1
|
Antal BB, van Nieuwenhuizen H, Chesebro AG, Strey HH, Jones DT, Clarke K, Weistuch C, Ratai EM, Dill KA, Mujica-Parodi LR. Brain aging shows nonlinear transitions, suggesting a midlife "critical window" for metabolic intervention. Proc Natl Acad Sci U S A 2025; 122:e2416433122. [PMID: 40030017 PMCID: PMC11912423 DOI: 10.1073/pnas.2416433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
Understanding the key drivers of brain aging is essential for effective prevention and treatment of neurodegenerative diseases. Here, we integrate human brain and physiological data to investigate underlying mechanisms. Functional MRI analyses across four large datasets (totaling 19,300 participants) show that brain networks not only destabilize throughout the lifetime but do so along a nonlinear trajectory, with consistent temporal "landmarks" of brain aging starting in midlife (40s). Comparison of metabolic, vascular, and inflammatory biomarkers implicate dysregulated glucose homeostasis as the driver mechanism for these transitions. Correlation between the brain's regionally heterogeneous patterns of aging and gene expression further supports these findings, selectively implicating GLUT4 (insulin-dependent glucose transporter) and APOE (lipid transport protein). Notably, MCT2 (a neuronal, but not glial, ketone transporter) emerges as a potential counteracting factor by facilitating neurons' energy uptake independently of insulin. Consistent with these results, an interventional study of 101 participants shows that ketones exhibit robust effects in restabilizing brain networks, maximized from ages 40 to 60, suggesting a midlife "critical window" for early metabolic intervention.
Collapse
Affiliation(s)
- Botond B. Antal
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Helena van Nieuwenhuizen
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Physics, State University of New York at Stony Brook, Stony Brook, NY
| | - Anthony G. Chesebro
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Helmut H. Strey
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | - Kieran Clarke
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eva-Maria Ratai
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ken A. Dill
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
| | - Lilianne R. Mujica-Parodi
- Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY
- Laufer Center for Physical and Quantitative Biology, State University of New York at Stony Brook, Stony Brook, NY
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Physics, State University of New York at Stony Brook, Stony Brook, NY
- Santa Fe Institute, Santa Fe, NM
| |
Collapse
|
2
|
Quan S, Fu X, Cai H, Ren Z, Xu Y, Jia L. The neuroimmune nexus: unraveling the role of the mtDNA-cGAS-STING signal pathway in Alzheimer's disease. Mol Neurodegener 2025; 20:25. [PMID: 40038765 DOI: 10.1186/s13024-025-00815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
The relationship between Alzheimer's disease (AD) and neuroimmunity has gradually begun to be unveiled. Emerging evidence indicates that cyclic GMP-AMP synthase (cGAS) acts as a cytosolic DNA sensor, recognizing cytosolic damage-associated molecular patterns (DAMPs), and inducing the innate immune response by activating stimulator of interferon genes (STING). Dysregulation of this pathway culminates in AD-related neuroinflammation and neurodegeneration. A substantial body of evidence indicates that mitochondria are involved in the critical pathogenic mechanisms of AD, whose damage leads to the release of mitochondrial DNA (mtDNA) into the extramitochondrial space. This leaked mtDNA serves as a DAMP, activating various pattern recognition receptors and immune defense networks in the brain, including the cGAS-STING pathway, ultimately leading to an imbalance in immune homeostasis. Therefore, modulation of the mtDNA-cGAS-STING pathway to restore neuroimmune homeostasis may offer promising prospects for improving AD treatment outcomes. In this review, we focus on the mechanisms of mtDNA release during stress and the activation of the cGAS-STING pathway. Additionally, we delve into the research progress on this pathway in AD, and further discuss the primary directions and potential hurdles in developing targeted therapeutic drugs, to gain a deeper understanding of the pathogenesis of AD and provide new approaches for its therapy.
Collapse
Affiliation(s)
- Shuiyue Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Yinghao Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
3
|
Ma Y, Erb ML, Moore DJ. Aging, cellular senescence and Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2025; 15:239-254. [PMID: 39973488 DOI: 10.1177/1877718x251316552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, affecting 1-2% of people over age 65. The risk of developing PD dramatically increases with advanced age, indicating that aging is likely a driving factor in PD neuropathogenesis. Several age-associated biological changes are also hallmarks of PD neuropathology, including mitochondrial dysfunction, oxidative stress, and neuroinflammation. Accumulation of senescent cells is an important feature of aging that contributes to age-related diseases. How age-related cellular senescence affects brain health and whether this phenomenon contributes to neuropathogenesis in PD is not yet fully understood. In this review, we highlight hallmarks of aging, including mitochondrial dysfunction, loss of proteostasis, genomic instability and telomere attrition in relation to well established PD neuropathological pathways. We then discuss the hallmarks of cellular senescence in the context of neuroscience and review studies that directly examine cellular senescence in PD. Studying senescence in PD presents challenges and holds promise for advancing our understanding of disease mechanisms, which could contribute to the development of effective disease-modifying therapeutics. Targeting senescent cells or modulating the senescence-associated secretory phenotype (SASP) in PD requires a comprehensive understanding of the complex relationship between PD pathogenesis and cellular senescence.
Collapse
Affiliation(s)
- Yue Ma
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Madalynn L Erb
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
4
|
Tamatta R, Pai V, Jaiswal C, Singh I, Singh AK. Neuroinflammaging and the Immune Landscape: The Role of Autophagy and Senescence in Aging Brain. Biogerontology 2025; 26:52. [PMID: 39907842 PMCID: PMC11799035 DOI: 10.1007/s10522-025-10199-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Neuroinflammation is closely linked to aging, which damages the structure and function of the brain. It is caused by the intricate interactions of immune cells in the aged brain, such as the dysregulated glial cells and the dysfunctional astrocytes. Aging-associated chronic low inflammation, referred to as neuroinflammaging, shows an upregulated proinflammatory response. Autophagy and senescence play crucial roles as moderators of aging and neuroinflammatory responses. The dysregulated neuroimmune system, dystrophic glial cells, and release of proinflammatory factors alter blood-brain barrier, causing a neuroinflammatory landscape. Chronic inflammation combined with deteriorating neurons exacerbate neurological disorders and decline in cognitive function. This review highlights the neuroinflammaging and mechanism associated with immune cells interplay with central nervous system and aging, cellular senescence, and autophagy regulation in the brain's immune system under neuroinflammatory conditions. Moreover, the roles of microglia and peripheral immune cells in the neuroinflammatory process in the aging brain have also been discussed. Determining treatment targets and comprehending mechanisms that influence immune cells in the aged brain is necessary to decrease neuroinflammation.
Collapse
Affiliation(s)
- Rajesh Tamatta
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Varsha Pai
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Charu Jaiswal
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Ishika Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka, Manipal, 576104, India.
| |
Collapse
|
5
|
Zielińska M, Popek M, Albrecht J. Neuroglia in hepatic encephalopathy. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:191-212. [PMID: 40148045 DOI: 10.1016/b978-0-443-19102-2.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Neuroglia contribute to the pathophysiology of hepatic encephalopathy (HE) either beneficially or detrimentally. Pathogenesis of HE is linked to damage triggered by blood-derived toxins, with ammonia being the main causative factor. Neuroglial cells, especially astrocytes and microglia, respond to HE-associated systemic and central signals and undergo complex and variable changes in their metabolism, morphology, and function, which include ion and water dyshomeostasis in conjunction with neurotransmission imbalance and neuroinflammation. HE-induced alterations of astrocytes are defined as astrocytopathy, with aberrant astrocytes resulting in either gain or loss of functions. In the chronic HE, the presence of Alzheimer type II cells is a histologic hallmark, with asthenic astrocytes emerging as a newcomer. In acute HE, rapid swelling of astrocytes is a primary cause of cerebral edema and mortality. This chapter reviews the dominant role of astrocytes in the pathogenesis of HE resulting from acute and chronic liver failure, mainly in experimental models. The focus is on the loss of homeostatic function bearing upon the functioning of the glymphatic system, aberrant neurotransmission as a consequence of astrocyte-neuron miscommunication, and the concordant neuroinflammatory response of astrocytes and microglia. The chapter concludes with a delineation of concepts for future research.
Collapse
Affiliation(s)
- Magdalena Zielińska
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland.
| | - Mariusz Popek
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Albrecht
- Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
6
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
7
|
Li M, Shao G. Senataxin Attenuates DNA Damage Response Activation and Suppresses Senescence. Antioxidants (Basel) 2024; 13:1337. [PMID: 39594478 PMCID: PMC11591223 DOI: 10.3390/antiox13111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), induces DNA double-strand breaks (DSBs) that compromise genomic integrity. The DNA Damage Response (DDR), primarily mediated by ATM and ATR kinases, is crucial for recognizing and repairing DSBs. Senataxin (SETX), a DNA/RNA helicase, is critical in resolving R-loops, with mutations in SETX associated with neurodegenerative diseases. This study uncovers a novel function of senataxin in modulating DDR and its impact on cellular senescence. Senataxin is shown to be crucial not only for DSB repair but also for determining cell fate under oxidative stress. SETX knockout cells show impaired DSB repair and prolonged ATM/ATR signaling detected by Western blotting, leading to increased senescence, as indicated by elevated β-galactosidase activity following H2O2 exposure and I-PpoI-induced DSBs. Wild-type cells exhibit higher apoptosis levels compared to SETX knockout cells under H2O2 treatment, suggesting that senataxin promotes apoptosis over senescence in oxidative stress. This indicates that senataxin plays a protective role against the accumulation of senescent cells, potentially mitigating age-related cellular decline and neurodegenerative disease progression. These findings highlight senataxin as a critical mediator in DDR pathways and a potential therapeutic target for conditions where cellular senescence contributes to disease pathology.
Collapse
Affiliation(s)
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
8
|
Gozlan E, Lewit-Cohen Y, Frenkel D. Sex Differences in Astrocyte Activity. Cells 2024; 13:1724. [PMID: 39451242 PMCID: PMC11506538 DOI: 10.3390/cells13201724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Astrocytes are essential for maintaining brain homeostasis. Alterations in their activity have been associated with various brain pathologies. Sex differences were reported to affect astrocyte development and activity, and even susceptibility to different neurodegenerative diseases. This review aims to summarize the current knowledge on the effects of sex on astrocyte activity in health and disease.
Collapse
Affiliation(s)
- Elisa Gozlan
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Yarden Lewit-Cohen
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
| | - Dan Frenkel
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (E.G.); (Y.L.-C.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
9
|
Rubino G, Yörük E. Immunosenescence, immunotolerance and rejection: clinical aspects in solid organ transplantation. Transpl Immunol 2024; 86:102068. [PMID: 38844001 DOI: 10.1016/j.trim.2024.102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 07/21/2024]
Abstract
As a consequence of increased lifespan and rising number of elderly individuals developing end-stage organ disease, the higher demand for organs along with a growing availability for organs from older donors pose new challenges for transplantation. During aging, dynamic adaptations in the functionality and structure of the biological systems occur. Consistently, immunosenescence (IS) accounts for polydysfunctions within the lymphocyte subsets, and the onset of a basal but persistent systemic inflammation characterized by elevated levels of pro-inflammatory mediators. There is an emerging consensus about a causative link between such hallmarks and increased susceptibility to morbidities and mortality, however the role of IS in solid organ transplantation (SOT) remains loosely addressed. Dissecting the immune-architecture of immunologically-privileged sites may prompt novel insights to extend allograft survival. A deeper comprehension of IS in SOT might unveil key standpoints for the clinical management of transplanted patients.
Collapse
Affiliation(s)
- Graziella Rubino
- University Hospital Tübingen, Department of Tropical Medicine, Wilhelmstraße 27, 72074 Tübingen, Germany; Institute for Transfusion Medicine, University Ulm and Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, 89081 Ulm, Germany.
| | - Efdal Yörük
- Berit Klinik, Gastrointestinal Center, Florastrasse 1, 9403 Goldach, Switzerland; University Hospital Tübingen, Department of Ophthalmology, Elfriede-Alhorn-Straße 7, 72076 Tübingen, Germany
| |
Collapse
|
10
|
Parandavar E, Shafizadeh M, Ahmadian S, Javan M. Long-term demyelination and aging-associated changes in mice corpus callosum; evidence for the role of accelerated aging in remyelination failure in a mouse model of multiple sclerosis. Aging Cell 2024; 23:e14211. [PMID: 38804500 PMCID: PMC11488340 DOI: 10.1111/acel.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder affecting the central nervous system. Evidence suggests that age-related neurodegeneration contributes to disability progression during the chronic stages of MS. Aging is characterized by decreased regeneration potential and impaired myelin repair in the brain. It is hypothesized that accelerated cellular aging contributes to the functional decline associated with neurodegenerative diseases. We assessed the impact of aging on myelin content in the corpus callosum (CC) and compared aging with the long-term demyelination (LTD) consequents induced by 12 weeks of feeding with a cuprizone (CPZ) diet. Initially, evaluating myelin content in 2-, 6-, and 18-month-old mice revealed a reduction in myelin content, particularly at 18 months. Myelin thickness was decreased and the g-ratio increased in aged mice. Although a lower myelin content and higher g-ratio were observed in LTD model mice, compared to the normally aged mice, both aging and LTD exhibited relatively similar myelin ultrastructure. Our findings provide evidence that LTD exhibits the hallmarks of aging such as elevated expression of senescence-associated genes, mitochondrial dysfunction, and high level of oxidative stress as observed following normal aging. We also investigated the senescence-associated β-galactosidase activity in O4+ late oligodendrocyte progenitor cells (OPCs). The senescent O4+/β-galactosidase+ cells were elevated in the CPZ diet. Our data showed that the myelin degeneration in CC occurs throughout the lifespan, and LTD induced by CPZ accelerates the aging process which may explain the impairment of myelin repair in patients with progressive MS.
Collapse
Affiliation(s)
- Elham Parandavar
- Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | | | - Shahin Ahmadian
- Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
| | - Mohammad Javan
- Department of Physiology, School of Medical SciencesTarbiat Modares UniversityTehranIran
- Institute for Brain and CognitionTarbiat Modares UniversityTehranIran
| |
Collapse
|
11
|
Samuel Olajide T, Oyerinde TO, Omotosho OI, Okeowo OM, Olajide OJ, Ijomone OM. Microglial senescence in neurodegeneration: Insights, implications, and therapeutic opportunities. NEUROPROTECTION 2024; 2:182-195. [PMID: 39364217 PMCID: PMC11449118 DOI: 10.1002/nep3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/03/2024] [Indexed: 10/05/2024]
Abstract
The existing literature on neurodegenerative diseases (NDDs) reveals a common pathological feature: the accumulation of misfolded proteins. However, the heterogeneity in disease onset mechanisms and the specific brain regions affected complicates the understanding of the diverse clinical manifestations of individual NDDs. Dementia, a hallmark symptom across various NDDs, serves as a multifaceted denominator, contributing to the clinical manifestations of these disorders. There is a compelling hypothesis that therapeutic strategies capable of mitigating misfolded protein accumulation and disrupting ongoing pathogenic processes may slow or even halt disease progression. Recent research has linked disease-associated microglia to their transition into a senescent state-characterized by irreversible cell cycle arrest-in aging populations and NDDs. Although senescent microglia are consistently observed in NDDs, few studies have utilized animal models to explore their role in disease pathology. Emerging evidence from experimental rat models suggests that disease-associated microglia exhibit characteristics of senescence, indicating that deeper exploration of microglial senescence could enhance our understanding of NDD pathogenesis and reveal novel therapeutic targets. This review underscores the importance of investigating microglial senescence and its potential contributions to the pathophysiology of NDDs, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Additionally, it highlights the potential of targeting microglial senescence through iron chelation and senolytic therapies as innovative approaches for treating age-related NDDs.
Collapse
Affiliation(s)
- Tobiloba Samuel Olajide
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Toheeb O. Oyerinde
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Omolabake I. Omotosho
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
| | - Oritoke M. Okeowo
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Physiology, School of Basic Medical Science, Federal University of Technology, Akure, Ondo, Nigeria
| | - Olayemi J. Olajide
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, Quebec, Canada
- Division of Neurobiology, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara, Nigeria
| | - Omamuyouwi M. Ijomone
- Laboratory for Experimental and Translational Neurobiology, University of Medical Sciences, Ondo, Ondo, Nigeria
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
12
|
Monnig M, Shah K. Linking alcohol use to Alzheimer's disease: Interactions with aging and APOE along immune pathways. MEDICAL RESEARCH ARCHIVES 2024; 12:10.18103/mra.v12i8.5228. [PMID: 39544182 PMCID: PMC11563488 DOI: 10.18103/mra.v12i8.5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Although it is known that APOE genotype is the strongest genetic risk factor for late-onset Alzheimer's disease, development is a multifactorial process. Alcohol use is a contributor to the epidemic of Alzheimer's disease and related dementias in the US and globally, yet mechanisms are not fully understood. Carriers of the APOE ε4 allele show elevated risk of dementia in relation to several lifestyle factors, including alcohol use. In this review, we describe how alcohol interacts with APOE genotype and aging with potential implications for Alzheimer's disease promotion. Age-related immune senescence and "inflammaging" (i.e., low-grade inflammation associated with aging) are increasingly recognized as contributors to age-related disease. We focus on three immune pathways that are likely contributors to Alzheimer's disease development, centering on alcohol and APOE genotype interactions, specifically: 1) microbial translocation and immune activation, 2) the senescence associated secretory phenotype, and 3) neuroinflammation. First, microbial translocation, the unphysiological movement of gut products into systemic circulation, elicits a proinflammatory response and increases with aging, with proposed links to Alzheimer's disease. Second, the senescence associated secretory phenotype is a set of intercellular signaling factors, e.g., proinflammatory cytokines and chemokines, growth regulators, and proteases, that drives cellular aging when senescent cells remain metabolically active. The senescence associated secretory phenotype can drive development of aging-diseases such as Alzheimer's disease. Third, neuroinflammation occurs via numerous mechanisms such as microglial activation and is gaining recognition as an etiological factor in the development of Alzheimer's disease. This review focuses on interactions of alcohol with APOE genotype and aging along these three pathways that may promote Alzheimer's disease. Further research on these processes may inform development of strategies to prevent onset and progression of Alzheimer's disease and to delay associated cognitive decline.
Collapse
Affiliation(s)
- Mollie Monnig
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| | - Krish Shah
- Center for Alcohol and Addiction Studies, Brown University, Providence, RI 02912, USA
| |
Collapse
|
13
|
Hense JD, Isola JVV, Garcia DN, Magalhães LS, Masternak MM, Stout MB, Schneider A. The role of cellular senescence in ovarian aging. NPJ AGING 2024; 10:35. [PMID: 39033161 PMCID: PMC11271274 DOI: 10.1038/s41514-024-00157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/29/2024] [Indexed: 07/23/2024]
Abstract
This review explores the relationship between ovarian aging and senescent cell accumulation, as well as the efficacy of senolytics to improve reproductive longevity. Reproductive longevity is determined by the age-associated decline in ovarian reserve, resulting in reduced fertility and eventually menopause. Cellular senescence is a state of permanent cell cycle arrest and resistance to apoptosis. Senescent cells accumulate in several tissues with advancing age, thereby promoting chronic inflammation and age-related diseases. Ovaries also appear to accumulate senescent cells with age, which might contribute to aging of the reproductive system and whole organism through SASP production. Importantly, senolytic drugs can eliminate senescent cells and may present a potential intervention to mitigate ovarian aging. Herein, we review the current literature related to the efficacy of senolytic drugs for extending the reproductive window in mice.
Collapse
Affiliation(s)
- Jéssica D Hense
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V V Isola
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Driele N Garcia
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | | | - Michal M Masternak
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Augusto Schneider
- Nutrition College, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
14
|
Du T, Li G, Zong Q, Luo H, Pan Y, Ma K. Nuclear alpha-synuclein accelerates cell senescence and neurodegeneration. Immun Ageing 2024; 21:47. [PMID: 38997709 PMCID: PMC11242018 DOI: 10.1186/s12979-024-00429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/16/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The progression of Parkinson's disease (PD) is related to ageing. The accumulation of nuclear alpha-synuclein (α-syn) may accelerate the occurrence of neurodegenerative diseases, but its role in PD remains poorly understood. METHODS In the present study, α-syn expression was specifically targeted to the nucleus by constructing an adeno-associated virus (AAV) vector in which a nuclear localization sequence (NLS) was added to the α-syn coding sequence. Virus-mediated gene transfer, behavioural tests, RNA-Seq, immunohistochemistry, western blotting, and quantitative real-time PCR were then performed. RESULTS In vivo experiments using a mouse model showed that nuclear α-syn increased the severity of the PD-like phenotype, including the loss of dopaminergic neurons concomitant with motor impairment and the formation of α-syn inclusions. These nuclear inclusions contained α-syn species of high molecular weights and induced strong transcriptional dysregulation, especially induced high expression of p21 and senescence-associated secretory phenotype (SASP)-related genes. In addition, the transcriptional alterations induced by nuclear α-syn were associated with gliosis, inflammation, oxidative and DNA damage, and lysosomal dysfunction, and they eventually accelerated neuronal loss and neurodegeneration. CONCLUSIONS Our results suggest that nuclear α-syn plays a crucial role in PD pathogenesis.
Collapse
Affiliation(s)
- Tingfu Du
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Guoxiang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Qinglan Zong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Haiyu Luo
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Yue Pan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China.
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming, 650118, China.
| |
Collapse
|
15
|
Mincic AM, Antal M, Filip L, Miere D. Modulation of gut microbiome in the treatment of neurodegenerative diseases: A systematic review. Clin Nutr 2024; 43:1832-1849. [PMID: 38878554 DOI: 10.1016/j.clnu.2024.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND AIMS Microbiota plays an essential role in maintaining body health, through positive influences on metabolic, defensive, and trophic processes and on intercellular communication. Imbalance in intestinal flora, with the proliferation of harmful bacterial species (dysbiosis) is consistently reported in chronic illnesses, including neurodegenerative diseases (ND). Correcting dysbiosis can have a beneficial impact on the symptoms and evolution of ND. This review examines the effects of microbiota modulation through administration of probiotics, prebiotics, symbiotics, or prebiotics' metabolites (postbiotics) in patients with ND like multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). METHODS PubMed, Web of Science, Medline databases and ClinicalTrials.gov registry searches were performed using pre-/pro-/postbiotics and ND-related terms. Further references were obtained by checking relevant articles. RESULTS Although few compared to animal studies, the human studies generally show positive effects on disease-specific symptoms, overall health, metabolic parameters, on oxidative stress and immunological markers. Therapy with probiotics in various forms (mixtures of bacterial strains, fecal microbiota transplant, diets rich in fermented foods) exert favorable effects on patients' mental health, cognition, and quality of life, targeting pathogenetic ND mechanisms and inducing reparatory mechanisms at the cellular level. More encouraging results have been observed in prebiotic/postbiotic therapy in some ND. CONCLUSIONS The effects of probiotic-related interventions depend on the patients' ND stage and pre-existing allopathic medication. Further studies on larger cohorts and long term comprehensive neuropsychiatric, metabolic, biochemical testing, and neuroimaging monitoring are necessary to optimize therapeutic protocols in ND.
Collapse
Affiliation(s)
- Adina M Mincic
- Center for Systems Neuroscience, University of Oradea, Oradea, Romania; Department of Preclinical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania; Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.
| | - Miklos Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Lorena Filip
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Doina Miere
- Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
16
|
Boccardi V, Orr ME, Polidori MC, Ruggiero C, Mecocci P. Focus on senescence: Clinical significance and practical applications. J Intern Med 2024; 295:599-619. [PMID: 38446642 DOI: 10.1111/joim.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The older population is increasing worldwide, and life expectancy is continuously rising, predominantly thanks to medical and technological progress. Healthspan refers to the number of years an individual can live in good health. From a gerontological viewpoint, the mission is to extend the life spent in good health, promoting well-being and minimizing the impact of aging-related diseases to slow the aging process. Biologically, aging is a malleable process characterized by an intra- and inter-individual heterogeneous and dynamic balance between accumulating damage and repair mechanisms. Cellular senescence is a key component of this process, with senescent cells accumulating in different tissues and organs, leading to aging and age-related disease susceptibility over time. Removing senescent cells from the body or slowing down the burden rate has been proposed as an efficient way to reduce age-dependent deterioration. In animal models, senotherapeutic molecules can extend life expectancy and lifespan by either senolytic or senomorphic activity. Much research shows that dietary and physical activity-driven lifestyle interventions protect against senescence. This narrative review aims to summarize the current knowledge on targeting senescent cells to reduce the risk of age-related disease in animal models and their translational potential for humans. We focused on studies that have examined the potential role of senotherapeutics in slowing the aging process and modifying age-related disease burdens. The review concludes with a general discussion of the mechanisms underlying this unique trajectory and its implications for future research.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Miranda Ethel Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
- Salisbury VA Medical Center, Salisbury, North Carolina, USA
| | - M Cristina Polidori
- Ageing Clinical Research, Department II of Internal Medicine and Center for Molecular Medicine Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress-Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carmelinda Ruggiero
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
17
|
Zhang Y, Xie JZ, Jiang YL, Yang SJ, Wei H, Yang Y, Wang JZ. Homocysteine-potentiated Kelch-like ECH-associated protein 1 promotes senescence of neuroblastoma 2a cells via inhibiting ubiquitination of β-catenin. Eur J Neurosci 2024; 59:2732-2747. [PMID: 38501537 DOI: 10.1111/ejn.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/24/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
Elevated serum homocysteine (Hcy) level is a risk factor for Alzheimer's disease (AD) and accelerates cell aging. However, the mechanism by which Hcy induces neuronal senescence remains largely unknown. In this study, we observed that Hcy significantly promoted senescence in neuroblastoma 2a (N2a) cells with elevated β-catenin and Kelch-like ECH-associated protein 1 (KEAP1) levels. Intriguingly, Hcy promoted the interaction between KEAP1 and the Wilms tumor gene on the X chromosome (WTX) while hampering the β-catenin-WTX interaction. Mechanistically, Hcy attenuated the methylation level of the KEAP1 promoter CpG island and activated KEAP1 transcription. However, a slow degradation rate rather than transcriptional activation contributed to the high level of β-catenin. Hcy-upregulated KEAP1 competed with β-catenin to bind to WTX. Knockdown of both β-catenin and KEAP1 attenuated Hcy-induced senescence in N2a cells. Our data highlight a crucial role of the KEAP1-β-catenin pathway in Hcy-induced neuronal-like senescence and uncover a promising target for AD treatment.
Collapse
Affiliation(s)
- Yao Zhang
- Endocrine Department of Liyuan Hospital; Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Zhao Xie
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yan-Li Jiang
- Endocrine Department of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-Juan Yang
- Endocrine Department of Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
18
|
Wu C, Tu T, Xie M, Wang Y, Yan B, Gong Y, Zhang J, Zhou X, Xie Z. Spatially resolved transcriptome of the aging mouse brain. Aging Cell 2024; 23:e14109. [PMID: 38372175 PMCID: PMC11113349 DOI: 10.1111/acel.14109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Brain aging is associated with cognitive decline, memory loss and many neurodegenerative disorders. The mammalian brain has distinct structural regions that perform specific functions. However, our understanding in gene expression and cell types within the context of the spatial organization of the mammalian aging brain is limited. Here we generated spatial transcriptomic maps of young and old mouse brains. We identified 27 distinguished brain spatial domains, including layer-specific subregions that are difficult to dissect individually. We comprehensively characterized spatial-specific changes in gene expression in the aging brain, particularly for isocortex, the hippocampal formation, brainstem and fiber tracts, and validated some gene expression differences by qPCR and immunohistochemistry. We identified aging-related genes and pathways that vary in a coordinated manner across spatial regions and parsed the spatial features of aging-related signals, providing important clues to understand genes with specific functions in different brain regions during aging. Combined with single-cell transcriptomics data, we characterized the spatial distribution of brain cell types. The proportion of immature neurons decreased in the DG region with aging, indicating that the formation of new neurons is blocked. Finally, we detected changes in information interactions between regions and found specific pathways were deregulated with aging, including classic signaling WNT and layer-specific signaling COLLAGEN. In summary, we established a spatial molecular atlas of the aging mouse brain (http://sysbio.gzzoc.com/Mouse-Brain-Aging/), which provides important resources and novel insights into the molecular mechanism of brain aging.
Collapse
Affiliation(s)
- Cheng Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Tianxiang Tu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Mingzhe Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yiting Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Yajun Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, MOE Innovative Center for New Drug Development of Immune Inflammatory DiseasesInstitutes of Brain Science, Institute for Medical and Engineering Innovation, Department of Ophthalmology, Eye & ENT Hospital, Fudan UniversityShanghaiChina
| | - Xiaolai Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
19
|
Deepa SS, Thadathil N, Corral J, Mohammed S, Pham S, Rose H, Kinter MT, Richardson A, Díaz-García CM. MLKL overexpression leads to Ca 2+ and metabolic dyshomeostasis in a neuronal cell model. Cell Calcium 2024; 119:102854. [PMID: 38430790 PMCID: PMC10990772 DOI: 10.1016/j.ceca.2024.102854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The necroptotic effector molecule MLKL accumulates in neurons over the lifespan of mice, and its downregulation has the potential to improve cognition through neuroinflammation, and changes in the abundance of synaptic proteins and enzymes in the central nervous system. Notwithstanding, direct evidence of cell-autonomous effects of MLKL expression on neuronal physiology and metabolism are lacking. Here, we tested whether the overexpression of MLKL in the absence of cell death in the neuronal cell line Neuro-2a recapitulates some of the hallmarks of aging at the cellular level. Using genetically-encoded fluorescent biosensors, we monitored the cytosolic and mitochondrial Ca2+ levels, along with the cytosolic concentrations of several metabolites involved in energy metabolism (lactate, glucose, ATP) and oxidative stress (oxidized/reduced glutathione). We found that MLKL overexpression marginally decreased cell viability, however, it led to reduced cytosolic and mitochondrial Ca2+ elevations in response to Ca2+ influx from the extracellular space. On the contrary, Ca2+ signals were elevated after mobilizing Ca2+ from the endoplasmic reticulum. Transient elevations in cytosolic Ca2+, mimicking neuronal stimulation, lead to higher lactate levels and lower glucose concentrations in Neuro-2a cells when overexpressing MLKL, which suggest enhanced neuronal glycolysis. Despite these alterations, energy levels and glutathione redox state in the cell bodies remained largely preserved after inducing MLKL overexpression for 24-48 h. Taken together, our proof-of-concept experiments are consistent with the hypothesis that MLKL overexpression in the absence of cell death contributes to both Ca2+ and metabolic dyshomeostasis, which are cellular hallmarks of brain aging.
Collapse
Affiliation(s)
- Sathyaseelan S Deepa
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Nidheesh Thadathil
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA
| | - Jorge Corral
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Sabira Mohammed
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Sophia Pham
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Hadyn Rose
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA
| | - Michael T Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Arlan Richardson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| | - Carlos Manlio Díaz-García
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, OK, USA; Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, OK, USA; Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, OK, USA.
| |
Collapse
|
20
|
Tsai YH, González EA, Grodzki ACG, Bruun DA, Saito NH, Harvey DJ, Lein PJ. Acute intoxication with diisopropylfluorophosphate promotes cellular senescence in the adult male rat brain. FRONTIERS IN TOXICOLOGY 2024; 6:1360359. [PMID: 38745692 PMCID: PMC11091247 DOI: 10.3389/ftox.2024.1360359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/12/2024] [Indexed: 05/16/2024] Open
Abstract
Acute intoxication with high levels of organophosphate (OP) cholinesterase inhibitors can cause cholinergic crisis, which is associated with acute, life-threatening parasympathomimetic symptoms, respiratory depression and seizures that can rapidly progress to status epilepticus (SE). Clinical and experimental data demonstrate that individuals who survive these acute neurotoxic effects often develop significant chronic morbidity, including behavioral deficits. The pathogenic mechanism(s) that link acute OP intoxication to chronic neurological deficits remain speculative. Cellular senescence has been linked to behavioral deficits associated with aging and neurodegenerative disease, but whether acute OP intoxication triggers cellular senescence in the brain has not been investigated. Here, we test this hypothesis in a rat model of acute intoxication with the OP diisopropylfluorophosphate (DFP). Adult male Sprague-Dawley rats were administered DFP (4 mg/kg, s.c.). Control animals were administered an equal volume (300 µL) of sterile phosphate-buffered saline (s.c.). Both groups were subsequently injected with atropine sulfate (2 mg/kg, i.m.) and 2-pralidoxime (25 mg/kg, i.m.). DFP triggered seizure activity within minutes that rapidly progressed to SE, as determined using behavioral seizure criteria. Brains were collected from animals at 1, 3, and 6 months post-exposure for immunohistochemical analyses of p16, a biomarker of cellular senescence. While there was no immunohistochemical evidence of cellular senescence at 1-month post-exposure, at 3- and 6-months post-exposure, p16 immunoreactivity was significantly increased in the CA3 and dentate gyrus of the hippocampus, amygdala, piriform cortex and thalamus, but not the CA1 region of the hippocampus or the somatosensory cortex. Co-localization of p16 immunoreactivity with cell-specific biomarkers, specifically, NeuN, GFAP, S100β, IBA1 and CD31, revealed that p16 expression in the brain of DFP animals is neuron-specific. The spatial distribution of p16-immunopositive cells overlapped with expression of senescence associated β-galactosidase and with degenerating neurons identified by FluoroJade-C (FJC) staining. The co-occurrence of p16 and FJC was positively correlated. This study implicates cellular senescence as a novel pathogenic mechanism underlying the chronic neurological deficits observed in individuals who survive OP-induced cholinergic crisis.
Collapse
Affiliation(s)
- Yi-Hua Tsai
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Eduardo A. González
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Ana C. G. Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Donald A. Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Naomi H. Saito
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Danielle J. Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
21
|
Yu N, Pasha M, Chua JJE. Redox changes and cellular senescence in Alzheimer's disease. Redox Biol 2024; 70:103048. [PMID: 38277964 PMCID: PMC10840360 DOI: 10.1016/j.redox.2024.103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The redox process and cellular senescence are involved in a range of essential physiological functions. However, they are also implicated in pathological processes underlying age-related neurodegenerative disorders, including Alzheimer's disease (AD). Elevated levels of reactive oxygen species (ROS) are generated as a result of abnormal accumulation of beta-amyloid peptide (Aβ), tau protein, and heme dyshomeostasis and is further aggravated by mitochondria dysfunction and endoplasmic reticulum (ER) stress. Excessive ROS damages vital cellular components such as proteins, DNA and lipids. Such damage eventually leads to impaired neuronal function and cell death. Heightened oxidative stress can also induce cellular senescence via activation of the senescence-associated secretory phenotype to further exacerbate inflammation and tissue dysfunction. In this review, we focus on how changes in the redox system and cellular senescence contribute to AD and how they are affected by perturbations in heme metabolism and mitochondrial function. While potential therapeutic strategies targeting such changes have received some attention, more research is necessary to bring them into clinical application.
Collapse
Affiliation(s)
- Nicole Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mazhar Pasha
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; LSI Neurobiology Programme, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
22
|
Sasaki F, Yoshino H, Kusuhara A, Sato K, Tsuruga E. Involvement of retinoic acid‑inducible gene‑I in radiation‑induced senescence of human umbilical vein endothelial cells. Biomed Rep 2024; 20:70. [PMID: 38495345 PMCID: PMC10941717 DOI: 10.3892/br.2024.1758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
In 2012, the threshold radiation dose (0.5 Gy) for cardiovascular and cerebrovascular diseases was revised, and this threshold dose may be exceeded during procedures involving radiation such as interventional radiology. Therefore, in addition to regulating radiation dose, it is necessary to develop strategies to prevent and mitigate the development of cardiovascular disease. Cellular senescence is irreversible arrest of cell proliferation. Although cellular senescence is one of the mechanisms for suppressing cancer, it also has adverse effects. For example, senescence of vascular endothelial cells is involved in development of vascular disorders. However, the mechanisms underlying induction of cellular senescence are not fully understood. Therefore, the present study explored the factors involved in the radiation-induced senescence in human umbilical vein endothelial cells (HUVECs). The present study reanalyzed the gene expression data of senescent normal human endothelial cells and fibroblast after irradiation (NCBI Gene Expression Omnibus accession no. GSE130727) and microarray data of HUVECs 24 h after irradiation (NCBI Gene Expression Omnibus accession no. GSE76484). Numerous genes related to viral infection and inflammation were upregulated in radiation-induced senescent cells. In addition, the gene group involved in the retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR) signaling pathway, which plays an important role to induce anti-viral response, was altered in irradiated HUVECs. Therefore, to investigate the involvement of RIG-I and melanoma differentiation-associated gene 5 (MDA5), which are RLRs, in radiation-induced senescence of HUVECs, the protein expression of RIG-I and MDA5 and the activity of senescence-associated β-galactosidase (SA-β-gal), a representative senescence marker, were analyzed. Of note, knockdown of RIG-I in HUVECs significantly decreased radiation-increased proportion of cells with high SA-β-gal activity (i.e., senescent cells), whereas this phenomenon was not observed in MDA5-knockdown cells. Taken together, the present results suggested that RIG-I, but not MDA5, was associated with radiation-induced senescence in HUVECs.
Collapse
Affiliation(s)
- Fuki Sasaki
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Hironori Yoshino
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Ayumu Kusuhara
- Department of Radiological Technology, School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
- Department of Radiology, Sapporo Teishinkai Hospital, Sapporo, Hokkaido 065-0033, Japan
| | - Kota Sato
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| | - Eichi Tsuruga
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, Hirosaki, Aomori 036-8564, Japan
| |
Collapse
|
23
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
24
|
Donovan LJ, Brewer CL, Bond SF, Lopez AP, Hansen LH, Jordan CE, González OC, de Lecea L, Kauer JA, Tawfik VL. Aging and injury drive neuronal senescence in the dorsal root ganglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576299. [PMID: 39829815 PMCID: PMC11741248 DOI: 10.1101/2024.01.20.576299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aging negatively impacts central nervous system function; however, the cellular impact of aging in the peripheral nervous system remains poorly understood. Aged individuals are more likely to experience increased pain and slower recovery after trauma. Such injury can damage vulnerable peripheral axons of dorsal root ganglion (DRG) neurons resulting in somatosensory dysfunction. One cellular mechanism common to both aging and injury is cellular senescence, a complex cell state that can contribute to the aged pro-inflammatory environment. We uncovered, for the first time, DRG neuron senescence in the context of aging and pain-inducing peripheral nerve injury in young and aged mice. Aged DRG neurons displayed multiple markers of senescence (SA-β-gal, p21, p16, IL6) when compared to young DRG neurons. Peripheral nerve injury triggered a further accumulation of senescent DRG neurons over time post-injury in young and aged DRG. These senescent neurons were dynamic and heterogeneous in their expression of senescence markers, p16, p21, and senescence-associated secretory phenotype (SASP) expression of IL6, which was influenced by age. An electrophysiological characterization of senescence marker-expressing neurons revealed high-firing and nociceptor-like phenotypes within these populations. In addition, we observed improvement in nociceptive behaviors in young and aged nerve-injured mice after treatment with a senolytic agent that eliminates senescent cells. Finally, we confirmed in human post-mortem DRG samples that neuronal senescence is present and increases with age. Overall, we describe a susceptibility of the peripheral nervous system to neuronal senescence with age or injury that may be a targetable mechanism to treat sensory dysfunction, such as chronic pain, particularly in aged populations.
Collapse
Affiliation(s)
- Lauren J. Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Chelsie L. Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F. Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aleishai Pena Lopez
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Linus H. Hansen
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E. Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Oscar C. González
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Julie A. Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
25
|
Dias-Carvalho A, Sá SI, Carvalho F, Fernandes E, Costa VM. Inflammation as common link to progressive neurological diseases. Arch Toxicol 2024; 98:95-119. [PMID: 37964100 PMCID: PMC10761431 DOI: 10.1007/s00204-023-03628-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Life expectancy has increased immensely over the past decades, bringing new challenges to the health systems as advanced age increases the predisposition for many diseases. One of those is the burden of neurologic disorders. While many hypotheses have been placed to explain aging mechanisms, it has been widely accepted that the increasing pro-inflammatory status with advanced age or "inflammaging" is a main determinant of biological aging. Furthermore, inflammaging is at the cornerstone of many age-related diseases and its involvement in neurologic disorders is an exciting hypothesis. Indeed, aging and neurologic disorders development in the elderly seem to share some basic pathways that fundamentally converge on inflammation. Peripheral inflammation significantly influences brain function and contributes to the development of neurological disorders, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Understanding the role of inflammation in the pathogenesis of progressive neurological diseases is of crucial importance for developing effective treatments and interventions that can slow down or prevent disease progression, therefore, decreasing its social and economic burden.
Collapse
Affiliation(s)
- Ana Dias-Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Susana Isabel Sá
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- UCIBIO- Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
26
|
Chen X, Walton K, Brodaty H, Chalton K. Polyphenols and Diets as Current and Potential Nutrition Senotherapeutics in Alzheimer's Disease: Findings from Clinical Trials. J Alzheimers Dis 2024; 101:S479-S501. [PMID: 38875032 DOI: 10.3233/jad-231222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Cellular senescence, a hallmark of aging, plays an important role in age-related conditions among older adults. Targeting senescent cells and its phenotype may provide a promising strategy to delay the onset or progression of Alzheimer's disease (AD). In this review article, we investigated efficacy and safety of nutrition senotherapy in AD, with a focus on the role of polyphenols as current and potential nutrition senotherapeutic agents, as well as relevant dietary patterns. Promising results with neuroprotective effects of senotherapeutic agents such as quercetin, resveratrol, Epigallocatechin-gallate, curcumin and fisetin were reported from preclinical studies. However, in-human trials remain limited, and findings were inconclusive. In future, nutrition senotherapeutic agents should be studied both individually and within dietary patterns, through the perspective of cellular senescence and AD. Further studies are warranted to investigate bioavailability, dosing regimen, long term effects of nutrition senotherapy and provide better understanding of the underlying mechanisms. Collaboration between researchers needs to be established, and methodological limitations of current studies should be addressed.
Collapse
Affiliation(s)
- Xi Chen
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Walton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), School of Psychiatry, University of New South Wales, Kensington, NSW, Australia
| | - Karen Chalton
- School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
27
|
Malvaso A, Gatti A, Negro G, Calatozzolo C, Medici V, Poloni TE. Microglial Senescence and Activation in Healthy Aging and Alzheimer's Disease: Systematic Review and Neuropathological Scoring. Cells 2023; 12:2824. [PMID: 38132144 PMCID: PMC10742050 DOI: 10.3390/cells12242824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The greatest risk factor for neurodegeneration is the aging of the multiple cell types of human CNS, among which microglia are important because they are the "sentinels" of internal and external perturbations and have long lifespans. We aim to emphasize microglial signatures in physiologic brain aging and Alzheimer's disease (AD). A systematic literature search of all published articles about microglial senescence in human healthy aging and AD was performed, searching for PubMed and Scopus online databases. Among 1947 articles screened, a total of 289 articles were assessed for full-text eligibility. Microglial transcriptomic, phenotypic, and neuropathological profiles were analyzed comprising healthy aging and AD. Our review highlights that studies on animal models only partially clarify what happens in humans. Human and mice microglia are hugely heterogeneous. Like a two-sided coin, microglia can be protective or harmful, depending on the context. Brain health depends upon a balance between the actions and reactions of microglia maintaining brain homeostasis in cooperation with other cell types (especially astrocytes and oligodendrocytes). During aging, accumulating oxidative stress and mitochondrial dysfunction weaken microglia leading to dystrophic/senescent, otherwise over-reactive, phenotype-enhancing neurodegenerative phenomena. Microglia are crucial for managing Aβ, pTAU, and damaged synapses, being pivotal in AD pathogenesis.
Collapse
Affiliation(s)
- Antonio Malvaso
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Alberto Gatti
- IRCCS “C. Mondino” Foundation, National Neurological Institute, Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy; (A.M.); (A.G.)
| | - Giulia Negro
- Department of Neurology, University of Milano Bicocca, 20126 Milan, Italy;
| | - Chiara Calatozzolo
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| | - Valentina Medici
- Department of Translational Medicine, University of Eastern Piedmont, 28100 Novara, Italy;
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Abbiategrasso, 20081 Milan, Italy;
| |
Collapse
|
28
|
Maruyama N, Fukunaga I, Kogo T, Endo T, Fujii W, Kanai-Azuma M, Naito K, Sugiura K. Accumulation of senescent cells in the stroma of aged mouse ovary. J Reprod Dev 2023; 69:328-336. [PMID: 37926520 PMCID: PMC10721854 DOI: 10.1262/jrd.2023-021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023] Open
Abstract
Senescent cells play a detrimental role in age-associated pathogenesis by producing factors involved in senescence-associated secretory phenotype (SASP). The present study was conducted to examine the possibility that senescent cells are present in aged ovaries and, if so, to determine the tissue region where senescent cells accumulate using a mouse model. Female mice at 2-4 and 8-10 months were used as reproductively young and aged models, respectively; the latter included mice with and without reproductive experience. Cells positive for senescence-associated β-galactosidase (SA-β-Gal) staining, one of the markers of cellular senescence, were detected in the stromal region of aged, but not young, ovaries regardless of reproductive experience. Likewise, the localization of cells expressing CDKN2A (cyclin dependent kinase inhibitor 2A), another senescence marker, in the stromal region of aged ovaries was detected with immunohistochemistry. CDKN2A expression detected by western blotting was significantly higher in the ovaries of aged mice with reproductive experience than in those without the experience. Moreover, cells positive for both γH2AX (a senescence marker) and fluorescent SA-β-Gal staining were present in those isolated from aged ovaries. In addition, the transcript levels of several SASP factors were significantly increased in aged ovaries. These results suggest that senescent cells accumulate in the ovarian stroma and may affect ovarian function in aged mice. Additionally, reproductive experience may promote accumulation.
Collapse
Affiliation(s)
- Natsumi Maruyama
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Isuzu Fukunaga
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomoaki Kogo
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tsutomu Endo
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wataru Fujii
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Present address: Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masami Kanai-Azuma
- Department of Experimental Animal Model for Human Disease, Center for Experimental Animals, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kunihiko Naito
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Koji Sugiura
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
29
|
Ungvari Z, Fazekas-Pongor V, Csiszar A, Kunutsor SK. The multifaceted benefits of walking for healthy aging: from Blue Zones to molecular mechanisms. GeroScience 2023; 45:3211-3239. [PMID: 37495893 PMCID: PMC10643563 DOI: 10.1007/s11357-023-00873-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023] Open
Abstract
Physical activity, including walking, has numerous health benefits in older adults, supported by a plethora of observational and interventional studies. Walking decreases the risk or severity of various health outcomes such as cardiovascular and cerebrovascular diseases, type 2 diabetes mellitus, cognitive impairment and dementia, while also improving mental well-being, sleep, and longevity. Dose-response relationships for walking duration and intensity are established for adverse cardiovascular outcomes. Walking's favorable effects on cardiovascular risk factors are attributed to its impact on circulatory, cardiopulmonary, and immune function. Meeting current physical activity guidelines by walking briskly for 30 min per day for 5 days can reduce the risk of several age-associated diseases. Additionally, low-intensity physical exercise, including walking, exerts anti-aging effects and helps prevent age-related diseases, making it a powerful tool for promoting healthy aging. This is exemplified by the lifestyles of individuals in Blue Zones, regions of the world with the highest concentration of centenarians. Walking and other low-intensity physical activities contribute significantly to the longevity of individuals in these regions, with walking being an integral part of their daily lives. Thus, incorporating walking into daily routines and encouraging walking-based physical activity interventions can be an effective strategy for promoting healthy aging and improving health outcomes in all populations. The goal of this review is to provide an overview of the vast and consistent evidence supporting the health benefits of physical activity, with a specific focus on walking, and to discuss the impact of walking on various health outcomes, including the prevention of age-related diseases. Furthermore, this review will delve into the evidence on the impact of walking and low-intensity physical activity on specific molecular and cellular mechanisms of aging, providing insights into the underlying biological mechanisms through which walking exerts its beneficial anti-aging effects.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary.
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | | | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Setor K Kunutsor
- Diabetes Research Centre, University of Leicester, Leicester General Hospital, Gwendolen Road, Leicester, LE5 4WP, UK.
| |
Collapse
|
30
|
Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, Yaqinuddin A, Tchkonia T, Kirkland JL, Hashmi SK. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci 2023; 15:1281581. [PMID: 38076538 PMCID: PMC10702235 DOI: 10.3389/fnagi.2023.1281581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
Cellular senescence is a biological aging hallmark that plays a key role in the development of neurodegenerative diseases. Clinical trials are currently underway to evaluate the effectiveness of senotherapies for these diseases. However, the impact of senescence on brain aging and cognitive decline in the absence of neurodegeneration remains uncertain. Moreover, patient populations like cancer survivors, traumatic brain injury survivors, obese individuals, obstructive sleep apnea patients, and chronic kidney disease patients can suffer age-related brain changes like cognitive decline prematurely, suggesting that they may suffer accelerated senescence in the brain. Understanding the role of senescence in neurocognitive deficits linked to these conditions is crucial, especially considering the rapidly evolving field of senotherapeutics. Such treatments could help alleviate early brain aging in these patients, significantly reducing patient morbidity and healthcare costs. This review provides a translational perspective on how cellular senescence plays a role in brain aging and age-related cognitive decline. We also discuss important caveats surrounding mainstream senotherapies like senolytics and senomorphics, and present emerging evidence of hyperbaric oxygen therapy and immune-directed therapies as viable modalities for reducing senescent cell burden.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Mohamed H. Omer
- School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mahnoor Niaz
- Medical College, Aga Khan University, Karachi, Pakistan
| | | | - Khaled AlKattan
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - James L. Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
- Clinical Affairs, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Medicine, SSMC, Abu Dhabi, United Arab Emirates
| |
Collapse
|
31
|
Tan JX, Finkel T. Lysosomes in senescence and aging. EMBO Rep 2023; 24:e57265. [PMID: 37811693 PMCID: PMC10626421 DOI: 10.15252/embr.202357265] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/08/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Dysfunction of lysosomes, the primary hydrolytic organelles in animal cells, is frequently associated with aging and age-related diseases. At the cellular level, lysosomal dysfunction is strongly linked to cellular senescence or the induction of cell death pathways. However, the precise mechanisms by which lysosomal dysfunction participates in these various cellular or organismal phenotypes have remained elusive. The ability of lysosomes to degrade diverse macromolecules including damaged proteins and organelles puts lysosomes at the center of multiple cellular stress responses. Lysosomal activity is tightly regulated by many coordinated cellular processes including pathways that function inside and outside of the organelle. Here, we collectively classify these coordinated pathways as the lysosomal processing and adaptation system (LYPAS). We review evidence that the LYPAS is upregulated by diverse cellular stresses, its adaptability regulates senescence and cell death decisions, and it can form the basis for therapeutic manipulation for a wide range of age-related diseases and potentially for aging itself.
Collapse
Affiliation(s)
- Jay Xiaojun Tan
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of Cell BiologyUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| | - Toren Finkel
- Aging InstituteUniversity of Pittsburgh School of Medicine/University of Pittsburgh Medical CenterPittsburghPAUSA
- Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPAUSA
| |
Collapse
|
32
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
33
|
Ferroni NM, Chertoff MJ, Alberca CD, Berardino BG, Gianatiempo O, Brahamian M, Levi V, Urrutia L, Falasco G, Cánepa ET, Sonzogni SV. Oxidative stress associated with spatial memory impairment and social olfactory deterioration in female mice reveals premature aging aroused by perinatal protein malnutrition. Exp Neurol 2023; 368:114481. [PMID: 37463612 DOI: 10.1016/j.expneurol.2023.114481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
Early-life adversity, like perinatal protein malnutrition, increases the vulnerability to develop long-term alterations in brain structures and function. This study aimed to determine whether perinatal protein malnutrition predisposes to premature aging in a murine model and to assess the cellular and molecular mechanisms involved. To this end, mouse dams were fed either with a normal (NP, casein 20%) or a low-protein diet (LP, casein 8%) during gestation and lactation. Female offspring were evaluated at 2, 7 and 12 months of age. Positron emission tomography analysis showed alterations in the hippocampal CA3 region and the accessory olfactory bulb of LP mice during aging. Protein malnutrition impaired spatial memory, coinciding with higher levels of reactive oxygen species in the hippocampus and sirt7 upregulation. Protein malnutrition also led to higher senescence-associated β-galactosidase activity and p21 expression. LP-12-month-old mice showed a higher number of newborn neurons that did not complete the maturation process. The social-odor discrimination in LP mice was impaired along life. In the olfactory bulb of LP mice, the senescence marker p21 was upregulated, coinciding with a downregulation of Sirt2 and Sirt7. Also, LP-12-month-old mice showed a downregulation of catalase and glutathione peroxidase, and LP-2-month-old mice showed a higher number of newborn neurons in the subventricular zone, which then returned to normal values. Our results show that perinatal protein malnutrition causes long-term impairment in cognitive and olfactory skills through an accelerated senescence phenotype accompanied by an increase in oxidative stress and altered sirtuin expression in the hippocampus and olfactory bulb.
Collapse
Affiliation(s)
- Nadina M Ferroni
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Mariela J Chertoff
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Carolina D Alberca
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Bruno G Berardino
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Octavio Gianatiempo
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Martin Brahamian
- Bioterio central, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Valeria Levi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Leandro Urrutia
- Centro de Imágenes Moleculares, Fleni, Belén de Escobar, B1625 Buenos Aires, Argentina
| | - Germán Falasco
- Centro de Imágenes Moleculares, Fleni, Belén de Escobar, B1625 Buenos Aires, Argentina
| | - Eduardo T Cánepa
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina
| | - Silvina V Sonzogni
- Laboratorio de Neuroepigenética, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, and Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET, C1428EGA Ciudad de Buenos Aires, Argentina.
| |
Collapse
|
34
|
Lin JP, Brake A, Donadieu M, Lee A, Kawaguchi R, Sati P, Geschwind DH, Jacobson S, Schafer DP, Reich DS. A 4D transcriptomic map for the evolution of multiple sclerosis-like lesions in the marmoset brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.25.559371. [PMID: 37808784 PMCID: PMC10557631 DOI: 10.1101/2023.09.25.559371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Single-time-point histopathological studies on postmortem multiple sclerosis (MS) tissue fail to capture lesion evolution dynamics, posing challenges for therapy development targeting development and repair of focal inflammatory demyelination. To close this gap, we studied experimental autoimmune encephalitis (EAE) in the common marmoset, the most faithful animal model of these processes. Using MRI-informed RNA profiling, we analyzed ~600,000 single-nucleus and ~55,000 spatial transcriptomes, comparing them against EAE inoculation status, longitudinal radiological signals, and histopathological features. We categorized 5 groups of microenvironments pertinent to neural function, immune and glial responses, tissue destruction and repair, and regulatory network at brain borders. Exploring perilesional microenvironment diversity, we uncovered central roles of EAE-associated astrocytes, oligodendrocyte precursor cells, and ependyma in lesion formation and resolution. We pinpointed imaging and molecular features capturing the pathological trajectory of WM, offering potential for assessing treatment outcomes using marmoset as a platform.
Collapse
Affiliation(s)
- Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Alexis Brake
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Maxime Donadieu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Amanda Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Riki Kawaguchi
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA
| | - Daniel H. Geschwind
- Departments of Neurology and Human Genetics, University of California, Los Angeles, Los Angeles, CA
- Psychiatry, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
35
|
Wang J, Lu Y, Carr C, Dhandapani KM, Brann DW. Senolytic therapy is neuroprotective and improves functional outcome long-term after traumatic brain injury in mice. Front Neurosci 2023; 17:1227705. [PMID: 37575310 PMCID: PMC10416099 DOI: 10.3389/fnins.2023.1227705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Chronic neuroinflammation can exist for months to years following traumatic brain injury (TBI), although the underlying mechanisms remain poorly understood. Methods In the current study, we used a controlled cortical impact mouse model of TBI to examine whether proinflammatory senescent cells are present in the brain long-term (months) after TBI and whether ablation of these cells via administration of senolytic drugs can improve long-term functional outcome after TBI. The results revealed that astrocytes and microglia in the cerebral cortex, hippocampus, corpus callosum and lateral posterior thalamus colocalized the senescent cell markers, p16Ink4a or p21Cip1/Waf1 at 5 weeks post injury (5wpi) and 4 months post injury (4mpi) in a controlled cortical impact (CCI) model. Intermittent administration of the senolytic drugs, dasatinib and quercetin (D + Q) beginning 1-month after TBI for 13 weeks significantly ablated p16Ink4a-positive- and p21Cip1/Waf1-positive-cells in the brain of TBI animals, and significantly reduced expression of the major senescence-associated secretory phenotype (SASP) pro-inflammatory factors, interleukin-1β and interleukin-6. Senolytic treatment also significantly attenuated neurodegeneration and enhanced neuron number at 18 weeks after TBI in the ipsilateral cortex, hippocampus, and lateral posterior thalamus. Behavioral testing at 18 weeks after TBI further revealed that senolytic therapy significantly rescued defects in spatial reference memory and recognition memory, as well as depression-like behavior in TBI mice. Discussion Taken as a whole, these findings indicate there is robust and widespread induction of senescent cells in the brain long-term after TBI, and that senolytic drug treatment begun 1-month after TBI can efficiently ablate the senescent cells, reduce expression of proinflammatory SASP factors, reduce neurodegeneration, and rescue defects in reference memory, recognition memory, and depressive behavior.
Collapse
Affiliation(s)
| | | | | | | | - Darrell W. Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
36
|
Maran JJ, Adesina MM, Green CR, Kwakowsky A, Mugisho OO. The central role of the NLRP3 inflammasome pathway in the pathogenesis of age-related diseases in the eye and the brain. Ageing Res Rev 2023; 88:101954. [PMID: 37187367 DOI: 10.1016/j.arr.2023.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
With increasing age, structural changes occur in the eye and brain. Neuronal death, inflammation, vascular disruption, and microglial activation are among many of the pathological changes that can occur during ageing. Furthermore, ageing individuals are at increased risk of developing neurodegenerative diseases in these organs, including Alzheimer's disease (AD), Parkinson's disease (PD), glaucoma and age-related macular degeneration (AMD). Although these diseases pose a significant global public health burden, current treatment options focus on slowing disease progression and symptomatic control rather than targeting underlying causes. Interestingly, recent investigations have proposed an analogous aetiology between age-related diseases in the eye and brain, where a process of chronic low-grade inflammation is implicated. Studies have suggested that patients with AD or PD are also associated with an increased risk of AMD, glaucoma, and cataracts. Moreover, pathognomonic amyloid-β and α-synuclein aggregates, which accumulate in AD and PD, respectively, can be found in ocular parenchyma. In terms of a common molecular pathway that underpins these diseases, the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome is thought to play a vital role in the manifestation of all these diseases. This review summarises the current evidence regarding cellular and molecular changes in the brain and eye with age, similarities between ocular and cerebral age-related diseases, and the role of the NLRP3 inflammasome as a critical mediator of disease propagation in the eye and the brain during ageing.
Collapse
Affiliation(s)
- Jack J Maran
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Moradeke M Adesina
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology and the New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Galway, Ireland
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology and the New Zealand National Eye Centre, University of Auckland, New Zealand.
| |
Collapse
|
37
|
Van Houcke J, Mariën V, Zandecki C, Ayana R, Pepermans E, Boonen K, Seuntjens E, Baggerman G, Arckens L. A short dasatinib and quercetin treatment is sufficient to reinstate potent adult neuroregenesis in the aged killifish. NPJ Regen Med 2023; 8:31. [PMID: 37328477 DOI: 10.1038/s41536-023-00304-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/23/2023] [Indexed: 06/18/2023] Open
Abstract
The young African turquoise killifish has a high regenerative capacity, but loses it with advancing age, adopting several aspects of the limited form of mammalian regeneration. We deployed a proteomic strategy to identify pathways that underpin the loss of regenerative power caused by aging. Cellular senescence stood out as a potential brake on successful neurorepair. We applied the senolytic cocktail Dasatinib and Quercetin (D + Q) to test clearance of chronic senescent cells from the aged killifish central nervous system (CNS) as well as rebooting the neurogenic output. Our results show that the entire aged killifish telencephalon holds a very high senescent cell burden, including the parenchyma and the neurogenic niches, which could be diminished by a short-term, late-onset D + Q treatment. Reactive proliferation of non-glial progenitors increased substantially and lead to restorative neurogenesis after traumatic brain injury. Our results provide a cellular mechanism for age-related regeneration resilience and a proof-of-concept of a potential therapy to revive the neurogenic potential in an already aged or diseased CNS.
Collapse
Affiliation(s)
- Jolien Van Houcke
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Valerie Mariën
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Caroline Zandecki
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Rajagopal Ayana
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, 3000, Leuven, Belgium
| | - Elise Pepermans
- Centre for Proteomics, University of Antwerp, 2020, Antwerpen, Belgium
| | - Kurt Boonen
- Centre for Proteomics, University of Antwerp, 2020, Antwerpen, Belgium
- Health Unit, VITO, 2400, Mol, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, 3000, Leuven, Belgium
- KU Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Geert Baggerman
- Centre for Proteomics, University of Antwerp, 2020, Antwerpen, Belgium
- Health Unit, VITO, 2400, Mol, Belgium
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Department of Biology, KU Leuven, 3000, Leuven, Belgium.
- KU Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
38
|
Balakrishnan R, Azam S, Kim IS, Choi DK. Neuroprotective Effects of Black Pepper and Its Bioactive Compounds in Age-Related Neurological Disorders. Aging Dis 2023; 14:750-777. [PMID: 37191428 PMCID: PMC10187688 DOI: 10.14336/ad.2022.1022] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/22/2022] [Indexed: 11/18/2022] Open
Abstract
Age-related neurological disorders (ANDs), including neurodegenerative diseases, are multifactorial disorders whose risk increases with age. The main pathological hallmarks of ANDs include behavioral changes, excessive oxidative stress, progressive functional declines, impaired mitochondrial function, protein misfolding, neuroinflammation, and neuronal cell death. Recently, efforts have been made to overcome ANDs because of their increased age-dependent prevalence. Black pepper, the fruit of Piper nigrum L. in the family Piperaceae, is an important food spice that has long been used in traditional medicine to treat various human diseases. Consumption of black pepper and black pepper-enriched products is associated with numerous health benefits due to its antioxidant, antidiabetic, anti-obesity, antihypertensive, anti-inflammatory, anticancer, hepatoprotective, and neuroprotective properties. This review shows that black pepper's major bioactive neuroprotective compounds, such as piperine, effectively prevent AND symptoms and pathological conditions by modulating cell survival signaling and death. Relevant molecular mechanisms are also discussed. In addition, we highlight how recently developed novel nanodelivery systems are vital for improving the efficacy, solubility, bioavailability, and neuroprotective properties of black pepper (and thus piperine) in different experimental AND models, including clinical trials. This extensive review shows that black pepper and its active ingredients have therapeutic potential for ANDs.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Korea.
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
39
|
Villablanca C, Vidal R, Gonzalez-Billault C. Are cytoskeleton changes observed in astrocytes functionally linked to aging? Brain Res Bull 2023; 196:59-67. [PMID: 36935053 DOI: 10.1016/j.brainresbull.2023.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/22/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Astrocytes are active participants in the performance of the Central Nervous System (CNS) in both health and disease. During aging, astrocytes are susceptible to reactive astrogliosis, a molecular state characterized by functional changes in response to pathological situations, and cellular senescence, characterized by loss of cell division, apoptosis resistance, and gain of proinflammatory functions. This results in two different states of astrocytes, which can produce proinflammatory phenotypes with harmful consequences in chronic conditions. Reactive astrocytes and senescent astrocytes share morpho-functional features that are dependent on the organization of the cytoskeleton. However, such changes in the cytoskeleton have yet to receive the necessary attention to explain their role in the alterations of astrocytes that are associated with aging and pathologies. In this review, we summarize all the available findings that connect changes in the cytoskeleton of the astrocytes with aging. In addition, we discuss future avenues that we believe will guide such a novel topic.
Collapse
Affiliation(s)
- Cristopher Villablanca
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - René Vidal
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center for Integrative Biology, Universidad Mayor, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile
| | - Christian Gonzalez-Billault
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile; Geroscience Center for Brain Health and Metabolism (GERO), Santiago, Chile; Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Institute for Nutrition and Food Technologies, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Seitz-Holland J, Mulsant BH, Reynolds CF, Blumberger DM, Karp JF, Butters MA, Mendes-Silva AP, Vieira EL, Tseng G, Lenze EJ, Diniz BS. Major depression, physical health and molecular senescence markers abnormalities. NATURE. MENTAL HEALTH 2023; 1:200-209. [PMID: 39483500 PMCID: PMC11527398 DOI: 10.1038/s44220-023-00033-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/10/2023] [Indexed: 11/03/2024]
Abstract
Previous studies suggested the role of cellular senescence in late-life depression (LLD). However, it is unclear how this finding relates to common features of LLD, such as medical and cognitive problems. We applied factor analyses to an extensive battery of clinical variables in 426 individuals with LLD. Here we tested the relationship between these factors, age and sex, with an index of cellular senescence based on 22 senescence-associated secretory phenotype proteins. We found four factors: 'depression and anxiety severity', 'cognitive functioning', 'cardiovascular and cardiometabolic health' and 'blood pressure'. A higher senescence-associated secretory phenotype index was associated with poorer 'cognitive functioning' and 'cardiovascular and cardiometabolic health' but not with 'depression and anxiety severity'. These findings highlight the role of cellular senescence in poorer physical and cognitive health in LLD. They are consonant with the viewpoint that co-occurring medical burdens and their associated disabilities are part of a phenotype of accelerated ageing in LLD.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benoit H. Mulsant
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Charles F. Reynolds
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel M. Blumberger
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jordan F. Karp
- Department of Psychiatry, The University of Arizona College of Medicine, Tucson, AZ, USA
| | - Meryl A. Butters
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Erica L. Vieira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - George Tseng
- Department of Biostatistics, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Eric J. Lenze
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Breno S. Diniz
- UConn Center on Aging, University of Connecticut, Farmington, CT, USA
- Department of Psychiatry, UConn School of Medicine, Farmington, CT, USA
| |
Collapse
|
41
|
Plakkot B, Di Agostino A, Subramanian M. Implications of Hypothalamic Neural Stem Cells on Aging and Obesity-Associated Cardiovascular Diseases. Cells 2023; 12:cells12050769. [PMID: 36899905 PMCID: PMC10000584 DOI: 10.3390/cells12050769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/14/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The hypothalamus, one of the major regulatory centers in the brain, controls various homeostatic processes, and hypothalamic neural stem cells (htNSCs) have been observed to interfere with hypothalamic mechanisms regulating aging. NSCs play a pivotal role in the repair and regeneration of brain cells during neurodegenerative diseases and rejuvenate the brain tissue microenvironment. The hypothalamus was recently observed to be involved in neuroinflammation mediated by cellular senescence. Cellular senescence, or systemic aging, is characterized by a progressive irreversible state of cell cycle arrest that causes physiological dysregulation in the body and it is evident in many neuroinflammatory conditions, including obesity. Upregulation of neuroinflammation and oxidative stress due to senescence has the potential to alter the functioning of NSCs. Various studies have substantiated the chances of obesity inducing accelerated aging. Therefore, it is essential to explore the potential effects of htNSC dysregulation in obesity and underlying pathways to develop strategies to address obesity-induced comorbidities associated with brain aging. This review will summarize hypothalamic neurogenesis associated with obesity and prospective NSC-based regenerative therapy for the treatment of obesity-induced cardiovascular conditions.
Collapse
|
42
|
Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Disease mechanisms as Subtypes: Mitochondrial and bioenergetic dysfunction. HANDBOOK OF CLINICAL NEUROLOGY 2023; 193:53-66. [PMID: 36803823 DOI: 10.1016/b978-0-323-85555-6.00007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Parkinson disease (PD) is the second most common neurodegenerative disease in the world. Despite its enormous human and societal cost, there is no disease-modifying therapy for PD. This unmet medical need reflects our limited understanding of PD pathogenesis. One of the most important clues comes from the recognition that PD motor symptoms arises from the dysfunction and degeneration of a very select group of neurons in the brain. These neurons have a distinctive set of anatomic and physiologic traits that reflect their role in brain function. These traits elevate mitochondrial stress, potentially making them particularly vulnerable to age, as well as to genetic mutations and environmental toxins linked to PD incidence. In this chapter, the literature supporting this model is outlined, along with gaps in our knowledge base. The translational implications of this hypothesis are then discussed, with a focus on why disease-modification trials have failed to date and what this means for the development of new strategies for altering disease course.
Collapse
Affiliation(s)
- Patricia Gonzalez-Rodriguez
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla and CIBERNED, Seville, Spain
| | - Enrico Zampese
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
43
|
Preininger MK, Zaytseva D, Lin JM, Kaufer D. Blood-brain barrier dysfunction promotes astrocyte senescence through albumin-induced TGFβ signaling activation. Aging Cell 2023; 22:e13747. [PMID: 36606305 PMCID: PMC9924950 DOI: 10.1111/acel.13747] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/22/2022] [Accepted: 11/06/2022] [Indexed: 01/07/2023] Open
Abstract
Blood-brain barrier dysfunction (BBBD) and accumulation of senescent astrocytes occur during brain aging and contribute to neuroinflammation and disease. Here, we explored the relationship between these two age-related events, hypothesizing that chronic hippocampal exposure to the blood-borne protein serum albumin could induce stress-induced premature senescence (SIPS) in astrocytes via transforming growth factor beta 1 (TGFβ) signaling. We found that 1 week of albumin exposure significantly increased TGFβ signaling and senescence marker expression in cultured rat hippocampal astrocytes. These changes were preventable by pharmacological inhibition of the type I TGFβ receptor (TGFβR) ALK5. To study these effects in vivo, we utilized an animal model of BBBD in which albumin was continuously infused into the lateral ventricles of adult mice. Consistent with our in vitro results, 1 week of albumin infusion significantly increased TGFβ signaling activation and the burden of senescent astrocytes in hippocampal tissue. Pharmacological inhibition of ALK5 TGFβR or conditional genetic knockdown of astrocytic TGFβR prior to albumin infusion was sufficient to prevent albumin-induced astrocyte senescence. Together, these results establish a link between TGFβ signaling activation and astrocyte senescence and suggest that prolonged exposure to serum albumin due to BBBD can trigger these phenotypic changes.
Collapse
Affiliation(s)
- Marcela K. Preininger
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Dasha Zaytseva
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Department of BiologySan Francisco State UniversitySan FranciscoCaliforniaUSA
| | - Jessica May Lin
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Daniela Kaufer
- Department of Integrative BiologyUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
44
|
Li J, Bi Z, Wang L, Xia Y, Xie Y, Liu Y. Recent Advances in Strategies for Imaging Detection and Intervention of Cellular Senescence. Chembiochem 2023; 24:e202200364. [PMID: 36163425 DOI: 10.1002/cbic.202200364] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/14/2022] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a stable cell cycle arrest state that can be triggered by a wide range of intrinsic or extrinsic stresses. Increased burden of senescent cells in various tissues is thought to contribute to aging and age-related diseases. Thus, the detection and interventions of senescent cells are critical for longevity and treatment of disease. However, the highly heterogeneous feature of senescence makes it challenging for precise detection and selective clearance of senescent cells in different age-related diseases. To address this issue, considerable efforts have been devoted to developing senescence-targeting molecular theranostic strategies, based on the potential biomarkers of cellular senescence. Herein, we review recent advances in the field of anti-senescence research and highlight the specific visualization and elimination of senescent cells. Additionally, the challenges in this emerging field are outlined.
Collapse
Affiliation(s)
- Jili Li
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yinghao Xia
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yuqi Xie
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL) State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Aptamer Engineering Center of Hunan Province Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
45
|
Ask TF, Sütterlin S. Prefrontally modulated vagal neuroimmunomodulation is associated with telomere length. Front Neurosci 2022; 16:1063162. [PMID: 36605550 PMCID: PMC9807922 DOI: 10.3389/fnins.2022.1063162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Accumulated senescent cells are proposed to be one of the main drivers of age-related pathology such as dementia and cancer through disruption of tissue structure and function. We recently proposed the Neuro-Immuno-Senescence Integrative Model (NISIM), which relates prefrontally modulated vagal tone and subsequent balance between vagal and sympathetic input to the spleen to inflammatory responses leading to generation of reactive oxygen species and oxidative telomere damage. Aim In this study, we assess inflammation as a mediator in the relationship between prefrontally modulated vagal tone and leukocyte telomere length (LTL). We also assess the relationship between a recently proposed index of vagal neuroimmunomodulation (vagal tone/inflammation ratio; NIM index) and telomere length. Methods This study uses participant data from a large nationally representative longitudinal study since 1974 with a total of 45,000 Norwegian residents so far. A sub-sample of 131 participants from which ultrashort recordings (30 s) of vagal tone, c reactive protein, and LTL could be obtained were included in the study. Relationships were analyzed with Pearson's correlations and hierarchical multiple linear regression using either vagal tone and CRP or the NIM index to predict telomere length. Results Vagal tone was a significant positive predictor of telomere length but this was not mediated by c reactive protein, even after controlling for confounders. The NIM index was a significant positive predictor of telomere length, also when controlling for confounders. In a follow-up analysis simultaneously comparing telomere length between groups with high and low values of vagal tone, and between groups with high and low NIM index values, telomere length was only significantly different between NIM index groups. Conclusion This is the first study suggesting that prefrontally modulated vagal neuroimmunomodulation is associated with telomere length thus supporting the NISIM. Results indicate that the NIM index is a more sensitive indicator of vagal neuroimmunomodulation than vagal tone and CRP in isolation.
Collapse
Affiliation(s)
- Torvald F. Ask
- Faculty of Health, Welfare and Organisation, Østfold University College, Halden, Norway
- Department of Information Security and Communication Technology, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Stefan Sütterlin
- Faculty of Health, Welfare and Organisation, Østfold University College, Halden, Norway
- Faculty of Computer Science, Albstadt-Sigmaringen University, Sigmaringen, Germany
| |
Collapse
|
46
|
Urban VS, Cegledi A, Mikala G. Multiple myeloma, a quintessential malignant disease of aging: a geroscience perspective on pathogenesis and treatment. GeroScience 2022; 45:727-746. [PMID: 36508077 PMCID: PMC9742673 DOI: 10.1007/s11357-022-00698-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is an incurable plasma cell malignancy, which is predominantly a disease of older adults (the median age at diagnosis is 70 years). The slow progression from asymptomatic stages and the late-onset of MM suggest fundamental differences compared to many other hematopoietic system-related malignancies. The concept discussed in this review is that age-related changes at the level of terminally differentiated plasma cells act as the main risk factors for the development of MM. Epigenetic and genetic changes that characterize both MM development and normal aging are highlighted. The relationships between cellular aging processes, genetic mosaicism in plasma cells, and risk for MM and the stochastic processes contributing to clonal selection and expansion of mutated plasma cells are investigated. In line with the DNA damage accumulation theory of aging, in this review, the evolution of monoclonal gammopathy to symptomatic MM is considered. Therapeutic consequences of age-dependent comorbidities that lead to frailty and have fundamental influence on treatment outcome are described. The importance of considering geriatric states when planning the life-long treatment course of an elderly MM patient in order to achieve maximal therapeutic benefit is emphasized.
Collapse
Affiliation(s)
- Veronika S. Urban
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - Andrea Cegledi
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital–National Institute for Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabor Mikala
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary.
| |
Collapse
|
47
|
Terracina S, Petrella C, Francati S, Lucarelli M, Barbato C, Minni A, Ralli M, Greco A, Tarani L, Fiore M, Ferraguti G. Antioxidant Intervention to Improve Cognition in the Aging Brain: The Example of Hydroxytyrosol and Resveratrol. Int J Mol Sci 2022; 23:15674. [PMID: 36555317 PMCID: PMC9778814 DOI: 10.3390/ijms232415674] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Both physiological and pathological aging processes induce brain alterations especially affecting the speed of processing, working memory, conceptual reasoning and executive functions. Many therapeutic approaches to reduce the impact of brain aging on cognitive functioning have been tested; unfortunately, there are no satisfactory results as a single therapy. As aging is partly contributed by free radical reactions, it has been proposed that exogenous antioxidants could have a positive impact on both aging and its associated manifestations. The aim of this report is to provide a summary and a subsequent review of the literature evidence on the role of antioxidants in preventing and improving cognition in the aging brain. Manipulation of endogenous cellular defense mechanisms through nutritional antioxidants or pharmacological compounds represents an innovative approach to therapeutic intervention in diseases causing brain tissue damage, such as neurodegeneration. Coherently with this notion, antioxidants, especially those derived from the Mediterranean diet such as hydroxytyrosol and resveratrol, seem to be able to delay and modulate the cognitive brain aging processes and decrease the occurrence of its effects on the brain. The potential preventive activity of antioxidants should be evaluated in long-term exposure clinical trials, using preparations with high bioavailability, able to bypass the blood-brain barrier limitation, and that are well standardized.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Silvia Francati
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 00185 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
48
|
Ungerleider K, Beck JA, Lissa D, Joruiz S, Horikawa I, Harris CC. Δ133p53α Protects Human Astrocytes from Amyloid-beta Induced Senescence and Neurotoxicity. Neuroscience 2022; 498:190-202. [PMID: 35716965 PMCID: PMC9420812 DOI: 10.1016/j.neuroscience.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Cellular senescence is an important contributor to aging and age-related diseases such as Alzheimer's disease (AD). Senescent cells are characterized by a durable cell proliferation arrest and the acquisition of a proinflammatory senescence-associated secretory phenotype (SASP), which participates in the progression of neurodegenerative disorders. Clearance of senescent glial cells in an AD mouse model prevented cognitive decline suggesting pharmacological agents targeting cellular senescence might provide novel therapeutic approaches for AD. Δ133p53α, a natural protein isoform of p53, was previously shown to be a negative regulator of cellular senescence in primary human astrocytes, with clinical implications from its diminished expression in brain tissues from AD patients. Here we show that treatment of proliferating human astrocytes in culture with amyloid-beta oligomers (Aβ), an endogenous pathogenic agent of AD, results in reduced expression of Δ133p53α, as well as induces the cells to become senescent and express proinflammatory SASP cytokines such as IL-6, IL-1β and TNFα. Our data suggest that Aβ-induced astrocyte cellular senescence is associated with accelerated DNA damage, and upregulation of full-length p53 and its senescence-inducing target gene p21WAF1. We also show that exogenously enhanced expression of Δ133p53α rescues human astrocytes from Aβ-induced cellular senescence and SASP through both protection from DNA damage and dominant-negative inhibition of full-length p53, leading to inhibition of Aβ-induced, astrocyte-mediated neurotoxicity. The results presented here demonstrate that Δ133p53α manipulation could modulate cellular senescence in the context of AD, possibly opening new therapeutic avenues.
Collapse
Affiliation(s)
- Kyra Ungerleider
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jessica A Beck
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Comparative Pathobiology, Purdue University, West Layfette, IN 47907, USA
| | - Delphine Lissa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastien Joruiz
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Izumi Horikawa
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Rani L, Ranjan Sahu M, Chandra Mondal A. Age-related Mitochondrial Dysfunction in Parkinson's Disease: New Insights Into the Disease Pathology. Neuroscience 2022; 499:152-169. [PMID: 35839924 DOI: 10.1016/j.neuroscience.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 12/14/2022]
Abstract
Aging is a progressive loss of physiological function that increases risk of disease and death. Among the many factors that contribute to human aging, mitochondrial dysfunction has emerged as one of the most prominent features of the aging process. It has been linked to the development of various age-related pathologies, including Parkinson's disease (PD). Mitochondria has a complex quality control system that ensures mitochondrial integrity and function. Perturbations in these mitochondrial mechanisms have long been linked to various age-related neurological disorders. Even though research has shed light on several aspects of the disease pathology, the underlying mechanism of age-related factors responsible for individuals developing this disease is still unknown. This review article aims to discuss the role of mitochondria in the transition from normal brain aging to pathological brain aging, which leads to the progression of PD. We have discussed the emerging evidence on how age-related disruption of mitochondrial quality control mechanisms contributes to the development of PD-related pathophysiology.
Collapse
Affiliation(s)
- Linchi Rani
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Manas Ranjan Sahu
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India.
| |
Collapse
|
50
|
Pharmacological Approaches to Decelerate Aging: A Promising Path. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201533. [PMID: 35860429 PMCID: PMC9293537 DOI: 10.1155/2022/4201533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022]
Abstract
Biological aging or senescence is a course in which cellular function decreases over a period of time and is a consequence of altered signaling mechanisms that are triggered in stressed cells leading to cell damage. Aging is among the principal risk factors for many chronic illnesses such as cancer, cardiovascular disorders, and neurodegenerative diseases. Taking this into account, targeting fundamental aging mechanisms therapeutically may effectively impact numerous chronic illnesses. Selecting ideal therapeutic options in order to hinder the process of aging and decelerate the progression of age-related diseases is valuable. Along therapeutic options, life style modifications may well render the process of aging. The process of aging is affected by alteration in many cellular and signaling pathways amid which mTOR, SIRT1, and AMPK pathways are the most emphasized. Herein, we have discussed the mechanisms of aging focusing mainly on the mentioned pathways as well as the role of inflammation and autophagy in aging. Moreover, drugs and natural products with antiaging properties are discussed in detail.
Collapse
|