1
|
Andersen CJ, Fernandez ML. Emerging Biomarkers and Determinants of Lipoprotein Profiles to Predict CVD Risk: Implications for Precision Nutrition. Nutrients 2024; 17:42. [PMID: 39796476 PMCID: PMC11722654 DOI: 10.3390/nu17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Biomarkers constitute a valuable tool to diagnose both the incidence and the prevalence of chronic diseases and may help to inform the design and effectiveness of precision nutrition interventions. Cardiovascular disease (CVD) continues to be the foremost cause of death all over the world. While the reasons that lead to increased risk for CVD are multifactorial, dyslipidemias, plasma concentrations of specific lipoproteins, and dynamic measures of lipoprotein function are strong biomarkers to predict and document coronary heart disease incidence. The aim of this review is to provide a comprehensive evaluation of the biomarkers and emerging approaches that can be utilized to characterize lipoprotein profiles as predictive tools for assessing CVD risk, including the assessment of traditional clinical lipid panels, measures of lipoprotein efflux capacity and inflammatory and antioxidant activity, and omics-based characterization of lipoprotein composition and regulators of lipoprotein metabolism. In addition, we discuss demographic, genetic, metagenomic, and lifestyle determinants of lipoprotein profiles-such as age, sex, gene variants and single-nucleotide polymorphisms, gut microbiome profiles, dietary patterns, physical inactivity, obesity status, smoking and alcohol intake, and stress-which are likely to be essential factors to explain interindividual responses to precision nutrition recommendations to mitigate CVD risk.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
- School of Nutrition and Wellness, University of Arizona, Tucson, AZ 85712, USA
| |
Collapse
|
2
|
Sanchez MM, Tonmoy TI, Park BH, Morgan JT. Development of a Vascularized Human Skin Equivalent with Hypodermis for Photoaging Studies. Biomolecules 2022; 12:biom12121828. [PMID: 36551256 PMCID: PMC9775308 DOI: 10.3390/biom12121828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Photoaging is an important extrinsic aging factor leading to altered skin morphology and reduced function. Prior work has revealed a connection between photoaging and loss of subcutaneous fat. Currently, primary models for studying this are in vivo (human samples or animal models) or in vitro models, including human skin equivalents (HSEs). In vivo models are limited by accessibility and cost, while HSEs typically do not include a subcutaneous adipose component. To address this, we developed an "adipose-vascular" HSE (AVHSE) culture method, which includes both hypodermal adipose and vascular cells. Furthermore, we tested AVHSE as a potential model for hypodermal adipose aging via exposure to 0.45 ± 0.15 mW/cm2 385 nm light (UVA). One week of 2 h daily UVA exposure had limited impact on epidermal and vascular components of the AVHSE, but significantly reduced adiposity by approximately 50%. Overall, we have developed a novel method for generating HSE that include vascular and adipose components and demonstrated potential as an aging model using photoaging as an example.
Collapse
|
3
|
Yan X, Li Q, Jing L, Wu S, Duan W, Chen Y, Chen D, Pan X. Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi Fructus. Front Pharmacol 2022; 13:1017268. [PMID: 36339628 PMCID: PMC9626985 DOI: 10.3389/fphar.2022.1017268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022] Open
Abstract
Phyllanthi Fructus (PF), the edible fruits of Phyllanthus emblica L., serves as an important resource for some health products, foods and drugs due to its high safety and sufficient nutritional value. In recent years, in vivo and in vitro experiments have been conducted to reveal the active components of PF. More than 180 compounds have been isolated and identified from the PF so far, primarily including tannins, phenolic acids, flavonoids, terpenoids, polysaccharides, fatty acids and amino acids. In traditional Chinese medicine (TCM), PF is used to cure several diseases such as bronchitis, asthma, diabetes, peptic ulcer, hepatopathy, leprosy, and jaundice. Consistent with ethnopharmacology, numerous modern studies have demonstrated that the extracts or monomeric compounds derived from PF exhibit various pharmacological effects including anti-oxidation, anti-bacteria, anti-inflammation, anti-tumour, anti-virus, immunity improvement, hypoglycemic and hypolipidemic effects, and multiple organ protective protection. Toxicological studies on PF indicated the absence of any adverse effects even at a high dose after oral administration. Due to strict quality control, these pharmacological activities and the safety of PF greatly improve the development and utilization of products. Our comprehensive review aims to summarize the phytochemistry, pharmacological effects, toxicology, and product development of PF to provide theoretical guidance and new insights for further research on PF in the future.
Collapse
Affiliation(s)
- Xiaoyu Yan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuju Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Jing
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Wu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Duan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Dayi Chen, ; Xiaoqi Pan,
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Dayi Chen, ; Xiaoqi Pan,
| |
Collapse
|
4
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
5
|
Dimitriu T, Bolfa P, Suciu S, Cimpean A, Daradics Z, Catoi C, Armencea G, Baciut G, Bran S, Dinu C, Baciut M. Grape Seed Extract Reduces the Degree of Atherosclerosis in Ligature-Induced Periodontitis in Rats - An Experimental Study. J Med Life 2021; 13:580-586. [PMID: 33456610 PMCID: PMC7803317 DOI: 10.25122/jml-2020-0177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The associations between periodontitis and cardiovascular diseases have been intensely studied in recent years. Oxidative stress is involved in the initiation and both progression of periodontitis and atherosclerosis. Antioxidants can reduce the effects of oxidative stress on inflammatory diseases. Our aim was to measure the effects of a grape seed extract (GSE), rich in antioxidants, on atherosclerosis caused by ligature-induced periodontitis in rats. Thirty male Wistar rats were randomly divided into three groups of 10: control group, periodontitis group, and periodontitis group treated with GSE (GSE group). Periodontitis was induced by placing an orthodontic wire around the cervix of the first mandibular molar and keeping it in place for 4 weeks. On days 1, 7 and 28, blood samples were taken to assess oxidative stress and inflammation markers (malondialdehyde and glutathione - MDA, reduced glutathione - GSH, C reactive protein) and lipids. After 4 weeks, the animals were euthanized, and aortas were collected for histopathologic examination. MDA was significantly higher in Periodontitis group compared to the other groups only at day 7. GSH was significantly increased in the Control and GSE groups on days 1 and 7, compared to Periodontitis group and on day 28 higher in GSE vs. Periodontitis groups. C reactive protein was significantly increased in the Periodontitis group on days 1 and 7 compared to both groups. Cholesterol was significantly decreased in the aortas of GSE group at day 28 compared to the Periodontitis group. Oral administration of a grape seed extract reduces the oxidative stress, inflammation and atherosclerosis in a rat model of ligature-induced periodontitis.
Collapse
Affiliation(s)
- Tudor Dimitriu
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Pompei Bolfa
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania.,Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Soimita Suciu
- Department of Physiology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adrian Cimpean
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Zsofia Daradics
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cornel Catoi
- Department of Pathology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Oral and Maxillofacial Surgery, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Ziegler M, Wallert M, Lorkowski S, Peter K. Cardiovascular and Metabolic Protection by Vitamin E: A Matter of Treatment Strategy? Antioxidants (Basel) 2020; 9:E935. [PMID: 33003543 PMCID: PMC7600583 DOI: 10.3390/antiox9100935] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) cause about 1/3 of global deaths. Therefore, new strategies for the prevention and treatment of cardiovascular events are highly sought-after. Vitamin E is known for significant antioxidative and anti-inflammatory properties, and has been studied in the prevention of CVD, supported by findings that vitamin E deficiency is associated with increased risk of cardiovascular events. However, randomized controlled trials in humans reveal conflicting and ultimately disappointing results regarding the reduction of cardiovascular events with vitamin E supplementation. As we discuss in detail, this outcome is strongly affected by study design, cohort selection, co-morbidities, genetic variations, age, and gender. For effective chronic primary and secondary prevention by vitamin E, oxidative and inflammatory status might not have been sufficiently antagonized. In contrast, acute administration of vitamin E may be more translatable into positive clinical outcomes. In patients with myocardial infarction (MI), which is associated with severe oxidative and inflammatory reactions, decreased plasma levels of vitamin E have been found. The offsetting of this acute vitamin E deficiency via short-term treatment in MI has shown promising results, and, thus, acute medication, rather than chronic supplementation, with vitamin E might revitalize vitamin E therapy and even provide positive clinical outcomes.
Collapse
Affiliation(s)
- Melanie Ziegler
- Department of Cardiology and Angiology, Internal Medicine III, University Clinic of Tübingen, 72076 Tübingen, Germany;
| | - Maria Wallert
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany; (M.W.); (S.L.)
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
- Department of Medicine and Immunology, Monash University, Melbourne, VIC 3800, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3800, Australia
- Department of Cardiology, The Alfred Hospital, Melbourne, VIC 3800, Australia
| |
Collapse
|
7
|
Aytekin Z, Arabacı T, Toraman A, Bayır Y, Albayrak M, Üstün K. Immune modulatory and antioxidant effects of locally administrated vitamin C in experimental periodontitis in rats. Acta Odontol Scand 2020; 78:425-432. [PMID: 32157939 DOI: 10.1080/00016357.2020.1734656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Vitamin C is an important water-soluble vitamin with antioxidant and immune-modulatory actions. The aim of this study was to investigate the effects of locally applied vitamin C on alveolar bone resorption in rats with experimental periodontitis.Methods: Twenty-one male Sprague-Dawley rats divided into three groups with seven animals in each group: (1) control, (2) experimental periodontitis and 3) experimental periodontitis-local vitamin C treatment group. After ligature was removed, 50 μL vitamin C was locally administered into the subperiosteum of the buccal gingiva of periodontitis vitamin C (PvitC) group rats for three times in intervals of 2 days. At the end of the study, the animals were scarified, and serum and gingival samples were collected for analysis of serum IL-1β, oxidative stress index (OSI), CTX and malondialdehyde (MDA) levels and gingival MMP-8 immunostaining. Alveolar bone loss and attachment loss were determined based on measurements on histological sections obtained from rat mandibles.Results: Serum MDA and OSI levels which are related to the oxidative stress were significantly lower in the PvitC group as compared with those in the P group (p < .05). Serum CTX levels which are related to the bone resorption were significantly lower in the PvitC group as compared with those in the P group (p < .05). The numeric density of MMP-8-positive cells was significantly lower in the PvitC group compared to P group (p < .05). Alveolar bone loss and attachment loss were significantly lower in the PvitC group compared to P group (p < .05)Conclusions: The local vitamin C administration provided protection against inflammation-induced alveolar bone resorption by decreasing oxidative stress and inflammation-induced tissue breakdown vitamin C may be a therapeutic agent that can be used in periodontitis treatment.
Collapse
Affiliation(s)
- Zeliha Aytekin
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| | - Taner Arabacı
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Ayşe Toraman
- Department of Periodontology, Faculty of Dentistry, Sağlık Bilimleri University, İstanbul, Turkey
| | - Yasin Bayır
- Department of Biochemistry, Faculty of Pharmacy, Atatürk University, Erzurum, Turkey
| | - Mevlüt Albayrak
- Department of Medical Laboratory Techniques, Health Services Vocational Training School, Atatürk University, Erzurum, Turkey
| | - Kemal Üstün
- Department of Periodontology, Faculty of Dentistry, Akdeniz University, Antalya, Turkey
| |
Collapse
|
8
|
Malekmohammad K, Sewell RDE, Rafieian-Kopaei M. Antioxidants and Atherosclerosis: Mechanistic Aspects. Biomolecules 2019; 9:E301. [PMID: 31349600 PMCID: PMC6722928 DOI: 10.3390/biom9080301] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory disease which is a major cause of coronary heart disease and stroke in humans. It is characterized by intimal plaques and cholesterol accumulation in arterial walls. The side effects of currently prescribed synthetic drugs and their high cost in the treatment of atherosclerosis has prompted the use of alternative herbal medicines, dietary supplements, and antioxidants associated with fewer adverse effects for the treatment of atherosclerosis. This article aims to present the activity mechanisms of antioxidants on atherosclerosis along with a review of the most prevalent medicinal plants employed against this multifactorial disease. The wide-ranging information in this review article was obtained from scientific databases including PubMed, Web of Science, Scopus, Science Direct and Google Scholar. Natural and synthetic antioxidants have a crucial role in the prevention and treatment of atherosclerosis through different mechanisms. These include: The inhibition of low density lipoprotein (LDL) oxidation, the reduction of reactive oxygen species (ROS) generation, the inhibition of cytokine secretion, the prevention of atherosclerotic plaque formation and platelet aggregation, the preclusion of mononuclear cell infiltration, the improvement of endothelial dysfunction and vasodilation, the augmentation of nitric oxide (NO) bioavailability, the modulation of the expression of adhesion molecules such as vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) on endothelial cells, and the suppression of foam cell formation.
Collapse
Affiliation(s)
- Khojasteh Malekmohammad
- Department of Animal Sciences, Faculty of Basic Sciences, Shahrekord University, Shahrekord 8818634141, Iran
| | - Robert D E Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK
| | - Mahmoud Rafieian-Kopaei
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord 8813833435, Iran.
| |
Collapse
|
9
|
Shabani P, Ghazizadeh Z, Gorgani-Firuzjaee S, Molazem M, Rajabi S, Vahdat S, Azizi Y, Doosti M, Aghdami N, Baharvand H. Cardioprotective effects of omega-3 fatty acids and ascorbic acid improve regenerative capacity of embryonic stem cell-derived cardiac lineage cells. Biofactors 2019; 45:427-438. [PMID: 30907984 DOI: 10.1002/biof.1501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 02/15/2019] [Indexed: 12/23/2022]
Abstract
One of the major issues in cell therapy of myocardial infarction (MI) is early death of engrafted cells in a harsh oxidative stress environment, which limits the potential therapeutic utility of this strategy in the clinical setting. Increasing evidence implicates beneficial effects of omega-3 fatty acids including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and ascorbic acid (AA) in cardiovascular diseases, in particular their role in ameliorating fibrosis. In the current study, we aim to assess the cytoprotective role of EPA + DHA and AA in protecting embryonic stem cell (ESC)-derived cardiac lineage cells and amelioration of fibrosis. Herein, we have shown that preincubation of the cells with EPA + DHA + AA prior to H2 O2 treatment attenuated generation of reactive oxygen species (ROS) and enhanced cell viability. Gene expression analysis revealed that preincubation with EPA + DHA + AA followed by H2 O2 treatment, upregulated heme oxygenase-1 (HO-1) along with cardiac markers (GATA4, myosin heavy chain, α isoform [MYH6]), connexin 43 [CX43]) and attenuated oxidative stress-induced upregulation of fibroblast markers (vimentin and collagen type 1 [Col1]). Alterations in gene expression patterns were followed by marked elevation of cardiac troponin (TNNT2) positive cells and reduced numbers of vimentin positive cells. An injection of EPA + DHA + AA-pretreated ESC-derived cardiac lineage cells into the ischemic myocardium of a rat model of MI significantly reduced fibrosis compared to the vehicle group. This study provided evidence that EPA + DHA + AA may be an appropriate preincubation regimen for regenerative purposes. © 2019 BioFactors, 45(3):427-438, 2019.
Collapse
Affiliation(s)
- Parisa Shabani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biochemistry, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zaniar Ghazizadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Laboratory Sciences, Faculty of Para Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Molazem
- Department of Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sarah Rajabi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sadaf Vahdat
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yaser Azizi
- Physiology Research Center, Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Doosti
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Aghdami
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
10
|
Zhang Q, Liu Z, Du J, Qin W, Lu M, Cui H, Li X, Ding S, Li R, Yuan J. Dermal exposure to nano-TiO 2 induced cardiovascular toxicity through oxidative stress, inflammation and apoptosis. J Toxicol Sci 2019; 44:35-45. [DOI: 10.2131/jts.44.35] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Qian Zhang
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Zhimin Liu
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Junting Du
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Wei Qin
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Manman Lu
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Haiyan Cui
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Xiaoxiao Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Shumao Ding
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Rui Li
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| | - Junlin Yuan
- Laboratory of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, China
| |
Collapse
|
11
|
Zingg JM. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2018; 71:456-478. [PMID: 30556637 DOI: 10.1002/iub.1986] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
Abstract
Vitamin E modulates signal transduction pathways by several molecular mechanisms. As a hydrophobic molecule located mainly in membranes it contributes together with other lipids to the physical and structural characteristics such as membrane stability, curvature, fluidity, and the organization into microdomains (lipid rafts). By acting as the main lipid-soluble antioxidant, it protects other lipids such as mono- and poly-unsaturated fatty acids (MUFA and PUFA, respectively) against chemical reactions with reactive oxygen and nitrogen species (ROS and RNS, respectively) and prevents membrane destabilization and cellular dysfunction. In cells, vitamin E affects signaling in redox-dependent and redox-independent molecular mechanisms by influencing the activity of enzymes and receptors involved in modulating specific signal transduction and gene expression pathways. By protecting and preventing depletion of MUFA and PUFA it indirectly enables regulatory effects that are mediated by the numerous lipid mediators derived from these lipids. In recent years, some vitamin E metabolites have been observed to affect signal transduction and gene expression and their relevance for the regulatory function of vitamin E is beginning to be elucidated. In particular, the modulation of the CD36/FAT scavenger receptor/fatty acids transporter by vitamin E may influence many cellular signaling pathways relevant for lipid homeostasis, inflammation, survival/apoptosis, angiogenesis, tumorigenesis, neurodegeneration, and senescence. Thus, vitamin E has an important role in modulating signal transduction and gene expression pathways relevant for its uptake, distribution, metabolism, and molecular action that when impaired affect physiological and patho-physiological cellular functions relevant for the prevention of a number of diseases. © 2018 IUBMB Life, 71(4):456-478, 2019.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
12
|
Silva ALCD, Ribeiro KDDS, Melo LRMD, Bezerra DF, Queiroz JLCD, Lima MSR, Pires JF, Bezerra DS, Osório MM, Dimenstein R. VITAMIN E IN HUMAN MILK AND ITS RELATION TO THE NUTRITIONAL REQUIREMENT OF THE TERM NEWBORN. REVISTA PAULISTA DE PEDIATRIA 2018; 35:158-164. [PMID: 28977333 PMCID: PMC5496727 DOI: 10.1590/1984-0462/;2017;35;2;00015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
Abstract
Objectives: To determine the alpha-tocopherol concentration in breast milk at different periods of lactation and to estimate the possible supply of vitamin E to the infant. Methods: A longitudinal observational study was carried out with 100 mothers at University Hospital Ana Bezerra (HUAB), at Universidade Federal do Rio Grande do Norte, in Santa Cruz (RN), Northeast Brazil. Samples of colostrum (n=100), transitional milk (n=77), and mature milk (n=63) were collected. Alpha-tocopherol was analyzed by high-performance liquid chromatography. Vitamin supply to the newborn was estimated by comparing the nutritional requirement of vitamin E (4 mg/day) with the potential daily intake of milk. Results: The mean alpha-tocopherol concentration found in colostrum, transitional, and mature milk was 40.5±15.0 µmol/L, 13.9±5.2 µmol/L, and 8.0±3.8 µmol/L, respectively (p<0.001). The possible effect of these milks offered to the infant 6.2 mg/day of vitamin E in colostrum, 4.7 mg/day in transitional milk, and 2.7 mg/day in mature milk (p<0.0001), shows that only the mature milk did not guarantee the recommended quantity of this vitamin. Conclusions: Alpha-tocopherol levels in human milk decrease through the progression of lactation, and the possible intake of colostrum and transitional milk met the nutritional requirement of the infant. Mature milk may provide smaller amounts of vitamin E. Thus, it is important to study the factors that are associated with such low levels.
Collapse
|
13
|
Bashandy SAE, Ebaid H, Abdelmottaleb Moussa SA, Alhazza IM, Hassan I, Alaamer A, Al Tamimi J. Potential effects of the combination of nicotinamide, vitamin B2 and vitamin C on oxidative-mediated hepatotoxicity induced by thioacetamide. Lipids Health Dis 2018; 17:29. [PMID: 29444683 PMCID: PMC5813429 DOI: 10.1186/s12944-018-0674-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/05/2018] [Indexed: 02/08/2023] Open
Abstract
Background The liver disease is one of the most important traditional public health problems in Egypt. Oxidative stress is attributed to such pathological condition that further contributes to the initiation and progression of liver injury. In the present study, we have investigated if the strong antioxidant power of Nicotinamide (NA), Vitamin B2 (VB2), and Vitamin C (VC) can ameliorate TAA-induced oxidative stress-mediated liver injury in the rats. Methods Thirty-six albino rats were divided into six groups: Control group; TAA group (IP injection with TAA at a dosage of 200 mg/Kg three times a week for two months); TAA + NA group (rats administered with NA at a dosage of 200 mg/kg daily besides TAA as in the control); TAA + VB2 group (rats administered with vitamin B2 at a dosage of 30 mg/kg daily besides injection with TAA); TAA + VC group (rats administered with vitamin C at a dosage of 200 mg/kg daily along with injection of TAA). TAA + NA + VB + VC group (rats administered the with the three vitamins daily in TAA pre-injected at the respective doses described above). Results Treatment of rats with TAA led to a significant elevation of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), total bilirubin, cholesterol, triglycerides, low-density lipoprotein (LDL) and tumor necrosis factor-alpha (TNF-α) in the serum samples. Moreover, malondialdehyde (MDA), hydroxyproline and nitic oxide (NO) were also significantly increased in the TAA-treated rats, while reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were significantly compromised in the hepatic samples. Rats administered with NA, VB2, and VC as individually or in combination ameliorated the deleterious effects of TAA that was confirmed by histopathology. However, the combination of the three vitamins was found more effective as compared to each of the vitamins. Conclusion Our work demonstrates that NA, VB2, and VC cross-talk with each other that act as a more potent biochemical chain of antioxidant defense against TAA-induced toxicities in vivo.
Collapse
Affiliation(s)
- Samir A E Bashandy
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia. .,Department of Zoology, Faculty of Science, Minia University, Minia, Egypt.
| | - Sherif A Abdelmottaleb Moussa
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia.,Biophysics Group, Biochemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Giza, Egypt
| | - Ibrahim M Alhazza
- Department of Zoology, Faculty of Science, Minia University, Minia, Egypt
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Alaamer
- Committee of Radiation and Environmental Pollution Protection (CREPP), Department of Physics, College of Science, Al- Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Jameel Al Tamimi
- Pharmacology Department, Medical Division, National Research Centre, Bohouth St. (former EL Tahrir St.), Dokki, Giza, EL, 33, Egypt
| |
Collapse
|
14
|
The macrophage heme-heme oxygenase-1 system and its role in inflammation. Biochem Pharmacol 2018; 153:159-167. [PMID: 29452096 DOI: 10.1016/j.bcp.2018.02.010] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO)-1, the inducible isoform of the heme-degrading enzyme HO, plays a critical role in inflammation and iron homeostasis. Regulatory functions of HO-1 are mediated via the catalytic breakdown of heme, which is an iron-containing tetrapyrrole complex with potential pro-oxidant and pro-inflammatory effects. In addition, the HO reaction produces the antioxidant and anti-inflammatory compounds carbon monoxide (CO) and biliverdin, subsequently converted into bilirubin, along with iron, which is reutilized for erythropoiesis. HO-1 is up-regulated by a plethora of stimuli and injuries in most cell types and tissues and provides salutary effects by restoring physiological homeostasis. Notably, HO-1 exhibits critical immuno-modulatory functions in macrophages, which are a major cell population of the mononuclear phagocyte system. Macrophages play key roles as sentinels and regulators of the immune system and HO-1 in these cells appears to be of critical importance for driving resolution of inflammatory responses. In this review, the complex functions and regulatory mechanisms of HO-1 in macrophages will be high-lighted. A particular focus will be the intricate interactions of HO-1 with its substrate heme, which play a contradictory role in distinct physiological and pathophysiological settings. The therapeutic potential of targeted modulation of the macrophage heme-HO-1 system will be discussed in the context of inflammatory disorders.
Collapse
|
15
|
Chaitanya NC, Muthukrishnan A, Krishnaprasad CMS, Sanjuprasanna G, Pillay P, Mounika B. An Insight and Update on the Analgesic Properties of Vitamin C. J Pharm Bioallied Sci 2018; 10:119-125. [PMID: 30237682 PMCID: PMC6142887 DOI: 10.4103/jpbs.jpbs_12_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Pain is an unpleasant subjective feeling having implications on both physical and mental realm. Multiple dimensions of pain involving behavioral, spiritual, emotional, and cognitive changes have been studied and pathways elucidated. It is stressed that the nature in which pain is modulated and perceived at a higher center is a complex phenomenon. One of the main goals of pain modulation is to modify pain to a more tolerable level, rather than its complete eradication. Different pain management interventions were tried but have effects that are more adverse. Till date, the only reliable pain blockers are analgesics and anti-inflammatory drugs in the form of opioids and non-opioids. Despite this, most of the drugs are ineffective at various levels, furthermore, adding to complications. Thus, there is an urgent need for effective intervention with minimal side effects. Ascorbic acid, popularly known as vitamin C, has shown to exhibit promising analgesic properties. The literature is sparse with the usage of the drug in various forms of pain. This review focuses on the dynamics and kinetics of vitamin C and its usage in various forms of pain. With minimal adverse effects, the drug is shown to perform well in different types of pain disorders, thus paving way for alternative interventional agent for pain management.
Collapse
Affiliation(s)
- Nallan Csk Chaitanya
- Department of Oral Medicine and Radiology, Research Scholar of Saveetha university, Saveetha University, Thandalam, India
| | - Arvind Muthukrishnan
- Department of Oral Medicine and Radiology, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - C M S Krishnaprasad
- Department of Orthodontics and Dentofacial Orthopedics, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Gali Sanjuprasanna
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Poojaragini Pillay
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| | - Balmoori Mounika
- Department of Oral Medicine and Radiology, Panineeya Institute of Dental Sciences and Research Centre, Hyderabad, Telangana, India
| |
Collapse
|
16
|
Liskova J, Hadraba D, Filova E, Konarik M, Pirk J, Jelen K, Bacakova L. Valve interstitial cell culture: Production of mature type I collagen and precise detection. Microsc Res Tech 2017; 80:936-942. [PMID: 28455837 DOI: 10.1002/jemt.22886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/30/2017] [Accepted: 04/16/2017] [Indexed: 12/22/2022]
Abstract
Collagen often acts as an extracellular and intracellular marker for in vitro experiments, and its quality defines tissue constructs. To validate collagen detection techniques, cardiac valve interstitial cells were isolated from pigs and cultured under two different conditions; with and without ascorbic acid. The culture with ascorbic acid reached higher cell growth and collagen deposition, although the expression levels of collagen gene stayed similar to the culture without ascorbic acid. The fluorescent microscopy was positive for collagen fibers in both the cultures. Visualization of only extracellular collagen returned a higher correlation coefficient when comparing the immunolabeling and second harmonic generation microscopy images in the culture with ascorbic acid. Lastly, it was proved that the hydroxyproline strongly contributes to the second-order susceptibility tensor of collagen molecules, and therefore the second harmonic generation signal is impaired in the culture without ascorbic acid.
Collapse
Affiliation(s)
- Jana Liskova
- Institute of Physiology, the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Daniel Hadraba
- Institute of Physiology, the Czech Academy of Sciences, Prague, 142 20, Czech Republic.,Faculty of Physical Education and Sport, Charles University, Prague, 162 00, Czech Republic.,Department of Biophysics, Hasselt University, Diepenbeek, B-3590, Belgium
| | - Elena Filova
- Institute of Physiology, the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Miroslav Konarik
- Institute for Clinical and Experimental Medicine, Prague, 140 21, Czech Republic
| | - Jan Pirk
- Institute for Clinical and Experimental Medicine, Prague, 140 21, Czech Republic
| | - Karel Jelen
- Faculty of Physical Education and Sport, Charles University, Prague, 162 00, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology, the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| |
Collapse
|
17
|
Impact of the Use of Benznidazole Followed by Antioxidant Supplementation in the Prevalence of Ventricular Arrhythmias in Patients With Chronic Chagas Disease: Pilot Study. Am J Ther 2016; 23:e1474-e1483. [DOI: 10.1097/mjt.0000000000000137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Li XI, Dong Z, Zhang F, Dong J, Zhang Y. Vitamin E slows down the progression of osteoarthritis. Exp Ther Med 2016; 12:18-22. [PMID: 27347011 DOI: 10.3892/etm.2016.3322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/11/2016] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis is a chronic degenerative joint disorder with the characteristics of articular cartilage destruction, subchondral bone alterations and synovitis. Clinical signs and symptoms of osteoarthritis include pain, stiffness, restricted motion and crepitus. It is the major cause of joint dysfunction in developed nations and has enormous social and economic consequences. Current treatments focus on symptomatic relief, however, they lack efficacy in controlling the progression of this disease, which is a leading cause of disability. Vitamin E is safe to use and may delay the progression of osteoarthritis by acting on several aspects of the disease. In this review, how vitamin E may promote the maintenance of skeletal muscle and the regulation of nucleic acid metabolism to delay osteoarthritis progression is explored. In addition, how vitamin E may maintain the function of sex organs and the stability of mast cells, thus conferring a greater resistance to the underlying disease process is also discussed. Finally, the protective effect of vitamin E on the subchondral vascular system, which decreases the reactive remodeling in osteoarthritis, is reviewed.
Collapse
Affiliation(s)
- X I Li
- Department of Orthopaedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhongli Dong
- Department of Orthopaedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Fuhou Zhang
- Department of Orthopaedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Junjie Dong
- Department of Orthopaedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yuan Zhang
- Department of Orthopaedic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| |
Collapse
|
19
|
Evaluation of Delta-Aminolevulinic Dehydratase Activity, Oxidative Stress Biomarkers, and Vitamin D Levels in Patients with Multiple Sclerosis. Neurotox Res 2015; 29:230-42. [DOI: 10.1007/s12640-015-9584-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 11/19/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
20
|
Aghajanian P, Hall S, Wongworawat MD, Mohan S. The Roles and Mechanisms of Actions of Vitamin C in Bone: New Developments. J Bone Miner Res 2015; 30:1945-55. [PMID: 26358868 PMCID: PMC4833003 DOI: 10.1002/jbmr.2709] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
Abstract
Vitamin C is an important antioxidant and cofactor that is involved in the regulation of development, function, and maintenance of several cell types in the body. Deficiencies in vitamin C can lead to conditions such as scurvy, which, among other ailments, causes gingivia, bone pain, and impaired wound healing. This review examines the functional importance of vitamin C as it relates to the development and maintenance of bone tissues. Analysis of several epidemiological studies and genetic mouse models regarding the effect of vitamin C shows a positive effect on bone health. Overall, vitamin C exerts a positive effect on trabecular bone formation by influencing expression of bone matrix genes in osteoblasts. Recent studies on the molecular pathway for vitamin C actions that include direct effects of vitamin C on transcriptional regulation of target genes by influencing the activity of transcription factors and by epigenetic modification of key genes involved in skeletal development and maintenance are discussed. With an understanding of mechanisms involved in the uptake and metabolism of vitamin C and knowledge of precise molecular pathways for vitamin C actions in bone cells, it is possible that novel therapeutic strategies can be developed or existing therapies can be modified for the treatment of osteoporotic fractures.
Collapse
Affiliation(s)
- Patrick Aghajanian
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
| | - Susan Hall
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
| | - Montri D. Wongworawat
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
- Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L Pettis VA Medical Center, Loma Linda, CA 92357
- Department of Medicine, Loma Linda University, Loma Linda, CA 92354
- Orthopedic Surgery, Loma Linda University, Loma Linda, CA 92354
| |
Collapse
|
21
|
Modulatory effects of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity and oxidative stress in rats. Asian Pac J Trop Biomed 2015; 3:470-5. [PMID: 23730560 DOI: 10.1016/s2221-1691(13)60098-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/10/2013] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE To investigate the ameliorative effect of dietary inclusion of garlic (Allium sativum) on gentamycin-induced hepatotoxicity in rats. METHODS Adult male rats were randomly divided into four groups with six animals in each group. Groups 1 and 2 were fed basal diet while Groups 3 and 4 were fed diets containing 2% and 4% garlic respectively for 27 d prior to gentamycin administration. Hepatotoxicity was induced by the intraperitoneal administration of gentamycin (100 mg/kg body weight) for 3 d. The liver and plasma were studied for hepatotoxicity and antioxidant indices. RESULTS Gentamycin induces hepatic damage as revealed by significant (P<0.05) elevation of liver damage marker enzymes (aspartate transaminase and alanine aminotransferase) and reduction in plasma albumin level. Gentamycin also caused a significant (P<0.05) alteration in plasma and liver enzymatic (catalase, glutathione and super oxygen dehydrogenises) and non-enzymatic (glutathione and vitamin C) antioxidant indices with concomitant increase in the malondialdehyde content; however, there was a significant (P<0.05) restoration of the antioxidant status coupled with significant (P<0.05) decrease in the tissues' malondialdehyde content, following consumption of diets containing garlic. CONCLUSIONS These results suggest that dietary inclusion of garlic powder could protect against gentamycin-induced hepatotoxicity, improve antioxidant status and modulate oxidative stress; a function attributed to their phenolic constituents.
Collapse
|
22
|
Effect of intramuscular injections of DL-α-tocopheryl acetate on growth performance and extracellular matrix of growing lambs. Animal 2015; 9:2060-4. [DOI: 10.1017/s175173111500155x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Alterations in the extracellular catabolism of nucleotides and platelet aggregation induced by high-fat diet in rats: effects of α-tocopherol. J Physiol Biochem 2014; 70:487-96. [PMID: 24623516 DOI: 10.1007/s13105-014-0327-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 02/19/2014] [Indexed: 02/07/2023]
Abstract
The aim of this study was to assess whether α-tocopherol administration prevented alterations in the ectonucleotidase activities and platelet aggregation induced by high-fat diet in rats. Thus, we examined four groups of male rats which received standard diet, high-fat diet (HFD), α-tocopherol (α-Toc), and high-fat diet plus α-tocopherol. HFD was administered ad libitum and α-Toc by gavage using a dose of 50 mg/kg. After 3 months of treatment, animals were submitted to euthanasia, and blood samples were collected for biochemical assays. Results demonstrate that NTPDase, ectonucleotide pyrophosphatase/phosphodiesterase, and 5'-nucleotidase activities were significantly decreased in platelets of HFD group, while that adenosine deaminase (ADA) activity was significantly increased in this group in comparison to the other groups (P < 0.05). When rats that received HFD were treated with α-Toc, the activities of these enzymes were similar to the control, but ADA activity was significantly increased in relation to the control and α-Toc group (P < 0.05). HFD group showed an increased in platelet aggregation in comparison to the other groups, and treatment with α-Toc significantly reduced platelet aggregation in this group. These findings demonstrated that HFD alters platelet aggregation and purinergic signaling in the platelets and that treatment with α-Toc was capable of modulating the adenine nucleotide hydrolysis in this experimental condition.
Collapse
|
24
|
Abstract
Vitamin C, also known as ascorbic acid (AA), is involved in all phases of wound healing. In the inflammatory phase it is required for neutrophil apoptosis and clearance. During the proliferative phase, AA contributes towards synthesis, maturation, secretion and degradation of collagen. Deficiencies affect the maturation phase by altering collagen production and scar formation. The body strives to maintain homeostasis of AA, thereby ensuring availability for collagen synthesis. After wounding, plasma and tissue levels of AA diminish and, as a consequence, supplements may be useful for healing, although levels beyond saturation are excreted Clinicians need to be aware of both the nutritional status of patients with either acute or chronic wounds and the possibility of any AA deficiency which may hinder healing.
Collapse
|
25
|
Wagener FADTG, Carels CE, Lundvig DMS. Targeting the redox balance in inflammatory skin conditions. Int J Mol Sci 2013; 14:9126-67. [PMID: 23624605 PMCID: PMC3676777 DOI: 10.3390/ijms14059126] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/10/2013] [Accepted: 04/16/2013] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species (ROS) can be both beneficial and deleterious. Under normal physiological conditions, ROS production is tightly regulated, and ROS participate in both pathogen defense and cellular signaling. However, insufficient ROS detoxification or ROS overproduction generates oxidative stress, resulting in cellular damage. Oxidative stress has been linked to various inflammatory diseases. Inflammation is an essential response in the protection against injurious insults and thus important at the onset of wound healing. However, hampered resolution of inflammation can result in a chronic, exaggerated response with additional tissue damage. In the pathogenesis of several inflammatory skin conditions, e.g., sunburn and psoriasis, inflammatory-mediated tissue damage is central. The prolonged release of excess ROS in the skin can aggravate inflammatory injury and promote chronic inflammation. The cellular redox balance is therefore tightly regulated by several (enzymatic) antioxidants and pro-oxidants; however, in case of chronic inflammation, the antioxidant system may be depleted, and prolonged oxidative stress occurs. Due to the central role of ROS in inflammatory pathologies, restoring the redox balance forms an innovative therapeutic target in the development of new strategies for treating inflammatory skin conditions. Nevertheless, the clinical use of antioxidant-related therapies is still in its infancy.
Collapse
Affiliation(s)
- Frank A. D. T. G. Wagener
- Authors to whom correspondence should be addressed; E-Mails: (F.A.D.T.G.W.); (D.M.S.L.); Tel.: +31-24-3614082 (F.A.D.T.G.W.); Fax: +31-24-3540631 (F.A.D.T.G.W. & D.M.S.L.)
| | | | - Ditte M. S. Lundvig
- Authors to whom correspondence should be addressed; E-Mails: (F.A.D.T.G.W.); (D.M.S.L.); Tel.: +31-24-3614082 (F.A.D.T.G.W.); Fax: +31-24-3540631 (F.A.D.T.G.W. & D.M.S.L.)
| |
Collapse
|
26
|
Cardoso AM, Martins CC, Fiorin FDS, Schmatz R, Abdalla FH, Gutierres J, Zanini D, Fiorenza AM, Stefanello N, Serres JDDS, Carvalho F, Castro VP, Mazzanti CM, Royes LFF, Belló-Klein A, Goularte JF, Morsch VM, Bagatini MD, Schetinger MRC. Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell Biochem Funct 2012; 31:136-51. [DOI: 10.1002/cbf.2868] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/26/2012] [Accepted: 07/30/2012] [Indexed: 01/01/2023]
Affiliation(s)
- Andréia Machado Cardoso
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Caroline Curry Martins
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Fernando da Silva Fiorin
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Roberta Schmatz
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Fátima Husein Abdalla
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Jessié Gutierres
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Daniela Zanini
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Amanda Maino Fiorenza
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Naiara Stefanello
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Jonas Daci da Silva Serres
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Fabiano Carvalho
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Verônica Paiva Castro
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Cinthia Melazzo Mazzanti
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Luiz Fernando Freire Royes
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | - Adriane Belló-Klein
- Health Basic Sciences Institut, Department of Physiology; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Jeferson Ferraz Goularte
- Health Basic Sciences Institut, Department of Physiology; Federal University of Rio Grande do Sul; Porto Alegre; RS; Brazil
| | - Vera Maria Morsch
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| | | | - Maria Rosa Chitolina Schetinger
- Post-Graduation Program in Toxicological Biochemistry, Department of Chemistry of the Center of Natural and Exact Sciences; Federal University of Santa Maria; Santa Maria; RS; Brazil
| |
Collapse
|
27
|
Kristo AS, Malavaki CJ, Lamari FN, Karamanos NK, Klimis-Zacas D. Wild blueberry (V. angustifolium)-enriched diets alter aortic glycosaminoglycan profile in the spontaneously hypertensive rat. J Nutr Biochem 2012; 23:961-5. [DOI: 10.1016/j.jnutbio.2011.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/28/2011] [Accepted: 05/02/2011] [Indexed: 01/19/2023]
|
28
|
Li X, Chen L, Zhang L, Li W, Jia X, Li W, Qu X, Tai J, Feng C, Zhang F, He W. RCM: a novel association approach to search for coronary artery disease genetic related metabolites based on SNPs and metabolic network. Genomics 2012; 100:282-8. [PMID: 22850356 DOI: 10.1016/j.ygeno.2012.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 06/18/2012] [Accepted: 07/20/2012] [Indexed: 11/17/2022]
Abstract
Integration of genetic and metabolic network holds promise for providing insight into human disease. Coronary artery disease (CAD) is strongly heritable, but the heritability of metabolic compounds has not been evaluated in human metabolic context. Here we performed a genetic-based computational approach within eight sub-cellular networks from Edinburgh Human Metabolic Network to identify significant genetic risk compounds (SGRCs) of CAD. Our results provide the evidence that the high heritabilities of SGRCs played an important role in CAD pathogenesis. Besides, SGRCs were discovered to be strongly associated with lipid metabolism. We also established a possible disease-causing reference table to decipher genetic associations of SGRCs with CAD. Comparing with traditional method, RCM experienced better performance in CAD genetic risk compounds' identification. These findings provided novel insights into CAD pathogenesis from a genetic perspective.
Collapse
Affiliation(s)
- Xu Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Hei Longjiang Province, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bashandy S, AlWasel S. Carbon Tetrachloride-induced Hepatotoxicity and Nephrotoxicity in Rats: Protective Role of Vitamin C. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/jpt.2011.283.292] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Benzie IFF, Wachtel-Galor S. Vegetarian diets and public health: biomarker and redox connections. Antioxid Redox Signal 2010; 13:1575-91. [PMID: 20222825 DOI: 10.1089/ars.2009.3024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vegetarian diets are rich in antioxidant phytochemicals. However, they may not act as antioxidants in vivo, and yet still have important signaling and regulatory functions. Some may act as pro-oxidants, modulating cellular redox tone and oxidizing redox sensitive sites. In this review, evidence for health benefits of vegetarian diets is presented from different perspectives: epidemiological, biomarker, evolutionary, and public health, as well as antioxidant. From the perspective of molecular connections between diet and health, evidence of a role for plasma ascorbic acid as a biomarker for future disease risk is presented. Basic concepts of redox-based cell signaling are presented, and effects of antioxidant phytochemicals on signaling, especially via redox tone, sulfur switches and the Antioxidant Response Element (ARE), are explored. Sufficient scientific evidence exists for public health policy to promote a plant-rich diet for health promotion. This does not need to wait for science to provide all the answers as to why and how. However, action and interplay of dietary antioxidants in the nonequilibrium systems that control redox balance, cell signaling, and cell function provide rich ground for research to advance understanding of orthomolecular nutrition and provide science-based evidence to advance public health in our aging population.
Collapse
Affiliation(s)
- Iris F F Benzie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | | |
Collapse
|
31
|
Hall JA, Chinn RM, Vorachek WR, Gorman ME, Greitl JL, Joshi DK, Jewell DE. Influence of dietary antioxidants and fatty acids on neutrophil mediated bacterial killing and gene expression in healthy Beagles. Vet Immunol Immunopathol 2010; 139:217-28. [PMID: 21112644 DOI: 10.1016/j.vetimm.2010.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/17/2010] [Accepted: 10/21/2010] [Indexed: 12/21/2022]
Abstract
Dietary (n-3) fatty acids from fish oil have been used to modulate immune function in many mammalian species. Together, dietary antioxidants and behavioral enrichment have been shown to enhance neutrophil phagocytosis in geriatric Beagle dogs. The purpose of this study was to further investigate the effects of vitamins E and C, in combination with dietary fish oil, on neutrophil mediated bacterial killing, and on transcript levels of selected neutrophil mRNA. Fifty adult Beagle dogs were randomized into five dietary treatment groups for 60 days. All foods were complete and balanced and met the nutrient profiles of AAFCO for adult dogs. For 60 days before study initiation, dogs consumed a pretrial food that contained 74 IU/kg vitamin E and 0 mg/kg vitamin C. The five experimental foods were confirmed by analytical methods to contain ≥640 IU/kg vitamin E and 130 mg/kg vitamin C (as fed). Experimental foods ranged from low levels of EPA and DHA (pretrial food and lowest experimental food had 0.01% EPA and no detectable DHA) to the highest experimental food with 0.25% EPA and 0.17% DHA. Ex vivo bactericidal activity of activated, peripheral-blood neutrophils against Lactococcus lactis was determined after 1 h incubation. Bactericidal activity was calculated as a percentage of control values (bacteria incubated in media without neutrophils). Transcript levels of genes involved in neutrophil-mediated immune functions were determined by real-time qPCR. Dogs in all treatment groups had increased serum vitamin E concentration (P<0.01). After consuming experimental food for 60 days, neutrophils from dogs in all 5 treatment groups also had increased bactericidal activity (P<0.01). Dietary fish oil however, had no effect on bactericidal activity. Stepwise multiple regression analysis demonstrated that the change in neutrophil mediated bacterial killing was significantly correlated to changes in gene expression of interleukin-8 receptor (IL-8R), interleukin converting enzyme (ICE), and myeloperoxidase (MPO; r(2)=0.33; P=0.003). When stepwise multiple regression analysis was performed considering each mRNA as a dependent variable and change in selected individual and summed fatty acid concentrations as independent variables, change in the ratio of saturated fatty acids (SFA) to polyunsaturated fatty acids (PUFA) was significant (P≤0.05) in the mRNA regression analyses for IL-8R, ICE, MPO, and cyclooxygenase-2. In summary, circulating neutrophils from dogs fed diets enriched in vitamins E and C had significantly increased bactericidal activity as well as altered gene expression. Change in SFA to PUFA ratio also altered neutrophil gene expression.
Collapse
Affiliation(s)
- Jean A Hall
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331-4802, United States.
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim PD, Peyton SR, VanStrien AJ, Putnam AJ. The influence of ascorbic acid, TGF-β1, and cell-mediated remodeling on the bulk mechanical properties of 3-D PEG–fibrinogen constructs. Biomaterials 2009; 30:3854-64. [DOI: 10.1016/j.biomaterials.2009.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/13/2009] [Indexed: 11/26/2022]
|
33
|
Antioxidant therapy attenuates oxidative insult caused by benzonidazole in chronic Chagas' heart disease. Int J Cardiol 2009; 145:27-33. [PMID: 19625091 DOI: 10.1016/j.ijcard.2009.06.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 11/21/2022]
Abstract
Chronic chagasic cardiac patients are exposed to oxidative stress that apparently contributes to disease progression. Benznidazole (BZN) is the main drug used for the treatment of chagasic patients and its action involves the generation of reactive species. 41 patients with Chagas' heart disease were selected and biomarkers of oxidative stress were measured before and after 2 months of BZN treatment (5 mg/kg/day) and the subsequent antioxidant supplementation with vitamin E (800 UI/day) and C (500 mg/day) during 6 months. Patients were classified according to the modified Los Andes clinical hemodynamic classification in groups IA, IB, II and III, and the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the contents of reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), protein carbonyl (PC), vitamin E and C and nitric oxide (NO), myeloperoxidase (MPO) and adenosine deaminase (ADA) activities were measured in their blood. Excepting in group III, after BZN treatment SOD, CAT, GPx and GST activities as well as PC levels were enhanced while vitamin E levels were decreased in these groups. After antioxidant supplementation the activities of SOD, GPx and GR were decreased whereas PC, TBARS, NO, and GSH levels were decreased. In conclusion, BZN treatment promoted an oxidative insult in such patients while the antioxidant supplementation was able to attenuate this effect by increasing vitamin E levels, decreasing PC and TBARS levels, inhibiting SOD, GPx and GR activities as well as inflammatory markers, mainly in stages with less cardiac involvement.
Collapse
|
34
|
Ekuni D, Tomofuji T, Sanbe T, Irie K, Azuma T, Maruyama T, Tamaki N, Murakami J, Kokeguchi S, Yamamoto T. Vitamin C intake attenuates the degree of experimental atherosclerosis induced by periodontitis in the rat by decreasing oxidative stress. Arch Oral Biol 2009; 54:495-502. [DOI: 10.1016/j.archoralbio.2009.02.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2008] [Revised: 02/06/2009] [Accepted: 02/12/2009] [Indexed: 11/29/2022]
|
35
|
Tomofuji T, Ekuni D, Sanbe T, Irie K, Azuma T, Maruyama T, Tamaki N, Murakami J, Kokeguchi S, Yamamoto T. Effects of vitamin C intake on gingival oxidative stress in rat periodontitis. Free Radic Biol Med 2009; 46:163-8. [PMID: 18983910 DOI: 10.1016/j.freeradbiomed.2008.09.040] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 09/08/2008] [Accepted: 09/25/2008] [Indexed: 11/18/2022]
Abstract
Increased levels of oxidative stress due to excessive production of reactive oxygen species are involved in the pathogenesis of periodontitis. Studies suggest a negative association between plasma vitamin C level and the severity of periodontitis. We hypothesized that increases in plasma vitamin C levels after vitamin C intake might clinically reduce gingival oxidative stress in a rat periodontitis model. A ligature was placed around rat mandibular molars for 4 weeks to induce periodontitis, and the rats were then given drinking water with or without 1 g/L vitamin C for 2 weeks after the ligature was removed. The periodontitis-induced rats showed a 149% increase in 8-hydroxydeoxyguanosine level and a 40% decrease in reduced:oxidized glutathione ratio in gingival tissue. Vitamin C intake induced a 175% increase in plasma vitamin C level, resulting in an improvement in the gingival 8-hydroxydeoxyguanosine level (decreased) and in the reduced:oxidized glutathione ratio (increased). Furthermore, in ligature-induced periodontitis lesions, gene expression encoding inflammation, including interleukin-1 alpha and interleukin-1 beta, was more than twofold down-regulated by vitamin C intake. The results suggest that systemic administration of vitamin C could be clinically beneficial in improving periodontitis-induced oxidative stress by down-regulating inflammatory gene expression.
Collapse
Affiliation(s)
- Takaaki Tomofuji
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sanbe T, Tomofuji T, Ekuni D, Azuma T, Irie K, Tamaki N, Yamamoto T, Morita M. Vitamin C intake inhibits serum lipid peroxidation and osteoclast differentiation on alveolar bone in rats fed on a high-cholesterol diet. Arch Oral Biol 2008; 54:235-40. [PMID: 19110235 DOI: 10.1016/j.archoralbio.2008.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/24/2008] [Accepted: 11/02/2008] [Indexed: 11/15/2022]
Abstract
OBJECTIVE A high-cholesterol diet stimulates osteoclast differentiation, which may be induced by increased serum lipid peroxidation. The inhibition of serum lipid peroxidation by vitamin C may offer beneficial effects on osteoclast differentiation including increased expression of receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) and NF-kappaB. This study investigated the effects of vitamin C intake on RANKL and NF-kappaB expression in periodontal tissue of rats fed a high-cholesterol diet. DESIGN Twenty-four rats (8 weeks old) were divided into four groups: a control group (fed a regular diet) and three experimental groups (fed a high-cholesterol diet supplemented with 0, 1 and 2 g/l vitamin C/day) in this 12-week study. Vitamin C was provided by its addition to drinking water. As an index of serum lipid peroxidation, hexanoyl-lysine (HEL) level was determined by a competitive enzyme-linked immunosorbent assay method. Immunohistological analysis was performed to evaluate RANKL and NF-kappaB expression on the alveolar bone surface. The number of tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts was also counted. RESULTS Feeding a high-cholesterol diet increased not only the serum HEL level but also the number of TRAP-positive osteoclasts on the alveolar bone surface, with an increase in RANKL and NF-kappaB expression on alveolar bone surface. Intake of vitamin C reduced the serum HEL level and osteoclast differentiation, with decreasing RANKL and NF-kappaB expression. CONCLUSIONS Vitamin C intake could suppress osteoclast differentiation, including RANKL and NF-kappaB expression on the alveolar bone surface, by decreasing serum lipid peroxidation in rats fed a high-cholesterol diet.
Collapse
Affiliation(s)
- Toshihiro Sanbe
- Department of Preventive Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zingg JM, Azzi A, Meydani M. Genetic polymorphisms as determinants for disease-preventive effects of vitamin E. Nutr Rev 2008; 66:406-14. [DOI: 10.1111/j.1753-4887.2008.00050.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
38
|
Zingg J. Mol Aspects Med 2007; 28:397-399. [DOI: 10.1016/j.mam.2007.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
39
|
Zingg JM. Vitamin E: An overview of major research directions. Mol Aspects Med 2007; 28:400-22. [PMID: 17624418 DOI: 10.1016/j.mam.2007.05.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/23/2007] [Indexed: 02/07/2023]
Abstract
During the last 90 years since the discovery of vitamin E, research has focused on different properties of this molecule, the focus often depending on the specific techniques and scientific knowledge present at each time. Originally discovered as a dietary factor essential for reproduction in rats, vitamin E has revealed in the meantime many more important molecular properties, such as the scavenging of reactive oxygen and nitrogen species with consequent prevention of oxidative damage associated with many diseases, or the modulation of signal transduction and gene expression in antioxidant and non-antioxidant manners. Research over the last 30 years has also resolved the biosynthesis and occurrence of vitamin E in plants, the proteins involved in the cellular uptake, tissue distribution and metabolism, and defined a congenital recessive neurological disease, ataxia with vitamin E deficiency (AVED), characterized by impaired enrichment of alpha-tocopherol in plasma as a result of mutations in the liver alpha-tocopherol transfer gene. This review is giving a brief introduction about vitamin E by following the major research directions since its discovery with a historical perspective.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|