1
|
Khastar S, Sattari M. Examining the level of inflammatory cytokines TNF-α and IL-8 produced by osteoblasts differentiated from dental pulp stem cells. AMERICAN JOURNAL OF STEM CELLS 2024; 13:225-232. [PMID: 39308765 PMCID: PMC11411251 DOI: 10.62347/cbmw4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND The use of dental pulp stem cells (DPSCs) in clinical applications instead of bone marrow stem cells is a very promising method capable of significantly changing the future of medical treatment. If further studies prove that DPSCs and the cells differentiated from them do not stimulate the immune system, these cells can be used more reliably in treatment of autoimmune diseases. METHODS In this research, we examined the isolated DPSCs and differentiated osteoblasts from them in medium without inflammatory stimulants in terms of TLR3 and TLR4 gene expression and inflammatory cytokines, including TNF-α and IL-8 using qRT-PCR, and measured the concentration of inflammatory cytokines IL-8 and TNF-α produced by these two types of cells through ELISA. RESULTS The obtained results showed that the expression level of inflammatory cytokines IL-8 and TNF-α in differentiated osteoblasts is significantly different as compared with DPSCs. However, no significant difference was observed in TLR-4 expression between two groups. An increase in TNF-α expression level was found to directly correlate with an increase in the expression of IL-8. The concentration of cytokine TNF-α in osteoblasts was significantly higher than that of IL-8 in DPSCs. CONCLUSION In comparison to DPSCs, osteoblast cells first lead to inflammatory responses. These responses reduce overtime. However, DPSCs retain their immunomodulatory properties and do not show inflammatory responses.
Collapse
Affiliation(s)
- Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| | - Mandana Sattari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences Tehran, Iran
| |
Collapse
|
2
|
Wu Y, Sun J, Wang W, Wang Y, Friedrich RE. How to make full use of dental pulp stem cells: an optimized cell culture method based on explant technology. Front Bioeng Biotechnol 2024; 12:1324049. [PMID: 38562666 PMCID: PMC10982513 DOI: 10.3389/fbioe.2024.1324049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Dental pulp stem cells from humans possess self-renewal and versatile differentiation abilities. These cells, known as DPSC, are promising for tissue engineering due to their outstanding biological characteristics and ease of access without significant donor site trauma. Existing methods for isolating DPSC mainly include enzyme digestion and explant techniques. Compared with the enzymatic digestion technique, the outgrowth method is less prone to cell damage and loss during the operation, which is essential for DPSC with fewer tissue sources. Methods In order to maximize the amount of stem cells harvested while reducing the cost of DPSC culture, the feasibility of the optimized explant technique was evaluated in this experiment. Cell morphology, minimum cell emergence time, the total amount of cells harvested, cell survival, and proliferative and differentiation capacity of DPSC obtained with different numbers of explant attachments (A1-A5) were evaluated. Results There was a reduction in the survival rate of the cells in groups A2-A5, and the amount of harvested DPSC decreased in A3-A5 groups, but the DPSC harvested in groups A1-A4 had similar proliferative and differentiation abilities. However, starting from group A5, the survival rate, proliferation and differentiation ability of DPSC decreased significantly, and the adipogenic trend of the cells became more apparent, indicating that the cells had begun to enter the senescence state. Discussion The results of our study demonstrated that the DPSC obtained by the optimized explant method up to 4 times had reliable biological properties and is available for tissue engineering.
Collapse
Affiliation(s)
- You Wu
- Department of Stomatology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, China
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Jiangling Sun
- Department of Science and Education, Guiyang Stomatological Hospital, Guiyang, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wang Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yao Wang
- The Department of Preventive Dentistry, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Chu Z, Zhao T, Zhang Z, Chu CH, Cai K, Wu J, Wu W, Tang C. Untargeted Metabolomics Analysis of Gingival Tissue in Patients with Severe Periodontitis. J Proteome Res 2024; 23:3-15. [PMID: 38018860 DOI: 10.1021/acs.jproteome.3c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The purpose of this study was to determine potential metabolic biomarkers and therapeutic drugs in the gingival tissue of individuals with periodontitis. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) were used to analyze the gingival tissue samples from 20 patients with severe periodontitis and 20 healthy controls. Differential metabolites were identified using variable important in projection (VIP) values from the orthogonal partial least squares discrimination analysis (OPLS-DA) model and then verified for significance between groups using a two-tailed Student's t test. In total, 65 metabolites were enriched in 33 metabolic pathways, with 40 showing a significant increase and 25 expressing a significant decrease. In addition, it was found that patients with severe periodontitis have abnormalities in metabolic pathways, such as glucose metabolism, purine metabolism, amino acid metabolism, and so on. Furthermore, based on a multidimensional analysis, 12 different metabolites may be the potential biomarkers of severe periodontitis. The experiment's raw data have been uploaded to the MetaboLights database, and the project number is MTBLS8357. Moreover, osteogenesis differentiation characteristics were detected in the selected metabolites. The findings may provide a basis for the study of diagnostic biomarkers and therapeutic metabolites in severe periodontitis.
Collapse
Affiliation(s)
- Zhuangzhuang Chu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Tong Zhao
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Zhewei Zhang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Catherine Huihan Chu
- Department of Orthodontic, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kunzhan Cai
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Wei Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases,Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| |
Collapse
|
4
|
Christie B, Musri N, Djustiana N, Takarini V, Tuygunov N, Zakaria M, Cahyanto A. Advances and challenges in regenerative dentistry: A systematic review of calcium phosphate and silicate-based materials on human dental pulp stem cells. Mater Today Bio 2023; 23:100815. [PMID: 37779917 PMCID: PMC10539671 DOI: 10.1016/j.mtbio.2023.100815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023] Open
Abstract
Conventional dentistry faces limitations in preserving tooth health due to the finite lifespan of restorative materials. Regenerative dentistry, utilizing stem cells and bioactive materials, offers a promising approach for regenerating dental tissues. Human dental pulp stem cells (hDPSCs) and bioactive materials like calcium phosphate (CaP) and silicate-based materials have shown potential for dental tissue regeneration. This systematic review aims to investigate the effects of CaP and silicate-based materials on hDPSCs through in vitro studies published since 2015. Following the PRISMA guidelines, a comprehensive search strategy was implemented in PubMed MedLine, Cochrane, and ScienceDirect databases. Eligibility criteria were established using the PICOS scheme. Data extraction and risk of bias (RoB) assessment were conducted, with the included studies assessed for bias using the Office of Health and Translation (OHAT) RoB tool. The research has been registered at OSF Registries. Ten in vitro studies met the eligibility criteria out of 1088 initial studies. Methodological heterogeneity and the use of self-synthesized biomaterials with limited generalizability were observed in the included study. The findings highlight the positive effect of CaP and silicate-based materials on hDPSCs viability, adhesion, migration, proliferation, and differentiation. While the overall RoB assessment indicated satisfactory credibility of the reviewed studies, the limited number of studies and methodological heterogeneity pose challenges for quantitative research. In conclusion, this systematic review provides valuable insights into the effects of CaP and silicate-based materials on hDPSCs. Further research is awaited to enhance our understanding and optimize regenerative dental treatments using bioactive materials and hDPSCs, which promise to improve patient outcomes.
Collapse
Affiliation(s)
- B. Christie
- Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Musri
- Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Djustiana
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - V. Takarini
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
| | - N. Tuygunov
- Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - M.N. Zakaria
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - A. Cahyanto
- Department of Dental Materials Science and Technology, Faculty of Dentistry, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Jatinangor, 45363, Indonesia
- Oral Biomaterials Study Center, Faculty of Dentistry, Universitas Padjadjaran, Jalan Sekeloa Selatan 1, Bandung, 40134, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Jalan Raya Bandung-Sumedang Km 21, Jatinangor, 45363, Indonesia
- Department of Restorative Dentistry, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
5
|
Shopova D, Mihaylova A, Yaneva A, Bakova D. Advancing Dentistry through Bioprinting: Personalization of Oral Tissues. J Funct Biomater 2023; 14:530. [PMID: 37888196 PMCID: PMC10607235 DOI: 10.3390/jfb14100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Despite significant advancements in dental tissue restoration and the use of prostheses for addressing tooth loss, the prevailing clinical approaches remain somewhat inadequate for replicating native dental tissue characteristics. The emergence of three-dimensional (3D) bioprinting offers a promising innovation within the fields of regenerative medicine and tissue engineering. This technology offers notable precision and efficiency, thereby introducing a fresh avenue for tissue regeneration. Unlike the traditional framework encompassing scaffolds, cells, and signaling factors, 3D bioprinting constitutes a contemporary addition to the arsenal of tissue engineering tools. The ongoing shift from conventional dentistry to a more personalized paradigm, principally under the guidance of bioprinting, is poised to exert a significant influence in the foreseeable future. This systematic review undertakes the task of aggregating and analyzing insights related to the application of bioprinting in the context of regenerative dentistry. Adhering to PRISMA guidelines, an exhaustive literature survey spanning the years 2019 to 2023 was performed across prominent databases including PubMed, Scopus, Google Scholar, and ScienceDirect. The landscape of regenerative dentistry has ushered in novel prospects for dentoalveolar treatments and personalized interventions. This review expounds on contemporary accomplishments and avenues for the regeneration of pulp-dentin, bone, periodontal tissues, and gingival tissues. The progressive strides achieved in the realm of bioprinting hold the potential to not only enhance the quality of life but also to catalyze transformative shifts within the domains of medical and dental practices.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria (D.B.)
| |
Collapse
|
6
|
Wang W, Sun J, Aarabi G, Peters U, Fischer F, Klatt J, Gosau M, Smeets R, Beikler T. Effect of tetracycline hydrochloride application on dental pulp stem cell metabolism-booster or obstacle for tissue engineering? Front Pharmacol 2023; 14:1277075. [PMID: 37841936 PMCID: PMC10568071 DOI: 10.3389/fphar.2023.1277075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Stem cells and scaffolds are an important foundation and starting point for tissue engineering. Human dental pulp stem cells (DPSC) are mesenchymal stem cells with self-renewal and multi-directional differentiation potential, and are ideal candidates for tissue engineering due to their excellent biological properties and accessibility without causing major trauma at the donor site. Tetracycline hydrochloride (TCH), a broad-spectrum antibiotic, has been widely used in recent years for the synthesis of cellular scaffolds to reduce the incidence of postoperative infections. Methods: In order to evaluate the effects of TCH on DPSC, the metabolism of DPSC in different concentrations of TCH environment was tested. Moreover, cell morphology, survival rates, proliferation rates, cell migration rates and differentiation abilities of DPSC at TCH concentrations of 0-500 μg/ml were measured. Phalloidin staining, live-dead staining, MTS assay, cell scratch assay and real-time PCR techniques were used to detect the changes in DPSC under varies TCH concentrations. Results: At TCH concentrations higher than 250 μg/ml, DPSC cells were sequestered, the proportion of dead cells increased, and the cell proliferation capacity and cell migration capacity decreased. The osteogenic and adipogenic differentiation abilities of DPSC, however, were already inhibited at TCH con-centrations higher than 50 μg/ml. Here, the expression of the osteogenic genes, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN), the lipogenic genes lipase (LPL), as well as the peroxisome proliferator-activated receptor-γ (PPAR-γ) expression were found to be down-regulated. Discussion: The results of the study indicated that TCH in concentrations above 50 µg/ml negatively affects the differentiation capability of DPSC. In addition, TCH at concentrations above 250 µg/ml adversely affects the growth status, percentage of living cells, proliferation and migration ability of cells.
Collapse
Affiliation(s)
- Wang Wang
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiangling Sun
- Department of Science and Education, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Fischer
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Klatt
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Mirsanei JS, Gholipour H, Zandieh Z, Jahromi MG, Masroor MJ, Mehdizadeh M, Amjadi F. Transition nuclear protein 1 as a novel biomarker in patients with fertilization failure. Clin Exp Reprod Med 2023; 50:185-191. [PMID: 37643832 PMCID: PMC10477415 DOI: 10.5653/cerm.2023.05890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/15/2023] [Accepted: 06/07/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Although intracytoplasmic sperm injection (ICSI) is a way to deal with in vitro fertilization failure, 3% of couples still experience repeated fertilization failure after attempted ICSI, despite having sperm within normal parameters. These patients are a challenging group whose sperm cannot fertilize the egg during ICSI. Unfortunately, no test can predict the risk of fertilization failure. Phospholipase C zeta (PLCζ) and transition nuclear proteins (TNPs) are essential factors for chromatin packaging during sperm maturation. This study aimed to assess PLCζ1 and TNP1 expression in the sperm of patients with fertilization failure and the correlations among the DNA fragmentation index, PLCζ1 and TNP1 gene and protein expression, and the risk of fertilization failure. METHODS In this study, 12 infertile couples with low fertilization rates (<25%) and complete failure of fertilization in their prior ICSI cycles despite normal sperm parameters were chosen as the case group. Fifteen individuals who underwent ICSI for the first time served as the control group. After sperm analysis and DNA fragmentation assays, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and Western blot analyses were performed to compare the gene and protein expression of PLCζ and TNP1 in both groups. RESULTS DNA fragmentation was significantly higher in the fertilization failure group. The qRT-PCR and Western blot results demonstrated significantly lower PLCζ and TNP1 gene and protein expression in these patients than in controls. CONCLUSION The present study showed that fertilization failure in normozoospermic men was probably due to deficient DNA packaging and expression of TNP1.
Collapse
Affiliation(s)
- Jamileh Sadat Mirsanei
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hadis Gholipour
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Golestan Jahromi
- Department of Advanced Medical Sciences and Technologies, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mojgan Javedani Masroor
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemehsadat Amjadi
- Reproductive Sciences and Technology Research Center, Department of Anatomical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Agriesti F, Landini F, Tamma M, Pacelli C, Mazzoccoli C, Calice G, Ruggieri V, Capitanio G, Mori G, Piccoli C, Capitanio N. Bioenergetic profile and redox tone modulate in vitro osteogenesis of human dental pulp stem cells: new perspectives for bone regeneration and repair. Stem Cell Res Ther 2023; 14:215. [PMID: 37608350 PMCID: PMC10463344 DOI: 10.1186/s13287-023-03447-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Redox signaling and energy metabolism are known to be involved in controlling the balance between self-renewal and proliferation/differentiation of stem cells. In this study we investigated metabolic and redox changes occurring during in vitro human dental pulp stem cells (hDPSCs) osteoblastic (OB) differentiation and tested on them the impact of the reactive oxygen species (ROS) signaling. METHODS hDPSCs were isolated from dental pulp and subjected to alkaline phosphatase and alizarin red staining, q-RT-PCR, and western blotting analysis of differentiation markers to assess achievement of osteogenic/odontogenic differentiation. Moreover, a combination of metabolic flux analysis and confocal cyto-imaging was used to profile the metabolic phenotype and to evaluate the redox tone of hDPSCs. RESULTS In differentiating hDPSCs we observed the down-regulation of the mitochondrial respiratory chain complexes expression since the early phase of the process, confirmed by metabolic flux analysis, and a reduction of the basal intracellular peroxide level in its later phase. In addition, dampened glycolysis was observed, thereby indicating a lower energy-generating phenotype in differentiating hDPSCs. Treatment with the ROS scavenger Trolox, applied in the early-middle phases of the process, markedly delayed OB differentiation of hDPSCs assessed as ALP activity, Runx2 expression, mineralization capacity, expression of stemness and osteoblast marker genes (Nanog, Lin28, Dspp, Ocn) and activation of ERK1/2. In addition, the antioxidant partly prevented the inhibitory effect on cell metabolism observed following osteogenic induction. CONCLUSIONS Altogether these results provided evidence that redox signaling, likely mediated by peroxide species, influenced the stepwise osteogenic expansion/differentiation of hDPSCs and contributed to shape its accompanying metabolic phenotype changes thus improving their efficiency in bone regeneration and repair.
Collapse
Affiliation(s)
- Francesca Agriesti
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Francesca Landini
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Mirko Tamma
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Carmela Mazzoccoli
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Giovanni Calice
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
| | - Vitalba Ruggieri
- Laboratory of Pre-Clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, 85028 Rionero in Vulture, Italy
- Clinical Pathology Unit, “Madonna delle Grazie’’ Hospital, Matera, Italy
| | - Giuseppe Capitanio
- Department of Translational Biomedicine and Neuroscience “DiBraiN”, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
9
|
Wu Y, Li B, Yu D, Zhou Z, Shen M, Jiang F. CBX7 Rejuvenates Late Passage Dental Pulp Stem Cells by Maintaining Stemness and Pro-angiogenic Ability. Tissue Eng Regen Med 2023; 20:473-488. [PMID: 36920677 PMCID: PMC10219923 DOI: 10.1007/s13770-023-00521-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Ever-growing tissue regeneration causes pressing need for large population of stem cells. However, extensive cell expansion eventually leads to impaired regenerative potentials. In this study, chromobox protein homolog 7 (CBX7) was overexpressed to rejuvenate late passage dental pulp stem cells (DPSCs-P9). METHODS The recruitment of copper ions (Cu2+)-activated hypoxia-inducible factor-1α (HIF-1α) to the CBX7 gene promoter was confirmed by chromatin immunoprecipitation assay. Functions subsequent to Cu2+-induced or recombinant overexpression of CBX7 on proliferation, multipotency, odontoblastic differentiation and angiogenesis were investigated in vitro, while murine subcutaneous transplantation model was used to further detect the effects of Cu2+-induced CBX7 overexpression in vivo. RESULTS Our data displayed that CBX7 overexpression maintain proliferation and multipotency of DPSCs-P9 almost as strong as those of DPSCs-P3. Both gene level of odontoblast-lineage markers and calcium precipitation were nearly the same between CBX7 overexpressed DPSCs-P9 and normal DPSCs-P3. Moreover, we also found upregulated expression of vascular endothelial growth factor in DPSCs-P9 with CBX7 overexpression, which increased the number of capillary-like structures and migrating co-cultured human umbilical vein endothelial cells as well. These findings indicate CBX7 as an effective factor to rejuvenate late passage stem cells insusceptible to cell expansion. Cu2+ has been proved to achieve CBX7 overexpression in DPSCs through the initiation of HIF-1α-CBX7 cascade. Under Cu2+ stimulation since P3, DPSCs-P9 exhibited ameliorated regenerative potential both in vitro and in vivo. CONCLUSION Long-term stimulation of Cu2+ to overexpress CBX7 could be a new strategy to manufacture large population of self-renewing stem cells.
Collapse
Affiliation(s)
- Yu Wu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China
| | - Bing Li
- Department of Oral Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China
| | - Dandan Yu
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China
| | - Zhixuan Zhou
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China.
| | - Ming Shen
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China.
| | - Fei Jiang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Hanzhong Road, Nanjing, 210029, China.
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 1, Shanghai Road, Nanjing, 210029, China.
| |
Collapse
|
10
|
Gaitán-Salvatella I, González-Alva P, Montesinos JJ, Alvarez-Perez MA. In Vitro Bone Differentiation of 3D Microsphere from Dental Pulp-Mesenchymal Stem Cells. Bioengineering (Basel) 2023; 10:bioengineering10050571. [PMID: 37237641 DOI: 10.3390/bioengineering10050571] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Bone defects lead to the structural loss of normal architecture, and those in the field of bone tissue engineering are searching for new alternatives to aid bone regeneration. Dental pulp-mesenchymal stem cells (DP-MSC) could provide a promising alternative to repair bone defects, principally due to their multipotency and capacity to fabricate three-dimensional (3D) spheroids. The present study aimed to characterize the 3D DP-MSC microsphere and the osteogenic differentiation capacity potential cultured by a magnetic levitation system. To achieve this, the 3D DP-MSC microsphere was grown for 7, 14, and 21 days in an osteoinductive medium and compared to 3D human fetal osteoblast (hFOB) microspheres by examining the morphology, proliferation, osteogenesis, and colonization onto PLA fiber spun membrane. Our results showed good cell viability for both 3D microspheres with an average diameter of 350 μm. The osteogenesis examination of the 3D DP-MSC microsphere revealed the lineage commitment, such as the hFOB microsphere, as evidenced by ALP activity, the calcium content, and the expression of osteoblastic markers. Finally, the evaluation of the surface colonization exhibited similar patterns of cell-spreading over the fibrillar membrane. Our study demonstrated the feasibility of forming a 3D DP-MSC microsphere structure and the cell-behavior response as a strategy for the applications of bone tissue guiding.
Collapse
Affiliation(s)
- Iñigo Gaitán-Salvatella
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Juan José Montesinos
- Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), POST, Mexico City 06720, Mexico
| | - Marco Antonio Alvarez-Perez
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Guo X, Liu C, Zhang Y, Bi L. Effect of super activated platelet lysate on cell proliferation, repair and osteogenesis. Biomed Mater Eng 2023; 34:95-109. [PMID: 36120761 DOI: 10.3233/bme-221426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Platelet lysate (PL) is considered as an alternative to fetal bovine serum (FBS) and facilitates the proliferation and differentiation of mesenchymal cells. OBJECTIVE The aim of this study is to explore whether super activated platelet lysate (sPL), a novel autologous platelet lysate, has the ability to inhibit inflammation and promote cell proliferation, repair and osteogenesis as a culture medium. METHODS Different concentrations of sPL on human fetal osteoblastic 1.19 cell line (hFOB1.19) proliferation and apoptotic repair were investigated; And detected proliferative capacity, inflammatory factor expressions and osteogenic differentiation of human dental pulp cells (hDPCs) stimulated by LPS under 10% FBS and 5% sPL mediums. RESULTS sPL promoted hFOB1.19 proliferation and had repairing effects on apoptotic cells. No significant difference in proliferation and IL-1α, IL-6 and TNF-α expressions of hDPCs in FBS and sPL medium stimulated by LPS. hDPCs in sPL osteogenic medium had higher osteogenic-related factor expressions and ALP activity. LPS promoted osteogenic-related factor expressions and ALP activity of hDPCs in FBS osteogenic medium, but opposite effect showed in sPL medium. CONCLUSION sPL promoted osteoblast proliferation and had restorative effects. Under LPS stimulation, sPL did not promote hDPCs proliferation or inhibit inflammation. sPL promotes osteogenic differentiation of hDPCs.
Collapse
Affiliation(s)
- Xiaorui Guo
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Chunxiang Liu
- National and Local Joint Stem Cell Research, Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin, China
| | - Yi Zhang
- National and Local Joint Stem Cell Research, Engineering Center for Aging Diseases, Tian Qing Stem Cell Co., Ltd., Harbin, China
| | - Liangjia Bi
- Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
12
|
Forskolin enhanced the osteogenic differentiation of human dental pulp stem cells in vitro and in vivo. J Dent Sci 2023; 18:120-128. [PMID: 36643238 PMCID: PMC9831789 DOI: 10.1016/j.jds.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Human dental pulp stem cells (hDPSCs) are multipotent adult stem cells that can differentiate into various lineages such as odontoblasts, osteoblasts, and chondrocytes. Regulation of hDPSCs differentiation with small-molecule compounds can be a useful tool for tissue engineering and regenerative therapy. Forskolin is an agonist of adenylate cyclase that promotes cyclic adenosine monophosphate production. However, the role of Forskolin in regulating the osteogenic differentiation of hDPSCs is still unknown. Materials and methods A cell counting kit-8 (CCK-8) assay was performed to screen out the safety concentrations of Forskolin. Following, quantitative polymerase chain reaction (qPCR) and alizarin red staining were performed to detect bone-related gene expression and mineralized deposit formation. Furthermore, we prepared cell sheets which were followed by a 3D culture for cell pellet formation. Finally, the hDPSC cell pellets were transplanted into immunodeficient mice. Results CCK-8 assay showed 5 μM and 10 μM Forskolin had no significant inhibition on the proliferation of hDPSCs. The qPCR indicated Forskolin (5, 10 μM) enhanced osteogenic differentiation of hDPSCs by upregulating bone-related genes. Alizarin red staining and its quantification analysis demonstrated Forskolin in 5 μM and 10 μM similarly enhanced the mineralized deposit formation of hDPSCs in vitro. After six weeks of transplantation, immunohistochemical stains showed that osteopontin expression and bone formation were significantly boosted in the Forskolin-treated group than in the normal osteogenic inducing group. Conclusion Our results indicate Forskolin enhances osteogenic differentiation of hDPSCs in vitro and boosts bone formation in vivo.
Collapse
|
13
|
Salkın H, Basaran KE. Effects of non-steroidal anti-inflammatory drug (ibuprofen) in low and high dose on stemness and biological characteristics of human dental pulp-derived mesenchymal stem cells. Connect Tissue Res 2023; 64:14-25. [PMID: 35647871 DOI: 10.1080/03008207.2022.2083613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE The effect of ibuprofen, an NSAID, on biological characteristics such as proliferation, viability, DNA damage and cell cycle in dental pulp derived stem cells (DPSCs) can be important for regenerative medicine. Our aim is to investigate how low and high doses of ibuprofen affect stem cell characteristics in DPSCs. MATERIALS AND METHODS DPSCs were isolated from human teeth and characterized by flow cytometry and differentiation tests. Low dose (0.1 mmol/L) and high dose (3 mmol/L) ibuprofen were administered to DPSCs. Surface markers between groups were analyzed by immunofluorescence staining. Membrane depolarization, DNA damage, viability and cell cycle analysis were performed between groups using biological activity test kits. Cellular proliferation was measured by the MTT and cell count kit. Statistical analyzes were performed using GraphPad Prism software. RESULTS High dose ibuprofen significantly increased CD44 and CD73 expression in DPSCs. High-dose ibuprofen significantly reduced mitochondrial membrane depolarization in DPSCs. It was determined that DNA damage in DPSCs decreased significantly with high dose ibuprofen. Parallel to this, cell viability increased significantly in the ibuprofen applied groups. High-dose ibuprofen was found to increase mitotic activity in DPSCs. Proliferation in DPSCs increased in parallel with the increase in mitosis stage because of high-dose ibuprofen administration compared to the control and low-dose ibuprofen groups. Our proliferation findings appeared to support cell cycle analyses. CONCLUSION High dose ibuprofen improved the immunophenotypes and biological activities of DPSCs. The combination of ibuprofen in the use of DPSCs in regenerative medicine can make stem cell therapy more effective.
Collapse
Affiliation(s)
- Hasan Salkın
- Vocational School, Department of Medical Services and Techniques, Program of Pathology Laboratory Techniques, Beykent University, Istanbul, Turkey
| | - Kemal Erdem Basaran
- Faculty of Medicine, Department of Physiology, Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Zebrowitz E, Aslanukov A, Kajikawa T, Bedelbaeva K, Bollinger S, Zhang Y, Sarfatti D, Cheng J, Messersmith PB, Hajishengallis G, Heber-Katz E. Prolyl-hydroxylase inhibitor-induced regeneration of alveolar bone and soft tissue in a mouse model of periodontitis through metabolic reprogramming. FRONTIERS IN DENTAL MEDICINE 2022; 3:992722. [PMID: 37641630 PMCID: PMC10462383 DOI: 10.3389/fdmed.2022.992722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023] Open
Abstract
Bone injuries and fractures reliably heal through a process of regeneration with restoration to original structure and function when the gap between adjacent sides of a fracture site is small. However, when there is significant volumetric loss of bone, bone regeneration usually does not occur. In the present studies, we explore a particular case of volumetric bone loss in a mouse model of human periodontal disease (PD) in which alveolar bone surrounding teeth is permanently lost and not replaced. This model employs the placement a ligature around the upper second molar for 10 days leading to inflammation and bone breakdown and faithfully replicates the bacterially-induced inflammatory etiology of human PD to induce bone degeneration. After ligature removal, mice are treated with a timed-release formulation of a small molecule inhibitor of prolylhydroxylases (PHDi; 1,4-DPCA) previously shown to induce epimorphic regeneration of soft tissue in non-regenerating mice. This PHDi induces high expression of HIF-1α and is able to shift the metabolic state from OXPHOS to aerobic glycolysis, an energetic state used by stem cells and embryonic tissue. This regenerative response was completely blocked by siHIF1a. In these studies, we show that timed-release 1,4-DPCA rapidly and completely restores PD-affected bone and soft tissue with normal anatomic fidelity and with increased stem cell markers due to site-specific stem cell migration and/or de-differentiation of local tissue, periodontal ligament (PDL) cell proliferation, and increased vascularization. In-vitro studies using gingival tissue show that 1,4-DPCA indeed induces de-differentiation and the expression of stem cell markers but does not exclude the role of migrating stem cells. Evidence of metabolic reprogramming is seen by the expression of not only HIF-1a, its gene targets, and resultant de-differentiation markers, but also the metabolic genes Glut-1, Gapdh, Pdk1, Pgk1 and Ldh-a in jaw periodontal tissue.
Collapse
Affiliation(s)
- Elan Zebrowitz
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Current address: New York Medical College, 40 Sunshine Cottage Rd, Valhalla New York, United States of America
| | - Azamat Aslanukov
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Tetsuhiro Kajikawa
- University of Pennsylvania School of Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, Pennsylvania, United States of America
| | - Kamila Bedelbaeva
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Sam Bollinger
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Current address: Cancer Biology Graduate Group, Stanford, California, United States of America
| | - Yong Zhang
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
- Current address: Rockland Immunochemicals, Inc., Limerick, Pennsylvania, United States of America
| | - David Sarfatti
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| | - Jing Cheng
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Current address: Alcon Laboratories, 11460 Johns Creek Pkwy, Duluth, Georgia, United States of America
| | - Phillip B. Messersmith
- Department of Bioengineering and Materials Science and Engineering, UC Berkeley, Berkeley California, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - George Hajishengallis
- University of Pennsylvania School of Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, Pennsylvania, United States of America
| | - Ellen Heber-Katz
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania, United States of America
| |
Collapse
|
15
|
Ahuja A, Tyagi PK, Kumar M, Sharma N, Prakash S, Radha, Chandran D, Dhumal S, Rais N, Singh S, Dey A, Senapathy M, Saleena LAK, Shanavas A, Mohankumar P, Rajalingam S, Murugesan Y, Vishvanathan M, Sathyaseelan SK, Viswanathan S, Kumar KK, Natta S, Mekhemar M. Botanicals and Oral Stem Cell Mediated Regeneration: A Paradigm Shift from Artificial to Biological Replacement. Cells 2022; 11:2792. [PMID: 36139367 PMCID: PMC9496740 DOI: 10.3390/cells11182792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/23/2022] Open
Abstract
Stem cells are a well-known autologous pluripotent cell source, having excellent potential to develop into specialized cells, such as brain, skin, and bone marrow cells. The oral cavity is reported to be a rich source of multiple types of oral stem cells, including the dental pulp, mucosal soft tissues, periodontal ligament, and apical papilla. Oral stem cells were useful for both the regeneration of soft tissue components in the dental pulp and mineralized structure regeneration, such as bone or dentin, and can be a viable substitute for traditionally used bone marrow stem cells. In recent years, several studies have reported that plant extracts or compounds promoted the proliferation, differentiation, and survival of different oral stem cells. This review is carried out by following the PRISMA guidelines and focusing mainly on the effects of bioactive compounds on oral stem cell-mediated dental, bone, and neural regeneration. It is observed that in recent years studies were mainly focused on the utilization of oral stem cell-mediated regeneration of bone or dental mesenchymal cells, however, the utility of bioactive compounds on oral stem cell-mediated regeneration requires additional assessment beyond in vitro and in vivo studies, and requires more randomized clinical trials and case studies.
Collapse
Affiliation(s)
- Anami Ahuja
- Department of Biotechnology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow 226031, India
- Department of Biotechnology, Meerut Institute of Engineering and Technology, Meerut 250005, India
| | - Pankaj Kumar Tyagi
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida 201306, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Naveen Sharma
- Division of Biomedical Informatics, Indian Council of Medical Research, New Delhi 110029, India
| | - Suraj Prakash
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sci-ences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur 416004, India
| | - Nadeem Rais
- Department of Pharmacy, Bhagwant University, Ajmer 305004, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh 160014, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, Wolaita Sodo P.O. Box 138, Ethiopia
| | - Lejaniya Abdul Kalam Saleena
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, Kuala Lampur 56000, Malaysia
| | - Arjun Shanavas
- Division of Medicine, Indian Veterinary Research Institute, Bareilly 243122, India
| | - Pran Mohankumar
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, India
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Yasodha Murugesan
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Marthandan Vishvanathan
- Department of Seed Science and Technology, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | | | - Sabareeshwari Viswanathan
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Keerthana Krishna Kumar
- Department of Soil Science and Agricultural Chemistry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore 642109, India
| | - Suman Natta
- ICAR—National Research Centre for Orchids, Pakyong 737106, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Chris-tian-Albrecht’s University, 24105 Kiel, Germany
| |
Collapse
|
16
|
Qiu G, Huang M, Liu J, Ma T, Schneider A, Oates TW, Lynch CD, Weir MD, Zhang K, Zhao L, Xu HHK. Human periodontal ligament stem cell encapsulation in alginate-fibrin-platelet lysate microbeads for dental and craniofacial regeneration. J Dent 2022; 124:104219. [PMID: 35817226 DOI: 10.1016/j.jdent.2022.104219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Tissue engineering is promising for dental and craniofacial regeneration. The objectives of this study were to develop a novel xeno-free alginate-fibrin-platelet lysate hydrogel with human periodontal ligament stem cells (hPDLSCs) for dental regeneration, and to investigate the proliferation and osteogenic differentiation of hPDLSCs using hPL as a cell culture nutrient supplement. METHODS hPDLSCs were cultured with Dulbecco's modified eagle medium (DMEM), DMEM + 10% fetal bovine serum (FBS), and DMEM + hPL (1%, 2.5%, and 5%). hPDLSCs were encapsulated in alginate-fibrin microbeads (Alg+Fib), alginate-hPL microbeads (Alg+hPL), or alginate-fibrin-hPL microbeads (Alg+Fib+hPL). hPDLSCs encapsulated in alginate microbeads were induced with an osteogenic medium containing hPL or FBS. Quantitative real-time polymerase chain reaction (qRT-PCR), alkaline phosphatase (ALP) activity, ALP staining, and alizarin red (ARS) staining was investigated. RESULTS hPDLSCs were released faster from Alg+Fib+hPL than from Alg+hPL. At 14 days, ALP activity was 44.1 ± 7.61 mU/mg for Alg+Fib+hPL group, higher than 28.07 ± 5.15 mU/mg of Alg+Fib (p<0.05) and 0.95 ± 0.2 mU/mg of control (p<0.01). At 7 days, osteogenic genes (ALP, RUNX2, COL1, and OPN) in Alg+Fib+hPL and Alg+Fib were 3-10 folds those of control. At 21 days, the hPDLSC-synthesized bone mineral amount in Alg+Fib+hPL and Alg+Fib was 7.5 folds and 4.3 folds that of control group, respectively. CONCLUSIONS The 2.5% hPL was determined to be optimal for hPDLSCs. Adding hPL into alginate hydrogel improved the viability of the hPDLSCs encapsulated in the microbeads. The hPL-based medium enhanced the osteogenic differentiation of hPDLSCs in Alg+Fib+hPL construct, showing a promising xeno-free approach for delivering hPDLSCs to enhance dental, craniofacial and orthopedic regenerations.
Collapse
Affiliation(s)
- Gengtao Qiu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, United States of America; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingguang Huang
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China
| | - Jin Liu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, United States of America; Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shannxi, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, United States of America
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, United States of America; Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, United States of America
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork, Wilton, Cork, Ireland
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, United States of America.
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Liang Zhao
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hockin H K Xu
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong, China; Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| |
Collapse
|
17
|
Andrade JMM, Maurmann N, Lopes DV, Pereira DP, Pranke P, Henriques AT. Rosmarinic and chlorogenic acid, isolated from ferns, suppress stem cell damage induced by hydrogen peroxide. J Pharm Pharmacol 2022; 74:1609-1617. [PMID: 36029199 DOI: 10.1093/jpp/rgac061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVES Evaluating the effects of rosmarinic (RA) and cryptochlorogenic (CGA) acids isolated from Blechnum binervatum extract on stem cell viability, toxicity and the protective effect on oxidative cell damage. METHODS MTT and LDH methods were employed, using stem cells from teeth. RA and CGA were evaluated at 100, 250 and 500 µM. The negative effect of hydrogen peroxide (H2O2) (200-2200 µM) and the capacity of RA and CGA (10-100 µM) as protective agents were also evaluated. DAPI followed by fluorescent microscopy was employed to photograph the treated and untreated cells. KEY FINDINGS At all tested concentrations, RA and CGA demonstrated the ability to maintain cell viability, and with no cytotoxic effects on the treated stem cells. RA also induced an increase of the cell viability and a reduction in cytotoxicity. H2O2 (1400 µM) induced >50% of cytotoxicity, and both compounds were capable of suppressing H2O2 damage, even at the lowest concentration. At 100 µM, in H2O2 presence, total cell viability was observed through microscope imaging. CONCLUSIONS These findings contribute to the continued research into natural substances with the potential for protecting cells against oxidative injury, with the consideration that RA and CGA are useful in the regeneration of damaged stem cells.
Collapse
Affiliation(s)
- J M M Andrade
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil
| | - N Maurmann
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil.,Post-graduate Program in Physiology, UFRGS, Avenida Sarmento Leite, 500/sala PPG Fisiologia, 90.050-170, Porto Alegre, RS, Brazil
| | - D V Lopes
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil
| | - D P Pereira
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil
| | - P Pranke
- Hematology and Stem Cell Laboratory, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil.,Post-graduate Program in Physiology, UFRGS, Avenida Sarmento Leite, 500/sala PPG Fisiologia, 90.050-170, Porto Alegre, RS, Brazil.,Stem Cell Research Institute, Rua dos Andradas, 1464/133, 90.020-010, Porto Alegre, RS, Brazil
| | - A T Henriques
- Laboratory of Pharmacognosy, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, 90.610-000, Porto Alegre, RS, Brazil
| |
Collapse
|
18
|
Combining sclerostin neutralization with tissue engineering: An improved strategy for craniofacial bone repair. Acta Biomater 2022; 140:178-189. [PMID: 34875361 DOI: 10.1016/j.actbio.2021.11.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Scaffolds associated with different types of mesenchymal stromal stem cells (MSC) are extensively studied for the development of novel therapies for large bone defects. Moreover, monoclonal antibodies have been recently introduced for the treatment of cancer-associated bone loss and other skeletal pathologies. In particular, antibodies against sclerostin, a key player in bone remodeling regulation, have demonstrated a real benefit for treating osteoporosis but their contribution to bone tissue-engineering remains uncharted. Here, we show that combining implantation of dense collagen hydrogels hosting wild-type (WT) murine dental pulp stem cells (mDPSC) with weekly systemic injections of a sclerostin antibody (Scl-Ab) leads to increased bone regeneration within critical size calvarial defects performed in WT mice. Furthermore, we show that bone formation is equivalent in calvarial defects in WT mice implanted with Sost knock-out (KO) mDPSC and in Sost KO mice, suggesting that the implantation of sclerostin-deficient MSC similarly promotes new bone formation than complete sclerostin deficiency. Altogether, our data demonstrate that an antibody-based therapy can potentialize tissue-engineering strategies for large craniofacial bone defects and urges the need to conduct research for antibody-enabled local inhibition of sclerostin. STATEMENT OF SIGNIFICANCE: The use of monoclonal antibodies is nowadays broadly spread for the treatment of several conditions including skeletal bone diseases. However, their use to potentialize tissue engineering constructs for bone repair remains unmet. Here, we demonstrate that the neutralization of sclerostin, through either a systemic inhibition by a monoclonal antibody or the implantation of sclerostin-deficient mesenchymal stromal stem cells (MSC) directly within the defect, improves the outcome of a tissue engineering approach, combining dense collagen hydrogels and MSC derived from the dental pulp, for the treatment of large craniofacial bone defects.
Collapse
|
19
|
In-vitro analysis on the potential use of dental pulp mesenchymal stem cells on arecoline-induced oral epithelial cells. Med Oncol 2022; 39:77. [PMID: 35195802 DOI: 10.1007/s12032-022-01673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/30/2022] [Indexed: 10/19/2022]
Abstract
To assess the protective role of the secretome of dental pulp mesenchymal stem cells on arecoline-induced epithelial-mesenchymal transition and senescence on epithelial cells of the oral mucosa. Effect of varying concentrations of arecoline extract and dental pulp mesenchymal stem cell condition media (DPSC-CM) were noted on oral mucosal epithelial cells. MTT assay, Annexin V-FITC/PI assay, and the quantitative gene expressions of BCL2, PUMA, BAD, BAX, CASP3, CASP9, CASP12, TGFB1, CST3, COL1A2, COL3A1, TIMP1, TIMP2, CDH1, and CDH2 were assessed. Oral mucosal epithelial cells exposed only to the arecoline were the control. 50% and 100% DPSC-CM decreased apoptosis-related gene expression in the cells exposed with 25 μM arecoline compared to the control. 50% DPSC-CM attenuated the expression of all fibrotic genes and EMT-related genes. 20% and 100% DPSC-CM showed differential effects on fibrotic and EMT-related genes. DPSC-CM inhibited apoptosis, and attenuated expression of fibrotic and EMT-related genes on arecoline treated human oral epithelial cells.
Collapse
|
20
|
Chan YH, Ho KN, Lee YC, Chou MJ, Lew WZ, Huang HM, Lai PC, Feng SW. Melatonin enhances osteogenic differentiation of dental pulp mesenchymal stem cells by regulating MAPK pathways and promotes the efficiency of bone regeneration in calvarial bone defects. Stem Cell Res Ther 2022; 13:73. [PMID: 35183254 PMCID: PMC8858457 DOI: 10.1186/s13287-022-02744-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Background Mesenchymal stem cell (MSC)-based tissue engineering plays a major role in regenerative medicine. However, the efficiency of MSC transplantation and survival of engrafted stem cells remain challenging. Melatonin can regulate MSC biology. However, its function in the osteogenic differentiation of dental pulp-derived MSCs (DPSCs) remains unclear. We investigated the effects and mechanisms of melatonin on the osteogenic differentiation and bone regeneration capacities of DPSCs. Methods The biological effects and signaling mechanisms of melatonin with different concentrations on DPSCs were evaluated using a proliferation assay, the quantitative alkaline phosphatase (ALP) activity, Alizarin red staining, a real-time polymerase chain reaction, and a western blot in vitro cell culture model. The in vivo bone regeneration capacities were assessed among empty control, MBCP, MBCP + DPSCs, and MBCP + DPSCs + melatonin preconditioning in four-created calvarial bone defects by using micro-computed tomographic, histological, histomorphometric, and immunohistochemical analyses after 4 and 8 weeks of healing. Results In vitro experiments revealed that melatonin (1, 10, and 100 μM) significantly and concentration-dependently promoted proliferation, surface marker expression (CD 146), ALP activity and extracellular calcium deposition, and osteogenic gene expression of DPSCs (p < 0.05). Melatonin activated the protein expression of ALP, OCN, and RUNX-2 and inhibited COX-2/NF-κB expression. Furthermore, the phosphorylation of mitogen-activated protein kinase (MAPK) p38/ERK signaling was significantly increased in DPSCs treated with 100 μM melatonin, and their inhibitors significantly decreased osteogenic differentiation. In vivo experiments demonstrated that bone defects implanted with MBCP bone-grafting materials and melatonin-preconditioned DPSCs exhibited significantly greater bone volume fraction, trabecular bone structural modeling, new bone formation, and osteogenesis-related protein expression than the other three groups at 4 and 8 weeks postoperatively (p < 0.05). Conclusions These results suggest that melatonin promotes the proliferation and osteogenic differentiation of DPSCs by regulating COX-2/NF-κB and p38/ERK MAPK signaling pathways. Preconditioning DPSCs with melatonin before transplantation can efficiently enhance MSCs function and regenerative capacities.
Collapse
|
21
|
Y Baena AR, Casasco A, Monti M. Hypes and Hopes of Stem Cell Therapies in Dentistry: a Review. Stem Cell Rev Rep 2022; 18:1294-1308. [PMID: 35015212 PMCID: PMC8748526 DOI: 10.1007/s12015-021-10326-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 12/20/2022]
Abstract
One of the most exciting advances in life science research is the development of 3D cell culture systems to obtain complex structures called organoids and spheroids. These 3D cultures closely mimic in vivo conditions, where cells can grow and interact with their surroundings. This allows us to better study the spatio-temporal dynamics of organogenesis and organ function. Furthermore, physiologically relevant organoids cultures can be used for basic research, medical research, and drug discovery. Although most of the research thus far focuses on the development of heart, liver, kidney, and brain organoids, to name a few, most recently, these structures were obtained using dental stem cells to study in vitro tooth regeneration. This review aims to present the most up-to-date research showing how dental stem cells can be grown on specific biomaterials to induce their differentiation in 3D. The possibility of combining engineering and biology principles to replicate and/or increase tissue function has been an emerging and exciting field in medicine. The use of this methodology in dentistry has already yielded many interesting results paving the way for the improvement of dental care and successful therapies.
Collapse
Affiliation(s)
- Alessandra Rodriguez Y Baena
- Program in Biomedical Sciences and Engineering, Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Andrea Casasco
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy.,Dental & Face Center, CDI, Milan, Italy
| | - Manuela Monti
- Department of Public Health, Experimental and Forensic Medicine, Histology and Embryology Unit, University of Pavia, Pavia, Italy. .,Research Center for Regenerative Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
22
|
Samiei M, Alipour M, Khezri K, Saadat YR, Forouhandeh H, Abdolahinia ED, Vahed SZ, Sharifi S, Dizaj SM. Application of collagen and mesenchymal stem cells in regenerative dentistry. Curr Stem Cell Res Ther 2021; 17:606-620. [PMID: 34931969 DOI: 10.2174/1574888x17666211220100521] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2021] [Accepted: 11/10/2021] [Indexed: 11/22/2022]
Abstract
Collagen is an important macromolecule of extracellular matrix (ECM) in bones, teeth, and temporomandibular joints. Mesenchymal stem cells (MSCs) interact with the components of the ECM such as collagen, proteoglycans, glycosaminoglycans (GAGs), and several proteins on behalf of variable matrix elasticity and bioactive cues. Synthetic collagen-based biomaterials could be effective scaffolds for regenerative dentistry applications due to mimicking of host tissues' ECM. These biomaterials are biocompatible, biodegradable, readily available, and non-toxic to cells whose capability promotes cellular response and wound healing in the craniofacial region. Collagen could incorporate other biomolecules to induce mineralization in calcified tissues such as bone and tooth. Moreover, the addition of these molecules or other polymers to collagen-based biomaterials could enhance mechanical properties, which is important in load-bearing areas such as the mandible. A literature review was performed via reliable internet database (mainly PubMed) based on MeSH keywords. This review first describes the properties of collagen as a key protein in the structure of hard tissues. Then, it introduces different types of collagens, the correlation between collagen and MSCs, and the methods used to modify collagen in regenerative dentistry including recent progression on the regeneration of periodontium, dentin-pulp complex, and temporomandibular joint by applying collagen. Besides, the prospects and challenges of collagen-based biomaterials in the craniofacial region pointes out.
Collapse
Affiliation(s)
- Mohammad Samiei
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdieh Alipour
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Haleh Forouhandeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Aghali A. Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy. Cells 2021; 10:cells10112993. [PMID: 34831216 PMCID: PMC8616509 DOI: 10.3390/cells10112993] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 01/10/2023] Open
Abstract
Craniofacial bone defects can result from various disorders, including congenital malformations, tumor resection, infection, severe trauma, and accidents. Successfully regenerating cranial defects is an integral step to restore craniofacial function. However, challenges managing and controlling new bone tissue formation remain. Current advances in tissue engineering and regenerative medicine use innovative techniques to address these challenges. The use of biomaterials, stromal cells, and growth factors have demonstrated promising outcomes in vitro and in vivo. Natural and synthetic bone grafts combined with Mesenchymal Stromal Cells (MSCs) and growth factors have shown encouraging results in regenerating critical-size cranial defects. One of prevalent growth factors is Bone Morphogenetic Protein-2 (BMP-2). BMP-2 is defined as a gold standard growth factor that enhances new bone formation in vitro and in vivo. Recently, emerging evidence suggested that Megakaryocytes (MKs), induced by Thrombopoietin (TPO), show an increase in osteoblast proliferation in vitro and bone mass in vivo. Furthermore, a co-culture study shows mature MKs enhance MSC survival rate while maintaining their phenotype. Therefore, MKs can provide an insight as a potential therapy offering a safe and effective approach to regenerating critical-size cranial defects.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA;
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47908, USA
| |
Collapse
|
24
|
Wu S, Weir MD, Lei L, Liu J, Xu HHK. Novel nanographene oxide-calcium phosphate cement inhibits Enterococcus faecalis biofilm and supports dental pulp stem cells. J Orthop Surg Res 2021; 16:580. [PMID: 34627321 PMCID: PMC8501535 DOI: 10.1186/s13018-021-02736-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Enterococcus faecalis (E. faecalis) is the most recovered species from the root canals after failed root canal treatment. Calcium phosphate bone cement (CPC) scaffold is promising for applications in endodontic treatment as a kind of root canal sealer. Graphene oxide (GO) has been extensively considered as a kind of promising nano-materials for antibacterial applications. In the present study, an injectable CPC-chitosan paste containing GO was developed for promising endodontic therapy. The antibacterial properties of this paste against E. faecalis biofilms as well as the support for human dental pulp stem cells (hDPSCs) were investigated. METHODS CPC-chitosan composite with or without GO injectable scaffold was fabricated. The hDPSC growth and viability on scaffolds were investigated by live/dead assay. Antibacterial effects against E. faecalis biofilms were determined in clinical detin block samples. RESULTS The antibacterial CPC-chitosan-GO disks had excellent hDPSC support with the percentages of live cells at around 90%. CPC-chitosan-GO also had greater antibacterial activity on E. faecalis than that of CPC-chitosan control using detin block models (p < 0.05). CONCLUSIONS The injectable CPC-chitosan-GO paste had strong effects on inhibition E. faecalis and hDPSC support, which could fill the void of adjusting paste to the defect and shaping in situ for promising endodontic therapy.
Collapse
Affiliation(s)
- Shizhou Wu
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| |
Collapse
|
25
|
Stem Cells in Autologous Microfragmented Adipose Tissue: Current Perspectives in Osteoarthritis Disease. Int J Mol Sci 2021; 22:ijms221910197. [PMID: 34638538 PMCID: PMC8508703 DOI: 10.3390/ijms221910197] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is a chronic debilitating disorder causing pain and gradual degeneration of weight-bearing joints with detrimental effects on cartilage volume as well as cartilage damage, generating inflammation in the joint structure. The etiology of OA is multifactorial. Currently, therapies are mainly addressing the physical and occupational aspects of osteoarthritis using pharmacologic pain treatment and/or surgery to manage the symptomatology of the disease with no specific regard to disease progression or prevention. Herein, we highlight alternative therapeutics for OA specifically considering innovative and encouraging translational methods with the use of adipose mesenchymal stem cells.
Collapse
|
26
|
Comparison of Osteogenic Potentials of Dental Pulp and Bone Marrow Mesenchymal Stem Cells Using the New Cell Transplantation Platform, CellSaic, in a Rat Congenital Cleft-Jaw Model. Int J Mol Sci 2021; 22:ijms22179478. [PMID: 34502394 PMCID: PMC8430713 DOI: 10.3390/ijms22179478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
Scaffolds stimulate cell proliferation and differentiation and play major roles in providing growth and nutrition factors in the repair of bone defects. We used the recombinant peptide Cellnest™ to prepare the three-dimensional stem cell complex, CellSaic, and evaluated whether CellSaic containing rat dental pulp stem cells (rDPSCs) was better than that containing rat bone marrow stem cells (rBMSCs). rDPSC-CellSaic or rBMSC-CellSaic, cultured with or without osteogenic induction medium, formed the experimental and control groups, respectively. Osteoblast differentiation was evaluated in vitro and transplanted into a rat model with a congenital jaw fracture. Specimens were collected and evaluated by microradiology and histological analysis. In the experimental group, the amount of calcium deposits, expression levels of bone-related genes (RUNX2, ALP, BSP, and COL1), and volume of mineralized tissue, were significantly higher than those in the control group (p < 0.05). Both differentiated and undifferentiated rDPSC-CellSaic and only the differentiated rBMSC-CellSaic could induce the formation of new bone tissue. Overall, rBMSC-CellSaic and rDPSC-CellSaic made with Cellnest™ as a scaffold, provide excellent support for promoting bone regeneration in rat mandibular congenital defects. Additionally, rDPSC-CellSaic seems a better source for craniofacial bone defect repair than rBMSC-CellSaic, suggesting the possibility of using DPSCs in bone tissue regenerative therapy.
Collapse
|
27
|
Shiu ST, Lee WF, Chen SM, Hao LT, Hung YT, Lai PC, Feng SW. Effect of Different Bone Grafting Materials and Mesenchymal Stem Cells on Bone Regeneration: A Micro-Computed Tomography and Histomorphometric Study in a Rabbit Calvarial Defect Model. Int J Mol Sci 2021; 22:ijms22158101. [PMID: 34360864 PMCID: PMC8347101 DOI: 10.3390/ijms22158101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
This study evaluated the new bone formation potential of micro-macro biphasic calcium phosphate (MBCP) and Bio-Oss grafting materials with and without dental pulp-derived mesenchymal stem cells (DPSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) in a rabbit calvarial bone defect model. The surface structure of the grafting materials was evaluated using a scanning electron microscope (SEM). The multipotent differentiation characteristics of the DPSCs and BMSCs were assessed. Four circular bone defects were created in the calvarium of 24 rabbits and randomly allocated to eight experimental groups: empty control, MBCP, MBCP+DPSCs, MBCP+BMSCs, Bio-Oss+DPSCs, Bio-Oss+BMSCs, and autogenous bone. A three-dimensional analysis of the new bone formation was performed using micro-computed tomography (micro-CT) and a histological study after 2, 4, and 8 weeks of healing. Homogenously porous structures were observed in both grafting materials. The BMSCs revealed higher osteogenic differentiation capacities, whereas the DPSCs exhibited higher colony-forming units. The micro-CT and histological analysis findings for the new bone formation were consistent. In general, the empty control showed the lowest bone regeneration capacity throughout the experimental period. By contrast, the percentage of new bone formation was the highest in the autogenous bone group after 2 (39.4% ± 4.7%) and 4 weeks (49.7% ± 1.5%) of healing (p < 0.05). MBCP and Bio-Oss could provide osteoconductive support and prevent the collapse of the defect space for new bone formation. In addition, more osteoblastic cells lining the surface of the newly formed bone and bone grafting materials were observed after incorporating the DPSCs and BMSCs. After 8 weeks of healing, the autogenous bone group (54.9% ± 6.1%) showed a higher percentage of new bone formation than the empty control (35.3% ± 0.5%), MBCP (38.3% ± 6.0%), MBCP+DPSC (39.8% ± 5.7%), Bio-Oss (41.3% ± 3.5%), and Bio-Oss+DPSC (42.1% ± 2.7%) groups. Nevertheless, the percentage of new bone formation did not significantly differ between the MBCP+BMSC (47.2% ± 8.3%) and Bio-Oss+BMSC (51.2% ± 9.9%) groups and the autogenous bone group. Our study results demonstrated that autogenous bone is the gold standard. Both the DPSCs and BMSCs enhanced the osteoconductive capacities of MBCP and Bio-Oss. In addition, the efficiency of the BMSCs combined with MBCP and Bio-Oss was comparable to that of the autogenous bone after 8 weeks of healing. These findings provide effective strategies for the improvement of biomaterials and MSC-based bone tissue regeneration.
Collapse
Affiliation(s)
- Shiau-Ting Shiu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
- Department of Dentistry, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sheng-Min Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
| | - Liu-Ting Hao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
| | - Yuan-Ting Hung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
| | - Pin-Chuang Lai
- Department of Diagnosis and Oral Health, School of Dentistry, University of Louisville, Louisville, KY 40202, USA;
| | - Sheng-Wei Feng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (S.-T.S.); (S.-M.C.); (L.-T.H.); (Y.-T.H.)
- Department of Dentistry, Division of Prosthodontics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 5107); Fax: +886-2-27362295
| |
Collapse
|
28
|
Liu C. Application of marine collagen for stem-cell-based therapy and tissue regeneration (Review). MEDICINE INTERNATIONAL 2021; 1:6. [PMID: 36698868 PMCID: PMC9855277 DOI: 10.3892/mi.2021.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 01/28/2023]
Abstract
Tissue engineering and regenerative medicine is becoming an important component in modern biological scientific research. Tissue engineering, a branch of regenerative medicine, is a field that is actively developing to meet the challenges presented in biomedical applications. This particularly applies to the research area of stem cells and biomaterials, due to both being pivotal determinants for the successful restoration or regeneration of damaged tissues and organs. Recently, the development of innovative marine collagen-based biomaterials has attracted attention due to the reported environmentally friendly properties, the lack of zoonotic disease transmission, biocompatibility, bioactivity, the lack of ethics-related concerns and cost-effectiveness for manufacturing. The present review aimed to summarize the potential application and function of marine collagen in stem cell research in a medical and clinical setting. In addition, the present review cited recent studies regarding the latest research advances into using marine collagen for cartilage, bone, periodontal and corneal regeneration. It also characterized the distinct advantages of using marine collagen for stem cell-based tissue repair and regeneration. In addition, the present review comprehensively discussed the most up to date information on stem cell biology, particularly the possibility of treating stem cells with marine collagen to maximize their multi-directional differentiation capability, which highlights the potential use of marine collagen in regenerative medicine. Furthermore, recent research progress on the potential immunomodulatory capacity of mesenchymal stem cells following treatment with marine collagen to improve the understanding of cell-matrix interactions was investigated. Finally, perspectives on the possible future research directions for the application of marine collagen in the area of regenerative medicine are provided.
Collapse
Affiliation(s)
- Chao Liu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
29
|
Mangione F, Salmon B, EzEldeen M, Jacobs R, Chaussain C, Vital S. Characteristics of Large Animal Models for Current Cell-Based Oral Tissue Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:489-505. [PMID: 33882717 DOI: 10.1089/ten.teb.2020.0384] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The recent advances in the field of cell-based therapeutics open promising perspectives for oral tissue regeneration. The development of large animal models, which overcome the limits of the rodent models and allow to emulate clinical situations, is crucial for the validation of regenerative strategies to move toward clinical application. Currently, porcine, canine, and ovine models are mainly developed for oral regeneration and their specific characteristics have an impact on the outcomes of the studies. Thus, this systematic review investigates the application of porcine, canine, and ovine models in present cell-based oral regeneration, according to the species characteristics and the targeted tissue to regenerate. A customized search of PubMed, EMBASE, Scopus, and Web of Science databases from January 2015 to March 2020 was conducted. Relevant articles about cell-based oral tissues engineering in porcine, canine, and ovine models were evaluated. Among the evaluated articles, 58 relevant studies about cell-based oral regeneration in porcine, canine, and ovine models matched the eligibility criteria and were selected for full analysis. Porcine models, the most similar species with humans, were mostly used for bone and periodontium regeneration; tooth regeneration was reported only in pig, except for one study in dog. Canine models were the most transversal models, successfully involved for all oral tissue regeneration and notably in implantology. However, differences with humans and ethical concerns affect the use of these models. Ovine models, alternative to porcine and canine ones, were mainly used for bone and, scarcely, periodontium regeneration. The anatomy and physiology of these animals restrain their involvement. If consistency was found in defect specificities and cell trends among different species animal models of bone, dentin-pulp complex, or tooth regeneration, variability appeared in periodontium. Regeneration assessment methods were more elaborate in porcines and canines than in ovines. Risk of bias was low for selection, attrition and reporting, but unclear for performance and detection. Overall, if none of the large animal models can be considered an ideal one, they are of deemed importance for oral cell-based tissue engineering and researchers should consider their relevance to establish favorable conditions for a given preclinical cell-based therapeutics.
Collapse
Affiliation(s)
- Francesca Mangione
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Salmon
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Mostafa EzEldeen
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Oral Health Sciences, KU Leuven and Paediatric Dentistry and Special Dental Care, University Hospitals Leuven, Leuven, Belgium
| | - Reinhilde Jacobs
- OMFS-IMPATH Research Group, Department of Imaging and Pathology, Faculty of Medicine, University of Leuven, Leuven, Belgium.,Maxillofacial Surgery Department, University Hospitals Leuven, Leuven, Belgium.,Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Catherine Chaussain
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,Bretonneau Hospital, AP-HP, Paris, France.,Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Filière OSCAR, AP-HP, Paris, France
| | - Sibylle Vital
- URP 2496 Laboratory Orofacial Pathologies, Imaging and Biotherapies, Life Imaging Platform (PIV), UFR Odontology, Université de Paris, Montrouge, France.,AP-HP, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| |
Collapse
|
30
|
Cervino G, Oteri G, D'Amico C, Fiorillo L. Molecular features and tissue engineering techniques applied to regenerative surgery: an overview of recent data. Minerva Dent Oral Sci 2021; 70:119-127. [PMID: 34124874 DOI: 10.23736/s2724-6329.21.04517-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
INTRODUCTION Regenerative procedures have become common in the medical and dentistry rehabilitation fields. Often, tissue regeneration maneuvers are necessary to rehabilitate patients in a safe and predictable manner. The aim of this narrative review was to highlight the molecular implications during regenerative surgery. EVIDENCE ACQUISITION The analysis of the literature was conducted on the main scientific databases Pubmed, Scopus, MDPI. EVIDENCE SYNTHESIS After a screening of 66 results only 8 were included. CONCLUSIONS Knowing these molecular features, it is possible to highlight which are the biomaterials that offer greater potential and identify the best protocols according to the surgical needs.
Collapse
Affiliation(s)
- Gabriele Cervino
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Giacomo Oteri
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Cesare D'Amico
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy
| | - Luca Fiorillo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University of Messina, Messina, Italy -
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, Luigi Vanvitelli University of Campania, Naples, Italy
| |
Collapse
|
31
|
Katti SS, Bhat K, Bogar C. Isolation, Characterization, and Differentiation of Stem Cells From Various Dental Sources: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2021. [DOI: 10.1177/23202068211010768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aim: The aim of the current study was to isolate stem cells from various dental sources such as dental pulp, periodontal ligament (PDL), and apical papilla, and to characterize stem cells by staining for the presence/absence of specific surface markers and also to differentiate stem cells into osteogenic, chondrogenic, and adipogenic cell lineages by exposing them to specific growth factors under the ideal conditions. Materials and Methods: A total of 117 samples were included in the study, consisting of 30 pulp, 50 gingival, 35 PDL, and 2 apical papilla samples. The pulp was extirpated and transported to the Central Research Laboratory. Gingival connective tissue was collected from the participants undergoing any crown lengthening procedure or any gingivectomy procedure from the Department of Periodontology. A similar procedure was also followed for apical papilla and PDL. Isolation was done followed by the identification of the cells by immunocytochemistry using different markers. Once the identity of cells was confirmed, these cells were treated with different culture media to attain 70% to 100% confluency. Then the medium was replaced with a conditioning medium containing specific growth factors for differentiation into osteogenic, chondrogenic, and adipogenic cell lineages. Result: In our study, the number of samples collected and processed was 117. The isolation rate of stem cells from the above-collected samples was 70%. Statistical analysis—no statistical analysis was done as there was no variability expected. Conclusion: Our study showed that stem cells could be isolated, differentiated, and characterized from different dental sources.
Collapse
Affiliation(s)
- Sandeep S. Katti
- Department of Periodontology, Maratha Mandal Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Kishore Bhat
- Central Research Laboratory, Maratha Mandal Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Chetana Bogar
- Central Research Laboratory, Maratha Mandal Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| |
Collapse
|
32
|
Mattei V, Martellucci S, Pulcini F, Santilli F, Sorice M, Delle Monache S. Regenerative Potential of DPSCs and Revascularization: Direct, Paracrine or Autocrine Effect? Stem Cell Rev Rep 2021; 17:1635-1646. [PMID: 33829353 PMCID: PMC8553678 DOI: 10.1007/s12015-021-10162-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
A new source of mesenchymal stem cells has recently been discovered, the so-called dental pulp derived stem cells (DPSCs) which therefore could represent potentially tools for regenerative medicine. DPSC originate from the neural crest and are physiologically involved in dentin homeostasis; moreover, they contribute to bone remodeling and differentiation into several tissues including cartilage, bone, adipose and nervous tissues. DPSCs have also been shown to influence the angiogenesis process, for example through the release of secretory factors or by differentiating into vascular and/or perivascular cells. Angiogenesis, that has a pivotal role in tissue regeneration and repair, is defined as the formation of new vessels from preexisting vessels and is mediated by mutual and reciprocal interactions between endothelial cells and perivascular cells. It is also known that co-cultures of perivascular and endothelial cells (ECs) can form a vascular network in vitro and also in vivo. Since DPSCs seem to have characteristics similar to pericytes, understanding the possible mechanism of interaction between DPSCs and ECs during neo-angiogenesis is dramatically important for the development of advanced clinical application in the field of regeneration.
Collapse
Affiliation(s)
- Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Stefano Martellucci
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100, Rieti, Italy
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161, Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
- StemTeCh Group, Chieti, Italy.
| |
Collapse
|
33
|
Shang F, Yu Y, Liu S, Ming L, Zhang Y, Zhou Z, Zhao J, Jin Y. Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater 2021; 6:666-683. [PMID: 33005830 PMCID: PMC7509590 DOI: 10.1016/j.bioactmat.2020.08.014] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022] Open
Abstract
Reconstruction of bone defects, especially the critical-sized defects, with mechanical integrity to the skeleton is important for a patient's rehabilitation, however, it still remains challenge. Utilizing biomaterials of human origin bone tissue for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural bone tissue with regard to its properties. However, not only efficacious and safe but also cost-effective and convenient are important for regenerative biomaterials to achieve clinical translation and commercial success. Advances in our understanding of regenerative biomaterials and their roles in new bone formation potentially opened a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multicomponent construction of native extracellular matrix (ECM) for cell accommodation, the ECM-mimicking biomaterials and the naturally decellularized ECM scaffolds were used to create new tissues for bone restoration. On the other hand, with the going deep in understanding of mesenchymal stem cells (MSCs), they have shown great promise to jumpstart and facilitate bone healing even in diseased microenvironments with pharmacology-based endogenous MSCs rescue/mobilization, systemic/local infusion of MSCs for cytotherapy, biomaterials-based approaches, cell-sheets/-aggregates technology and usage of subcellular vesicles of MSCs to achieve scaffolds-free or cell-free delivery system, all of them have been shown can improve MSCs-mediated regeneration in preclinical studies and several clinical trials. Here, following an overview discussed autogenous/allogenic and ECM-based bone biomaterials for reconstructive surgery and applications of MSCs-mediated bone healing and tissue engineering to further offer principles and effective strategies to optimize MSCs-based bone regeneration.
Collapse
Affiliation(s)
- Fengqing Shang
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Stomatology, The 306th Hospital of PLA, Beijing, 100101, China
| | - Yang Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, 250012, China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Leiguo Ming
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yongjie Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa, 850000, China
| | - Jiayu Zhao
- Bureau of Service for Veteran Cadres of PLA in Beijing, Beijing, 100001, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research, Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
34
|
Yoshimatsu M, Ohnishi H, Zhao C, Hayashi Y, Kuwata F, Kaba S, Okuyama H, Kawai Y, Hiwatashi N, Kishimoto Y, Sakamoto T, Ikeya M, Omori K. In vivo regeneration of rat laryngeal cartilage with mesenchymal stem cells derived from human induced pluripotent stem cells via neural crest cells. Stem Cell Res 2021; 52:102233. [PMID: 33607469 DOI: 10.1016/j.scr.2021.102233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
The laryngotracheal cartilage is a cardinal framework for the maintenance of the airway for breathing, which occasionally requires reconstruction. Because hyaline cartilage has a poor intrinsic regenerative ability, various regenerative approaches have been attempted to regenerate laryngotracheal cartilage. The use of autologous mesenchymal stem cells (MSCs) for cartilage regeneration has been widely investigated. However, long-term culture may limit proliferative capacity. Human-induced pluripotent stem cell-derived MSCs (iMSCs) can circumvent this problem due to their unlimited proliferative capacity. This study aimed to investigate the efficacy of iMSCs in the regeneration of thyroid cartilage in immunodeficient rats. Herein, we induced iMSCs through neural crest cell intermediates. For the relevance to prospective future clinical application, induction was conducted under xeno-free/serum-free conditions. Then, clumps fabricated from an iMSC/extracellular matrix complex (C-iMSC) were transplanted into thyroid cartilage defects in immunodeficient rats. Histological examinations revealed cartilage-like regenerated tissue and human nuclear antigen (HNA)-positive surviving transplanted cells in the regenerated lesion. HNA-positive cells co-expressed SOX9, and type II collagen was identified around HNA-positive cells. These results indicated that the transplanted C-iMSCs promoted thyroid cartilage regeneration and some of the iMSCs differentiated into chondrogenic lineage cells. Induced MSCs may be a promising candidate cell therapy for human laryngotracheal reconstruction.
Collapse
Affiliation(s)
- Masayoshi Yoshimatsu
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiroe Ohnishi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chengzhu Zhao
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yasuyuki Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Kuwata
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Kaba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Okuyama
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshitaka Kawai
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nao Hiwatashi
- Department of Otolaryngology, Kyoto-Katsura Hospital, Kyoto, Japan
| | - Yo Kishimoto
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Tatsunori Sakamoto
- Department of Otorhinolaryngology, Shimane University Faculty of Medicine, Shimane, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Koichi Omori
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
35
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Synthetic Scaffold/Dental Pulp Stem Cell (DPSC) Tissue Engineering Constructs for Bone Defect Treatment: An Animal Studies Literature Review. Int J Mol Sci 2020; 21:ijms21249765. [PMID: 33371390 PMCID: PMC7767470 DOI: 10.3390/ijms21249765] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background: Recently a greater interest in tissue engineering for the treatment of large bone defect has been reported. The aim of the present systematic review and meta-analysis was to investigate the effectiveness of dental pulp stem cells and synthetic block complexes for bone defect treatment in preclinical in vivo articles. Methods: The electronic database and manual search was conducted on Pubmed, Scopus, and EMBASE. The papers identified were submitted for risk-of-bias assessment and classified according to new bone formation, bone graft characteristics, dental pulp stem cells (DPSCs) culture passages and amount of experimental data. The meta-analysis assessment was conducted to assess new bone formation in test sites with DPSCs/synthetic blocks vs. synthetic block alone. Results: The database search identified a total of 348 papers. After the initial screening, 30 studies were included, according to the different animal models: 19 papers on rats, 3 articles on rabbits, 2 manuscripts on sheep and 4 papers on swine. The meta-analysis evaluation showed a significantly increase in new bone formation in favor of DPSCs/synthetic scaffold complexes, if compared to the control at 4 weeks (Mean Diff: 17.09%, 95% CI: 15.16–18.91%, p < 0.01) and at 8 weeks (Mean Diff: 14.86%, 95% CI: 1.82–27.91%, p < 0.01) in rats calvaria bone defects. Conclusion: The synthetic scaffolds in association of DPSCs used for the treatment of bone defects showed encouraging results of early new bone formation in preclinical animal studies and could represent a useful resource for regenerative bone augmentation procedures
Collapse
|
37
|
Atlas Y, Gorin C, Novais A, Marchand MF, Chatzopoulou E, Lesieur J, Bascetin R, Binet-Moussy C, Sadoine J, Lesage M, Opsal-Vital S, Péault B, Monnot C, Poliard A, Girard P, Germain S, Chaussain C, Muller L. Microvascular maturation by mesenchymal stem cells in vitro improves blood perfusion in implanted tissue constructs. Biomaterials 2020; 268:120594. [PMID: 33387754 DOI: 10.1016/j.biomaterials.2020.120594] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 10/31/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Blood perfusion of grafted tissue constructs is a hindrance to the success of stem cell-based therapies by limiting cell survival and tissue regeneration. Implantation of a pre-vascularized network engineered in vitro has thus emerged as a promising strategy for promoting blood supply deep into the construct, relying on inosculation with the host vasculature. We aimed to fabricate in vitro tissue constructs with mature microvascular networks, displaying perivascular recruitment and basement membrane, taking advantage of the angiogenic properties of dental pulp stem cells and self-assembly of endothelial cells into capillaries. Using digital scanned light-sheet microscopy, we characterized the generation of dense microvascular networks in collagen hydrogels and established parameters for quantification of perivascular recruitment. We also performed original time-lapse analysis of stem cell recruitment. These experiments demonstrated that perivascular recruitment of dental pulp stem cells is driven by PDGF-BB. Recruited stem cells participated in deposition of vascular basement membrane and vessel maturation. Mature microvascular networks thus generated were then compared to those lacking perivascular coverage generated using stem cell conditioned medium. Implantation in athymic nude mice demonstrated that in vitro maturation of microvascular networks improved blood perfusion and cell survival within the construct. Taken together, these data demonstrate the strong potential of in vitro production of mature microvasculature for improving cell-based therapies.
Collapse
Affiliation(s)
- Yoann Atlas
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France; Sorbonne Université, Collège doctoral, Paris, France
| | - Caroline Gorin
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Anita Novais
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Marion F Marchand
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France; Sorbonne Université, Collège doctoral, Paris, France
| | - Eirini Chatzopoulou
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Julie Lesieur
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France
| | - Rumeyza Bascetin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Clément Binet-Moussy
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Jeremy Sadoine
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France
| | - Matthieu Lesage
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Sibylle Opsal-Vital
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France
| | - Bruno Péault
- Department of Orthopaedic Surgery, UCLA and Orthopaedic Hospital, Orthopaedic Hospital Research Center, Los Angeles, United States; Center for Cardiovascular Science, MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Monnot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Anne Poliard
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France
| | - Philippe Girard
- Institut Jacques Monod, UMR7592 CNRS, Université de Paris, Paris, France
| | - Stéphane Germain
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France
| | - Catherine Chaussain
- Université de Paris, UR2496 Pathologies, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Paris, France; AP-HP, Services Odontologie, (GH Paris Est, Paris Nord, Henri Mondor), France.
| | - Laurent Muller
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS UMR7241, INSERM U1050, PSL Research University, Paris, France.
| |
Collapse
|
38
|
Chin YT, Liu CM, Chen TY, Chung YY, Lin CY, Hsiung CN, Jan YS, Chiu HC, Fu E, Lee SY. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside-stimulated dental pulp stem cells-derived conditioned medium enhances cell activity and anti-inflammation. J Dent Sci 2020; 16:586-598. [PMID: 33854707 PMCID: PMC8025232 DOI: 10.1016/j.jds.2020.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background/purpose Dental pulp stem cells (DPSCs) contribute to the regeneration of various tissues and have superior proliferation, immune privilege, and anti-inflammation properties to other mesenchymal stem cells. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) not only enhances the aforementioned properties of DPSCs but also promotes self-renewal and reprogramming-like ability. However, whether THSG enhances the aforementioned properties and abilities through direct or indirect interaction mechanisms remains unclear. To address this knowledge gap, we examined the effects of THSG-stimulated DPSC-derived conditioned medium (THSG-CM) on the activity and anti-inflammation properties of cells. Materials and methods DPSCs were treated with various concentrations of THSG to produce THSG-CM, which was then collected, analyzed, and lyophilized. A cytokine profiling antibody assay was used to compare protein components between THSG-treated and nontreated CM. Human skin fibroblasts (HSFs) and human gingival fibroblasts (HGFs) were used to investigate the effect of THSG-CM on cell proliferation, anti-inflammation, and wound healing abilities; for this investigation, MTS assay, quantitative real-time PCR analysis, and 2-well silicone inserts wound model were conducted. Results We observed that THSG enhanced the secretion of growth- and immune-associated proteins in THSG-CM and increased the proliferation of HSFs and HGFs. Furthermore, THSG-CM significantly attenuated lipopolysaccharide-stimulated mRNA levels of cytokines in both cells and improved wound healing abilities. Conclusion We conclude that THSG-CM had more beneficial effects on cell activity and anti-inflammation in the HSFs and HGFs than DPSC-derived CM. DPSC-derived CM can be developed into a cell-free regenerative strategy in the future, and its therapeutic efficacy may be improved by THSG-CM.
Collapse
Affiliation(s)
- Yu-Tang Chin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Che-Ming Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Ting-Yi Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| | - Yao-Yu Chung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Yu Lin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan
| | - Chao-Nan Hsiung
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yun-Shen Jan
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chung Chiu
- Department of Periodontology, School of Dentistry, National Defense Medical Center and Tri-Service General Hospital, Taipei, Taiwan
| | - Earl Fu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Xindian, New Taipei City, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Tooth Bank and Dental Stem Cell Technology, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Rathinam E, Govindarajan S, Rajasekharan S, Declercq H, Elewaut D, De Coster P, Martens L. Transcriptomic profiling of human dental pulp cells treated with tricalcium silicate-based cements by RNA sequencing. Clin Oral Investig 2020; 25:3181-3195. [PMID: 33108483 DOI: 10.1007/s00784-020-03647-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Tricalcium silicate (TCS)-based biomaterials induce differentiation of human dental pulp cells (hDPCs) into odontoblasts/osteoblasts, which is regulated by the interplay between various intracellular pathways and their resultant secretome. The aim of this study was to compare the transcriptome-wide effects by next-generation RNA sequencing of custom-prepared hDPCs stimulated with TCS-based biomaterials: ProRoot white MTA (WMTA) (Dentsply, Tulsa; Tulsa, OK) and Biodentine (Septodont, Saint Maur des Fosses, France). METHODS Self-isolated hDPCs were seeded in a 6-well plate at a density of 5 × 105 cells per well. ProRoot white MTA and Biodentine were then placed in transwell inserts with a pore size of 0.4 μm and inserted in the well plate. RNA sequencing was performed after 3 and 7 days treatment. For post-validation, RT-PCR analyses were done on some of the RNA samples used for RNA sequencing. RESULTS Our RNA sequencing results for the first time identified 7533 differentially expressed genes (DEGs) between different treatments and the number of DEGs in Biodentine was higher than ProRoot WMTA at both 3 and 7 days. Despite their differential gene expression, both the TCS-based biomaterial treatments showed gene expressions mainly involved in odontoblast differentiation, angiogenesis, neurogenesis, dentinogenesis, and tooth mineralization. CONCLUSIONS The results of the present study illustrate that several important signalling pathways are induced by hDPCs stimulated with TCS-based biomaterials. CLINICAL RELEVANCE The differential expression of the genes associated with odontogenesis, angiogenesis, neurogenesis, dentinogenesis, and mineralization may affect the prognosis of teeth treated with Biodentine or ProRoot white MTA.
Collapse
Affiliation(s)
- Elanagai Rathinam
- Department of Paediatric Dentistry & Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.
| | - Srinath Govindarajan
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052, Ghent, Belgium
| | - Sivaprakash Rajasekharan
- Department of Paediatric Dentistry & Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, 8500, Kortrijk, Belgium
| | - Dirk Elewaut
- Department of Internal Medicine and Paediatrics, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium.,Unit for Molecular Immunology and Inflammation, VIB-Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052, Ghent, Belgium
| | - Peter De Coster
- Department of Reconstructive Dentistry and Oral Biology, Dental School, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| | - Luc Martens
- Department of Paediatric Dentistry & Special Care, PAECOMEDIS Research Cluster, Ghent University, Ghent University Hospital, 9000, Ghent, Belgium
| |
Collapse
|
40
|
Wang P, Jiang Z, Wang C, Liu X, Li H, Xu D, Zhong L. Immune Tolerance Induction Using Cell-Based Strategies in Liver Transplantation: Clinical Perspectives. Front Immunol 2020; 11:1723. [PMID: 33013824 PMCID: PMC7461870 DOI: 10.3389/fimmu.2020.01723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Liver transplantation (LT) has become the best chance and a routine practice for patients with end-stage liver disease and small hepatocellular carcinoma. However, life-long immunosuppressive regimens could lead to many post-LT complications, including cancer recurrence, infections, dysmetabolic syndrome, and renal injury. Impeccable management of immunosuppressive regimens is indispensable to ensure the best long-term prognosis for LT recipients. This is challenging for these patients, who probably have a post-LT graft survival of more than 10 or even 20 years. Approximately 20% of patients after LT could develop spontaneous operational tolerance. They could maintain normal graft function and histology without any immunosuppressive regimens. Operational tolerance after transplantation has been an attractive and ultimate goal in transplant immunology. The liver, as an immunoregulatory organ, generates an immune hyporesponsive microenvironment under physiological conditions. In this regard, LT recipients may be ideal candidates for studies focusing on operative tolerance. Cell-based strategies are one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory T cells, regulatory dendritic cells, regulatory macrophages, regulatory B cells, and mesenchymal stromal cells. The safety and the efficacy of many cell products have been evaluated by prospective clinical trials. In this review, we will summarize the latest perspectives on the clinical application of cell-based strategies in LT and will address a number of concerns and future directions regarding these cell products.
Collapse
Affiliation(s)
- Pusen Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyi Jiang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunguang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dingyin Xu
- Department of Hepatobiliary Surgery, Ruian People's Hospital, Ruian, China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
41
|
Granz CL, Gorji A. Dental stem cells: The role of biomaterials and scaffolds in developing novel therapeutic strategies. World J Stem Cells 2020; 12:897-921. [PMID: 33033554 PMCID: PMC7524692 DOI: 10.4252/wjsc.v12.i9.897] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 08/16/2020] [Indexed: 02/06/2023] Open
Abstract
Dental stem cells (DSCs) are self-renewable cells that can be obtained easily from dental tissues, and are a desirable source of autologous stem cells. The use of DSCs for stem cell transplantation therapeutic approaches is attractive due to their simple isolation, high plasticity, immunomodulatory properties, and multipotential abilities. Using appropriate scaffolds loaded with favorable biomolecules, such as growth factors, and cytokines, can improve the proliferation, differentiation, migration, and functional capacity of DSCs and can optimize the cellular morphology to build tissue constructs for specific purposes. An enormous variety of scaffolds have been used for tissue engineering with DSCs. Of these, the scaffolds that particularly mimic tissue-specific micromilieu and loaded with biomolecules favorably regulate angiogenesis, cell-matrix interactions, degradation of extracellular matrix, organized matrix formation, and the mineralization abilities of DSCs in both in vitro and in vivo conditions. DSCs represent a promising cell source for tissue engineering, especially for tooth, bone, and neural tissue restoration. The purpose of the present review is to summarize the current developments in the major scaffolding approaches as crucial guidelines for tissue engineering using DSCs and compare their effects in tissue and organ regeneration.
Collapse
Affiliation(s)
- Cornelia Larissa Granz
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Münster 48149, Germany
| |
Collapse
|
42
|
Investigation of the effect of a time delay on the characteristics and survival of dental pulp stem cells from extracted teeth. Arch Oral Biol 2020; 119:104896. [PMID: 32932148 DOI: 10.1016/j.archoralbio.2020.104896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 11/21/2022]
Abstract
OBJECTIVES This study investigates the post-extraction storage period of human dental pulp stem cells (hDPSCs) for stem cell banking by investigating the viability, function, mineralization, and gene expression of hDPSCs isolated from extracted teeth after 1 h, 6 h and 24 h post-tooth extraction. DESIGN hDPSCs were extracted from the pulp of impacted third molar teeth after 1 h, 6 h, and 24 h after extraction. The mesenchymal stem cell (MSCs) properties of three groups of cells were analyzed using flow cytometry. Cell morphology and proliferation were analyzed using a light microscope and an MTT assay. The viability, function, mineralization, and gene expression of hDPSCs of 1 h, 6 h, and 24 h groups were also assessed. RESULTS The delayed harvesting of hDPSCs for 1, 6 or 24 h caused a 31 % reduction in mineral nodule formation and a reduction in the gene expression of osteocalcin (OCN) and vascular endothelial growth factor-alpha (VEGFA). However, the 1, 6 or 24 h, time delay had little effect on MTT cell proliferation, cell viability or morphology. The delayed of harvesting of hDPSCs for 1, 6 or 24 h also had little effect on the expression of MSCs positive (CD44, CD106, CD90) or negative surface markers (CD45 and CD11b). CONCLUSIONS Our results suggest that a 24 h delay in harvesting hDPSCs from extracted teeth can reduce their mineralization and gene activity but does not markedly reduce survival. Quicker hDPSCs harvesting is likely to yield more useful hDPSCs for experimentation and clinical treatment.
Collapse
|
43
|
Rosaian AS, Rao GN, Mohan SP, Vijayarajan M, Prabhakaran RC, Sherwood A. Regenerative Capacity of Dental Pulp Stem Cells: A Systematic Review. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:S27-S36. [PMID: 33149427 PMCID: PMC7595477 DOI: 10.4103/jpbs.jpbs_121_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The dental pulp contains undifferentiated mesenchymal cells, blood vessels and so on, which are responsible for routine functions of a tooth. The determination of stemness and regenerative properties using biomarkers and further application in routine practice may unravel its potential. MATERIALS AND METHODS Inclusion criteria-original research articles published in English, from 2000 to 2019, were collected both manually and by electronic search from databases of Cochrane, Medline, Embase, and PubMed. Exclusion criteria-articles other than English and review manuscripts were omitted. The shortlisted articles were reviewed for specific biomarkers, to assess the regenerative potential, stemness, and lineage of dental pulp stem cells. RESULTS Of 512 articles, 64 were selected and reviewed to determine the mesenchymal, neurogenic, vasculogenic, hematopoietic, and stem cell potential. On the basis of the search analysis, a panel of markers was proposed. CONCLUSION The application of proposed markers, on a pulpectomized tissue derived from human teeth, may be helpful to determine the regenerative potential and the usefulness in regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Adlin S Rosaian
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Gururaj Narayana Rao
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Sunil P Mohan
- Department of Oral Pathology, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
- Department of Stem Cells and Regenerative Medicine, Sree Anjaneya Institute of Dental Sciences, Kozhikode, Kerala, India
| | - Mahalakshmi Vijayarajan
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Rebekkah C Prabhakaran
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| | - Anand Sherwood
- Department of Operative Dentistry and Endodontics, CSI College of Dental Sciences and Research, Madurai, Tamil Nadu, India
| |
Collapse
|
44
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
45
|
Sabbagh J, Ghassibe-Sabbagh M, Fayyad-Kazan M, Al-Nemer F, Fahed JC, Berberi A, Badran B. Differences in osteogenic and odontogenic differentiation potential of DPSCs and SHED. J Dent 2020; 101:103413. [PMID: 32585262 DOI: 10.1016/j.jdent.2020.103413] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are types of human dental tissue-derived mesenchymal stem cells (MSCs) that have emerged as an interesting and promising source of stem cells in the field of tissue engineering. The aim of this work is to isolate stem cells from DPSCs and SHED, cultivate them in vitro and compare their odontogenic differentiation potential. METHODS DPSCs and SHED were extracted from molars, premolars and canines of six healthy subjects aged 5-29 years. The cells were characterized, using flow cytometry, for mesenchymal stem cell surface markers. MTT colorimetric assay was applied to assess cell viability. Alizarin red staining, alkaline phosphatase (ALP) activity, quantitative real-time PCR (qRT-PCR) and western blot were carried out to determine DPSCs and SHED osteogenic/odontogenic differentiation. RESULTS DPSCs express higher STRO-1 and CD44 levels compared to SHED. Moreover, the cells differentiate and acquire columnar shape with a level of calcium deposition and mineralization that is the same between DPSCs and SHED. ALP activity, ALP, COLI, DMP-1, DSPP, OC, and RUNX2 (osteogenic/odontogenic differentiation markers) expression levels were higher in DPSCs. CONCLUSIONS DPSCs and SHED express MSCs markers. Although both cell types had calcium deposits, DPSCs presented a higher ALP activity level. In addition, DPSCs showed higher levels of osteogenic and odontogenic differentiation markers such as COLI, DSPP, OC, RUNX2, and DMP-1. These results suggest that DPSCs are closer to the phenotype of odontoblasts than SHED and may improve the efficacy of human dental tissue-derived mesenchymal stem cells therapeutic protocols. 'CLINICAL SIGNIFICANCE' DPSCs are closer than t SHED to the phenotype of odontoblasts. This would be helpful to enable better therapeutic decisions when applying MSCs-based therapy in the field of dentistry.
Collapse
Affiliation(s)
- Joseph Sabbagh
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Mohammad Fayyad-Kazan
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon; Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Fatima Al-Nemer
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| | - Jean Claude Fahed
- Department of Restorative Dentistry and Endodontics, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Antoine Berberi
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon.
| | - Bassam Badran
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, Hadath- Beirut, Lebanon.
| |
Collapse
|
46
|
Ledesma-Martínez E, Mendoza-Núñez VM, Santiago-Osorio E. Mesenchymal Stem Cells for Periodontal Tissue Regeneration in Elderly Patients. J Gerontol A Biol Sci Med Sci 2020; 74:1351-1358. [PMID: 30289440 DOI: 10.1093/gerona/gly227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stem cell (MSC) grafting is a highly promising alternative strategy for periodontal regeneration in periodontitis, which is one of the primary causes of tooth loss in the elderly. However, aging progressively decreases the proliferative and differentiation potential of MSCs and diminishes their regenerative capacity, which represents a limiting factor for their endogenous use in elderly patients. Therefore, tissue regeneration therapy with MSCs in this age group may require a cellular source without the physiological limitations that MSCs exhibit in aging. In this sense, exogenous or allogeneic MSCs could have a better chance of success in regenerating periodontal tissue in elderly patients. This review examines and synthesizes recent data in support of the use of MSCs for periodontal regenerative therapy in patients. Additionally, we analyze the progress of the therapeutic use of exogenous MSCs in humans.
Collapse
Affiliation(s)
- Edgar Ledesma-Martínez
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Edelmiro Santiago-Osorio
- Haematopoiesis and Leukaemia Laboratory, Research Unit on Cell Differentiation and Cancer, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
47
|
Haugen HJ, Basu P, Sukul M, Mano JF, Reseland JE. Injectable Biomaterials for Dental Tissue Regeneration. Int J Mol Sci 2020; 21:E3442. [PMID: 32414077 PMCID: PMC7279163 DOI: 10.3390/ijms21103442] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022] Open
Abstract
Injectable biomaterials scaffolds play a pivotal role for dental tissue regeneration, as such materials are highly applicable in the dental field, particularly when compared to pre-formed scaffolds. The defects in the maxilla-oral area are normally small, confined and sometimes hard to access. This narrative review describes different types of biomaterials for dental tissue regeneration, and also discusses the potential use of nanofibers for dental tissues. Various studies suggest that tissue engineering approaches involving the use of injectable biomaterials have the potential of restoring not only dental tissue function but also their biological purposes.
Collapse
Affiliation(s)
- Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Poulami Basu
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - Mousumi Sukul
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| | - João F Mano
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Janne Elin Reseland
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Odontology, University of Oslo, 0317 Oslo, Norway; (P.B.); (M.S.); (J.E.R.)
| |
Collapse
|
48
|
Tammaro L, Di Salle A, Calarco A, De Luca I, Riccitiello F, Peluso G, Vittoria V, Sorrentino A. Multifunctional Bioactive Resin for Dental Restorative Materials. Polymers (Basel) 2020; 12:E332. [PMID: 32033310 PMCID: PMC7077377 DOI: 10.3390/polym12020332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022] Open
Abstract
Resin-based composites are widely used as dental restorative materials due to their excellent properties. They must have high modulus, high hardness, and be chemically inert while minimizing moisture uptake. To fulfill these higher standard prerequisites and properties, continuous improvements in each of their components are required. This study develops novel composites with multiple biofunctions. Light-cured Bis-GMA/TEGDMA dental resin (RK)/layered double hydroxide intercalated with fluoride ions (LDH-F)/calcium bentonite (Bt) hybrid composites were prepared. The loading ratio of LDH-F to Bt was varied, ranging from 2.5/2.5 to 10/10 parts per hundred RK and structural, mechanical, and biological properties were studied. The incorporation of even small mass fractions (e.g., 2.5 wt % of LDH-F and 2.5 wt % of Bt) in RK dental resin significantly improved the mechanical properties of the pristine resin. The synthetized materials showed antibacterial and antibiofilm effects against three bacterial strains isolated from healthy volunteers' saliva (Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis) without affecting its ability to induce dental pulp stem cells differentiation into odontoblast-like cells. The capability to balance between the antibiofilm activity and dental pulp stem cells differentiation in addition with improved mechanical properties make these materials a promising strategy in preventive and restorative dentistry.
Collapse
Affiliation(s)
- Loredana Tammaro
- Nanomaterials and Devices Laboratory (SSPT-PROMAS-NANO), Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA, P.le E. Fermi 1, 80055 Portici (Na), Italy
| | - Anna Di Salle
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, via P. Castellino 111, 80131 Napoli, Italy; (A.D.S.); (G.P.)
| | - Anna Calarco
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, via P. Castellino 111, 80131 Napoli, Italy; (A.D.S.); (G.P.)
| | - Ilenia De Luca
- Elleva Pharma s.r.l., via P. Castellino 111, 80131 Napoli, Italy;
| | - Francesco Riccitiello
- Department of Restorative Dentistry, University of Naples Federico II, via S. Pansini 5, 80131 Napoli, Italy;
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET)—CNR, via P. Castellino 111, 80131 Napoli, Italy; (A.D.S.); (G.P.)
| | | | - Andrea Sorrentino
- Institute for Polymer, Composites and Biomaterials (IPCB)—CNR, P.le E. Fermi 1, 80055 Portici (Na), Italy;
| |
Collapse
|
49
|
Update on mesenchymal stromal cell studies in organ transplant recipients. Curr Opin Organ Transplant 2020; 25:27-34. [DOI: 10.1097/mot.0000000000000716] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Jazayeri HE, Lee SM, Kuhn L, Fahimipour F, Tahriri M, Tayebi L. Polymeric scaffolds for dental pulp tissue engineering: A review. Dent Mater 2019; 36:e47-e58. [PMID: 31791734 DOI: 10.1016/j.dental.2019.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The purpose of this review is to describe recent developments in pulp tissue engineering using scaffolds and/or stem cells. It is crucial to understand how this approach can revitalize damaged dentin-pulp tissue. Widespread scaffold materials, both natural and synthetic, and their fabrication methods, and stem-progenitor cells with the potential of pulp regeneration will be discussed. DATA AND SOURCES A review of literature was conducted through online databases, including MEDLINE by using the PubMed search engine, Scopus, and the Cochrane Library. STUDY SELECTION Studies were selected based on relevance, with a preference given to recent research, particularly from the past decade. CONCLUSIONS The use of biomaterial scaffolds and stem cells can be safe and potent for the regeneration of pulp tissue and re-establishment of tooth vitality. Natural and synthetic polymers have distinct advantages and limitations and in vitro and in vivo testing have produced positive results for cell attachment, proliferation, and angiogenesis. The type of biomaterial used for scaffold fabrication also facilitates stem cell differentiation into odontoblasts and the resulting biochemistry of tissue repair for each polymer and cell type was discussed. Multiple methods of scaffold design exist for pulp tissue engineering, which demonstrates the variability in tissue engineering applications in endodontics. This review explains the potential of evidence-based tissue engineering strategies and outcomes in pulp regeneration.
Collapse
Affiliation(s)
- Hossein E Jazayeri
- School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, United States
| | - Su-Min Lee
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, 240 S. 40th Street, Philadelphia, PA 19104, United States
| | - Lauren Kuhn
- Department of Oral Rehabilitation, Division of Endodontics, Medical University of South Carolina, 29 Bee Street, Charleston, SC 29403, United States.
| | - Farahnaz Fahimipour
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| | - Mohammadreza Tahriri
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| | - Lobat Tayebi
- Department of Developmental Sciences, Marquette University School of Dentistry, 1801 W Wisconsin Ave, Milwaukee, WI 53233, United States
| |
Collapse
|