function and shortened time of severe neurological deficit. In addition, hNSCs displayed superior inflammatory regulation over GBC.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Shuai Zhang
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brittany Bolduc Lachance
- Program in Trauma, Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Songyu Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Brian M Polster
- Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Orthopedics, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
49
|
Tian J, Zhu J, Fan Q, Luo X, Nie Q, Yu J, Wu X, Tang Y, Liu T, Yin H. Interleukin-33 improves the neurogenesis of neural stem cells in perinatal brain after hypoxia-ischemia. Int Immunopharmacol 2023; 123:110778. [PMID: 37573691 DOI: 10.1016/j.intimp.2023.110778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Perinatal hypoxia-ischemia (HI) insult is an important cause of neonatal encephalopathy, and the effective therapeutic approaches are currently limited. Interleukin (IL)-33 acts as a member of the IL-1 superfamily and has been shown to be neuroprotective following experimental neonatal HI and adult stroke. Here, we explore the effect of IL-33 and its specific receptor ST2 axis on endogenous neurogenesis in neonatal brain after HI. ST2 was found on the surface of NSCs, and the expression of ST2 was further enhanced after HI challenge. Delivery of IL-33 obviously repopulated the size of NSC pool, whereas ST2 deficiency worsened the neurogenesis of NSCs in neonatal brain post HI insult. Further in vivo and in vitro studies showed IL-33 regulates the survival, proliferation and differentiation of NSCs through ST2 signaling pathways. Intriguingly, IL-33 facilitated translocation of Nrf2 from the cytoplasm to the nucleus, which is involved in neural differentiation of NSCs. These data demonstrate a critical role of IL-33/ST2 axis in regulation of endogenous neurogenesis of NSCs via activation of the Nrf2 signaling, which provide a new insight into the effect of IL-33 in neonatal brain following HI injury.
Collapse
Affiliation(s)
- Jing Tian
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jieqiong Zhu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuxiang Fan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaotian Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qianying Nie
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jingwei Yu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyong Wu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528453, China
| | - Yanli Tang
- Department of Pediatrics, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, Shenzhen 518172, China
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Hui Yin
- Department of Microbiology and Immunology, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
50
|
Zhong L, Wang J, Wang P, Liu X, Liu P, Cheng X, Cao L, Wu H, Chen J, Zhou L. Neural stem cell-derived exosomes and regeneration: cell-free therapeutic strategies for traumatic brain injury. Stem Cell Res Ther 2023; 14:198. [PMID: 37553595 PMCID: PMC10408078 DOI: 10.1186/s13287-023-03409-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
Regenerative repair of the brain after traumatic brain injury (TBI) remains an extensive clinical challenge, inspiring intensified interest in therapeutic approaches to explore superior repair strategies. Exosome therapy is another research hotspot following stem cell alternative therapy. Prior research verified that exosomes produced by neural stem cells can participate in the physiological and pathological changes associated with TBI and have potential neuroregulatory and repair functions. In comparison with their parental stem cells, exosomes have superior stability and immune tolerance and lower tumorigenic risk. In addition, they can readily penetrate the blood‒brain barrier, which makes their treatment efficiency superior to that of transplanted stem cells. Exosomes secreted by neural stem cells present a promising strategy for the development of novel regenerative therapies. Their tissue regeneration and immunomodulatory potential have made them encouraging candidates for TBI repair. The present review addresses the challenges, applications and potential mechanisms of neural stem cell exosomes in regenerating damaged brains.
Collapse
Affiliation(s)
- Lin Zhong
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, 300162, China
| | - Peng Wang
- Department of Health Management, Tianjin Hospital, Tianjin, 300211, China
| | - Xiaoyin Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peng Liu
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xu Cheng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610064, Sichuan, China
| | - Lujia Cao
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China
| | - Hongwei Wu
- Department of Hematology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, China.
| | - Jing Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|