1
|
Kumar R, Sharma AK, Kirti, Kalonia A, Shaw P, Yashvarddhan MH, Vibhuti A, Shukla SK. Understanding innate and adaptive responses during radiation combined burn injuries. Int Rev Immunol 2024; 44:31-43. [PMID: 39262163 DOI: 10.1080/08830185.2024.2402023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The occurrence of incidents involving radiation-combined burn injuries (RCBI) poses a significant risk to public health. Understanding the immunological and physiological responses associated with such injuries is crucial for developing care triage to counter the mortality that occurs due to the synergistic effects of radiation and burn injuries. The core focus of this narrative review lies in unraveling the immune response against RCBI. Langerhans cells, mast cells, keratinocytes, and fibroblasts, which induce innate immunity, have been explored for their response to radiation, burns, and combined injuries. In the case of adaptive immune response, exploring behavioral changes in T regulatory (Treg) cells, T helper cells (Th1, Th2, and Th17), and immunoglobulin results in delayed healing compared to burn and radiation injury. The review also includes the function of complement system components such as neutrophils, acute phase proteins (CRP, C3, and C5), and cytokines for their role in RCBI. Combined insults resulting in a reduction in the cell population of immune cells display variation in response based on radiation doses, burn injury types, and their intrinsic radiosensitivity. The lack of approved countermeasures against RCBI poses a significant challenge. Drug repurposing might help to balance immune cell alteration, resulting in fast recovery and decreasing mortality, which gives it clinical significance for its implication on the site of such incidence. However, the exact immune response in RCBI remains insufficiently explored in pre-clinical and clinical stages, which might be due to the non-availability of in vitro models, standard animal models, or human subjects, warranting further research.
Collapse
Affiliation(s)
- Rishav Kumar
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
- Department of Biotechnology, SRM University, Sonepat, India
| | - Ajay Kumar Sharma
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Kirti
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Aman Kalonia
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Priyanka Shaw
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - M H Yashvarddhan
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| | - Arpana Vibhuti
- Department of Biotechnology, SRM University, Sonepat, India
| | - Sandeep Kumar Shukla
- Radiation Combined Injuries Research Department, Institute of Nuclear Medicine and Allied Sciences, Defence Research Development Organization, Timarpur, Delhi, India
| |
Collapse
|
2
|
Zhang LL, Xu JY, Xing Y, Wu P, Jin YW, Wei W, Zhao L, Yang J, Chen GC, Qin LQ. Lactobacillus rhamnosus GG alleviates radiation-induced intestinal injury by modulating intestinal immunity and remodeling gut microbiota. Microbiol Res 2024; 286:127821. [PMID: 38941923 DOI: 10.1016/j.micres.2024.127821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
Radiation injury to the intestine is one of the most common complications in patients undergoing abdominal or pelvic cavity radiotherapy. In this study, we investigated the potential protective effect of Lactobacillus rhamnosus GG (LGG) on radiation-induced intestinal injury and its underlying mechanisms. Mice were assigned to a control group, a 10 Gy total abdominal irradiation (TAI) group, or a group pretreated with 108 CFU LGG for three days before TAI. Small intestine and gut microbiota were analyzed 3.5 days post-exposure. LGG intervention improved intestinal structure, reduced jejunal DNA damage, and inhibited the inflammatory cGAS/STING pathway. Furthermore, LGG reduced M1 proinflammatory macrophage and CD8+ T cell infiltration, restoring the balance between Th17 and Treg cells in the inflamed jejunum. LGG also partially restored the gut microbiota. These findings suggest the possible therapeutic radioprotective effect of probiotics LGG in alleviating radiation-induced intestinal injury by maintaining immune homeostasis and reshaping gut microbiota.
Collapse
Affiliation(s)
- Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Yifei Xing
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Pengcheng Wu
- Zhangjiagang Center for Disease Control and Prevention, 18 Zhizhong Road, Zhangjiagang 215600, China
| | - Yi-Wen Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Wei Wei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Lin Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Jing Yang
- Department of Clinical Nutrition, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
| |
Collapse
|
3
|
Wu Z, Lin Q, Sheng L, Chen W, Liang M, Wu D, Ke Y. A novel immune-related risk-scoring system associated with the prognosis and response of cervical cancer patients treated with radiation therapy. Front Mol Biosci 2023; 10:1297774. [PMID: 38028542 PMCID: PMC10667679 DOI: 10.3389/fmolb.2023.1297774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Objective: The tumor microenvironment plays a critical role in the radiotherapy and immunotherapy response of cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Radioresistance is a key factor in treatment failure among patients who receive radical radiotherapy. Thus, new immune-related biomarkers associated with radiotherapy response in CESC are needed. Methods: In this study, the CIBERSORT and ESTIMATE methods were applied to determine the percentage of tumor-infiltrating cells and the number of immune components in 103 CESCs treated with radiotherapy from The Cancer Genome Atlas (TCGA) database. The main dysregulated genes were subjected to multivariate and univariate analyses. The prognostic value of this system was studied via receiver operating characteristic curve and survival analysis. For further confirmation, the biomarkers' expression levels and predictive value were validated by immunohistochemistry (IHC) and qRT-PCR. The CIBERSORT algorithm was used to calculate the compositional patterns of 22 types of immune cells in cervical cancer patients treated with radiation therapy. Results: Data for 17 radioresistant and 86 radiosensitive tumors were obtained from the The Cancer Genome Atlas database. 53 immune-related DEGs were identified. GO and KEGG analyses revealed that the DEGs were enriched in protein kinase B signaling, growth factors in cytokines, the MAPK pathway and the PI3K-Akt pathway. Then, 14 key immune-related genes built a risk scoring model were deemed prognostic in CESC with radiotherapy. The area under the curve (AUC) of the model was 0.723, and the high-risk group presented worse outcomes than the low-risk group. In addition, the high-risk group tended to have persistent tumors (p = 0.001). The high expression of WT1 and SPOUYT4 were associated with relapse, the high expression of Angiotensinogen and MIEN1 were associated with nonrelapse. Analysis of the immune microenvironment indicated that M0 macrophages, M2 macrophages, activated mast cells and resting memory CD4+ T cells were positively correlated with the risk score (p < 0.05). Conclusion: The novel immune-related risk scoring system has some advantages in predicting the prognosis and treatment response of cervical cancer patients treated with radiotherapy. Moreover, it might provide novel clues for providing targeted immune therapy to these patients.
Collapse
Affiliation(s)
- Zhuna Wu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qiuya Lin
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liying Sheng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Weihong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Meili Liang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Danni Wu
- Department of Operation, The Second Hospital of Jinjiang, Quanzhou, China
| | - Yumin Ke
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
4
|
Emerging Trends for Radio-Immunotherapy in Rectal Cancer. Cancers (Basel) 2021; 13:cancers13061374. [PMID: 33803620 PMCID: PMC8003099 DOI: 10.3390/cancers13061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Rectal cancer is a heterogeneous disease at the genetic and molecular levels, both aspects having major repercussions on the tumor immune contexture. Whilst microsatellite status and tumor mutational load have been associated with response to immunotherapy, presence of tumor-infiltrating lymphocytes is one of the most powerful prognostic and predictive biomarkers. Yet, the majority of rectal cancers are characterized by microsatellite stability, low tumor mutational burden and poor T cell infiltration. Consequently, these tumors do not respond to immunotherapy and treatment largely relies on radiotherapy alone or in combination with chemotherapy followed by radical surgery. Importantly, pre-clinical and clinical studies suggest that radiotherapy can induce a complete reprograming of the tumor microenvironment, potentially sensitizing it for immune checkpoint inhibition. Nonetheless, growing evidence suggest that this synergistic effect strongly depends on radiotherapy dosing, fractionation and timing. Despite ongoing work, information about the radiotherapy regimen required to yield optimal clinical outcome when combined to checkpoint blockade remains largely unavailable. In this review, we describe the molecular and immune heterogeneity of rectal cancer and outline its prognostic value. In addition, we discuss the effect of radiotherapy on the tumor microenvironment, focusing on the mechanisms and benefits of its combination with immune checkpoint inhibitors.
Collapse
|
5
|
Chen C, Liu Y, Cui B. Effect of radiotherapy on T cell and PD-1 / PD-L1 blocking therapy in tumor microenvironment. Hum Vaccin Immunother 2021; 17:1555-1567. [PMID: 33428533 DOI: 10.1080/21645515.2020.1840254] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a worldwide problem that threatens human health. Radiotherapy plays an important role in a variety of cancer treatment methods. The administration of radiotherapy can alter the differentiation pathways and functions of T cells, which in turn improves the immune response of T cells. Radiotherapy can also induce up-regulation of PD-L1 expression, which means that it has great potential for enhancing the therapeutic effect of anti-PD-1/PD-L1 inhibitors and reducing the risk of drug resistance toward them. At present, the combination of radiotherapy and anti-PD-1/PD-L1 inhibitors has shown significant therapeutic effects in clinical tumor research. This review focuses on the mechanism of radiotherapy on T cells reported in recent years, as well as related research progress in the application of PD-1/PD-L1 blockers. It will provide a theoretical basis for the rational clinical application of radiotherapy combined with PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Binbin Cui
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
6
|
Chen M, Singh AK, Repasky EA. Highlighting the Potential for Chronic Stress to Minimize Therapeutic Responses to Radiotherapy through Increased Immunosuppression and Radiation Resistance. Cancers (Basel) 2020; 12:E3853. [PMID: 33419318 PMCID: PMC7767049 DOI: 10.3390/cancers12123853] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation has been used in the treatment of cancer for more than 100 years. While often very effective, there is still a great effort in place to improve the efficacy of radiation therapy for controlling the progression and recurrence of tumors. Recent research has revealed the close interaction between nerves and tumor progression, especially nerves of the autonomic nervous system that are activated by a variety of stressful stimuli including anxiety, pain, sleep loss or depression, each of which is likely to be increased in cancer patients. A growing literature now points to a negative effect of chronic stressful stimuli in tumor progression. In this review article, we present data on the potential for adrenergic stress to influence the efficacy of radiation and in particular, its potential to influence the anti-tumor immune response, and the frequency of an "abscopal effect" or the shrinkage of tumors which are outside an irradiated field. We conclude that chronic stress can be a major impediment to more effective radiation therapy through mechanisms involving immunosuppression and increased resistance to radiation-induced tumor cell death. Overall, these data highlight the potential value of stress reduction strategies to improve the outcome of radiation therapy. At the same time, objective biomarkers that can accurately and objectively reflect the degree of stress in patients over prolonged periods of time, and whether it is influencing immunosuppression and radiation resistance, are also critically needed.
Collapse
Affiliation(s)
- Minhui Chen
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Anurag K. Singh
- Department of Radiation Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA;
| |
Collapse
|
7
|
Shao L, Li M, Zhang B, Chang P. Bacterial dysbiosis incites Th17 cell revolt in irradiated gut. Biomed Pharmacother 2020; 131:110674. [PMID: 32866810 DOI: 10.1016/j.biopha.2020.110674] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Th17 cells are critical members in mediating immune responses of adaptive immunity. In humans and mice, gut is a main site where Th17 cells are resided, and Th17 cell polarization also occurs in the gut. This process can be mediated by many factors, such as commensal bacteria, dendritic cells and cytokines, such as TGF-β and IL-6. Physiologically, polarized Th17 cells function in anti-infection and maintaining the integrity of intestinal epithelium. However, Th17 cells are plastic. For example, they will become pro-inflammatory cells if being exposed to IL-23. The pathogenic roles of Th17 cells have been well documented in inflammatory bowel disease. Besides, Th17 cells can accumulate in irradiated gut as well. Critically, radiation enteritis and inflammatory bowel disease present several similarities in disease pathology and pathophysiology. Herein, bacterial dysbiosis highly correlates with the pathogenicity of Th17 cells in inflammatory bowel disease. To our knowledge, radiation serves as a factor in inducing bacterial dysbiosis. Using this action, can Th17 cells be incited to promote inflammation in irradiated gut? In this review, we will sequentially introduce polarization of Th17 cells at steady state, radiation-induced Th17 accumulation in the gut, and advances in the management of radiation enteritis by using pharmacological therapy for bacterial dysbiosis.
Collapse
Affiliation(s)
- Lihong Shao
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Man Li
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Boyin Zhang
- Department of Orthopedics Surgery, China-Japan Union Hospital of Jilin University, 130033, Changchun, China.
| | - Pengyu Chang
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, Jilin, 130021, China; Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, 130061, China.
| |
Collapse
|
8
|
Phytoestrogen genistein hinders ovarian oxidative damage and apoptotic cell death-induced by ionizing radiation: co-operative role of ER-β, TGF-β, and FOXL-2. Sci Rep 2020; 10:13551. [PMID: 32782329 PMCID: PMC7419553 DOI: 10.1038/s41598-020-70309-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/14/2020] [Indexed: 01/17/2023] Open
Abstract
Radiotherapy is a well-known cause of premature ovarian failure (POF). Therefore, we investigated the molecular influence of genistein (GEN) on the ovarian reserve of rats exposed to ϒ-radiation. Female Sprague Dawley rats were exposed to a 3.2 Gy γ-radiation to induce POF and/or treated with either GEN (5 mg/kg, i.p.) or Ethinyl estradiol (E2; 0.1 mg/kg, s.c.), once daily for 10 days. GEN was able to conserve primordial follicles stock and population of growing follicles accompanied with reduction in atretic follicles. GEN restored the circulating estradiol and anti-Müllerian hormone levels which were diminished after irradiation. GEN has potent antioxidant activity against radiation-mediated oxidative stress through upregulating endogenous glutathione levels and glutathione peroxidase activity. Mechanistically, GEN inhibited the intrinsic pathway of apoptosis by repressing Bax expression and augmenting Bcl-2 expression resulted in reduced Bax/Bcl-2 ratio with subsequent reduction in cytochrome c and caspase 3 expression. These promising effects of GEN are associated with improving granulosa cells proliferation. On the molecular basis, GEN reversed ovarian apoptosis through up-regulation of ER-β and FOXL-2 with downregulation of TGF-β expression, therefore inhibiting transition of primordial follicles to more growing follicles. GEN may constitute a novel therapeutic modality for safeguarding ovarian function of females' cancer survivors.
Collapse
|
9
|
Piper M, Mueller AC, Karam SD. The interplay between cancer associated fibroblasts and immune cells in the context of radiation therapy. Mol Carcinog 2020; 59:754-765. [PMID: 32363633 DOI: 10.1002/mc.23205] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
Fibroblasts are a key component of the tumor microenvironment (TME) that can serve as a scaffold for tumor cell migration and augment the tumor's ability to withstand harsh conditions. When activated by external or endogenous stimuli, normal fibroblasts become cancer associated fibroblasts (CAFs), a heterogeneous group of stromal cells in the tumor that are phenotypically and epigenetically different from normal fibroblasts. Dynamic crosstalk between cancer cells, immune cells, and CAFs through chemokines and surface signaling makes the TME conducive to tumor growth. When activated, CAFs promote tumorigenesis and metastasis through several phenomena including regulation of tumor immunity, metabolic reprogramming of the TME, extracellular matrix remodeling and contraction, and induction of therapeutic resistance. Ionizing radiation (radiation theraphy [RT]) is a potent immunological stimulant that has been shown to increase cytotoxic Teff infiltration and IFN-I stimulated genes. RT, however, is unable to overcome the infiltration and activation of immunosuppressive cells which can contribute to tumor progression. Another paradox of RT is that, while very effective at killing cancer cells, it can contribute to the formation of CAFs. This review examines how the interplay between CAFs and immune cells during RT contributes to organ fibrosis, immunosuppression, and tumor growth. We focus on targeting mechanistic pathways of CAF formation as a potentially effective strategy not only for preventing organ fibrosis, but also in hampering tumor progression in response to RT.
Collapse
Affiliation(s)
- Miles Piper
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Beauford SS, Kumari A, Garnett-Benson C. Ionizing radiation modulates the phenotype and function of human CD4+ induced regulatory T cells. BMC Immunol 2020; 21:18. [PMID: 32299365 PMCID: PMC7164225 DOI: 10.1186/s12865-020-00349-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The use of immunotherapy strategies for the treatment of advanced cancer is rapidly increasing. Most immunotherapies rely on induction of CD8+ tumor-specific cytotoxic T cells that are capable of directly killing cancer cells. Tumors, however, utilize a variety of mechanisms that can suppress anti-tumor immunity. CD4+ regulatory T cells can directly inhibit cytotoxic T cell activity and these cells can be recruited, or induced, by cancer cells allowing escape from immune attack. The use of ionizing radiation as a treatment for cancer has been shown to enhance anti-tumor immunity by several mechanisms including immunogenic tumor cell death and phenotypic modulation of tumor cells. Less is known about the impact of radiation directly on suppressive regulatory T cells. In this study we investigate the direct effect of radiation on human TREG viability, phenotype, and suppressive activity. RESULTS Both natural and TGF-β1-induced CD4+ TREG cells exhibited increased resistance to radiation (10 Gy) as compared to CD4+ conventional T cells. Treatment, however, decreased Foxp3 expression in natural and induced TREG cells and the reduction was more robust in induced TREGS. Radiation also modulated the expression of signature iTREG molecules, inducing increased expression of LAG-3 and decreased expression of CD25 and CTLA-4. Despite the disconcordant modulation of suppressive molecules, irradiated iTREGS exhibited a reduced capacity to suppress the proliferation of CD8+ T cells. CONCLUSIONS Our findings demonstrate that while human TREG cells are more resistant to radiation-induced death, treatment causes downregulation of Foxp3 expression, as well as modulation in the expression of TREG signature molecules associated with suppressive activity. Functionally, irradiated TGF-β1-induced TREGS were less effective at inhibiting CD8+ T cell proliferation. These data suggest that doses of radiotherapy in the hypofractionated range could be utilized to effectively target and reduce TREG activity, particularly when used in combination with cancer immunotherapies.
Collapse
Affiliation(s)
- Samantha S Beauford
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Anita Kumari
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA
| | - Charlie Garnett-Benson
- Department of Biology, Georgia State University, 161 Jesse Hill Jr. Dr, Atlanta, GA, 30303, USA.
| |
Collapse
|
11
|
Gao YL, Shao LH, Dong LH, Chang PY. Gut commensal bacteria, Paneth cells and their relations to radiation enteropathy. World J Stem Cells 2020; 12:188-202. [PMID: 32266051 PMCID: PMC7118286 DOI: 10.4252/wjsc.v12.i3.188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/12/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
In steady state, the intestinal epithelium forms an important part of the gut barrier to defend against luminal bacterial attack. However, the intestinal epithelium is compromised by ionizing irradiation due to its inherent self-renewing capacity. In this process, small intestinal bacterial overgrowth is a critical event that reciprocally alters the immune milieu. In other words, intestinal bacterial dysbiosis induces inflammation in response to intestinal injuries, thus influencing the repair process of irradiated lesions. In fact, it is accepted that commensal bacteria can generally enhance the host radiation sensitivity. To address the determination of radiation sensitivity, we hypothesize that Paneth cells press a critical “button” because these cells are central to intestinal health and disease by using their peptides, which are responsible for controlling stem cell development in the small intestine and luminal bacterial diversity. Herein, the most important question is whether Paneth cells alter their secretion profiles in the situation of ionizing irradiation. On this basis, the tolerance of Paneth cells to ionizing radiation and related mechanisms by which radiation affects Paneth cell survival and death will be discussed in this review. We hope that the relevant results will be helpful in developing new approaches against radiation enteropathy.
Collapse
Affiliation(s)
- Yan-Li Gao
- Department of Pediatric Ultrasound, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hong Shao
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Hua Dong
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Peng-Yu Chang
- Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun 130021, Jilin Province, China
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
12
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Savage T, Pandey S, Guha C. Postablation Modulation after Single High-Dose Radiation Therapy Improves Tumor Control via Enhanced Immunomodulation. Clin Cancer Res 2019; 26:910-921. [PMID: 31757878 DOI: 10.1158/1078-0432.ccr-18-3518] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 07/12/2019] [Accepted: 11/13/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Radiotherapy (RT) is frequently used for local control of solid tumors using equal dose per fraction. Recently, single high-dose radiation has been used for ablation of solid tumors. In this report, we provide a novel immunological basis for radiation dose fractionation consisting of a single high-dose radiotherapy, followed by postablation modulation (PAM) with four daily low-dose fractions (22 Gy + 0.5 Gy × 4) to reprogram the tumor microenvironment by diminishing immune suppression, enabling infiltration of effector cells and increasing efficacy of tumor control. EXPERIMENTAL DESIGN Palpable 3LL and 4T1 tumors in C57Bl/6 and Balb/c mice were irradiated with the Small-Animal Radiation Research Platform irradiator, and tumor growth and survival were monitored. Immunomodulation of tumor and immune cells in vitro and in vivo characterization of tumor-infiltrating immune effector cells were performed by FACS. For systemic application of PAM-RT, whole-lung irradiation was administered in 4T1-bearing Balb/c mice. RESULTS We report significant tumor growth delays and increased survival in 3LL tumor-bearing mice with PAM. Primary tumor PAM-RT increased infiltration of immune effector cells and decreased Treg in irradiated tumors and secondary lymphoid organs. In a model of murine metastatic breast cancer (4T1), we demonstrated that systemic PAM-RT to the whole lung, 12 days after primary tumor ablative radiotherapy, increased survival with suppression of pulmonary metastases. CONCLUSIONS We provide a novel immunologic basis for radiation dose fractionation consisting of a single high dose of radiotherapy followed by daily low-dose PAM-RT fractionation to improve the immunogenic potential of ablative radiotherapy.
Collapse
Affiliation(s)
- Talicia Savage
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Sanjay Pandey
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
14
|
Lennon S, Oweida A, Milner D, Phan AV, Bhatia S, Van Court B, Darragh L, Mueller AC, Raben D, Martínez-Torrecuadrada JL, Pitts TM, Somerset H, Jordan KR, Hansen KC, Williams J, Messersmith WA, Schulick RD, Owens P, Goodman KA, Karam SD. Pancreatic Tumor Microenvironment Modulation by EphB4-ephrinB2 Inhibition and Radiation Combination. Clin Cancer Res 2019; 25:3352-3365. [PMID: 30944125 DOI: 10.1158/1078-0432.ccr-18-2811] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/14/2018] [Accepted: 02/15/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE A driving factor in pancreatic ductal adenocarcinoma (PDAC) treatment resistance is the tumor microenvironment, which is highly immunosuppressive. One potent immunologic adjuvant is radiotherapy. Radiation, however, has also been shown to induce immunosuppressive factors, which can contribute to tumor progression and formation of fibrotic tumor stroma. To capitalize on the immunogenic effects of radiation and obtain a durable tumor response, radiation must be rationally combined with targeted therapies to mitigate the influx of immunosuppressive cells and fibrosis. One such target is ephrinB2, which is overexpressed in PDAC and correlates negatively with prognosis.Experimental Design: On the basis of previous studies of ephrinB2 ligand-EphB4 receptor signaling, we hypothesized that inhibition of ephrinB2-EphB4 combined with radiation can regulate the microenvironment response postradiation, leading to increased tumor control in PDAC. This hypothesis was explored using both cell lines and in vivo human and mouse tumor models. RESULTS Our data show this treatment regimen significantly reduces regulatory T-cell, macrophage, and neutrophil infiltration and stromal fibrosis, enhances effector T-cell activation, and decreases tumor growth. Furthermore, our data show that depletion of regulatory T cells in combination with radiation reduces tumor growth and fibrosis. CONCLUSIONS These are the first findings to suggest that in PDAC, ephrinB2-EphB4 interaction has a profibrotic, protumorigenic role, presenting a novel and promising therapeutic target.
Collapse
Affiliation(s)
- Shelby Lennon
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ayman Oweida
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Dallin Milner
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Andy V Phan
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laurel Darragh
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Adam C Mueller
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David Raben
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jorge L Martínez-Torrecuadrada
- Crystallography and Protein Engineering Unit, Structural Biology Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Todd M Pitts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hilary Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kimberly R Jordan
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kirk C Hansen
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jason Williams
- Department of Biochemistry, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wells A Messersmith
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Richard D Schulick
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Department of Veterans Affairs, Denver, Colorado
| | - Karyn A Goodman
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.
| |
Collapse
|
15
|
Mercantepe F, Topcu A, Rakici S, Tumkaya L, Yilmaz A. The effects of N-acetylcysteine on radiotherapy-induced small intestinal damage in rats. Exp Biol Med (Maywood) 2019; 244:372-379. [PMID: 30786762 PMCID: PMC6488866 DOI: 10.1177/1535370219831225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Some six million cancer patients currently receive radiotherapy. Radiotherapy eliminates cancer cells by accelerating their death. However, radiotherapy is not selective, and it therefore harms healthy tissues around cancerous tissue. The latest studies have shown that the irradiation of biological materials causes a rapid increase in reactive oxygen species (ROS) in the tissue as a result of exposure of the target molecule to direct and indirect ionization. N-acetylcysteine (NAC) is an antioxidant that permits the elimination of free oxygen radicals and that contributes to glutathione synthesis. Our study, therefore, examined the effects of radiation resulting from radiotherapy on the small intestine at the molecular level, and prospectively considered the potential protective characteristics of NAC against gastrointestinal syndrome resulting from radiotherapy.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Internal Medicine, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Atilla Topcu
- Department of Pharmacology, Recep Tayyip Erdogan University,
Rize 53010, Turkey
| | - Sema Rakici
- Department of Radiation Oncology, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Recep Tayyip Erdogan
University, Rize 53010, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip
Erdogan University, Rize 53010, Turkey
| |
Collapse
|
16
|
Zhang S, Bai W, Tong X, Bu P, Xu J, Xi Y. Correlation between tumor microenvironment-associated factors and the efficacy and prognosis of neoadjuvant therapy for rectal cancer. Oncol Lett 2018; 17:1062-1070. [PMID: 30655866 PMCID: PMC6313063 DOI: 10.3892/ol.2018.9682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 09/20/2018] [Indexed: 01/20/2023] Open
Abstract
The tumor microenvironment contributes to the survival and development of tumor cells and is therefore a key target for cancer therapy. The tumor microenvironment has unique physical and chemical properties and is associated with inflammation and immunity. To examine the correlation between tumor microenvironment-associated factors and the efficacy and prognosis of neoadjuvant therapy for rectal cancer, and to compare the differences between two treatments [neoadjuvant chemotherapy (NAC) vs. neoadjuvant chemoradiotherapy (NACR)], an immunohistochemical method was used to measure the expression levels of CD4+ tumor-infiltrating lymphocytes (TILs), cluster of differentiation (CD)8+TILs, forkhead box P3 (FOXP3)+TILs, cytotoxic T lymphocyte-associated antigen-4+TILs and programmed death ligand-1 (PD-L1)+TILs in 109 patients with rectal cancer, pre- and post-neoadjuvant therapy. The significance of these protein expression patterns was also analyzed using tissue microarrays, and the prognostic significance of these findings evaluated. The results indicated that high levels of CD4+TILs, CD8+TILs and PD-L1+TILs may be associated with favorable responses to neoadjuvant therapy, whereas high levels of FOXP3+TILs were associated with poor therapeutic responses. Expression levels of CD8+TILs and FOXP3+TILs following neoadjuvant therapy were independent prognostic factors and affected the total survival of patients subjected to neoadjuvant therapy for the treatment of rectal cancer. Moreover, the effects of NAC and NACR on the tumor microenvironment may be different.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Wenqi Bai
- Department of Colorectal Surgery, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Xunan Tong
- Departent of Surgery, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Peng Bu
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| | - Jing Xu
- Department of Pathology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanfeng Xi
- Department of Pathology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
17
|
McKelvey KJ, Hudson AL, Back M, Eade T, Diakos CI. Radiation, inflammation and the immune response in cancer. Mamm Genome 2018; 29:843-865. [PMID: 30178305 PMCID: PMC6267675 DOI: 10.1007/s00335-018-9777-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/22/2018] [Indexed: 01/17/2023]
Abstract
Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.
Collapse
Affiliation(s)
- Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia. .,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia. .,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.
| | - Amanda L Hudson
- Bill Walsh Translational Cancer Research Laboratory, Northern Sydney Local Health District Research and the Northern Clinical School, University of Sydney, St Leonards, NSW, 2065, Australia.,Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Michael Back
- Sydney Neuro-Oncology Group, North Shore Private Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Tom Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Connie I Diakos
- Sydney Vital Translational Research Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| |
Collapse
|
18
|
Sathianathen NJ, Krishna S, Konety BR, Griffith TS. The synergy between ionizing radiation and immunotherapy in the treatment of prostate cancer. Immunotherapy 2018; 9:1005-1018. [PMID: 28971750 DOI: 10.2217/imt-2017-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
There has been a surge in the use of immunotherapy for genitourinary malignancies. Immunotherapy is an established treatment for metastatic renal cell carcinoma and nonmuscle invasive bladder cancer, but its potential for treating prostate cancer (PCa) remains under investigation. Despite reported survival benefits, no published Phase III PCa trials using immunotherapy only as a treatment has demonstrated direct antitumor effects by reducing prostate-specific antigen levels. Subsequently, the thought of combining immunotherapy with other treatment modalities has gained traction as a way to achieving optimal results. Based on data from other malignancies, it is hypothesized that radiotherapy and immunotherapy can act synergistically to improve outcomes. We will discuss the clinical potential of combining immune-based treatments with radiotherapy as a treatment for advanced PCa.
Collapse
Affiliation(s)
| | - Suprita Krishna
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
| | - Badrinath R Konety
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.,Center for Immunology, University of Minnesota, Minneapolis, MN, USA.,Microbiology, Immunology, & Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
19
|
Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N. Bowel Radiation Injury: Complexity of the Pathophysiology and Promises of Cell and Tissue Engineering. Cell Transplant 2018; 25:1723-1746. [PMID: 27197023 DOI: 10.3727/096368916x691664] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ionizing radiation is effective to treat malignant pelvic cancers, but the toxicity to surrounding healthy tissue remains a substantial limitation. Early and late side effects not only limit the escalation of the radiation dose to the tumor but may also be life-threatening in some patients. Numerous preclinical studies determined specific mechanisms induced after irradiation in different compartments of the intestine. This review outlines the complexity of the pathogenesis, highlighting the roles of the epithelial barrier in the vascular network, and the inflammatory microenvironment, which together lead to chronic fibrosis. Despite the large number of pharmacological molecules available, the studies presented in this review provide encouraging proof of concept regarding the use of mesenchymal stromal cell (MSC) therapy to treat radiation-induced intestinal damage. The therapeutic efficacy of MSCs has been demonstrated in animal models and in patients, but an enormous number of cells and multiple injections are needed due to their poor engraftment capacity. Moreover, it has been observed that although MSCs have pleiotropic effects, some intestinal compartments are less restored after a high dose of irradiation. Future research should seek to optimize the efficacy of the injected cells, particularly with regard to extending their life span in the irradiated tissue. Moreover, improving the host microenvironment, combining MSCs with other specific regenerative cells, or introducing new tissue engineering strategies could be tested as methods to treat the severe side effects of pelvic radiotherapy.
Collapse
Affiliation(s)
- Lara Moussa
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Benoît Usunier
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Radia Tamarat
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de SÛreté Nucléaire (IRSN), PRP-HOM/SRBE/LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
20
|
Schaue D. A Century of Radiation Therapy and Adaptive Immunity. Front Immunol 2017; 8:431. [PMID: 28443099 PMCID: PMC5387081 DOI: 10.3389/fimmu.2017.00431] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/27/2017] [Indexed: 12/12/2022] Open
Abstract
The coming of age for immunotherapy (IT) as a genuine treatment option for cancer patients through the development of new and effective agents, in particular immune checkpoint inhibitors, has led to a huge renaissance of an old idea, namely to harness the power of the immune system to that of radiation therapy (RT). It is not an overstatement to say that the combination of RT with IT has provided a new conceptual platform that has re-energized the field of radiation oncology as a whole. One only has to look at the immense rise in sessions at professional conferences and in grant applications dealing with this topic to see its emergence as a force, while the number of published reviews on the topic is staggering. At the time of writing, over 97 clinical trials have been registered using checkpoint inhibitors with RT to treat almost 7,000 patients, driven in part by strong competition between pharmaceutical products eager to find their market niche. Yet, for the most part, this enthusiasm is based on relatively limited recent data, and on the clinical success of immune checkpoint inhibitors as single agents. A few preclinical studies on RT-IT combinations have added real value to our understanding of these complex interactions, but many assumptions remain. It seems therefore appropriate to go back in time and pull together what actually has been a long history of investigations into radiation and the immune system (Figure 1) in an effort to provide context for this interesting combination of cancer therapies.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
21
|
Loinard C, Vilar J, Milliat F, Lévy B, Benderitter M. Monocytes/Macrophages Mobilization Orchestrate Neovascularization after Localized Colorectal Irradiation. Radiat Res 2017; 187:549-561. [PMID: 28319461 DOI: 10.1667/rr14398.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In patients undergoing radiotherapy for cancer, radiation dose to healthy tissue can occur, causing microvascular damage. Monocytes that have been shown to promote tissue revascularization comprise the subsets: CD11b+Ly6G-7/4hi/monocyteshi and CD11b+Ly6G-7/4lo/monocyteslo. We hypothesized that monocytes were implicated in postirradiation blood vessel formation. C57Bl6 mice underwent localized colorectal irradiation and were sacrificed at different times after exposure. Bone marrow, spleen, blood and colon were collected. Fourteen days postirradiation, colons expressed proangiogenic actors and adhesion molecules. Monocyteshi, which were the main subset of infiltrating monocytes, mobilized to the blood from spleen and bone marrow, peaking at day 14 postirradiation, and were associated with lymphocyte Th1 polarization. At day 28 postirradiation, angiographic score and capillary density increased by ∼1.8-fold, and then returned to nonirradiated levels at day 60. Clodronate-mediated depletion of circulating monocytes prior to irradiation resulted in a ∼1.4-fold decrease in angiographic score and capillary density compared to the nontreated control. Histological analysis of the colon in clodronate-treated mice revealed a massive decrease of macrophage and lymphocyte infiltration as well as reduced collagen deposition in crypt area at day 21. However, late depletion of monocytes from day 25 postirradiation had no effect on fibrotic process. These findings demonstrate a central role for monocyte/macrophage activation in the orchestration of a neovascularization mechanism after localized colorectal irradiation.
Collapse
Affiliation(s)
- Céline Loinard
- a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, L3R, Fontenay-aux-Roses, France
| | - José Vilar
- b Inserm UMR-U970, PARCC, Paris Research Cardiovascular Research Center, Paris, France
| | - Fabien Milliat
- a Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, L3R, Fontenay-aux-Roses, France
| | - Bernard Lévy
- c Institut des Vaisseaux et du Sang, Paris, France
| | - Marc Benderitter
- d Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, Fontenay-aux-Roses, France
| |
Collapse
|
22
|
Herrera FG, Bourhis J, Coukos G. Radiotherapy combination opportunities leveraging immunity for the next oncology practice. CA Cancer J Clin 2017; 67:65-85. [PMID: 27570942 DOI: 10.3322/caac.21358] [Citation(s) in RCA: 347] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Approximately one-half of patients with newly diagnosed cancer and many patients with persistent or recurrent tumors receive radiotherapy (RT), with the explicit goal of eliminating tumors through direct killing. The current RT dose and schedule regimens have been empirically developed. Although early clinical studies revealed that RT could provoke important responses not only at the site of treatment but also on remote, nonirradiated tumor deposits-the so-called "abscopal effect"- the underlying mechanisms were poorly understood and were not therapeutically exploited. Recent work has elucidated the immune mechanisms underlying these effects and has paved the way for developing combinations of RT with immune therapy. In the wake of recent therapeutic breakthroughs in the field of immunotherapy, rational combinations of immunotherapy with RT could profoundly change the standard of care for many tumor types in the next decade. Thus, a deep understanding of the immunologic effects of RT is urgently needed to design the next generation of therapeutic combinations. Here, the authors review the immune mechanisms of tumor radiation and summarize the preclinical and clinical evidence on immunotherapy-RT combinations. Furthermore, a framework is provided for the practicing clinician and the clinician investigator to guide the development of novel combinations to more rapidly advance this important field. CA Cancer J Clin 2017;67:65-85. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Fernanda G Herrera
- Radiation Oncologist, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Instructor, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Jean Bourhis
- Professor, Chief of Radiation Oncology Service, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Professor, Director, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Director, Ludwig Institute for Cancer Research, University of Lausanne Branch, Lausanne, Switzerland
| |
Collapse
|
23
|
Linard C, Strup-Perrot C, Lacave-Lapalun JV, Benderitter M. Flagellin preconditioning enhances the efficacy of mesenchymal stem cells in an irradiation-induced proctitis model. J Leukoc Biol 2016; 100:569-80. [PMID: 26992430 DOI: 10.1189/jlb.3a0915-393r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/29/2016] [Indexed: 12/12/2022] Open
Abstract
The success of mesenchymal stem cell transplantation for proctitis depends not only on cell donors but also on host microenvironmental factors, which play a major role in conditioning mesenchymal stem cell immunosuppressive action and repair. This study sought to determine if flagellin, a TLR5 ligand, can enhance the mesenchymal stem cell treatment efficacy in radiation-induced proctitis. With the use of a colorectal model of 27 Gy irradiation in rats, we investigated and compared the effects on immune capacity and remodeling at 28 d after irradiation of the following: 1) systemic mesenchymal stem cell (5 × 10(6)) administration at d 7 after irradiation, 2) administration of flagellin at d 3 and systemic mesenchymal stem cell administration at d 7, and 3) in vitro preconditioning of mesenchymal stem cells with flagellin, 24 h before their administration on d 7. The mucosal CD8(+) T cell population was normalized after treatment with flagellin-preconditioned mesenchymal stem cells or flagellin plus mesenchymal stem cells, whereas mesenchymal stem cells alone did not alter the radiation-induced elevation of CD8(+) T cell frequency. Mesenchymal stem cell treatment returned the irradiation-elevated frequency of CD25(+) cells in the mucosa-to-control levels, whereas both flagellin-preconditioned mesenchymal stem cell and flagellin-plus-mesenchymal stem cell treatment each significantly increased not only CD25(+) cell frequency but also forkhead box p3 and IL-2Rα expression. Specifically, IL-10 was overexpressed after flagellin-preconditioned mesenchymal stem cell treatment. Analysis of collagen expression showed that the collagen type 1/collagen type 3 ratio, an indicator of wound-healing maturation, was low in the irradiated and mesenchymal stem cell-treated groups and returned to the normal level only after the flagellin-preconditioned mesenchymal stem cell treatment. This was associated with a reduction in myofibroblast accumulation. In a proctitis model, flagellin-preconditioned mesenchymal stem cells improved colonic immune capacity and enhanced tissue remodeling.
Collapse
Affiliation(s)
- Christine Linard
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Carine Strup-Perrot
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | | | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| |
Collapse
|
24
|
Bessout R, Demarquay C, Moussa L, René A, Doix B, Benderitter M, Sémont A, Mathieu N. TH17 predominant T-cell responses in radiation-induced bowel disease are modulated by treatment with adipose-derived mesenchymal stromal cells. J Pathol 2015; 237:435-46. [PMID: 26177977 DOI: 10.1002/path.4590] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 06/23/2015] [Accepted: 06/30/2015] [Indexed: 12/12/2022]
Abstract
Radiation proctitis is an insidious disease associated with substantial morbidity and mortality. It may develop following the treatment of several cancers by radiotherapy when normal colorectal tissues are present in the irradiation field. There is no unified approach for the assessment and treatment of this disease, partly due to insufficient knowledge about the mechanism involved in the development of radiation proctitis. However, unresolved inflammation is hypothesized to have an important role in late side effects. This study aimed to analyse the involvement of specific immunity in colorectal damage developing after localized irradiation, and evaluate the benefit of immunomodulatory mesenchymal stromal cells isolated from adipose tissue (Ad-MSCs) for reduction of late side effects. Our experimental model of colorectal irradiation induced severe colonic mucosal damage and fibrosis that was associated with T-cell infiltration. Immune cell activation was investigated; adoptive transfer of T cells in nude rats showed stronger colonization by T cells isolated from irradiated rats. The predominant role of T cells in late radiation-induced damage and regeneration processes was highlighted by in vivo depletion experiments. Treatments using Ad-MSCs reduced T-cell infiltration in the colon and reduced established colonic damage as measured by histological score, functional circular muscle contractibility, and collagen deposition. Here, we have demonstrated for the first time the predominance of the TH17 population compared to TH1 and TH2 in radiation-induced bowel disease, and that this is reduced after Ad-MSC treatment. Additionally, we demonstrated in vitro that IL17 acts directly on colonic smooth muscle cells to induce expression of pro-inflammatory genes that could participate in the development of radiation-induced injury. Our data demonstrate that the TH17 population is specifically induced during development of radiation-induced side effects in the colon. Moreover, Ad-MSC treatment modulates the TH17 population and reduces the extracellular matrix remodelling process induced following irradiation.
Collapse
Affiliation(s)
- Raphaëlle Bessout
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Christelle Demarquay
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Lara Moussa
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Alice René
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Bastien Doix
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Alexandra Sémont
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| | - Noëlle Mathieu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LR2I, Fontenay-aux-Roses, France
| |
Collapse
|
25
|
Osteopontin knockout does not influence the severity of rectal damage in a preclinical model of radiation proctitis in mice. Dig Dis Sci 2015; 60:1633-44. [PMID: 25577272 DOI: 10.1007/s10620-014-3520-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 12/30/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND Radiation damage to the normal gut is a dose-limiting factor in the application of radiation therapy to treat abdominal and pelvic cancers. All tissue cell types react in concert to orchestrate an acute inflammatory reaction followed by a delayed chronic scarring process. Osteopontin (OPN) is a matricellular protein known to be involved in various physiological but also pathological processes such as tissue inflammation and fibrosis. AIMS The aim of our study was to determine whether OPN knockout influences the severity of radiation proctitis and to investigate the role of OPN in the development of radiation-induced gut damage. RESULTS Here we show that human radiation proctitis is associated with increased immunostaining of the intracellular and extracellular/matrix-linked isoforms of OPN. Moreover, endothelial cells in vitro and rectal tissue in a preclinical model of radiation proctitis in mice both respond to radiation exposure by a sustained increase in OPN mRNA and protein levels. Genetic deficiency of OPN did not influence radiation-induced rectal damage and was associated with significantly decreased animal survival. The acute and late radiation injury scores were similar in OPN-null mice compared with their control littermates. CONCLUSION This study shows that in our model and given the pleiotropic actions of OPN in tissue inflammation and fibrosis, further studies are necessary to understand the precise roles of OPN in radiation-induced proctitis and to determine whether OPN is a useful therapeutic tool in prevention of radiation-induced intestinal tissue injury.
Collapse
|
26
|
Wang H, Sun RT, Li Y, Yang YF, Xiao FJ, Zhang YK, Wang SX, Sun HY, Zhang QW, Wu CT, Wang LS. HGF Gene Modification in Mesenchymal Stem Cells Reduces Radiation-Induced Intestinal Injury by Modulating Immunity. PLoS One 2015; 10:e0124420. [PMID: 25933295 PMCID: PMC4416803 DOI: 10.1371/journal.pone.0124420] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/02/2015] [Indexed: 02/05/2023] Open
Abstract
Background Effective therapeutic strategies to address intestinal complications after radiation exposure are currently lacking. Mesenchymal stem cells (MSCs), which display the ability to repair the injured intestine, have been considered as delivery vehicles for repair genes. In this study, we evaluated the therapeutic effect of hepatocyte growth factor (HGF)-gene-modified MSCs on radiation-induced intestinal injury (RIII). Methods Female 6- to 8-week-old mice were radiated locally at the abdomen with a single 13-Gy dose of radiation and then treated with saline control, Ad-HGF or Ad-Null-modified MSCs therapy. The transient engraftment of human MSCs was detected via real-time PCR and immunostaining. The therapeutic effects of non- and HGF-modified MSCs were evaluated via FACS to determine the lymphocyte immunophenotypes; via ELISA to measure cytokine expression; via immunostaining to determine tight junction protein expression; via PCNA staining to examine intestinal epithelial cell proliferation; and via TUNEL staining to detect intestinal epithelial cell apoptosis. Results The histopathological recovery of the radiation-injured intestine was significantly enhanced following non- or HGF-modified MSCs treatment. Importantly, the radiation-induced immunophenotypic disorders of the mesenteric lymph nodes and Peyer’s patches were attenuated in both MSCs-treated groups. Treatment with HGF-modified MSCs reduced the expression and secretion of inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ), increased the expression of the anti-inflammatory cytokine IL-10 and the tight junction protein ZO-1, and promoted the proliferation and reduced the apoptosis of intestinal epithelial cells. Conclusions Treatment of RIII with HGF-gene-modified MSCs reduces local inflammation and promotes the recovery of small intestinal histopathology in a mouse model. These findings might provide an effective therapeutic strategy for RIII.
Collapse
Affiliation(s)
- Hua Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Rui-Ting Sun
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, 100022, PR China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yue-Feng Yang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Feng-Jun Xiao
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Yi-Kun Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Shao-Xia Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Hui-Yan Sun
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Qun-Wei Zhang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
| | - Chu-Tse Wu
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University,Chengdu, 610041, PR China
- * E-mail: (CW); (LW)
| | - Li-Sheng Wang
- Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing, 100850, PR China
- * E-mail: (CW); (LW)
| |
Collapse
|
27
|
Persa E, Balogh A, Sáfrány G, Lumniczky K. The effect of ionizing radiation on regulatory T cells in health and disease. Cancer Lett 2015; 368:252-61. [PMID: 25754816 DOI: 10.1016/j.canlet.2015.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
Treg cells are key elements of the immune system which are responsible for the immune suppressive phenotype of cancer patients. Interaction of Treg cells with conventional anticancer therapies might fundamentally influence cancer therapy response rates. Radiotherapy, apart from its direct tumor cell killing potential, has a contradictory effect on the antitumor immune response: it augments certain immune parameters, while it depresses others. Treg cells are intrinsically radioresistant due to reduced apoptosis and increased proliferation, which leads to their systemic and/or intratumoral enrichment. While physiologically Treg suppression is not enhanced by irradiation, this is not the case in a tumorous environment, where Tregs acquire a highly suppressive phenotype, which is further increased by radiotherapy. This is the reason why the interest for combined radiotherapy and immunotherapy approaches focusing on the abrogation of Treg suppression has increased in cancer therapy in the last few years. Here we summarize the basic mechanisms of Treg radiation response both in healthy and cancerous environments and discuss Treg-targeted pre-clinical and clinical immunotherapy approaches used in combination with radiotherapy. Finally, the discrepant findings regarding the predictive value of Tregs in therapy response are also reviewed.
Collapse
Affiliation(s)
- Eszter Persa
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Andrea Balogh
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Géza Sáfrány
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | - Katalin Lumniczky
- Frédéric Joliot-Curie National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary.
| |
Collapse
|
28
|
Kim KO, Park H, Chun M, Kim HS. Immunomodulatory effects of high-protein diet with resveratrol supplementation on radiation-induced acute-phase inflammation in rats. J Med Food 2014; 17:963-71. [PMID: 25054274 DOI: 10.1089/jmf.2013.2976] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We hypothesized that a high-protein diet and/or resveratrol supplementation will improve acute inflammatory responses in rats after receiving experimental abdominal radiation treatment (ART). Based on our previous study, the period of 10 days after ART was used as an acute inflammation model. Rats were exposed to a radiation dose of 17.5 Gy and were supplied with a control (C), 30% high-protein diet (HP), resveratrol supplementation (RES), or HP with RES diet ([HP+RES]). At day 10 after ART, we measured profiles of lipids, proteins, and immune cells in blood. The levels of clusters of differentiating 4(+) (CD4(+)) cells and regulatory T cells, serum proinflammatory cytokines, and 8-hydroxy-2'-deoxyguanosine (8-OHdG) in urine were also measured. ART caused significant disturbances of lipid profiles by increasing triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C), and decreasing high-density lipoprotein cholesterol. The proinflammatroy cytokine levels were also increased by ART. All the experimental diets (HP, RES, and [HP+RES]) significantly decreased levels of TG, monocytes, proinflammatory cytokines, and 8-OHdG, whereas the platelet counts were increased. In addition, the HP and [HP+RES] diets decreased the concentrations of plasma LDL-C and total cholesterol. Also, the HP and RES diets decreased regulatory T cells compared with those of the control diet in ART group. Further, the HP diet led to a significant recovery of white blood cell counts, as well as increased percentages of lymphocyte and decreased percentages of neutrophils. In summary, RES appeared to be significantly effective in minimizing radiation-induced damage to lipid metabolism and immune responses. Our study also demonstrated the importance of dietary protein intake in recovering from acute inflammation by radiation.
Collapse
Affiliation(s)
- Kyoung-Ok Kim
- 1 Division of Food and Nutritional Science & Life Systems, Sookmyung Women's University , Seoul, Korea
| | | | | | | |
Collapse
|
29
|
Lim JY, Brockstedt DG, Lord EM, Gerber SA. Radiation therapy combined with Listeria monocytogenes-based cancer vaccine synergize to enhance tumor control in the B16 melanoma model. Oncoimmunology 2014; 3:e29028. [PMID: 25083327 PMCID: PMC4106167 DOI: 10.4161/onci.29028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 01/13/2023] Open
Abstract
Conceptually, the immune system may profoundly influence the efficacy of radiation therapy. Compelling evidence has recently emerged revealing the capacity of local radiation therapy (RT) to induce antitumor immune responses and sparked interest in combining RT with immunotherapy to promote tumor-specific immunity. A Listeria monocytogenes (Lm)-based cancer vaccine engineered to express tumor-associated antigen has been shown to effectively retard tumor growth by cell-mediated immune mechanisms. We hypothesized that combining RT and Lm vaccine will result in synergistic effects that enhance tumor control. Collectively, our data demonstrate that combination therapy significantly delayed B16 melanoma tumor growth by a mechanism partly dependent on CD8+ T cells. Radiotherapy and Lm vaccine each induce different aspects of antitumor immunity, resulting in an overall increase in intratumoral numbers of activated T cells, antigen-specific CD8+ T cells, natural killer (NK) cells and levels of effector molecules, such as interferon γ (IFNγ) and granzyme B. Thus, radiation and Lm vaccine combination therapy is a promising new strategy for the treatment of malignant disease, and further understanding of the mechanisms that underlie efficacy is required to optimize the dosage and schedule for administering the two treatments.
Collapse
Affiliation(s)
- Joanne Yh Lim
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY USA
| | | | - Edith M Lord
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY USA
| | - Scott A Gerber
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY USA
| |
Collapse
|
30
|
Bessout R, Sémont A, Demarquay C, Charcosset A, Benderitter M, Mathieu N. Mesenchymal stem cell therapy induces glucocorticoid synthesis in colonic mucosa and suppresses radiation-activated T cells: new insights into MSC immunomodulation. Mucosal Immunol 2014; 7:656-69. [PMID: 24172849 DOI: 10.1038/mi.2013.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/16/2013] [Indexed: 02/04/2023]
Abstract
Non-neoplastic tissues around an abdomino-pelvic tumor can be damaged by the radiotherapy protocol, leading to chronic gastrointestinal complications that affect the quality of life with substantial mortality. Stem cell-based approaches using immunosuppressive bone marrow mesenchymal stem cells (MSCs) are promising cell therapy tools. In a rat model of radiation proctitis, we evidenced that a single MSC injection reduces colonic mucosa damages induced by ionizing radiation with improvement of the re-epithelization process for up to 21 days. Immune cell infiltrate and inflammatory molecule expressions in the colonic mucosa were investigated. We report that MSC therapy specifically reduces T-cell infiltration and proliferation, and increases apoptosis of radiation-activated T cells. We assessed the underlying molecular mechanisms and found that interleukin-10 and regulatory T lymphocytes are not involved in the immunosuppressive process in this model. However, an increased level of corticosterone secretion and HSD11b1 (11β-hydroxysteroid dehydrogenase type 1)-steroidogenic enzyme expression was detected in colonic mucosa 21 days after MSC treatment. Moreover, blocking the glucocorticoid (GC) receptor using the RU486 molecule statistically enhances the allogenic lymphocyte proliferation inhibited by MSCs in vitro and abrogates the mucosal protection induced by MSC treatment in vivo. Using the irradiation model, we found evidence for a new MSC immunosuppressive mechanism involving GCs.
Collapse
Affiliation(s)
- R Bessout
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTE, Fontenay-aux-Roses, France
| | - A Sémont
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTE, Fontenay-aux-Roses, France
| | - C Demarquay
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTE, Fontenay-aux-Roses, France
| | - A Charcosset
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTE, Fontenay-aux-Roses, France
| | - M Benderitter
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTE, Fontenay-aux-Roses, France
| | - N Mathieu
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-HOM, SRBE, LRTE, Fontenay-aux-Roses, France
| |
Collapse
|
31
|
Son CH, Bae JH, Shin DY, Lee HR, Yang K, Park YS. Antitumor effect of dendritic cell loaded ex vivo and in vivo with tumor-associated antigens in lung cancer model. Immunol Invest 2014; 43:447-62. [PMID: 24654594 DOI: 10.3109/08820139.2014.884576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various ex vivo or in vivo loading protocols have been developed or evaluated for the delivery of tumor antigens to dendritic cells (DCs). We compared the antitumor effect of mature DCs electroporation-pulsed (EP/mDC) ex vivo with tumor cell lysate and immature DCs (iDCs) injected into the tumor apoptosed by ionizing radiation (IR/iDC) in lung cancer model. DCs were generated from bone marrow of C57BL/6 mice. Ionizing radiation (IR) was applied at a dose of 10 Gy to the tumor on the right thigh. iDCs were intratumorally injected into the irradiated tumor and EP/mDC was injected subcutaneously in the right flank. DC injection induced strong tumor-specific immunity against Lewis lung carcinoma, as compared with the tumor-bearing control and IR only treated mice. The growth of a distant tumor on the right and left flank was inhibited by IR/iDC and EP/mDC. Particularly, IR/iDC resulted in a more significant inhibition of tumor growth and prolonged survival time. It was related to increase of tumor-specific interferon-gamma, cytotoxicity, and decrease of regulatory T-cells. The results indicate that DCs electroporation-pulsed with tumor cell lysate induce a potent antitumor effect, but that iDCs intratumoral injected into the irradiated tumor induce a more potent antitumor effect.
Collapse
Affiliation(s)
- Cheol-Hun Son
- Dongnam Institute of Radiological & Medical Sciences , Busan 619-953 , South Korea
| | | | | | | | | | | |
Collapse
|
32
|
Garg S, Wang W, Prabath BG, Boerma M, Wang J, Zhou D, Hauer-Jensen M. Bone marrow transplantation helps restore the intestinal mucosal barrier after total body irradiation in mice. Radiat Res 2014; 181:229-39. [PMID: 24568131 DOI: 10.1667/rr13548.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bone marrow transplantation (BMT) substantially improves 10-day survival after total body irradiation (TBI), consistent with an effect on intestinal radiation death. Total body irradiation, in addition to injuring the intestinal epithelium, also perturbs the mucosal immune system, the largest immune system in the body. This study focused on how transplanted bone marrow cells (BMCs) help restore mucosal immune cell populations after sublethal TBI (8.0 Gy). We further evaluated whether transplanted BMCs: (a) home to sites of radiation injury using green fluorescent protein labeled bone marrow; and (b) contribute to restoring the mucosal barrier in vivo. As expected, BMT accelerated recovery of peripheral blood (PB) cells. In the intestine, BMT was associated with significant early recovery of mucosal granulocytes (P = 0.005). Bone marrow transplantation did not affect mucosal macrophages or lymphocyte populations at early time points, but enhanced the recovery of these cells from day 14 onward (P = 0.03). Bone marrow transplantation also attenuated radiation-induced increase of intestinal CXCL1 and restored IL-10 levels (P = 0.001). Most importantly, BMT inhibited the post-radiation increase in intestinal permeability after 10 Gy TBI (P = 0.02) and modulated the expression of tight junction proteins (P = 0.01-0.05). Green fluorescent protein-positive leukocytes were observed both in intestinal tissue and in PB. These findings strongly suggest that BMT, in addition to enhancing general hematopoietic and immune system recovery, helps restore the intestinal immune system and enhances intestinal mucosal barrier function. These findings may be important in the development and understanding of strategies to alleviate or treat intestinal radiation toxicity.
Collapse
Affiliation(s)
- Sarita Garg
- a Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | | | | | | | | | | |
Collapse
|
33
|
Lacave-Lapalun JV, Benderitter M, Linard C. Flagellin and LPS each restores rat lymphocyte populations after colorectal irradiation. J Leukoc Biol 2014; 95:931-40. [PMID: 24532644 DOI: 10.1189/jlb.0413209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced gastrointestinal toxicity, including its shift of the immune balance, remains a major limitation to delivering tumoricidal doses of abdominal radiation therapy. This study evaluates the effect on the colon's innate and adaptive immune responses to moderate irradiation doses and the therapeutic possibilities of maintaining immune homeostasis. We investigated whether administration of the TLR4 agonist LPS or of the TLR5 agonist flagellin, 3 days after a single 20-Gy colorectal irradiation, modified recruitment of neutrophils, NK cells, or CD4⁺ or CD8⁺ T cells, 7 days postirradiation. Flow cytometric analysis showed that LPS and flagellin reduced irradiation-induced neutrophil infiltration and normalized NK frequency. LPS normalized the CD4⁺ population and enhanced the CD8⁺ population, whereas flagellin maintained the radiation-induced elevation in the frequencies of both. Irradiation also modified TLR4 and TLR5 expression on the surface of both populations, but LPS and flagellin each subsequently normalized them. LPS and flagellin were strong inducers of Th1 cytokines (IL-12p35, IL-12p40, and IFN-γ) and thus, contributed to a shift from the Th2 polarization induced by irradiation toward a Th1 polarization, confirmed by an increase of the T-bet:GATA3 ratio, which assesses the Th1 or Th2 status in mixed cell populations. LPS and flagellin treatment resulted in overexpression of FoxP3, IL-2Rα (CD25), IL-2, and OX40, all expressed specifically and involved in high levels of Treg cell expansion. We observed no variation in Treg function-related expression of IL-10 or CTLA-4. These data suggest that the use of TLR ligands limits the effects of irradiation on innate and adaptive immunity.
Collapse
Affiliation(s)
- Jean-Victor Lacave-Lapalun
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Christine Linard
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| |
Collapse
|
34
|
Inflammation and immunity in radiation damage to the gut mucosa. BIOMED RESEARCH INTERNATIONAL 2013; 2013:123241. [PMID: 23586015 PMCID: PMC3614034 DOI: 10.1155/2013/123241] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/18/2013] [Indexed: 12/20/2022]
Abstract
Erythema was observed on the skin of the first patients treated with radiation therapy. It is in particular to reduce this erythema, one feature of tissue inflammation, that prescribed dose to the tumor site started to be fractionated. It is now well known that radiation exposure of normal tissues generates a sustained and apparently uncontrolled inflammatory process. Radiation-induced inflammation is always observed, often described, sometimes partly explained, but still today far from being completely understood. The thing with the gut and especially the gut mucosa is that it is at the frontier between the external milieu and the organism, is in contact with a plethora of commensal and foreign antigens, possesses a dense-associated lymphoid tissue, and is particularly radiation sensitive because of a high mucosal turnover rate. All these characteristics make the gut mucosa a strong responsive organ in terms of radiation-induced immunoinflammation. This paper will focus on what has been observed in the normal gut and what remains to be done concerning the immunoinflammatory response following localized radiation exposure.
Collapse
|
35
|
Partial depletion of regulatory T cells does not influence the inflammation caused by high dose hemi-body irradiation. PLoS One 2013; 8:e56607. [PMID: 23409194 PMCID: PMC3569437 DOI: 10.1371/journal.pone.0056607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
There is clinical interest in the modulation of regulatory T cells for cancer therapy. The safety of these therapies in combination with conventional anti-cancer therapies, including radiation therapy, can be studied in animal models. The effects of partial depletion of regulatory T (Treg) cells with an anti-CD25 antibody in conjunction with ionizing radiation on inflammation and tissue injury were analyzed in C57BL/6 mice. An anti-CD25 antibody (PC61) was administered 3 days prior to 13 Gy lower-half hemi-body irradiation (HBI). The blood, spleen, mesenteric lymph nodes (mLNs) and inguinal lymph nodes (iLNs) were harvested at various times thereafter. Alterations in the proportion of leukocyte subsets including CD4+ T cells, CD8+ T cells, Treg cells, B cells, NK cells, NK1.1+ T cells, macrophages and granulocytes were analyzed by FACS. The lungs, liver, pancreas, stomach, jejunum, duodenum, ileum, colon and kidney were harvested and studied by H&E staining. Expression of inflammatory mediators in plasma and tissue were investigated by ELISA. HBI significantly decreased the leukocyte pool though the various leukocyte subsets had different sensitivities to HBI. The administration of PC61 significantly decreased the proportion of Treg cells in spleen, iLN, mLN and blood (reduction of approximately 60%). Irradiation significantly increased the proportion of Treg cells in the spleen, iLN and mLN. HBI induced a systemic inflammatory reaction as demonstrated by increased plasma levels of IL-6, KC/CXCL1 and circulating granulocytes in the blood. Neutrophils also infiltrated the small bowel. The same general patterns were observed whether or not Treg cells were partially depleted with PC61 prior to HBI. These data demonstrate that partial depletion of Treg cells in these mice does not influence HBI-induced inflammatory response and tissue injury, and that combining anti-CD25 therapy with radiation may be safe and well tolerated in a clinical setting.
Collapse
|
36
|
Wei S, Egenti MU, Teitz-Tennenbaum S, Zou W, Chang AE. Effects of tumor irradiation on host T-regulatory cells and systemic immunity in the context of adoptive T-cell therapy in mice. J Immunother 2013; 36:124-32. [PMID: 23377667 PMCID: PMC3607501 DOI: 10.1097/cji.0b013e31828298e6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, we used a murine D5 melanoma model to study the effects of local tumor irradiation on the therapeutic efficacy of adoptive T-cell therapy. Tumor irradiation was delivered in 5 daily fractions (8.5 Gy) to subcutaneous tumors on days 7-11 after tumor inoculation. After the last radiation dose, activated tumor-draining lymph node cells were transferred intravenously followed by intraperitoneal IL-2 administration. Tumor irradiation alone had no significant effect on tumor growth; however, it synergistically enhanced the therapeutic efficacy of T-cell therapy. For 2 days after tumor irradiation there was a significant reduction in T cells, B cells, and CD11c(+) dendritic cells in both the tumor microenvironment and the systemic lymphoid compartments. By days 4-6 after irradiation, the relative reduction in the number of Treg cells within the tumor and the systemic compartments was greater than the reduction in conventional T cells. Furthermore, the suppressive function of the Tregs was significantly impaired in irradiated versus untreated mice. Using effector T cells derived from congenic mice, we found that local tumor irradiation resulted in increased proliferation of donor T cells within the tumor and the systemic lymphoid compartments. Radiation was associated with increased expression of the effector cytokines IFN-γ and TNF-α by donor and host CD4(+) and CD8(+) T cells. Altogether, our data indicate that local tumor irradiation has a distinct modulatory effect on Tregs and can enhance systemic antitumor immunity associated with adoptive T-cell therapy.
Collapse
Affiliation(s)
- Shuang Wei
- Department of Surgery, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109-5932, USA
| | | | | | | | | |
Collapse
|
37
|
Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl Cancer Inst 2013; 105:256-65. [PMID: 23291374 DOI: 10.1093/jnci/djs629] [Citation(s) in RCA: 787] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The therapeutic application of ionizing radiation has been largely based on its cytocidal power combined with the ability to selectively target tumors. Radiotherapy effects on survival of cancer patients are generally interpreted as the consequence of improved local control of the tumor, directly decreasing systemic spread. Experimental data from multiple cancer models have provided sufficient evidence to propose a paradigm shift, whereby some of the effects of ionizing radiation are recognized as contributing to systemic antitumor immunity. Recent examples of objective responses achieved by adding radiotherapy to immunotherapy in metastatic cancer patients support this view. Therefore, the traditional palliative role of radiotherapy in metastatic disease is evolving into that of a powerful adjuvant for immunotherapy. This combination strategy adds to the current anticancer arsenal and offers opportunities to harness the immune system to extend survival, even among metastatic and heavily pretreated cancer patients. We briefly summarize key evidence supporting the role of radiotherapy as an immune adjuvant. A critical appraisal of the current status of knowledge must include potential immunosuppressive effects of radiation that can hamper its capacity to convert the irradiated tumor into an in situ, individualized vaccine. Moreover, we discuss some of the current challenges to translate this knowledge to the clinic as more trials testing radiation with different immunotherapies are proposed.
Collapse
Affiliation(s)
- Silvia C Formenti
- Department of Radiation Oncology, New York University School of Medicine, 160 E 34th St, New York, NY 10016, USA.
| | | |
Collapse
|
38
|
Schaue D, Kachikwu EL, McBride WH. Cytokines in radiobiological responses: a review. Radiat Res 2012; 178:505-23. [PMID: 23106210 DOI: 10.1667/rr3031.1] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines function in many roles that are highly relevant to radiation research. This review focuses on how cytokines are structurally organized, how they are induced by radiation, and how they orchestrate mesenchymal, epithelial and immune cell interactions in irradiated tissues. Pro-inflammatory cytokines are the major components of immediate early gene programs and as such can be rapidly activated after tissue irradiation. They converge with the effects of ionizing radiation in that both generate free radicals including reactive oxygen and nitrogen species (ROS/RNS). "Self" molecules secreted or released from cells after irradiation feed the same paradigm by signaling for ROS and cytokine production. As a result, multilayered feedback control circuits can be generated that perpetuate the radiation tissue damage response. The pro-inflammatory phase persists until such times as perceived challenges to host integrity are eliminated. Antioxidant, anti-inflammatory cytokines then act to restore homeostasis. The balance between pro-inflammatory and anti-inflammatory forces may shift to and fro for a long time after radiation exposure, creating waves as the host tries to deal with persisting pathogenesis. Individual cytokines function within socially interconnected groups to direct these integrated cellular responses. They hunt in packs and form complex cytokine networks that are nested within each other so as to form mutually reinforcing or antagonistic forces. This yin-yang balance appears to have redox as a fulcrum. Because of their social organization, cytokines appear to have a considerable degree of redundancy and it follows that an elevated level of a specific cytokine in a disease situation or after irradiation does not necessarily implicate it causally in pathogenesis. In spite of this, "driver" cytokines are emerging in pathogenic situations that can clearly be targeted for therapeutic benefit, including in radiation settings. Cytokines can greatly affect intrinsic cellular radiosensitivity, the incidence and type of radiation tissue complications, bystander effects, genomic instability and cancer. Minor and not so minor, polymorphisms in cytokine genes give considerable diversity within populations and are relevant to causation of disease. Therapeutic intervention is made difficult by such complexity; but the potential prize is great.
Collapse
Affiliation(s)
- Dörthe Schaue
- David Geffen School Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714, USA.
| | | | | |
Collapse
|
39
|
Demaria S, Formenti SC. Radiation as an immunological adjuvant: current evidence on dose and fractionation. Front Oncol 2012; 2:153. [PMID: 23112958 PMCID: PMC3481113 DOI: 10.3389/fonc.2012.00153] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/08/2012] [Indexed: 01/21/2023] Open
Abstract
Ionizing radiation to a cancer site has the ability to convert the irradiated tumor in an immunogenic hub. However, radiation is a complex modifier of the tumor microenvironment and, by itself, is seldom sufficient to induce a therapeutically significant anti-tumor immune response, since it can also activate immune suppressive pathways. While several combinations of local radiation and immunotherapy have been shown in pre-clinical models to induce powerful anti-tumor immunity, the optimal strategy to achieve this effect remains to be defined. When used in vivo, radiation effects on tumors depend on the dose per fraction applied, the number of fractions used, and the total dose. Moreover, the interplay of these three variables is contingent upon the tumor setting studied, both in pre-clinical and clinical applications. To enable repair of the collateral damage to the normal tissue, radiation is usually given in multiple fractions, usually of 2 Gy. Generally, the use of larger fractions is limited to stereotactic applications, whereby optimal immobilization reduces inter- and intrafraction movement and permits a very conformal delivery of dose to the target, with optimal exclusion of normal tissue. Translation of the partnership of radiation and immunotherapy to the clinic requires a careful consideration of the radiation regimens used. To date, little is known on whether different dose/fractionation regimens have a specific impact on the anti-tumor immune response. Most experiments combining the two modalities were conducted with single fractions of radiotherapy. However, there is at least some evidencethat when combined with some specific immunotherapy approaches, the ability of radiation to promote anti-tumor immunity is dependent on the dose and fractionation employed. We critically review the available in vitro and in vivo data on this subject and discuss the potential impact of fractionation on the ability of radiation to synergize with immunotherapy.
Collapse
Affiliation(s)
- Sandra Demaria
- Department of Pathology, New York University School of Medicine, NYU Langone Medical Center New York, NY, USA
| | | |
Collapse
|
40
|
The effect of ionizing radiation on the homeostasis and functional integrity of murine splenic regulatory T cells. Inflamm Res 2012; 62:201-12. [PMID: 23080082 DOI: 10.1007/s00011-012-0567-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022] Open
Abstract
OBJECTIVE Radiotherapy affects antitumor immune responses; therefore, it is important to study radiation effects on various compartments of the immune system. Here we report radiation effects on the homeostasis and function of regulatory T (Treg) cells, which are important in down-regulating antitumor immune responses. METHODS C57Bl/6 mice were irradiated with 2 Gy and alterations in splenic lymphocyte fractions analyzed at different intervals. RESULTS Total CD4+ numbers showed stronger decrease after irradiation than CD4+Foxp3+ Tregs. Tregs were less prone to radiation-induced apoptosis than CD4+Foxp3- T cells. The ratio of CD4+Foxp3- and CD4+Foxp3+ fractions within the proliferating CD4+ pool progressively changed from 74:26 in control animals to 59:41 eleven days after irradiation, demonstrating a more dynamic increase in the proliferation and regeneration of the Treg pool. The CD4+Foxp3+ fraction expressing cell-surface CTLA4, an antigen associated with Treg cell activation increased from 5.3 % in unirradiated mice to 10.5 % three days after irradiation. The expression of IL-10 mRNA was moderately upregulated, while TGF-β expression was not affected. On the other hand, irradiation reduced Treg capacity to suppress effector T cell proliferation by 2.5-fold. CONCLUSION Tregs are more radioresistant, less prone to radiation-induced apoptosis, and have faster repopulation kinetics than CD4+Foxp3- cells, but irradiated Tregs are functionally compromised, having a reduced suppressive capacity.
Collapse
|
41
|
Schaue D, McBride WH. T lymphocytes and normal tissue responses to radiation. Front Oncol 2012; 2:119. [PMID: 23050243 PMCID: PMC3445965 DOI: 10.3389/fonc.2012.00119] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 09/02/2012] [Indexed: 01/17/2023] Open
Abstract
There is compelling evidence that lymphocytes are a recurring feature in radiation damaged normal tissues, but assessing their functional significance has proven difficult. Contradictory roles have been postulated in both tissue pathogenesis and protection, although these are not necessarily mutually exclusive as the immune system can display what may seem to be opposing faces at any one time. While the exact role of T lymphocytes in irradiated normal tissue responses may still be obscure, their accumulation after tissue damage suggests they may be critical targets for radiotherapeutic intervention and worthy of further study. This is accentuated by recent findings that pathologically damaged “self,” such as occurs after exposure to ionizing radiation, can generate danger signals with the ability to activate pathways similar to those that activate adoptive immunity to pathogens. In addition, the demonstration of T cell subsets with their recognition radars tuned to “self” moieties has revolutionized our ideas on how all immune responses are controlled and regulated. New concepts of autoimmunity have resulted based on the dissociation of immune functions between different subsets of immune cells. It is becoming axiomatic that the immune system has the power to regulate radiation-induced tissue damage, from failure of regeneration to fibrosis, to acute and chronic late effects, and even to carcinogenesis. Our understanding of the interplay between T lymphocytes and radiation-damaged tissue may still be rudimentary but this is a good time to re-examine their potential roles, their radiobiological and microenvironmental influences, and the possibilities for therapeutic manipulation. This review will discuss the yin and yang of T cell responses within the context of radiation exposures, how they might drive or protect against normal tissue side effects and what we may be able do about it.
Collapse
Affiliation(s)
- Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | | |
Collapse
|
42
|
Schaue D, Xie MW, Ratikan JA, McBride WH. Regulatory T cells in radiotherapeutic responses. Front Oncol 2012; 2:90. [PMID: 22912933 PMCID: PMC3421147 DOI: 10.3389/fonc.2012.00090] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 07/20/2012] [Indexed: 12/31/2022] Open
Abstract
Radiation therapy (RT) can extend its influence in cancer therapy beyond what can be attributed to in-field cytotoxicity by modulating the immune system. While complex, these systemic effects can help tip the therapeutic balance in favor of treatment success or failure. Engagement of the immune system is generally through recognition of damage-associated molecules expressed or released as a result of tumor and normal tissue radiation damage. This system has evolved to discriminate pathological from physiological forms of cell death by signaling "danger." The multiple mechanisms that can be evoked include a shift toward a pro-inflammatory, pro-oxidant microenvironment that can promote maturation of dendritic cells and, in cancer treatment, the development of effector T cell responses to tumor-associated antigens. Control over these processes is exerted by regulatory T cells (Tregs), suppressor macrophages, and immunosuppressive cytokines that act in consort to maintain tolerance to self, limit tissue damage, and re-establish tissue homeostasis. Unfortunately, by the time RT for cancer is initiated the tumor-host relationship has already been sculpted in favor of tumor growth and against immune-mediated mechanisms for tumor regression. Reversing this situation is a major challenge. However, recent data show that removal of Tregs can tip the balance in favor of the generation of radiation-induced anti-tumor immunity. The clinical challenge is to do so without excessive depletion that might precipitate serious autoimmune reactions and increase the likelihood of normal tissue complications. The selective modulation of Treg biology to maintain immune tolerance and control of normal tissue damage, while releasing the "brakes" on anti-tumor immune responses, is a worthy aim with promise for enhancing the therapeutic benefit of RT for cancer.
Collapse
Affiliation(s)
- Dörthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles Los Angeles, CA, USA
| | | | | | | |
Collapse
|