1
|
Chiang BJ, Mao SH, Chen TS, Chung SD, Chien CT. Adipose stem-cell-derived microvesicles ameliorate long-term bladder ischemia-induced bladder underactivity. J Formos Med Assoc 2024:S0929-6646(24)00565-5. [PMID: 39658414 DOI: 10.1016/j.jfma.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND/PURPOSE The mechanism for long-term hypoxia/ischemia induced bladder underactivity is uncertain. It requires an effectively therapeutic treatment. Therefore, we determined the pathophysiologic mechanisms of long-term bilateral partial iliac arterial occlusion (BPAO)-induced bladder underactivity and explored the therapeutic potential of adipose-derived stem cells (ADSCs) and ADSC-derived microvesicles (MVs) on BPAO-induced bladder dysfunction. METHODS The study included four groups: sham, BPAO, BPAO + ADSCs, and BPAO + ADSC-MVs. ADSCs or ADSC-MVs were isolated, characterized with specific CD markers and injected through the femoral artery to the rat bladders. Real-time laser speckle contrast imaging evaluated bladder microcirculation after BPAO. The transcystometrogram, pelvic nerve activity, bladder histology, immunohistochemistry, and lipid peroxidation assays were conducted after 4-week BPAO induction. The molecular mechanisms of bladder expression of purinergic P2X2/P2X3 and cholinergic M2/M3 receptors for regulating bladder contractility, nerve growth factor (NGF) for nerve injury repair, and collagen-1 for fibrosis were evaluated. RESULTS Long-term BPAO significantly reduced bladder microcirculation, prolonged the intercontraction interval, decreased voiding volume, increased residual urine volume, lengthened phase 1 contraction, shortened phase 2 contraction, increased leukocytes and CD68 infiltration, increased malondialdehyde levels, and decreased levels of P2X3 and M3 receptors. ADSC-MVs were more efficient than ADSCs in improving BPAO induced parameters, recovering P2X3 and M3 receptors, increasing NGF expression, and decreasing collagen-1 expression in the bladder. CONCLUSIONS ADSC-derived MVs were better than ADSCs to improve long-term BPAO-induced detrusor underactivity, bladder ischemia, and oxidative stress. ADSC-MVs through the therapeutic action of ameliorating inflammation, improving purinergic/cholinergic signaling and neuronal regeneration, and decreasing fibrosis improved BPAO-induced bladder underactivity.
Collapse
Affiliation(s)
- Bing-Juin Chiang
- College of Medicine, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205, Taiwan; Department of Urology, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City, 23148, Taiwan; Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan
| | - Su-Han Mao
- College of Medicine, Fu-Jen Catholic University, No. 510, Zhongzheng Rd., Xinzhuang Dist., New Taipei City, 24205, Taiwan; Department of Urology, Cardinal Tien Hospital, No.362, Zhongzheng Rd., Xindian Dist., New Taipei City, 23148, Taiwan; Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan
| | - Tung-Sheng Chen
- Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan.
| | - Shiu-Dong Chung
- Division of Urology, Department of Surgery, Far-Eastern Memorial Hospital, No. 21, Section 2, Nanya S. Road, Banqiao Dist., New Taipei City, 220, Taiwan; Department of Nursing, College of Healthcare & Management, Asia Eastern University of Science and Technology, No.58, Sec.2, Sihchuan Rd., Banciao District, New Taipei City, 220303, Taiwan; General Education Center, Asia Eastern University of Science and Technology, No.58, Sec.2, Sihchuan Rd., Banciao District, New Taipei City, 220303, Taiwan.
| | - Chiang-Ting Chien
- Department of Life Science, College of Science, National Taiwan Normal University, 162, Section 1, Heping E. Rd., Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Shen Y, Xu Z, Zhang X, Zhai Z, Wu Y, Qu F, Xu C. Conditioned Extracellular Vesicles Derived from Dedifferentiated Fat Cells Promote Bone Regeneration by Altering MicroRNAs. Pharmaceutics 2024; 16:1430. [PMID: 39598553 PMCID: PMC11597201 DOI: 10.3390/pharmaceutics16111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Extracellular vesicles (EVs) derived from stem cells demonstrate significant potential in bone regeneration. Adipose tissue is regarded as a stem cell reservoir with abundant reserves and easy accessibility. Compared to adipose-derived stem cells (ASCs), dedifferentiated fat cells (DFATs) possess similar stem cell characteristics but exhibit greater proliferative capacity, higher homogeneity, and an enhanced osteogenic differentiation potential. This study is the first to examine the effect of DFATs-derived EVs on bone regeneration and elucidate their potential mechanisms of action. Methods: Primary DFATs were cultured using the "ceiling culture" method and EVs were isolated by ultracentrifugation and characterized. Experiments were performed to assess the impact of the EVs on the proliferation, migration, and osteogenesis of bone marrow mesenchymal stem cells (BMSCs). Subsequently, high-throughput miRNA sequencing was conducted on the EVs derived from DFATs that had undergone 0 days (0d-EVs) and 14 days (14d-EVs) of osteogenic differentiation. Results: The results indicated that the EVs derived from DFATs which experienced 14 days of osteogenic induction significantly promoted the proliferation, migration, and osteogenic differentiation of BMSCs. High-throughput sequencing results revealed that up-regulated miRNAs in the 14d-EVs were primarily involved in biological processes such as the Notch signaling pathway and the positive regulation of cell movement and migration. The target genes of these differently expressed miRNAs were enriched in osteogenesis-related signaling pathways. Conclusion: This study innovatively demonstrated that conditioned EVs (14d-EVs) derived from DFATs promoted the osteogenic differentiation of BMSCs via miRNAs, offering a promising cell-free therapeutic option for bone defect.
Collapse
Affiliation(s)
- Yingyi Shen
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Zihang Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Xinyu Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Zidi Zhai
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai 200125, China
| |
Collapse
|
3
|
Xue M, Liao Y, Jiang W. Insights into the molecular changes of adipocyte dedifferentiation and its future research opportunities. J Lipid Res 2024; 65:100644. [PMID: 39303983 PMCID: PMC11550672 DOI: 10.1016/j.jlr.2024.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/23/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
Recent studies have challenged the traditional belief that mature fat cells are irreversibly differentiated and revealed they can dedifferentiate into fibroblast-like cells known as dedifferentiated fat (DFAT) cells. Resembling pluripotent stem cells, DFAT cells hold great potential as a cell source for stem cell therapy. However, there is limited understanding of the specific changes that occur following adipocyte dedifferentiation and the detailed regulation of this process. This review explores the epigenetic, genetic, and phenotypic alterations associated with DFAT cell dedifferentiation, identifies potential targets for clinical regulation and discusses the current applications and challenges in the field of DFAT cell research.
Collapse
Affiliation(s)
- Mingheng Xue
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunjun Liao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Wenqing Jiang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Ishizawa M, Takano M, Kittaka A, Matsumoto T, Makishima M. 2α-Substituted Vitamin D Derivatives Effectively Enhance the Osteoblast Differentiation of Dedifferentiated Fat Cells. Biomolecules 2024; 14:706. [PMID: 38927109 PMCID: PMC11202298 DOI: 10.3390/biom14060706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a principal regulator of calcium homeostasis through activation of the vitamin D receptor (VDR). Previous studies have shown that 2α-(3-hydroxypropyl)-1,25D3 (O1C3) and 2α-(3-hydroxypropoxy)-1,25D3 (O2C3), vitamin D derivatives resistant to inactivation enzymes, can activate VDR, induce leukemic cell differentiation, and increase blood calcium levels in rats more effectively than 1,25(OH)2D3. In this study, to further investigate the usefulness of 2α-substituted vitamin D derivatives, we examined the effects of O2C3, O1C3, and their derivatives on VDR activity in cells and mouse tissues and on osteoblast differentiation of dedifferentiated fat (DFAT) cells, a cell type with potential therapeutic application in regenerative medicine. In cell culture experiments using kidney-derived HEK293 cells, intestinal mucosa-derived CaCO2 cells, and osteoblast-derived MG63 cells, and in mouse experiments, O2C2, O2C3, O1C3, and O1C4 had a weaker effect than or equivalent effect to 1,25(OH)2D3 in VDR transactivation and induction of the VDR target gene CYP24A1, but they enhanced osteoblast differentiation in DFAT cells equally to or more effectively than 1,25(OH)2D3. In long-term treatment with the compound without the medium change (7 days), the derivatives enhanced osteoblast differentiation more effectively than 1,25(OH)2D3. O2C3 and O1C3 were more stable than 1,25(OH)2D3 in DFAT cell culture. These results indicate that 2α-substituted vitamin D derivatives, such as inactivation-resistant O2C3 and O1C3, are more effective than 1,25(OH)2D3 in osteoblast differentiation of DFAT cells, suggesting potential roles in regenerative medicine with DFAT cells and other multipotent cells.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| | - Masashi Takano
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Atsushi Kittaka
- Faculty of Pharmaceutical Sciences, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan; (M.T.); (A.K.)
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo 173-8610, Japan;
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo 173-8610, Japan
| |
Collapse
|
5
|
Liang Z, He Y, Tang H, Li J, Cai J, Liao Y. Dedifferentiated fat cells: current applications and future directions in regenerative medicine. Stem Cell Res Ther 2023; 14:207. [PMID: 37605289 PMCID: PMC10441730 DOI: 10.1186/s13287-023-03399-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/13/2023] [Indexed: 08/23/2023] Open
Abstract
Stem cell therapy is the most promising treatment option for regenerative medicine. Therapeutic effect of different stem cells has been verified in various disease model. Dedifferentiated fat (DFAT) cells, derived from mature adipocytes, are induced pluripotent stem cells. Compared with ASCs and other stem cells, the DFAT cells have unique advantageous characteristics in their abundant sources, high homogeneity, easily harvest and low immunogenicity. The DFAT cells have shown great potential in tissue engineering and regenerative medicine for the treatment of clinical problems such as cardiac and kidney diseases, autoimmune disease, soft and hard tissue defect. In this review, we summarize the current understanding of DFAT cell properties and focus on the relevant practical applications of DFAT cells in cell therapy in recent years.
Collapse
Affiliation(s)
- Zhuokai Liang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yufei He
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Haojing Tang
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian Li
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Junrong Cai
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yunjun Liao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Mimatsu H, Onoda A, Kazama T, Nishijima K, Shimoyama Y, Go S, Ueda K, Takahashi Y, Matsumoto T, Hayakawa M, Sato Y. Dedifferentiated fat cells administration ameliorates abnormal expressions of fatty acids metabolism-related protein expressions and intestinal tissue damage in experimental necrotizing enterocolitis. Sci Rep 2023; 13:8266. [PMID: 37217485 DOI: 10.1038/s41598-023-34156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Neonatal necrotizing enterocolitis (NEC) is a serious disease of premature infants that necessitates intensive care and frequently results in life-threatening complications and high mortality. Dedifferentiated fat cells (DFATs) are mesenchymal stem cell-like cells derived from mature adipocytes. DFATs were intraperitoneally administrated to a rat NEC model, and the treatment effect and its mechanism were evaluated. The NEC model was created using rat pups hand fed with artificial milk, exposed to asphyxia and cold stress, and given oral lipopolysaccharides after cesarean section. The pups were sacrificed 96 h after birth for macroscopic histological examination and proteomics analysis. DFATs administration significantly improved the survival rate from 25.0 (vehicle group) to 60.6% (DFAT group) and revealed a significant reduction in macroscopical, histological, and apoptosis evaluation compared with the vehicle group. Additionally, the expression of C-C motif ligand 2 was significantly decreased, and that of interleukin-6 decreased in the DFAT group. DFAT administration ameliorated 93 proteins mainly related to proteins of fatty acid metabolism of the 436 proteins up-/down-regulated by NEC. DFATs improved mortality and restored damaged intestinal tissues in NEC, possibly by improving the abnormal expression of fatty acid-related proteins and reducing inflammation.
Collapse
Affiliation(s)
- Haruka Mimatsu
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, 65 Tsurumai-Cho Showa-Ku, Nagoya, 466-8550, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuto Onoda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, 65 Tsurumai-Cho Showa-Ku, Nagoya, 466-8550, Japan
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Koji Nishijima
- Center for Perinatal, Maternal and Neonatal Medicine, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Yoshie Shimoyama
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shoji Go
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, 65 Tsurumai-Cho Showa-Ku, Nagoya, 466-8550, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, 65 Tsurumai-Cho Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, 65 Tsurumai-Cho Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, 65 Tsurumai-Cho Showa-Ku, Nagoya, 466-8550, Japan.
| |
Collapse
|
7
|
Sawada H, Kazama T, Nagaoka Y, Arai Y, Kano K, Uei H, Tokuhashi Y, Nakanishi K, Matsumoto T. Bone marrow-derived dedifferentiated fat cells exhibit similar phenotype as bone marrow mesenchymal stem cells with high osteogenic differentiation and bone regeneration ability. J Orthop Surg Res 2023; 18:191. [PMID: 36906634 PMCID: PMC10007822 DOI: 10.1186/s13018-023-03678-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/04/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are known to have different differentiation potential depending on the tissue of origin. Dedifferentiated fat cells (DFATs) are MSC-like multipotent cells that can be prepared from mature adipocytes by ceiling culture method. It is still unknown whether DFATs derived from adipocytes in different tissue showed different phenotype and functional properties. In the present study, we prepared bone marrow (BM)-derived DFATs (BM-DFATs), BM-MSCs, subcutaneous (SC) adipose tissue-derived DFATs (SC-DFATs), and adipose tissue-derived stem cells (ASCs) from donor-matched tissue samples. Then, we compared their phenotypes and multilineage differentiation potential in vitro. We also evaluated in vivo bone regeneration ability of these cells using a mouse femoral fracture model. METHODS BM-DFATs, SC-DFATs, BM-MSCs, and ASCs were prepared from tissue samples of knee osteoarthritis patients who received total knee arthroplasty. Cell surface antigens, gene expression profile, and in vitro differentiation capacity of these cells were determined. In vivo bone regenerative ability of these cells was evaluated by micro-computed tomography imaging at 28 days after local injection of the cells with peptide hydrogel (PHG) in the femoral fracture model in severe combined immunodeficiency mice. RESULTS BM-DFATs were successfully generated at similar efficiency as SC-DFATs. Cell surface antigen and gene expression profiles of BM-DFATs were similar to those of BM-MSCs, whereas these profiles of SC-DFATs were similar to those of ASCs. In vitro differentiation analysis revealed that BM-DFATs and BM-MSCs had higher differentiation tendency toward osteoblasts and lower differentiation tendency toward adipocytes compared to SC-DFATs and ASCs. Transplantation of BM-DFATs and BM-MSCs with PHG enhanced bone mineral density at the injection sites compared to PHG alone in the mouse femoral fracture model. CONCLUSIONS We showed that phenotypic characteristics of BM-DFATs were similar to those of BM-MSCs. BM-DFATs exhibited higher osteogenic differentiation potential and bone regenerative ability compared to SC-DFATs and ASCs. These results suggest that BM-DFATs may be suitable sources of cell-based therapies for patients with nonunion bone fracture.
Collapse
Affiliation(s)
- Hirokatsu Sawada
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yuki Nagaoka
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hiroshi Uei
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuyoshi Nakanishi
- Department of Orthopaedic Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-Ku, Tokyo, 173-8610, Japan.
| |
Collapse
|
8
|
Kim J, Park KY, Choi S, Ko UH, Lim DS, Suh JM, Shin JH. Ceiling culture chip reveals dynamic lipid droplet transport during adipocyte dedifferentiation via actin remodeling. LAB ON A CHIP 2022; 22:3920-3932. [PMID: 36097851 DOI: 10.1039/d2lc00428c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adipocyte dedifferentiation has recently gained attention as a process underpinning adipocyte plasticity; however, a lack of suitable experimental platforms has hampered studies into the underlying mechanisms. Here, we developed a microscope-mountable ceiling culture chip that provides a stable yet tunable culture environment for long-term live-imaging of dedifferentiating adipocytes. A detailed spatiotemporal analysis of mature adipocyte dedifferentiation utilizing the culture platform and Cre-recombinase tracers revealed the involvement of dynamic actin remodeling for lipid droplet (LD) secretion during adipocyte dedifferentiation. Additionally, Hippo, Hedgehog, and PPARγ signaling pathways were identified as potent regulators of adipocyte dedifferentiation. Contrary to the belief that adult adipocytes are relatively static, we show that adipocytes are very dynamic, relying on actin-driven mechanical forces to execute LD extrusion and intercellular LD transfer processes.
Collapse
Affiliation(s)
- Jiwon Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Kun-Young Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, Republic of Korea.
| | - Sungwoo Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, Republic of Korea.
| | - Ung Hyun Ko
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Dae-Sik Lim
- National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Engineering, Daejeon, Republic of Korea.
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Chai Y, Chen Y, Yin B, Zhang X, Han X, Cai L, Yin N, Li F. Dedifferentiation of Human Adipocytes After Fat Transplantation. Aesthet Surg J 2022; 42:NP423-NP431. [PMID: 35032169 DOI: 10.1093/asj/sjab402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Fat transplantation is a common method employed to treat soft-tissue defects. The dedifferentiation of mature adipocytes has been well documented, but whether it occurs after fat transplantation remains unclear. OBJECTIVES The major purpose of this project was to investigate the dedifferentiation of mature adipocytes after fat transplantation. METHODS Human lipoaspirate tissue was obtained from 6 female patients who underwent esthetic liposuction. Mature adipocytes were extracted and labeled with PKH26, mixed with lipoaspirate, and injected into nude mice. In addition, PKH26+ adipocytes were subjected to a ceiling culture. Grafted fat was harvested from nude mice, and stromal vascular fragment cells were isolated. The immunophenotype of PKH26+ cells was detected by flow cytometry analysis at 2 days and 1 week. The PKH26+ cells were sorted and counted at 2 and 4 weeks to verify their proliferation and multilineage differentiation abilities. RESULTS Two days after transplantation, almost no PKH26+ cells were found in the stromal vascular fragment cells. The PKH26+ cells found 1 week after transplantation showed a positive expression of cluster of differentiation (CD) 90 (CD90) and CD105 and a negative expression of CD45. This indicates that the labeled adipocytes were dedifferentiated. Its pluripotency was further demonstrated by fluorescent cell sorting and differentiation culture in vitro. In addition, the number of live PKH26+ cells at week 4 [(6.83 ± 1.67) × 104] was similar with that at week 2 [(7.11 ± 1.82) × 104]. CONCLUSIONS Human mature adipocytes can dedifferentiate into stem cell-like cells in vivo after fat transplantation.
Collapse
Affiliation(s)
- Yimeng Chai
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuanjing Chen
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Bo Yin
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xuefeng Han
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lei Cai
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ningbei Yin
- Cleft Lip and Palate Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Facheng Li
- Body Contouring and Liposuction Center, Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
10
|
Teraoka S, Honda M, Makishima K, Shimizu R, Tsounapi P, Yumioka T, Iwamoto H, Li P, Morizane S, Hikita K, Hisatome I, Takenaka A. Early effects of an adipose-derived stem cell sheet against detrusor underactivity in a rat cryo-injury model. Life Sci 2022; 301:120604. [DOI: 10.1016/j.lfs.2022.120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
|
11
|
Transplantation of Mature Adipocyte-Derived Dedifferentiated Fat Cells Facilitates Periodontal Tissue Regeneration of Class II Furcation Defects in Miniature Pigs. MATERIALS 2022; 15:ma15041311. [PMID: 35207844 PMCID: PMC8875781 DOI: 10.3390/ma15041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 02/06/2022] [Indexed: 12/10/2022]
Abstract
Adipose tissue is composed mostly of adipocytes that are in contact with capillaries. By using a ceiling culture method based on buoyancy, lipid-free fibroblast-like cells, also known as dedifferentiated fat (DFAT) cells, can be separated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and transdifferentiate into various cell types under appropriate culture conditions. Herein, we sought to compare the regenerative potential of collagen matrix alone (control) with autologous DFAT cell-loaded collagen matrix transplantation in adult miniature pigs (microminipigs; MMPs). We established and transplanted DFAT cells into inflammation-inducing periodontal class II furcation defects. At 12 weeks after cell transplantation, a marked attachment gain was observed based on the clinical parameters of probing depth (PD) and clinical attachment level (CAL). Additionally, micro computed tomography (CT) revealed hard tissue formation in furcation defects of the second premolar. The cemento-enamel junction and alveolar bone crest distance was significantly shorter following transplantation. Moreover, newly formed cellular cementum, well-oriented periodontal ligament-like fibers, and alveolar bone formation were observed via histological analysis. No teratomas were found in the internal organs of recipient MMPs. Taken together, these findings suggest that DFAT cells can safely enhance periodontal tissue regeneration.
Collapse
|
12
|
Yuen JSK, Stout AJ, Kawecki NS, Letcher SM, Theodossiou SK, Cohen JM, Barrick BM, Saad MK, Rubio NR, Pietropinto JA, DiCindio H, Zhang SW, Rowat AC, Kaplan DL. Perspectives on scaling production of adipose tissue for food applications. Biomaterials 2022; 280:121273. [PMID: 34933254 PMCID: PMC8725203 DOI: 10.1016/j.biomaterials.2021.121273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.
Collapse
Affiliation(s)
- John S K Yuen
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Andrew J Stout
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - N Stephanie Kawecki
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - Sophia M Letcher
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sophia K Theodossiou
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Julian M Cohen
- W. M. Keck Science Department, Pitzer College, 925 N Mills Ave, Claremont, CA, 91711, USA
| | - Brigid M Barrick
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Michael K Saad
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Natalie R Rubio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Jaymie A Pietropinto
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Hailey DiCindio
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Sabrina W Zhang
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA
| | - Amy C Rowat
- Department of Bioengineering, University of California Los Angeles, 410 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Integrative Biology & Physiology, University of California Los Angeles, Terasaki Life Sciences Building, 610 Charles E. Young Drive South, Los Angeles, CA, 90095, USA
| | - David L Kaplan
- Biomedical Engineering Department, Tissue Engineering Resource Center, Tufts University, 4 Colby St, Medford, MA, 02155, USA.
| |
Collapse
|
13
|
Yanagi T, Kajiya H, Fujisaki S, Maeshiba M, Yanagi-S A, Yamamoto-M N, Kakura K, Kido H, Ohno J. Three-dimensional spheroids of dedifferentiated fat cells enhance bone regeneration. Regen Ther 2021; 18:472-479. [PMID: 34853808 PMCID: PMC8604680 DOI: 10.1016/j.reth.2021.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction Mesenchymal stromal/stem cells (MSCs) are multipotent, self-renewing cells that are extensively used in tissue engineering. Dedifferentiated fat (DFAT) cells are derived from adipose tissues and are similar to MSCs. Three-dimensional (3D) spheroid cultures comprising MSCs mimic the biological microenvironment more accurately than two-dimensional cultures; however, it remains unclear whether DFAT cells in 3D spheroids possess high osteogenerative ability. Furthermore, it is unclear whether DFAT cells from 3D spheroids transplanted into calvarial bone defects are as effective as those from two-dimensional (2D) monolayers in promoting bone regeneration. Methods We compared the in vitro osteogenic potential of rat DFAT cells cultured under osteogenic conditions in 3D spheroids with that in 2D monolayers. Furthermore, to elucidate the ability of 3D spheroid DFAT cells to promote bone healing, we examined the in vivo osteogenic potential of transplanting DFAT cells from 3D spheroids or 2D monolayers into a rat calvarial defect model. Results Osteoblast differentiation stimulated by bone morphogenetic protein-2 (BMP-2) or osteogenesis-inducing medium upregulated osteogenesis-related molecules in 3D spheroid DFAT cells compared with 2D monolayer DFAT cells. BMP-2 activated phosphorylation in the canonical Smad 1/5 pathways in 3D spheroid DFAT cells but phosphorylated ERK1/2 and Smad2 in 2D monolayer DFAT cells. Regardless of osteogenic stimulation, the transplantation of 3D DFAT spheroid cells into rat calvarial defects promoted new bone formation at a greater extent than that of 2D DFAT cells. Conclusions Compared with 2D DFAT cells, 3D DFAT spheroid cells promote osteoblast differentiation and new bone formation via canonical Smad 1/5 signaling pathways. These results indicate that transplantation of DFAT cells from 3D spheroids, but not 2D monolayers, accelerates bone healing.
Collapse
Affiliation(s)
- Tsukasa Yanagi
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Physiological Science and Molecular Biology, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Seiichi Fujisaki
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Munehisa Maeshiba
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan.,Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Ayako Yanagi-S
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Nana Yamamoto-M
- Department of Odontology, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Kae Kakura
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Hirofumi Kido
- Department of Oral Rehabilitation, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, 2-15-1Tamura, Fukuoka, Japan
| |
Collapse
|
14
|
Takabatake K, Matsubara M, Yamachika E, Fujita Y, Arimura Y, Nakatsuji K, Nakano K, Nagatsuka H, Iida S. Comparing the Osteogenic Potential and Bone Regeneration Capacities of Dedifferentiated Fat Cells and Adipose-Derived Stem Cells In Vitro and In Vivo: Application of DFAT Cells Isolated by a Mesh Method. Int J Mol Sci 2021; 22:12392. [PMID: 34830277 PMCID: PMC8620969 DOI: 10.3390/ijms222212392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND We investigated and compared the osteogenic potential and bone regeneration capacities of dedifferentiated fat cells (DFAT cells) and adipose-derived stem cells (ASCs). METHOD We isolated DFAT cells and ASCs from GFP mice. DFAT cells were established by a new culture method using a mesh culture instead of a ceiling culture. The isolated DFAT cells and ASCs were incubated in osteogenic medium, then alizarin red staining, alkaline phosphatase (ALP) assays, and RT-PCR (for RUNX2, osteopontin, DLX5, osterix, and osteocalcin) were performed to evaluate the osteoblastic differentiation ability of both cell types in vitro. In vivo, the DFAT cells and ASCs were incubated in osteogenic medium for four weeks and seeded on collagen composite scaffolds, then implanted subcutaneously into the backs of mice. We then performed hematoxylin and eosin staining and immunostaining for GFP and osteocalcin. RESULTS The alizarin red-stained areas in DFAT cells showed weak calcification ability at two weeks, but high calcification ability at three weeks, similar to ASCs. The ALP levels of ASCs increased earlier than in DFAT cells and showed a significant difference (p < 0.05) at 6 and 9 days. The ALP levels of DFATs were higher than those of ASCs after 12 days. The expression levels of osteoblast marker genes (osterix and osteocalcin) of DFAT cells and ASCs were higher after osteogenic differentiation culture. CONCLUSION DFAT cells are easily isolated from a small amount of adipose tissue and are readily expanded with high purity; thus, DFAT cells are applicable to many tissue-engineering strategies and cell-based therapies.
Collapse
Affiliation(s)
- Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Masakazu Matsubara
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Eiki Yamachika
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
- Department of Dentistry, National Hospital Organization Okayama Medical Center, Okayama 701-1192, Japan
| | - Yuki Fujita
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, Okayama 700-8525, Japan;
| | - Yuki Arimura
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Kazuki Nakatsuji
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Histoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (K.T.); (K.N.); (H.N.)
| | - Seiji Iida
- Department of Oral and Maxillofacial Reconstructive Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (Y.A.); (K.N.); (S.I.)
- Department of Oral and Maxillofacial Reconstructive Surgery, Okayama University Hospital, Okayama 700-8525, Japan;
| |
Collapse
|
15
|
Liu L, Liu M, Xie D, Liu X, Yan H. Role of the extracellular matrix and YAP/TAZ in cell reprogramming. Differentiation 2021; 122:1-6. [PMID: 34768156 DOI: 10.1016/j.diff.2021.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Stem cells are crucial in the fields of regenerative medicine and cell therapy. Mechanical signals from the cellular microenvironment play an important role in inducing the reprogramming of somatic cells into stem cells in vitro, but the mechanisms of this process have yet to be fully explored. Mechanical signals may activate a physical pathway involving the focal adhesions-cytoskeleton-LINC complex axis, and a chemical pathway involving YAP/TAZ. ENH protein likely plays an important role in connecting and regulating these two pathways. Such mechanisms illustrate one way in which mechanical signals from the cellular microenvironment can induce reprogramming of somatic cells to stem cells, and lays the foundation for a new strategy for inducing and regulating such reprogramming in vitro by means of physical processes related to local mechanical forces.
Collapse
Affiliation(s)
- Lan Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Mengchang Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Defu Xie
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Xingke Liu
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China
| | - Hong Yan
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan Province, 646000, China.
| |
Collapse
|
16
|
Caneparo C, Sorroza-Martinez L, Chabaud S, Fradette J, Bolduc S. Considerations for the clinical use of stem cells in genitourinary regenerative medicine. World J Stem Cells 2021; 13:1480-1512. [PMID: 34786154 PMCID: PMC8567446 DOI: 10.4252/wjsc.v13.i10.1480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 02/06/2023] Open
Abstract
The genitourinary tract can be affected by several pathologies which require repair or replacement to recover biological functions. Current therapeutic strategies are challenged by a growing shortage of adequate tissues. Therefore, new options must be considered for the treatment of patients, with the use of stem cells (SCs) being attractive. Two different strategies can be derived from stem cell use: Cell therapy and tissue therapy, mainly through tissue engineering. The recent advances using these approaches are described in this review, with a focus on stromal/mesenchymal cells found in adipose tissue. Indeed, the accessibility, high yield at harvest as well as anti-fibrotic, immunomodulatory and proangiogenic properties make adipose-derived stromal/SCs promising alternatives to the therapies currently offered to patients. Finally, an innovative technique allowing tissue reconstruction without exogenous material, the self-assembly approach, will be presented. Despite advances, more studies are needed to translate such approaches from the bench to clinics in urology. For the 21st century, cell and tissue therapies based on SCs are certainly the future of genitourinary regenerative medicine.
Collapse
Affiliation(s)
- Christophe Caneparo
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Luis Sorroza-Martinez
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Quebec G1J1Z4, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec G1V0A6, Canada
| |
Collapse
|
17
|
Fujisaki S, Kajiya H, Yanagi T, Maeshiba M, Kakura K, Kido H, Ohno J. Enhancement of jaw bone regeneration via ERK1/2 activation using dedifferentiated fat cells. Cytotherapy 2021; 23:608-616. [PMID: 33863640 DOI: 10.1016/j.jcyt.2021.02.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stem/stromal cells (MSCs) are multipotent and self-renewing cells that are extensively used in tissue engineering. Adipose tissues are known to be the source of two types of MSCs; namely, adipose tissue-derived MSCs (ASCs) and dedifferentiated fat (DFAT) cells. Although ASCs are sometimes transplanted for clinical cytotherapy, the effects of DFAT cell transplantation on mandibular bone healing remain unclear. METHODS The authors assessed whether DFAT cells have osteogenerative potential compared with ASCs in rats in vitro. In addition, to elucidate the ability of DFAT cells to regenerate the jaw bone, the authors examined the effects of DFAT cells on new bone formation in a mandibular defect model in (i) 30-week-old rats and (ii) ovariectomy-induced osteoporotic rats in vivo. RESULTS Osteoblast differentiation with bone morphogenetic protein 2 (BMP-2) or osteogenesis-induced medium upregulated the osteogenesis-related molecules in DFAT cells compared with those in ASCs. BMP-2 activated the phosphorylation signaling pathways of ERK1/2 and Smad2 in DFAT cells, but minor Smad1/5/9 activation was noted in ASCs. The transplantation of DFAT cells into normal or ovariectomy-induced osteoporotic rats with mandibular defects promoted new bone formation compared with that seen with ASCs. CONCLUSIONS DFAT cells promoted osteoblast differentiation and new bone formation through ERK1/2 and Smad2 signaling pathways in vitro. The transplantation of DFAT cells promoted new mandibular bone formation in vivo compared with that seen with ASCs. These results suggest that transplantation of ERK1/2-activated DFAT cells shorten the mandibular bone healing process in cytotherapy.
Collapse
Affiliation(s)
- Seiichi Fujisaki
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hiroshi Kajiya
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka, Japan.
| | - Tsukasa Yanagi
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Munehisa Maeshiba
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan; Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Kae Kakura
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Hirofumi Kido
- Department of Oral Rehabilitation, Fukuoka Dental College, Fukuoka, Japan
| | - Jun Ohno
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka, Japan
| |
Collapse
|
18
|
Abstract
Stem cells are capable of self-renewal and differentiation into a range of cell types and promote the release of chemokines and progenitor cells necessary for tissue regeneration. Mesenchymal stem cells are multipotent progenitor cells with enhanced proliferation and differentiation capabilities and less tumorigenicity than conventional adult stem cells; these cells are also easier to acquire. Bladder dysfunction is often chronic in nature with limited treatment modalities due to its undetermined pathophysiology. Most treatments focus on symptom alleviation rather than pathognomonic changes repair. The potential of stem cell therapy for bladder dysfunction has been reported in preclinical models for stress urinary incontinence, overactive bladder, detrusor underactivity, and interstitial cystitis/bladder pain syndrome. Despite these findings, however, stem cell therapy is not yet available for clinical use. Only one pilot study on detrusor underactivity and a handful of clinical trials on stress urinary incontinence have reported the effects of stem cell treatment. This limitation may be due to stem cell function loss following ex vivo expansion, poor in vivo engraftment or survival after transplantation, or a lack of understanding of the precise mechanisms of action underlying therapeutic outcomes and in vivo behavior of stem cells administered to target organs. Efficacy comparisons with existing treatment modalities are also needed for the successful clinical application of stem cell therapies. This review describes the current status of stem cell research on treating bladder dysfunction and suggests future directions to facilitate clinical applications of this promising treatment modality, particularly for bladder dysfunction.
Collapse
|
19
|
Watanabe H, Goto S, Kato R, Komiyama S, Nagaoka Y, Kazama T, Yamamoto C, Li Y, Konuma N, Hagikura K, Matsumoto T. The neovascularization effect of dedifferentiated fat cells. Sci Rep 2020; 10:9211. [PMID: 32514018 PMCID: PMC7280264 DOI: 10.1038/s41598-020-66135-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/14/2020] [Indexed: 01/20/2023] Open
Abstract
Mature adipocyte-derived dedifferentiated fat (DFAT) cells can be prepared efficiently and with minimal invasiveness to the donor. They can be utilized as a source of transplanted cells during therapy. Although the transplantation of DFAT cells into an ischemic tissue enhances angiogenesis and increases vascular flow, there is little information regarding the mechanism of the therapeutic angiogenesis. To further study this, mice ischemic hindlimb model was used. It was confirmed that in comparison with the adipose derived stem cells and fibroblasts, the transplantation of DFAT cells led to a significant improvement in the blood flow and increased mature blood vessel density. The ability of DFAT cells to secrete angiogenic factors in hypoxic conditions and upon co-culture with vascular endothelial cells was then examined. Furthermore, we examined the possibility that DFAT cells differentiating into pericytes. The therapeutic angiogenic effects of DFAT cells were observed by the secretion of angiogenic factors and pericyte differentiation by transforming growth factor β1 signalling via Smad2/3. DFAT cells can be prepared with minimal invasiveness and high efficiency and are expected to become a source of transplanted cells in the future of angiogenic cell therapy.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Tokyo, Japan
| | - Shumpei Goto
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Reona Kato
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Shogo Komiyama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Yuki Nagaoka
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Chii Yamamoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Yuxin Li
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Noriyoshi Konuma
- Department of Pediatric Surgery, Nihon University School of Medicine, Tokyo, Japan
| | - Kazuhiro Hagikura
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
20
|
Leiva M, Matesanz N, Pulgarín-Alfaro M, Nikolic I, Sabio G. Uncovering the Role of p38 Family Members in Adipose Tissue Physiology. Front Endocrinol (Lausanne) 2020; 11:572089. [PMID: 33424765 PMCID: PMC7786386 DOI: 10.3389/fendo.2020.572089] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
The complex functions of adipose tissue have been a focus of research interest over the past twenty years. Adipose tissue is not only the main energy storage depot, but also one of the largest endocrine organs in the body and carries out crucial metabolic functions. Moreover, brown and beige adipose depots are major sites of energy expenditure through the activation of adaptive, non-shivering thermogenesis. In recent years, numerous signaling molecules and pathways have emerged as critical regulators of adipose tissue, in both homeostasis and obesity-related disease. Among the best characterized are members of the p38 kinase family. The activity of these kinases has emerged as a key contributor to the biology of the white and brown adipose tissues, and their modulation could provide new therapeutic approaches against obesity. Here, we give an overview of the roles of the distinct p38 family members in adipose tissue, focusing on their actions in adipogenesis, thermogenic activity, and secretory function.
Collapse
|
21
|
Ma J, Xia M D J, Gao J, Lu F, Liao Y. Mechanical Signals Induce Dedifferentiation of Mature Adipocytes and Increase the Retention Rate of Fat Grafts. Plast Reconstr Surg 2019; 144:1323-1333. [PMID: 31764645 DOI: 10.1097/prs.0000000000006272] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mature adipocytes dedifferentiate in vivo on application of a soft-tissue expander. Dedifferentiated adipocytes can proliferate and redifferentiate. This study used tissue expanders to pretreat adipose flaps, to increase the retention rate after fat graft. METHODS A soft-tissue expander and silicone sheet were implanted beneath the left and right inguinal fat pads of rats, respectively. After 7 days of expansion, the adipose tissue derived from the pads was transplanted beneath dorsal skin. Samples were harvested at various time points, and histologic, immunohistochemical, and gene expression analyses were conducted. Mature adipocytes were cultured in vitro under a pressure of 520 Pa. Changes in cell morphology, the cytoskeleton, and expression of mechanical signal-related proteins were investigated. RESULTS Pressure in adipose flaps increased to 25 kPa on expansion. Mature adipocytes dedifferentiated following expansion. At 1 week after transplantation, the expression of vascular endothelial growth factor (p < 0.05) was higher in the expanded group. The retention rate at 12 weeks after transplantation was higher in the expanded group (56 ± 3 percent) than in the control group (32 ± 3 percent) (p < 0.05), and the surviving/regenerating zones (p < 0.01) were wider. The lipid content of mature adipocytes gradually decreased on culture under increased pressure, and these cells regained a proliferative capacity. This was accompanied by increased expression of mechanical signal--related proteins (p < 0.05). CONCLUSIONS Mechanical signals may induce dedifferentiation of mature adipocytes. Dedifferentiated adipocytes increase the retention rate of fat grafts by acting as seed cells.
Collapse
Affiliation(s)
- Jingjing Ma
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jing Xia M D
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Jianhua Gao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Feng Lu
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| | - Yunjun Liao
- From the Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University; and the Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University
| |
Collapse
|
22
|
Gene expression profiles of early chondrogenic markers in dedifferentiated fat cells stimulated by bone morphogenetic protein 4 under monolayer and spheroid culture conditions in vitro. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.odw.2016.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Tateno A, Asano M, Akita D, Toriumi T, Tsurumachi-Iwasaki N, Kazama T, Arai Y, Matsumoto T, Kano K, Honda M. Transplantation of dedifferentiated fat cells combined with a biodegradable type I collagen-recombinant peptide scaffold for critical-size bone defects in rats. J Oral Sci 2019; 61:534-538. [PMID: 31631097 DOI: 10.2334/josnusd.18-0458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tissue engineering is a promising approach to supplement existing treatment strategies for craniofacial bone regeneration. In this study, a type I collagen scaffold made from a recombinant peptide (RCP) with an Arg-Gly-Asp motif was developed, and its effect on regeneration in critical-size mandibular bone defects was evaluated. Additionally, the combined effect of the scaffold and lipid-free dedifferentiated fat (DFAT) cells was assessed. Briefly, DFAT cells were separated from mature adipocytes by using a ceiling culture technique based on buoyancy. A 3 cm × 4 cm critical-size bone defect was created in the rat mandible, and regeneration was evaluated by using RCP with DFAT cells. Then, cultured DFAT cells and adipose-derived stem cells (ASCs) were seeded onto RCP scaffolds (DFAT/RCP and ASC/RCP) and implanted into the bone defects. Micro-computed tomography imaging at 8 weeks after implantation showed significantly greater bone regeneration in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. Similarly, histological analysis showed significantly greater bone width in the DFAT/RCP group than in the ASC/RCP and RCP-alone groups. These findings suggest that DFAT/RCP is effective for bone formation in critical-size bone defects and that DFAT cells are a promising source for bone regeneration.
Collapse
Affiliation(s)
- Atsushi Tateno
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry
| | - Masatake Asano
- Department of Pathology, Nihon University School of Dentistry.,Division of Immunology and Pathobiology, Dental Research Center, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Taku Toriumi
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| | | | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinori Arai
- Department of Oral and Maxillofacial Radiology, Nihon University School of Dentistry
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
24
|
Shrestha KR, Jeon SH, Jung AR, Kim IG, Kim GE, Park YH, Kim SH, Lee JY. Stem Cells Seeded on Multilayered Scaffolds Implanted into an Injured Bladder Rat Model Improves Bladder Function. Tissue Eng Regen Med 2019; 16:201-212. [PMID: 30989046 PMCID: PMC6439074 DOI: 10.1007/s13770-019-00187-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 11/30/2022] Open
Abstract
Background To investigate whether human adipose-derived stem cells (hADSCs) seeded on multilayered poly (l-lactide-co-ɛ-caprolactone) (PLCL) sheets improve bladder function in a rat model of detrusor smooth muscle-removed bladder. Methods Male rats were randomly divided into 4 groups: Normal, injury (detrusor smooth muscle-removed bladder), PLCL (detrusor smooth muscle-removed bladder implanted with PLCL sheets), and PLCL + ADSC (detrusor smooth muscle-removed bladder implanted with PLCL sheets seeded with hADSCs). Four weeks after the treatment, physiological, histological, immunohistochemical, and immunoblot analyses were performed. Results hADSCs were compatible with PLCL sheets. Further, the physiological study of PLCL + ADSC group showed significant improvement in compliance and contractility suggesting the functional improvement of the bladder. Histological, immunohistochemical and immunoblot analyses revealed the uniform distribution of hADSCs in between PLCL sheets as well as differentiation of hADSCs into smooth muscle cells (SMC) which is illustrated by the expression of SMC markers. Conclusion hADSCs seeded on the multilayered PLCL sheets has the potential to differentiate into SMC, thus facilitating the recovery of compliance and contractility of the injured bladder.
Collapse
Affiliation(s)
- Kshitiz Raj Shrestha
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Seung Hwan Jeon
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Ae Ryang Jung
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - In Gul Kim
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Ga Eun Kim
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Yong Hyun Park
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792 Republic of Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Cancer Research Institute, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
- Department of Bioinformatics, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
25
|
Horst M, Eberli D, Gobet R, Salemi S. Tissue Engineering in Pediatric Bladder Reconstruction-The Road to Success. Front Pediatr 2019; 7:91. [PMID: 30984717 PMCID: PMC6449422 DOI: 10.3389/fped.2019.00091] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/01/2019] [Indexed: 12/20/2022] Open
Abstract
Several congenital disorders can cause end stage bladder disease and possibly renal damage in children. The current gold standard therapy is enterocystoplasty, a bladder augmentation using an intestinal segment. However, the use of bowel tissue is associated with numerous complications such as metabolic disturbance, stone formation, urine leakage, chronic infections, and malignancy. Urinary diversions using engineered bladder tissue would obviate the need for bowel for bladder reconstruction. Despite impressive progress in the field of bladder tissue engineering over the past decades, the successful transfer of the approach into clinical routine still represents a major challenge. In this review, we discuss major achievements and challenges in bladder tissue regeneration with a focus on different strategies to overcome the obstacles and to meet the need for living functional tissue replacements with a good growth potential and a long life span matching the pediatric population.
Collapse
Affiliation(s)
- Maya Horst
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Daniel Eberli
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| | - Rita Gobet
- Laboratory for Urologic Tissue Engineering and Stem Cell Therapy, Department of Urology, University Hospital, Zurich, Switzerland
| | - Souzan Salemi
- Division of Pediatric Urology, Department of Pediatric Surgery, University Children‘s Hospital, Zurich, Switzerland
| |
Collapse
|
26
|
Lu J, Zhu LF, Cai YM, Dong HY, Zhu L, Tan JM. Isolation and multipotential differentiation of mesenchymal stromal cell‑like progenitor cells from human bladder. Mol Med Rep 2018; 19:187-194. [PMID: 30431114 PMCID: PMC6297775 DOI: 10.3892/mmr.2018.9646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023] Open
Abstract
Various types of mesenchymal stromal cells (MSCs) have been used in urological tissue engineering but to date the existence of MSCs has not been reported in the human bladder. The present study provided evidence that a small number of MSC‑like cells exist in the human bladder and designated this class of cells 'human bladder‑derived MSC‑like cells' (hBSCs). It was demonstrated that hBSCs can be cultured to yield a large population. These hBSCs expressed the surface markers of MSCs and exhibited the capacity for osteogenic, adipogenic and chondrogenic differentiation. On induction with appropriate media in vitro, hBSCs could differentiate into bladder‑associated cell types, including urothelial, endothelial and smooth muscle cell‑like lineages. In addition, the average telomerase activity of adult hBSCs was higher compared with adult human bone marrow‑derived MSCs, but lower than that of human umbilical cord Wharton's jelly‑derived MSCs. These findings may inspire future studies on the role of hBSCs in urological tissue engineering applications and in other fields.
Collapse
Affiliation(s)
- Jun Lu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Ling-Feng Zhu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Yuan-Ming Cai
- College of Basic Medical, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, P.R. China
| | - Hui-Yue Dong
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Ling Zhu
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| | - Jian-Ming Tan
- Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital/ or Dongfang Hospital, Xiamen University, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
27
|
Colaco M, Osman NI, Karakeçi A, Artibani W, Andersson KE, Badlani GH. Current concepts of the acontractile bladder. BJU Int 2018; 122:195-202. [PMID: 29633516 DOI: 10.1111/bju.14236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The acontractile bladder (AcB) is a urodynamic-based diagnosis wherein the bladder is unable to demonstrate any contraction during a pressure flow study. Although it is often grouped with underactive bladder, it is a unique phenomenon and should be investigated independently. The purpose of the present review was to examine the current literature on AcB regarding its pathology, diagnosis, current management guidelines, and future developments. We performed a review of the PubMed database, classifying the evidence for AcB pathology, diagnosis, treatment, and potential future treatments. Over the 67 years covered in our review period, 42 studies were identified that met our criteria. Studies were largely poor quality and mainly consisted of retrospective review or animal models. The underlying pathology of AcB is variable with both neurological and myogenic aetiologies. Treatment is largely tailored for renal preservation and reduction of infection. Although future developments may allow more functional restorative treatments, current treatments mainly focus on bladder drainage. AcB is a unique and understudied bladder phenomenon. Treatment is largely based on symptoms and presentation. While cellular therapy and neuromodulation may hold promise, further research is needed into the underlying neuro-urological pathophysiology of this disease so that we may better develop future treatments.
Collapse
Affiliation(s)
- Marc Colaco
- Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nadir I Osman
- Academic Urology Unit, Royal Hallamshire Hospital, Sheffield, UK
| | | | - Walter Artibani
- Urologic Clinic, University Hospital, Ospedale Policlinico, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | | | | |
Collapse
|
28
|
Kishimoto N, Honda Y, Momota Y, Tran SD. Dedifferentiated Fat (DFAT) cells: A cell source for oral and maxillofacial tissue engineering. Oral Dis 2018; 24:1161-1167. [PMID: 29356251 DOI: 10.1111/odi.12832] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/26/2022]
Abstract
Tissue engineering is a promising method for the regeneration of oral and maxillofacial tissues. Proper selection of a cell source is important for the desired application. This review describes the discovery and usefulness of dedifferentiated fat (DFAT) cells as a cell source for tissue engineering. Dedifferentiated Fat cells are a highly homogeneous cell population (high purity), highly proliferative, and possess a multilineage potential for differentiation into various cell types under proper in vitro inducing conditions and in vivo. Moreover, DFAT cells have a higher differentiation capability of becoming osteoblasts, chondrocytes, and adipocytes than do bone marrow-derived mesenchymal stem cells and/or adipose tissue-derived stem cells. The usefulness of DFAT cells in vivo for periodontal tissue, bone, peripheral nerve, muscle, cartilage, and fat tissue regeneration was reported. Dedifferentiated Fat cells obtained from the human buccal fat pad (BFP) are a minimally invasive procedure with limited esthetic complications for patients. The BFP is a convenient and accessible anatomical site to harvest DFAT cells for dentists and oral surgeons, and thus is a promising cell source for oral and maxillofacial tissue engineering.
Collapse
Affiliation(s)
- N Kishimoto
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Y Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | - Y Momota
- Department of Anesthesiology, Osaka Dental University, Osaka, Japan
| | - S D Tran
- Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Saito-Tamura Y, Tonogi M, Shimizu N, Honda M. Effect of collagenase concentration on the isolation of small adipocytes from human buccal fat pad. J Oral Sci 2018; 60:14-23. [PMID: 29479028 DOI: 10.2334/josnusd.16-0786] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Dedifferentiated fat (DFAT) cells were isolated from mature adipocytes using the ceiling culture method. Recently, we successfully isolated DFAT cells from adipocytes with a relatively small size (<40 μm). DFAT cells have a higher osteogenic potential than that of medium adipocytes. Therefore, the objective of this study was to determine the optimal concentration of collagenase solution for isolating small adipocytes from human buccal fat pads (BFPs). Four concentrations of collagenase solution (0.01%, 0.02%, 0.1%, and 0.5%) were used, and their effectiveness was assessed by the number of small adipocytes and DFAT cells isolated. The total number of floating adipocytes that dissociated with 0.02% collagenase was 2.5 times of that dissociated with 0.1% collagenase. The number of floating adipocytes with a diameter of ≤29 μm that dissociated with 0.02% collagenase was thrice of those dissociated with 0.1% and 0.5% collagenase. The number of DFAT cells that dissociated with 0.02% collagenase was 1.5 times of that dissociated with 0.1% collagenase. In addition, DFAT cells that dissociated with 0.02% collagenase had a higher osteogenic differentiation potential than those that dissociated with 0.1% collagenase. These results suggest that 0.02% is the optimal collagenase concentration for isolating small adipocytes from BFPs.
Collapse
Affiliation(s)
- Niina Tsurumachi
- Department of Orthodontics, Nihon University School of Dentistry
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | - Taro Matsumoto
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry
| | - Tomohiko Kazama
- Department of Functional Morphology Division of Cell Regeneration and Transplantation, Nihon University School of Medicine
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University
| | | | - Morio Tonogi
- Department of Oral and Maxillofacial Surgery, Nihon University School of Dentistry
| | | | - Masaki Honda
- Department of Oral Anatomy, Aichi Gakuin University School of Dentistry
| |
Collapse
|
30
|
Duarte MS, Bueno R, Silva W, Campos CF, Gionbelli MP, Guimarães SEF, Silva FF, Lopes PS, Hausman GJ, Dodson MV. TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Dedifferentiated fat cells: Potential and perspectives for their use in clinical and animal science purpose. J Anim Sci 2017; 95:2255-2260. [PMID: 28727019 DOI: 10.2527/jas.2016.1094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
An increasing body of evidences has demonstrated the ability of the mature adipocyte to dedifferentiate into a population of proliferative-competent cells known as dedifferentiated fat (DFAT) cells. As early as the 1970s, in vitro studies showed that DFAT cells may be obtained by ceiling culture, which takes advantage of the buoyancy property of lipid-filled cells. It was documented that DFAT cells may acquire a phenotype similar to mesenchymal stem cells and yet may differentiate into multiple cell lineages, such as skeletal and smooth muscle cells, cardiomyocytes, osteoblasts, and adipocytes. Additionally, recent studies showed the ability of isolated mature adipocytes to dedifferentiate in vivo and the capacity of the progeny cells to redifferentiate into mature adipocytes, contributing to the increase of body fatness. These findings shed light on the potential for use of DFAT cells, not only for clinical purposes but also within the animal science field, because increasing intramuscular fat without excessive increase in other fat depots is a challenge in livestock production. Knowledge of the mechanisms underlying the dedifferentiation and redifferentiation of DFAT cells will allow the development of strategies for their use for clinical and animal science purposes. In this review, we highlight several aspects of DFAT cells, their potential for clinical purposes, and their contribution to adipose tissue mass in livestock.
Collapse
|
31
|
Yipeng J, Yongde X, Yuanyi W, Jilei S, Jiaxiang G, Jiangping G, Yong Y. Microtissues Enhance Smooth Muscle Differentiation and Cell Viability of hADSCs for Three Dimensional Bioprinting. Front Physiol 2017; 8:534. [PMID: 28790931 PMCID: PMC5524823 DOI: 10.3389/fphys.2017.00534] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/10/2017] [Indexed: 12/22/2022] Open
Abstract
Smooth muscle differentiated human adipose derived stem cells (hADSCs) provide a crucial stem cell source for urinary tissue engineering, but the induction of hADSCs for smooth muscle differentiation still has several issues to overcome, including a relatively long induction time and equipment dependence, which limits access to abundant stem cells within a short period of time for further application. Three-dimensional (3D) bioprinting holds great promise in regenerative medicine due to its controllable construction of a designed 3D structure. When evenly mixed with bioink, stem cells can be spatially distributed within a bioprinted 3D structure, thus avoiding drawbacks such as, stem cell detachment in a conventional cell-scaffold strategy. Notwithstanding the advantages mentioned above, cell viability is often compromised during 3D bioprinting, which is often due to pressure during the bioprinting process. The objective of our study was to improve the efficiency of hADSC smooth muscle differentiation and cell viability of a 3D bioprinted structure. Here, we employed the hanging-drop method to generate hADSC microtissues in a smooth muscle inductive medium containing human transforming growth factor β1 and bioprinted the induced microtissues onto a 3D structure. After 3 days of smooth muscle induction, the expression of α-smooth muscle actin and smoothelin was higher in microtissues than in their counterpart monolayer cultured hADSCs, as confirmed by immunofluorescence and western blotting analysis. The semi-quantitative assay showed that the expression of α-smooth muscle actin (α-SMA) was 0.218 ± 0.077 in MTs and 0.082 ± 0.007 in Controls; smoothelin expression was 0.319 ± 0.02 in MTs and 0.178 ± 0.06 in Controls. Induced MTs maintained their phenotype after the bioprinting process. Live/dead and cell count kit 8 assays showed that cell viability and cell proliferation in the 3D structure printed with microtissues were higher at all time points compared to the conventional single-cell bioprinting strategy (mean cell viability was 88.16 ± 3.98 vs. 61.76 ± 15% for microtissues and single-cells, respectively). These results provide a novel way to enhance the smooth muscle differentiation of hADSCs and a simple method to maintain better cell viability in 3D bioprinting.
Collapse
Affiliation(s)
- Jin Yipeng
- Department of Urology, Chinese PLA General HospitalBeijing, China
| | - Xu Yongde
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Wu Yuanyi
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Sun Jilei
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Guo Jiaxiang
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| | - Gao Jiangping
- Department of Urology, Chinese PLA General HospitalBeijing, China
| | - Yang Yong
- Department of Urology, First Affiliated Hospital of Chinese PLA General HospitalBeijing, China
| |
Collapse
|
32
|
Buccal Fat Pad as a Potential Source of Stem Cells for Bone Regeneration: A Literature Review. Stem Cells Int 2017; 2017:8354640. [PMID: 28757880 PMCID: PMC5516750 DOI: 10.1155/2017/8354640] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/17/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissues hold great promise in bone tissue engineering since they are available in large quantities as a waste material. The buccal fat pad (BFP) is a specialized adipose tissue that is easy to harvest and contains a rich blood supply, and its harvesting causes low complications for patients. This review focuses on the characteristics and osteogenic capability of stem cells derived from BFP as a valuable cell source for bone tissue engineering. An electronic search was performed on all in vitro and in vivo studies that used stem cells from BFP for the purpose of bone tissue engineering from 2010 until 2016. This review was organized according to the PRISMA statement. Adipose-derived stem cells derived from BFP (BFPSCs) were compared with adipose tissues from other parts of the body (AdSCs). Moreover, the osteogenic capability of dedifferentiated fat cells (DFAT) derived from BFP (BFP-DFAT) has been reported in comparison with BFPSCs. BFP is an easily accessible source of stem cells that can be obtained via the oral cavity without injury to the external body surface. Comparing BFPSCs with AdSCs indicated similar cell yield, morphology, and multilineage differentiation. However, BFPSCs proliferate faster and are more prone to producing colonies than AdSCs.
Collapse
|
33
|
Li Y, Wen Y, Green M, Cabral EK, Wani P, Zhang F, Wei Y, Baer TM, Chen B. Cell sex affects extracellular matrix protein expression and proliferation of smooth muscle progenitor cells derived from human pluripotent stem cells. Stem Cell Res Ther 2017; 8:156. [PMID: 28676082 PMCID: PMC5496346 DOI: 10.1186/s13287-017-0606-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/18/2022] Open
Abstract
Background Smooth muscle progenitor cells (pSMCs) differentiated from human pluripotent stem cells (hPSCs) hold great promise for treating diseases or degenerative conditions involving smooth muscle pathologies. However, the therapeutic potential of pSMCs derived from men and women may be very different. Cell sex can exert a profound impact on the differentiation process of stem cells into somatic cells. In spite of advances in translation of stem cell technologies, the role of cell sex and the effect of sex hormones on the differentiation towards mesenchymal lineage pSMCs remain largely unexplored. Methods Using a standard differentiation protocol, two human embryonic stem cell lines (one male line and one female line) and three induced pluripotent stem cell lines (one male line and two female lines) were differentiated into pSMCs. We examined differences in the differentiation of male and female hPSCs into pSMCs, and investigated the effect of 17β-estradiol (E2) on the extracellular matrix (ECM) metabolisms and cell proliferation rates of the pSMCs. Statistical analyses were performed by using Student’s t test or two-way ANOVA, p < 0.05. Results Male and female hPSCs had similar differentiation efficiencies and generated morphologically comparable pSMCs under a standard differentiation protocol, but the derived pSMCs showed sex differences in expression of ECM proteins, such as MMP-2 and TIMP-1, and cell proliferation rates. E2 treatment induced the expression of myogenic gene markers and suppressed ECM degradation activities through reduction of MMP activity and increased expression of TIMP-1 in female pSMCs, but not in male pSMCs. Conclusions hPSC-derived pSMCs from different sexes show differential expression of ECM proteins and proliferation rates. Estrogen appears to promote maturation and ECM protein expression in female pSMCs, but not in male pSMCs. These data suggest that intrinsic cell-sex differences may influence progenitor cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0606-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhui Li
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.,Department of Obstetrics/Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yan Wen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA.
| | - Morgaine Green
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Elise K Cabral
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Prachi Wani
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Fan Zhang
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Yi Wei
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| | - Thomas M Baer
- Stanford Photonics Research Center, Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Bertha Chen
- Department of Obstetrics/Gynecology, Stanford University School of Medicine, 300 Pasteur Drive HH-333, Stanford, CA, 94305, USA
| |
Collapse
|
34
|
Hao W, Jiang C, Jiang M, Wang T, Wang X. Osteogenic potency of dedifferentiated fat cells isolated from elderly people with osteoporosis. Exp Ther Med 2017; 14:43-50. [PMID: 28672891 PMCID: PMC5488489 DOI: 10.3892/etm.2017.4465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/26/2017] [Indexed: 12/13/2022] Open
Abstract
Mature adipocytes are the major cell type in adipose tissue. This study aimed to explore the osteogenic potency of dedifferentiated fat cells obtained from osteoporotic patients (opDFATs) in vitro and in vivo. Mature adipocytes and adipose-derived stem cells (opASCs) were harvested from subcutaneous adipose tissue. Mature adipocytes were dedifferentiated to produce opDFATs by the ceiling culture method. OpDFATs were osteogenically induced in vitro with opASCs as a control. Cell growth, alkaline phosphatase (ALPase) activity and cell mineralization were determined, and expression levels of osteogenesis-specific genes (collagen I, osteocalcin and bone sialoprotein) were analyzed using quantitative reverse transcription polymerase chain reaction. After 14 days, the opDFATs were combined with a poly(lactide-co-glycolide)-β-tricalcium phosphate porous scaffold after being suspended in collagen I gel and implanted into nude mice for 4 weeks prior to histological analysis. Unilocular lipid droplets in mature adipocytes gradually split into smaller droplets and disappeared from the cytoplasm. Mature adipocytes dedifferentiated to opDFATs and cell morphology changed from spherical to elongated. High levels of ALPase and cell mineralization were observed in opDFATs by staining. No significant differences were found between the growth curves, ALPase activity, cell mineralization and expression levels of osteogenesis-specific genes between opDFATS and opASCs. After implantation for 4 weeks, new bone tissue was observed histologically in the opDFATs-based biocomposite. OpDFATs are implicated as a novel type of seed cell for bone tissue engineering based on their osteogenic potency and higher abundance in adipose tissue compared with opASCs.
Collapse
Affiliation(s)
- Wei Hao
- Department of Orthopedics and Traumatology, Yantai Yuhuangding Hospital Affiliated to Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| | - Chuanqiang Jiang
- Department of Orthopedics and Traumatology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Ming Jiang
- Department of Stomatology, 107 Hospital of Jinan Military Area, Yantai, Shandong 264002, P.R. China
| | - Tian Wang
- Department of Pharmacology, School of Pharmacy, Yantai University, Yantai, Shandong 264005, P.R. China
| | - Xin Wang
- Department of Orthopedics and Traumatology, Yantai Yuhuangding Hospital Affiliated to Qingdao University Medical College, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
35
|
Lin HY, Fujita N, Endo K, Morita M, Takeda T, Nakagawa T, Nishimura R. Isolation and Characterization of Multipotent Mesenchymal Stem Cells Adhering to Adipocytes in Canine Bone Marrow. Stem Cells Dev 2017; 26:431-440. [DOI: 10.1089/scd.2016.0200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Affiliation(s)
- Hsing-Yi Lin
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoki Fujita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Endo
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Maresuke Morita
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tae Takeda
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
36
|
Ikado Y, Obinata D, Matsumoto T, Murata Y, Kano K, Fukuda N, Yamaguchi K, Takahashi S. Transplantation of mature adipocyte-derived dedifferentiated fat cells for the treatment of vesicoureteral reflux in a rat model. Int Urol Nephrol 2016; 48:1951-1960. [PMID: 27683029 DOI: 10.1007/s11255-016-1426-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/21/2016] [Indexed: 01/19/2023]
Abstract
PURPOSE Autologous cells potentially provide an ideal injectable substance for management in vesicoureteral reflux (VUR). The aim of this study is to examine the effects of mature adipocyte-derived dedifferentiated fat (DFAT) cell transplantation on VUR in a rat bladder pressurization-induced VUR model. METHODS To create VUR, Sprague-Dawley rats underwent urethral clamping and placement of cystostomy followed by intravesical pressurization. Rat DFAT cells (1 × 106 cells, DFAT group, n = 5) or saline (control group, n = 5) was then injected into the bilateral vesicoureteral junctions. Two weeks later, VUR grade was evaluated on cystography. The number of apoptotic cells in the renal pelvic urothelium, the ureteral inner/outer diameter ratio and the area of connective tissue in the posterior bladder wall were measured. RESULTS The reflux grade in the DFAT group was significantly lower than that in the control group. The number of apoptotic cells in the renal pelvic urothelium, ureteral inner/outer diameter ratio and connective tissue area in DFAT group were significantly lower in comparison with the control group. CONCLUSIONS DFAT cell transplantation improved VUR and exerted nephroprotective effects in a rat VUR model.
Collapse
Affiliation(s)
- Yuichiro Ikado
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.
| | - Yasutaka Murata
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Noboru Fukuda
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, 30-1 Oyaguchi-Kamicho, Itabashi-ku, Tokyo, 173-8610, Japan.,Advanced Medicine and Advanced Research Institute of Sciences and Humanities, Nihon University, Tokyo, Japan
| | - Kenya Yamaguchi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
37
|
Shimizu Y, Sato S. In vitro study on regeneration of periodontal tissue microvasculature using human dedifferentiated fat cells. J Periodontol 2016; 86:129-36. [PMID: 25102139 DOI: 10.1902/jop.2014.140045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Human dedifferentiated fat cells (HDFATs) may be a new cell type suitable for regenerative therapies. The aim of this study is to assess the potential of HDFATs for vascular regeneration of periodontal tissue. To do this, HDFATs and human gingival endothelial cells (HGECs) were cocultivated, and vascular regeneration was examined in vitro. METHODS HDFATs were isolated from subcutaneous adipose tissue, and HGECs were isolated from gingival cells using anti-cluster of differentiation 31 antibody-coated magnetic beads. HDFATs were cocultured with HGECs in microvascular endothelial cell growth medium-2 (EGM-2MV) for 7 days. Expression of endothelial cell (EC) markers, the formation of capillary-like tubes, and the expression of pericyte markers were determined. RESULTS HDFATs, cultured in EGM-2MV or cocultured with HGECs, expressed EC markers. HDFATs in both conditions initiated tube formation within 5 hours of seeding and formed extensive capillary-like structures within 12 hours. These structures disintegrated within 24 hours when cells were cultured in EGM-2MV alone, whereas cocultured HDFATs maintained tubes for >24 hours. Cocultured HDFATs significantly increased expression of pericyte markers, a cell type associated with microvasculature. CONCLUSION HDFATs possess the ability to express EC markers, and coculture with HGECs promotes differentiation into pericytes involved in the maturation and stabilization of the microvasculature.
Collapse
Affiliation(s)
- Yutaka Shimizu
- Department of Periodontology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | | |
Collapse
|
38
|
Tsurumachi N, Akita D, Kano K, Matsumoto T, Toriumi T, Kazama T, Oki Y, Tamura Y, Tonogi M, Isokawa K, Shimizu N, Honda M. Small Buccal Fat Pad Cells Have High Osteogenic Differentiation Potential. Tissue Eng Part C Methods 2016; 22:250-9. [DOI: 10.1089/ten.tec.2015.0420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Niina Tsurumachi
- Nihon University Graduate School of Dentistry, Chiyoda-ku, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Taku Toriumi
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Itabashi-ku, Japan
| | - Yoshinao Oki
- Laboratory of Cell and Tissue Biology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yoko Tamura
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Morio Tonogi
- Department of Oral Surgery, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Keitaro Isokawa
- Department of Anatomy, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Noriyoshi Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, Chiyoda-ku, Japan
| | - Masaki Honda
- Department of Oral Anatomy, Aichi-Gakuin University School of Dentistry, Nagoya, Japan
| |
Collapse
|
39
|
Jumabay M, Boström KI. Dedifferentiated fat cells: A cell source for regenerative medicine. World J Stem Cells 2015; 7:1202-1214. [PMID: 26640620 PMCID: PMC4663373 DOI: 10.4252/wjsc.v7.i10.1202] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/02/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
The identification of an ideal cell source for tissue regeneration remains a challenge in the stem cell field. The ability of progeny cells to differentiate into other cell types is important for the processes of tissue reconstruction and tissue engineering and has clinical, biochemical or molecular implications. The adaptation of stem cells from adipose tissue for use in regenerative medicine has created a new role for adipocytes. Mature adipocytes can easily be isolated from adipose cell suspensions and allowed to dedifferentiate into lipid-free multipotent cells, referred to as dedifferentiated fat (DFAT) cells. Compared to other adult stem cells, the DFAT cells have unique advantages in their abundance, ease of isolation and homogeneity. Under proper condition in vitro and in vivo, the DFAT cells have exhibited adipogenic, osteogenic, chondrogenic, cardiomyogenc, angiogenic, myogenic, and neurogenic potentials. In this review, we first discuss the phenomena of dedifferentiation and transdifferentiation of cells, and then dedifferentiation of adipocytes in particular. Understanding the dedifferentiation process itself may contribute to our knowledge of normal growth processes, as well as mechanisms of disease. Second, we highlight new developments in DFAT cell culture and summarize the current understanding of DFAT cell properties. The unique features of DFAT cells are promising for clinical applications such as tissue regeneration.
Collapse
|
40
|
Application of Green Tea Catechin for Inducing the Osteogenic Differentiation of Human Dedifferentiated Fat Cells in Vitro. Int J Mol Sci 2015; 16:27988-8000. [PMID: 26602917 PMCID: PMC4691028 DOI: 10.3390/ijms161226081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite advances in stem cell biology, there are few effective techniques to promote the osteogenic differentiation of human primary dedifferentiated fat (DFAT) cells. We attempted to investigate whether epigallocatechin-3-gallate (EGCG), the main component of green tea catechin, facilitates early osteogenic differentiation and mineralization on DFAT cells in vitro. DFAT cells were treated with EGCG (1.25-10 μM) in osteogenic medium (OM) with or without 100 nM dexamethasone (Dex) for 12 days (hereafter two osteogenic media were designated as OM(Dex) and OM). Supplementation of 1.25 μM EGCG to both the media effectively increased the mRNA expression of collagen 1 (COL1A1) and runt-related transcription factor 2 (RUNX2) and also increased proliferation and mineralization. Compared to OM(Dex) with EGCG, OM with EGCG induced earlier expression for COL1A1 and RUNX2 at day 1 and higher mineralization level at day 12. OM(Dex) with 10 μM EGCG remarkably hampered the proliferation of the DFAT cells. These results suggest that OM(without Dex) with EGCG might be a preferable medium to promote proliferation and to induce osteoblast differentiation of DFAT cells. Our findings provide an insight for the combinatory use of EGCG and DFAT cells for bone regeneration and stem cell-based therapy.
Collapse
|
41
|
Chung E. Stem-cell-based therapy in the field of urology: a review of stem cell basic science, clinical applications and future directions in the treatment of various sexual and urinary conditions. Expert Opin Biol Ther 2015; 15:1623-32. [DOI: 10.1517/14712598.2015.1075504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Phenotypic and Functional Properties of Porcine Dedifferentiated Fat Cells during the Long-Term Culture In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:673651. [PMID: 26090433 PMCID: PMC4450286 DOI: 10.1155/2015/673651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 04/25/2015] [Accepted: 04/30/2015] [Indexed: 12/11/2022]
Abstract
It has been proved that terminally differentiated mature adipocytes possess abilities to dedifferentiate into fibroblast-like progeny cells with self-renewal and multiple differentiation, termed dedifferentiated fat (DFAT) cells. However, the biological properties of DFAT cells during long-term culture in vitro have not been elucidated. Here, we obtained fibroblast-like morphology of porcine DFAT cells by ceiling culture. During the dedifferentiation process, round mature adipocytes with single large lipid droplets changed into spindle-shaped cells accompanied by the adipogenic markers PPARγ, aP2, LPL, and Adiponectin significant downregulation. Flow cytometric analysis showed that porcine DFAT cells displayed similar cell-surface antigen profile to mesenchymal stem cells (MSCs). Furthermore, different passages of porcine DFAT cells during long-term culture in vitro retained high levels of cell viabilities (>97%), efficient proliferative capacity including population doubling time ranged from 20 h to 22 h and population doubling reached 47.40 ± 1.64 by 58 days of culture. In addition, porcine DFAT cells maintained the multiple differentiation capabilities into adipocytes, osteoblasts, and skeletal myocytes and displayed normal chromosomal karyotypes for prolonged passaging. Therefore, porcine DFAT cells may be a novel model of stem cells for studying the functions of gene in the different biological events.
Collapse
|
43
|
Okita N, Honda Y, Kishimoto N, Liao W, Azumi E, Hashimoto Y, Matsumoto N. Supplementation of Strontium to a Chondrogenic Medium Promotes Chondrogenic Differentiation of Human Dedifferentiated Fat Cells. Tissue Eng Part A 2015; 21:1695-704. [DOI: 10.1089/ten.tea.2014.0282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Naoya Okita
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | - Yoshitomo Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | | | - Wen Liao
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | - Eiko Azumi
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | | | | |
Collapse
|
44
|
Maruyama T, Fukuda N, Matsumoto T, Kano K, Endo M, Kazama M, Kazama T, Ikeda J, Matsuda H, Ueno T, Abe M, Okada K, Soma M, Matsumoto K, Kawachi H. Systematic implantation of dedifferentiated fat cells ameliorated monoclonal antibody 1-22-3-induced glomerulonephritis by immunosuppression with increases in TNF-stimulated gene 6. Stem Cell Res Ther 2015; 6:80. [PMID: 25889917 PMCID: PMC4455708 DOI: 10.1186/s13287-015-0069-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 02/15/2015] [Accepted: 03/27/2015] [Indexed: 02/28/2023] Open
Abstract
INTRODUCTION Implantation of mesenchymal stem cells (MSCs) has recently been reported to repair tissue injuries through anti-inflammatory and immunosuppressive effects. We established dedifferentiated fat (DFAT) cells that show identical characteristics to MSCs. METHODS We examined the effects of 10(6) of DFAT cells infused through renal artery or tail vein on monoclonal antibody (mAb) 1-22-3-induced glomerulonephritis (as an immunological type of renal injury) and adriamycin-induced nephropathy (as a non-immunological type of renal injury) in rats. The mAb 1-22-3-injected rats were also implanted with 10(6) of DFAT cells transfected with TSG-6 siRNA through tail vein. RESULTS Although DFAT cells transfused into blood circulation through the tail vein were trapped mainly in lungs without reaching the kidneys, implantation of DFAT cells reduced proteinuria and improved glomerulosclerosis and interstitial fibrosis. Implantation of DFAT cells through the tail vein significantly decreased expression of kidney injury molecule-1, collagen IV and fibronectin mRNAs, whereas nephrin mRNA expression was increased. Implantation of DFAT cells did not improve adriamycin-induced nephropathy, but significantly decreased the glomerular influx of macrophages, common leukocytes and pan T cells. However, the glomerular influx of helper T cells, was increased. Implantation of DFAT cells decreased expression of interleukin (IL)-6 and IL-12β mRNAs and increased expression of TNF-stimulated gene (TSG)-6 mRNA in renal cortex from mAb 1-22-3-injected rats. The basal level of TSG-6 protein was significantly higher in DFAT cells than in fibroblasts. Expression of TSG-6 mRNA in MCs cocultured with DFAT cells was significantly higher than in mesangial cells or DFAT cells alone. Systematic implantation of DFAT cells with TSG-6 siRNA through tail vein did not improve proteinuria, renal dysfunction and renal degeneration in the mAb 1-22-3-injected rats. CONCLUSION Systematic implantation of DFAT cells effectively ameliorated mAb 1-22-3-induced glomerulonephritis through immunosuppressive effects accompanied by the suppression of macrophage infiltration and expression of IL-6, IL-10 and IL-12β, and increased production of serum and renal TSG-6 that improved the mAb 1-22-3-induced renal degeneration by the immunosuppressive effects of TSG-6. Thus DFAT cells will be suitable cell source for the treatment of immunological progressive renal diseases.
Collapse
Affiliation(s)
- Takashi Maruyama
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Noboru Fukuda
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan. .,Advanced Research Institute of the Sciences and Humanities, Nihon University Graduate School, Tokyo, Japan.
| | - Taro Matsumoto
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan.
| | - Koichiro Kano
- Laboratory of Cell and Tissue Biology, College of Bioresource Science, Nihon University, Fujisawa, Japan.
| | - Morito Endo
- Faculty of Human Health Science, Hachinohe Gakuin University, Hachinohe, Aomori, Japan.
| | - Minako Kazama
- Department of Pediatrics, Nihon University School of Medicine, Tokyo, Japan.
| | - Tomohiko Kazama
- Division of Cell Regeneration and Transplantation, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan.
| | - Jin Ikeda
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Hiroyuki Matsuda
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Takahiro Ueno
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Masanori Abe
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Kazuyoshi Okada
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Masayoshi Soma
- Division of General Medicine, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Koichi Matsumoto
- Division of Nephrology Hypertension and Endocrinology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan.
| | - Hiroshi Kawachi
- Department of Cell Biology, Institute of Nephrology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
45
|
Kaku M, Akiba Y, Akiyama K, Akita D, Nishimura M. Cell-based bone regeneration for alveolar ridge augmentation--cell source, endogenous cell recruitment and immunomodulatory function. J Prosthodont Res 2015; 59:96-112. [PMID: 25749435 DOI: 10.1016/j.jpor.2015.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/05/2015] [Indexed: 11/30/2022]
Abstract
Alveolar ridge plays a pivotal role in supporting dental prosthesis particularly in edentulous and semi-dentulous patients. However the alveolar ridge undergoes atrophic change after tooth loss. The vertical and horizontal volume of the alveolar ridge restricts the design of dental prosthesis; thus, maintaining sufficient alveolar ridge volume is vital for successful oral rehabilitation. Recent progress in regenerative approaches has conferred marked benefits in prosthetic dentistry, enabling regeneration of the atrophic alveolar ridge. In order to achieve successful alveolar ridge augmentation, sufficient numbers of osteogenic cells are necessary; therefore, autologous osteoprogenitor cells are isolated, expanded in vitro, and transplanted to the specific anatomical site where the bone is required. Recent studies have gradually elucidated that transplanted osteoprogenitor cells are not only a source of bone forming osteoblasts, they appear to play multiple roles, such as recruitment of endogenous osteoprogenitor cells and immunomodulatory function, at the forefront of bone regeneration. This review focuses on the current consensus of cell-based bone augmentation therapies with emphasis on cell sources, transplanted cell survival, endogenous stem cell recruitment and immunomodulatory function of transplanted osteoprogenitor cells. Furthermore, if we were able to control the mobilization of endogenous osteoprogenitor cells, large-scale surgery may no longer be necessary. Such treatment strategy may open a new era of safer and more effective alveolar ridge augmentation treatment options.
Collapse
Affiliation(s)
- Masaru Kaku
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Yosuke Akiba
- Division of Bioprosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kentaro Akiyama
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Akita
- Department of Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo, Japan
| | - Masahiro Nishimura
- Department of Oral Maxillofacial Prosthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
46
|
Hsiao AY, Okitsu T, Onoe H, Kiyosawa M, Teramae H, Iwanaga S, Kazama T, Matsumoto T, Takeuchi S. Smooth muscle-like tissue constructs with circumferentially oriented cells formed by the cell fiber technology. PLoS One 2015; 10:e0119010. [PMID: 25734774 PMCID: PMC4348165 DOI: 10.1371/journal.pone.0119010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/08/2015] [Indexed: 01/09/2023] Open
Abstract
The proper functioning of many organs and tissues containing smooth muscles greatly depends on the intricate organization of the smooth muscle cells oriented in appropriate directions. Consequently controlling the cellular orientation in three-dimensional (3D) cellular constructs is an important issue in engineering tissues of smooth muscles. However, the ability to precisely control the cellular orientation at the microscale cannot be achieved by various commonly used 3D tissue engineering building blocks such as spheroids. This paper presents the formation of coiled spring-shaped 3D cellular constructs containing circumferentially oriented smooth muscle-like cells differentiated from dedifferentiated fat (DFAT) cells. By using the cell fiber technology, DFAT cells suspended in a mixture of extracellular proteins possessing an optimized stiffness were encapsulated in the core region of alginate shell microfibers and uniformly aligned to the longitudinal direction. Upon differentiation induction to the smooth muscle lineage, DFAT cell fibers self-assembled to coiled spring structures where the cells became circumferentially oriented. By changing the initial core-shell microfiber diameter, we demonstrated that the spring pitch and diameter could be controlled. 21 days after differentiation induction, the cell fibers contained high percentages of ASMA-positive and calponin-positive cells. Our technology to create these smooth muscle-like spring constructs enabled precise control of cellular alignment and orientation in 3D. These constructs can further serve as tissue engineering building blocks for larger organs and cellular implants used in clinical treatments.
Collapse
Affiliation(s)
- Amy Y. Hsiao
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Teru Okitsu
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Hiroaki Onoe
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Mahiro Kiyosawa
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Hiroki Teramae
- Faculty of Teacher Education, Shumei University, Chiba, Japan
| | - Shintaroh Iwanaga
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| | - Tomohiko Kazama
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Taro Matsumoto
- Department of Functional Morphology, Division of Cell Regeneration and Transplantation, Nihon University School of Medicine, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Takeuchi Biohybrid Innovation Project, Japan Science and Technology Agency, Tokyo, Japan
| |
Collapse
|
47
|
Xu Y, Zhang JA, Xu Y, Guo SL, Wang S, Wu D, Wang Y, Luo D, Zhou BR. Antiphotoaging effect of conditioned medium of dedifferentiated adipocytes on skin in vivo and in vitro: a mechanistic study. Stem Cells Dev 2015; 24:1096-111. [PMID: 25517994 DOI: 10.1089/scd.2014.0321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Photoaging of skin occurs partially due to decreased synthesis and increased degradation of dermal collagen. Antiphotoaging therapy aims to counteract these effects. This study aimed to investigate whether secretory factors from dedifferentiated adipocytes (DAs) could alleviate photoaging in human dermal fibroblasts (HDFs) and in mice and to clarify the underlying mechanism. DAs were acquired and verified based on cellular biomarkers and multilineage differentiation potential. The concentrations of several cytokines in conditioned medium from DAs (DA-CM) were determined. In vivo pathological changes, collagen types I and III, and matrix metalloproteinase (MMP)-1 and -3 were evaluated following the injection of 10-fold concentrated DA-CM into photoaged mice. In vitro, the effect of DA-CM on stress-induced premature senescence in HDFs was investigated by 5-ethynyl-2'-deoxyuridine (EdU) staining and β-galactosidase staining. The influence of DA-CM and transforming growth factor-β1 (TGF-β1) on the secretion of collagen types I and III, MMP-1, and MMP-3 in HDFs was evaluated by ELISA. In vivo, we found that subcutaneously injected 10-fold concentrated DA-CM increased the expression of collagen types I and III. In vitro, DA-CM clearly mitigated the decreased cell proliferation and delayed the senescence status in HDFs induced by ultraviolet B (UVB). HDFs treated with DA-CM exhibited higher collagen types I and III secretion and significantly lower MMP-1 and MMP-3 secretion. The TGF-β1-neutralizing antibody could partially reduce the recovery effect. Our results suggest that DAs may be useful for aging skin and their effects are mainly due to secreted factors, especially TGF-β1, which stimulate collagen synthesis and alleviate collagen degradation in HDFs.
Collapse
Affiliation(s)
- Yang Xu
- 1 Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University , Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Gopinath C, Ponsaerts P, Wyndaele JJ. Cell-Based Therapies in Lower Urinary Tract Disorders. Cell Transplant 2014; 24:1679-86. [PMID: 25291710 DOI: 10.3727/096368914x685050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cell-based therapy for the bladder has its beginnings in the 1990s with the successful isolation and culture of bladder smooth muscle cells. Since then, several attempts have been made to artificially implant native cell types and stem cell-derived cells into damaged bladders in the form of single-cell injectables or as grafts seeded onto artificial extracellular matrix. We critically examined in the literature the types of cells and their probable role as an alternative to non-drug-based, non-bowel-based graft replacement therapy in disorders of the urinary bladder. The limitations and plausible improvements to these novel therapies have also been discussed, keeping in mind an ideal therapy that could suit most bladder abnormalities arising out of varied number of disorders. In conclusion, muscle-derived cell types have consistently proven to be a promising therapy to emerge in the coming decade. However, tissue-engineered constructs have yet to prove their success in preclinical and long-term clinical setting.
Collapse
|
49
|
Tansriratanawong K, Tamaki Y, Ishikawa H, Sato S. Co-culture with periodontal ligament stem cells enhances osteogenic gene expression in de-differentiated fat cells. Hum Cell 2014; 27:151-61. [PMID: 24573839 PMCID: PMC4186972 DOI: 10.1007/s13577-014-0091-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 12/19/2022]
Abstract
In recent decades, de-differentiated fat cells (DFAT cells) have emerged in regenerative medicine because of their trans-differentiation capability and the fact that their characteristics are similar to bone marrow mesenchymal stem cells. Even so, there is no evidence to support the osteogenic induction using DFAT cells in periodontal regeneration and also the co-culture system. Consequently, this study sought to evaluate the DFAT cells co-culture with periodontal ligament stem cells (PDLSCs) in vitro in terms of gene expression by comparing runt-related transcription factor 2 (RUNX2) and Peroxisome proliferator-activated receptor gamma 2 (PPARγ2) genes. We isolated DFAT cells from mature adipocytes and compared proliferation with PDLSCs. After co-culture with PDLSCs, we analyzed transcriptional activity implying by DNA methylation in all adipogenic gene promoters using combined bisulfite restriction analysis. We compared gene expression in RUNX2 gene with the PPARγ2 gene using quantitative RT-PCR. After being sub-cultured, DFAT cells demonstrated morphology similar to fibroblast-like cells. At the same time, PDLSCs established all stem cell characteristics. Interestingly, the co-culture system attenuated proliferation while enhancing osteogenic gene expression in RUNX2 gene. Using the co-culture system, DFAT cells could trans-differentiate into osteogenic lineage enhancing, but conversely, their adipogenic characteristic diminished. Therefore, DFAT cells and the co-culture system might be a novel cell-based therapy for promoting osteogenic differentiation in periodontal regeneration.
Collapse
Affiliation(s)
- Kallapat Tansriratanawong
- Department of NDU Life Sciences, Nippon Dental University School of Life Dentistry at Tokyo, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan,
| | | | | | | |
Collapse
|
50
|
Kim JH, Lee HJ, Song YS. Treatment of bladder dysfunction using stem cell or tissue engineering technique. Korean J Urol 2014; 55:228-38. [PMID: 24741410 PMCID: PMC3988432 DOI: 10.4111/kju.2014.55.4.228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 01/22/2023] Open
Abstract
Tissue engineering and stem cell transplantation are two important options that may help overcome limitations in the current treatment strategy for bladder dysfunction. Stem cell therapy holds great promise for treating pathophysiology, as well as for urological tissue engineering and regeneration. To date, stem cell therapy in urology has mainly focused on oncology and erectile dysfunction. The therapeutic potency of stem cells (SCs) was originally thought to derive from their ability to differentiate into various cell types including smooth muscle. The main mechanisms of SCs in reconstituting or restoring bladder function are migration, differentiation, and paracrine effects. Nowadays, paracrine effects of stem cells are thought to be more prominent because of their stimulating effects on stem cells and adjacent cells. Studies of stem cell therapy for bladder dysfunction have been limited to experimental models and have been less focused on tissue engineering for bladder regeneration. Bladder outlet obstruction is a representative model. Adipose-derived stem cells, bone marrow stem cells (BMSCs), and skeletal muscle-derived stem cells or muscle precursor cells are used for transplantation to treat bladder dysfunction. The aim of this study is to review stem cell therapy and updated tissue regeneration as treatments for bladder dysfunction and to provide the current status of stem cell therapy and tissue engineering for bladder dysfunction including its mechanisms and limitations.
Collapse
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Hong Jun Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunhyang University Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|