1
|
Zhang W, Li Q, Tian R, Deng Z, Sun R, Kuang X, Peng J, Xie B, Huang C, Yuan Z. Exosomal delivery of AZD5582 to overcome TRAIL resistance as an optimal therapy against triple-negative breast cancer. Acta Histochem 2025; 127:152270. [PMID: 40413911 DOI: 10.1016/j.acthis.2025.152270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/27/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective targeted therapies mainly due to drug resistance. Therefore, there is an urgent need to develop highly effective therapeutic strategies for TNBC. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in transformed and cancerous cells, indicating its potential for anti-cancer therapy. Unfortunately, the clinical trials of recombinant TRAIL (rTRAIL) had actually failed due to the very common TRAIL resistance in cancers. Exosomal delivery of TRAIL (EV-T) has been shown to greatly improve the cytotoxicity of TRAIL. Moreover, the TRAIL resistance was closely correlated with the upregulation of inhibitors of apoptosis proteins (IAPs) in cancer cells. As a potent antagonist of IAPs, AZD5582 (AZD) was previously shown to drastically sensitize TRAIL response. Herein, we hypothesize that AZD may be loaded into EV-T for co-delivery of AZD and TRAIL to make a synergistic combination anticancer therapy against TNBC. First, TRAIL-expressing mesenchymal stem cells (MSCs) were used to prepare EV-Ts. Then, AZD was loaded into EV-T by ultrasound to prepare the composite nanodrug AZD@EV-T. EV encapsulation significantly improved AZD stability and cellular delivery efficiency, leading to the synergistically augmented cytotoxicity and apoptosis induction in both breast and kidney cancer cell lines, whilst sparing the normal MSCs. The potential mechanisms underlying the synergism appeared to be associated with the concomitant upregulation of death receptor 5 (DR5) and expressional suppression of various anti-apoptotic factors. Importantly, the AZD@EV-T therapy triggered strikingly enhanced growth inhibition and apoptosis in the subcutaneously established BT549 xenograft tumors, consequently leading to the complete tumor regression. It also demonstrated significant potential for treating kidney cancer in A498 kidney tumor organoids. Together, AZD@EV-T effectively overcomes TRAIL resistance and may represent a highly effective and innovative anticancer therapy for both TNBC and kidney cancers.
Collapse
Affiliation(s)
- Wanting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Quanjiang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Ronghui Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xiubin Kuang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jun Peng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Bin Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Chen Huang
- The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, PR China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Creeden JF, Sevier J, Zhang JT, Lapitsky Y, Brunicardi FC, Jin G, Nemunaitis J, Liu JY, Kalinoski A, Rao D, Liu SH. Smart exosomes enhance PDAC targeted therapy. J Control Release 2024; 368:413-429. [PMID: 38431093 DOI: 10.1016/j.jconrel.2024.02.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
Exosomes continue to attract interest as a promising nanocarrier drug delivery technology. They are naturally derived nanoscale extracellular vesicles with innate properties well suited to shuttle proteins, lipids, and nucleic acids between cells. Nonetheless, their clinical utility is currently limited by several major challenges, such as their inability to target tumor cells and a high proportion of clearance by the mononuclear phagocyte system (MPS) of the liver and spleen. To overcome these limitations, we developed "Smart Exosomes" that co-display RGD and CD47p110-130 through CD9 engineering (ExoSmart). The resultant ExoSmart demonstrates enhanced binding capacity to αvβ3 on pancreatic ductal adenocarcinoma (PDAC) cells, resulting in amplified cellular uptake in in vitro and in vivo models and increased chemotherapeutic efficacies. Simultaneously, ExoSmart significantly reduced liver and spleen clearance of exosomes by inhibiting macrophage phagocytosis via CD47p110-130 interaction with signal regulatory proteins (SIRPα) on macrophages. These studies demonstrate that an engineered exosome drug delivery system increases PDAC therapeutic efficacy by enhancing active PDAC targeting and prolonging circulation times, and their findings hold tremendous translational potential for cancer therapy while providing a concrete foundation for future work utilizing novel peptide-engineered exosome strategies.
Collapse
Affiliation(s)
- Justin F Creeden
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Jonathan Sevier
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA
| | - Yakov Lapitsky
- Department of Chemical Engineering, University of Toledo, Toledo, OH, USA
| | - F Charles Brunicardi
- Department of Surgery, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Ge Jin
- Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | | - Jing-Yuan Liu
- Department of Medicine, University of Toledo, Toledo, OH, USA
| | | | | | - Shi-He Liu
- Department of Cell and Cancer Biology, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
3
|
Targeting TRAIL Death Receptors in Triple-Negative Breast Cancers: Challenges and Strategies for Cancer Therapy. Cells 2022; 11:cells11233717. [PMID: 36496977 PMCID: PMC9739296 DOI: 10.3390/cells11233717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The tumor necrosis factor (TNF) superfamily member TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in cancer cells via death receptor (DR) activation with little toxicity to normal cells or tissues. The selectivity for activating apoptosis in cancer cells confers an ideal therapeutic characteristic to TRAIL, which has led to the development and clinical testing of many DR agonists. However, TRAIL/DR targeting therapies have been widely ineffective in clinical trials of various malignancies for reasons that remain poorly understood. Triple negative breast cancer (TNBC) has the worst prognosis among breast cancers. Targeting the TRAIL DR pathway has shown notable efficacy in a subset of TNBC in preclinical models but again has not shown appreciable activity in clinical trials. In this review, we will discuss the signaling components and mechanisms governing TRAIL pathway activation and clinical trial findings discussed with a focus on TNBC. Challenges and potential solutions for using DR agonists in the clinic are also discussed, including consideration of the pharmacokinetic and pharmacodynamic properties of DR agonists, patient selection by predictive biomarkers, and potential combination therapies. Moreover, recent findings on the impact of TRAIL treatment on the immune response, as well as novel strategies to address those challenges, are discussed.
Collapse
|
4
|
Xu HK, Chen LJ, Zhou SN, Li YF, Xiang C. Multifunctional role of microRNAs in mesenchymal stem cell-derived exosomes in treatment of diseases. World J Stem Cells 2020; 12:1276-1294. [PMID: 33312398 PMCID: PMC7705472 DOI: 10.4252/wjsc.v12.i11.1276] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells can be replaced by exosomes for the treatment of inflammatory diseases, injury repair, degenerative diseases, and tumors. Exosomes are small vesicles rich in a variety of nucleic acids [including messenger RNA, Long non-coding RNA, microRNA (miRNA), and circular RNA], proteins, and lipids. Exosomes can be secreted by most cells in the human body and are known to play a key role in the communication of information and material transport between cells. Like exosomes, miRNAs were neglected before their role in various activities of organisms was discovered. Several studies have confirmed that miRNAs play a vital role within exosomes. This review focuses on the specific role of miRNAs in MSC-derived exosomes (MSC-exosomes) and the methods commonly used by researchers to study miRNAs in exosomes. Taken together, miRNAs from MSC-exosomes display immense potential and practical value, both in basic medicine and future clinical applications, in treating several diseases.
Collapse
Affiliation(s)
- Hui-Kang Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Li-Jun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Si-Ning Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Fei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
5
|
Ke C, Hou H, Li J, Su K, Huang C, Lin Y, Lu Z, Du Z, Tan W, Yuan Z. Extracellular Vesicle Delivery of TRAIL Eradicates Resistant Tumor Growth in Combination with CDK Inhibition by Dinaciclib. Cancers (Basel) 2020; 12:E1157. [PMID: 32375399 PMCID: PMC7281120 DOI: 10.3390/cancers12051157] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/13/2020] [Accepted: 05/01/2020] [Indexed: 12/16/2022] Open
Abstract
Tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) is a promising anti-cancer agent that rapidly induces apoptosis in cancer cells. Unfortunately, the clinical application of recombinant TRAIL (rTRAIL) has been hampered by its common cancer resistance. Naturally TRAIL is delivered as a membrane-bound form by extracellular vesicles (EV-T) and is highly efficient for apoptosis induction. SCH727965 (dinaciclib), a potent cyclin-dependent kinase (CDK) inhibitor, was shown to synergize with other drugs to get better efficacy. However, it has never been investigated if dinaciclib coordinates with EV-T to enhance therapeutic results. This study explores the potential of combination therapy with EV-T and dinaciclib for cancer treatment. EV-T was successfully derived from human TRAIL transduced cells and shown to partially overcome resistance of A549 cells. Dinaciclib was shown to drastically enhance EV-T killing effects on cancer lines that express good levels of death receptor (DR) 5, which are associated with suppression of CDK1, CDK9 and anti-apoptotic proteins. Combination therapy with low doses of EV-T and dinaciclib induced strikingly enhanced apoptosis and led to complete regression in A549 tumors without any adverse side effects observed in a subcutaneous xenograft model. Tumor infiltration of mass NK cells and macrophages was also observed. These observations thus indicate that the combination of EV-T with dinaciclib is a potential novel therapy for highly effective and safe cancer treatment.
Collapse
Affiliation(s)
- Changhong Ke
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Huan Hou
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Jiayu Li
- School of Industrial Design and Ceramic Art of Foshan University, Foshan 528000 China;
| | - Kui Su
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Chaohong Huang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Yue Lin
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Zhiqiang Lu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Zhiyun Du
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Wen Tan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| | - Zhengqiang Yuan
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 51006, China; (C.K.); (H.H.); (K.S.); (C.H.); (Y.L.); (Z.L.); (Z.D.); (W.T.)
| |
Collapse
|