1
|
Khalili MR, Ahmadloo S, Mousavi SA, Joghataei MT, Brouki Milan P, Naderi Gharahgheshlagh S, Mohebi SL, Haramshahi SMA, Hosseinpour Sarmadi V. Navigating mesenchymal stem cells doses and delivery routes in heart disease trials: A comprehensive overview. Regen Ther 2025; 29:117-127. [PMID: 40162019 PMCID: PMC11952810 DOI: 10.1016/j.reth.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, various clinical trials have been designed and implemented using mesenchymal stem cells (MSCs) for the treatment of heart diseases. Clinical trials exploring MSC-based treatments have proliferated, yet the lack of standardized protocols for MSC administration remains a significant challenge. Despite the growing popularity of MSC trials, questions persist regarding optimal dosing, administration routes, and frequency to achieve safety and efficacy, particularly in the context of cardiac regeneration. The current study has reviewed the clinical trials that have used MSCs for the treatment of heart diseases since 2009. The findings reveal diverse transplantation methods and varying MSCs quantities, highlighting the absence of a universal guideline for MSCs utilization in heart disease clinical trials.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Salma Ahmadloo
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Seyed Amin Mousavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Lena Mohebi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Saltzman RG, Sundin A, Caceres LV, Tovar JA, Garzon AM, Cabreja MA, Shayestehyekta H, Soto J, Jayaweera D, Khan A, Schulman IH, Mitrani RD, Hare JM. Long term event-free survival following cell-based therapy in patients with cardiomyopathy: the HYPERION observational cohort. Stem Cells Transl Med 2025; 14:szaf010. [PMID: 40418635 DOI: 10.1093/stcltm/szaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 01/19/2025] [Indexed: 05/28/2025] Open
Abstract
INTRODUCTION There is limited long-term clinical outcome data supporting the use of cell-based therapy to treat heart failure. The HYPERION study (NCT03071835) followed long-term outcomes of patients with ischemic cardiomyopathy (ICM) and non-ischemic cardiomyopathy (NIDCM) who received mesenchymal stromal cells (MSC). We hypothesized that improved cardiac parameters predict longer event-free survival. METHODS We performed a Kaplan-Meier analysis to examine event-free survival as the primary outcome. Time-to-event information was captured from all eligible participants. Endpoint events were defined as death (all-cause), Left Ventricular Assist Device (LVAD) placement, or Heart Transplant. Subjects were categorized based on increase in Left Ventricular Ejection Fraction (LVEF) or decrease in Left Ventricular End Diastolic Volume (LVEDV) for comparisons within disease etiologies. RESULTS There were 134 men and 21 women, with mean age 60.0 ± 11.0 years. There were 121 (78%) with ICM and 34 (22%) with NIDCM. By the end of long-term follow-up (~13 years), 38 (24.5%) subjects had deceased, 5 (3.2%) received LVAD, and 8 (5.2%) underwent heart transplantation. Post-therapy increase of ≥5% LVEF was associated with longer event-free survival in NIDCM (HR:0.31; 95%CI, 0.11,0.86; P = .025), but not ICM (HR:1.14; 95%CI, 0.47,2.72; P = .776). Conversely, reduction in left ventricular end-diastolic volume (LVEDV) was associated with longer event-free survival in ICM (HR:0.16; 95%CI, 0.05, 0.55; P = .008) but not NIDCM (HR:0.35; 95%CI, 0.1,1.2; P = .098). ICM improvers had LVEDV of 225.7 ± 95.9 mL at baseline and 209.0 ± 100.6 mL by year 5 (P = .046). NIDCM improvers had LVEF of 27.2 ± 8.9% at baseline and 36.1 ± 11.6% by year 5 (P = .018). CONCLUSION In this long-term observational cohort analysis, improvement of LVEF and/or reduction in LVEDV was associated with survival benefits among subjects with NIDCM and ICM, respectively. In both etiologies the respective improvements are sustained for up to 5 years, providing evidence that cell-based therapy may be a promising and durable treatment option for patients with heart failure.
Collapse
Affiliation(s)
- Russell G Saltzman
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Andrew Sundin
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Loma Linda University Medical Center, Loma Linda, CA 92354, United States
| | - Lina V Caceres
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Jairo A Tovar
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Ana Maria Garzon
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Maria A Cabreja
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Hossein Shayestehyekta
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Jeanette Soto
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Dushyantha Jayaweera
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Aisha Khan
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
| | - Ivonne H Schulman
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Division of Kidney, Urologic, and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20817, United States
| | - Raul D Mitrani
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Joshua M Hare
- Leonard M. Miller School of Medicine, Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL 33136, United States
- Division of Cardiology, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
3
|
Cheng X, Li YL, Wang H, Zhang RJ, Fan KY, Qi XT, Zheng GP, Dong HL. Mesenchymal stem cell therapy in atherosclerosis: A bibliometric and visual analysis. World J Stem Cells 2024; 16:1062-1085. [PMID: 39734478 PMCID: PMC11669984 DOI: 10.4252/wjsc.v16.i12.1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/15/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation, and extensive studies have demonstrated their therapeutic potential in atherosclerosis (AS). AIM To conduct a bibliometric analysis of studies on the use of MSC therapy for AS over the past two decades, assess key trends and provide insights for future research directions. METHODS We systematically searched the Web of Science Core Collection database for articles published between 1999 and 2023, yielding a total of 556 articles. Visual representation and bibliometric analysis of information and trends were facilitated using CiteSpace, the R package 'bibliometrix' and VOSviewer. RESULTS The analyzed articles were predominantly from 52 countries/regions, with prominent contributions from China and the United States. A cohort of 3057 authors contributed to these publications, with the works of Libby P distinguished by their influence and citation count. Int J Mol Sci has emerged as the journal with the highest publication volume, prominently disseminating influential papers and identifying citation outbreaks. Furthermore, our analysis identified current research hotspots within the field, focusing on vascular progenitor cells, inflammatory mechanisms, and extracellular vesicles. Emerging research frontiers, such as extracellular vesicles and oxidative stress, have been highlighted as areas of burgeoning interest. Finally, we offer perspectives on the status of research and future directions of MSC therapy in AS. CONCLUSION This comprehensive analysis provides valuable insights for advancing scientific research on MSC therapy for AS. By elucidating pivotal trends and research directions, this study aimed to foster innovation and promote the progress of disciplines in this field, thereby contributing to advancing scientific knowledge and clinical practice.
Collapse
Affiliation(s)
- Xing Cheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ya-Ling Li
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Heng Wang
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, New South Wales, Australia
| | - Rui-Jing Zhang
- Department of Nephrology, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Ke-Yi Fan
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Xiao-Tong Qi
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
| | - Guo-Ping Zheng
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, The University of Sydney, Sydney 2145, New South Wales, Australia
| | - Hong-Lin Dong
- Department of Vascular Surgery, The Second Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi Province, China.
| |
Collapse
|
4
|
Ma CY, Zhai Y, Li CT, Liu J, Xu X, Chen H, Tse HF, Lian Q. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products: Promises, problems and prospects. Med Res Rev 2024; 44:919-938. [PMID: 38095832 DOI: 10.1002/med.22002] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/22/2023] [Accepted: 11/26/2023] [Indexed: 04/06/2024]
Abstract
Mesenchymal stem cells (MSCs) are one of the few stem cell types used in clinical practice as therapeutic agents for immunomodulation and ischemic tissue repair, due to their unique paracrine capacity, multiple differentiation potential, active components in exosomes, and effective mitochondria donation. At present, MSCs derived from tissues such as bone marrow and umbilical cord are widely applied in preclinical and clinical studies. Nevertheless, there remain challenges to the maintenance of consistently good quality MSCs derived from different donors or tissues, directly impacting their application as advanced therapy products. In this review, we discuss the promises, problems, and prospects associated with translation of MSC research into a pharmaceutical product. We review the hurdles encountered in translation of MSCs and MSC-exosomes from the research bench to an advanced therapy product compliant with good manufacturing practice (GMP). These difficulties include how to set up GMP-compliant protocols, what factors affect raw material selection, cell expansion to product formulation, establishment of quality control (QC) parameters, and quality assurance to comply with GMP standards. To avoid human error and reduce the risk of contamination, an automatic, closed system that allows real-time monitoring of QC should be considered. We also highlight potential advantages of pluripotent stem cells as an alternative source for MSC and exosomes generation and manufacture.
Collapse
Affiliation(s)
- Chui-Yan Ma
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuqing Zhai
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chung Tony Li
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
| | - Jie Liu
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hung-Fat Tse
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Department of Cardiology, Cardiac and Vascular Center, Shenzhen Hong Kong University Hospital, Shenzhen, China
- Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, The University of Hong Kong, Hong Kong, China
- Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China
| | - Qizhou Lian
- Center for Translational Stem Cell Biology, Hong Kong, China
- Department of Medicine, HKUMed Laboratory of Cellular Therapeutics, University of Hong Kong, Hong Kong, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank Centre, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Drera A, Rodella L, Brangi E, Riccardi M, Vizzardi E. Endothelial Dysfunction in Heart Failure: What Is Its Role? J Clin Med 2024; 13:2534. [PMID: 38731063 PMCID: PMC11084443 DOI: 10.3390/jcm13092534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The endothelium is a continuous layer of cells that coats the interior walls of arteries, capillaries, and veins. It has an essential regulatory role in hemostatic function, vascular tone, inflammation, and platelet activity. Endothelial dysfunction is characterized by a shift to a proinflammatory and prothrombic state, and it could have a bidirectional relationship with heart failure (HF). Due to neurohormonal activation and shear stress, HFrEF may promote endothelial dysfunction, increase ROS synthesis, and reduce nitric oxide production. Different studies have also shown that endothelium function is damaged in HFpEF because of a systemic inflammatory state. Some clinical trials suggest that drugs that have an effect on endothelial dysfunction in patients with HF or cardiovascular disease may be a therapeutic option. The aim of this review is to highlight the pathogenetic correlation between endothelial dysfunction and heart failure and the related potential therapeutic options.
Collapse
Affiliation(s)
- Andrea Drera
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Luca Rodella
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Elisa Brangi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Mauro Riccardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, 25123 Brescia, Italy; (A.D.); (L.R.); (E.B.); (M.R.)
| | - Enrico Vizzardi
- Cardiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Spedali Civili di Brescia, 23123 Brescia, Italy
| |
Collapse
|
6
|
Kelly CJ, Lindsay SL, Smith RS, Keh S, Cunningham KT, Thümmler K, Maizels RM, Campbell JDM, Barnett SC. Development of Good Manufacturing Practice-Compatible Isolation and Culture Methods for Human Olfactory Mucosa-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2024; 25:743. [PMID: 38255817 PMCID: PMC10815924 DOI: 10.3390/ijms25020743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.
Collapse
Affiliation(s)
- Christopher J. Kelly
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Susan L. Lindsay
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rebecca Sherrard Smith
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Siew Keh
- New Victoria Hospital, 55 Grange Road, Glasgow G42 9LF, UK
| | - Kyle T. Cunningham
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Katja Thümmler
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - Rick M. Maizels
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| | - John D. M. Campbell
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
- Tissues Cells and Advanced Therapeutics, SNBTS, Jack Copland Centre, Edinburgh EH14 4BE, UK
| | - Susan C. Barnett
- School of Infection and Immunity, 120 University Place, Glasgow G12 8TA, UK; (C.J.K.); (S.L.L.); (R.M.M.)
| |
Collapse
|
7
|
Asserson DB. Allogeneic Mesenchymal Stem Cells After In Vivo Transplantation: A Review. Cell Reprogram 2023; 25:264-276. [PMID: 37971885 DOI: 10.1089/cell.2023.0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Autologous mesenchymal stem cells (MSCs) are ideal for tissue regeneration because of their ability to circumvent host rejection, but their procurement and processing present logistical and time-sensitive challenges. Allogeneic MSCs provide an alternative cell-based therapy capable of positively affecting all human organ systems, and can be readily available. Extensive research has been conducted in the treatment of autoimmune, degenerative, and inflammatory diseases with such stem cells, and has demonstrated predominantly safe outcomes with minimal complications. Nevertheless, continued clinical trials are necessary to ascertain optimal harvest and transplant techniques.
Collapse
Affiliation(s)
- Derek B Asserson
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Wang Y, Yu H, Tang H, Zhu R, Shi Y, Xu C, Li Y, Wang H, Chen Y, Shen P, Xu J, Wang C, Liu Z. Characterization of dynamical changes in vital signs during allogeneic human umbilical cord-derived mesenchymal stem cells infusion. Regen Ther 2023; 24:282-287. [PMID: 37559872 PMCID: PMC10407816 DOI: 10.1016/j.reth.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023] Open
Abstract
Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs), a kind of adult stem cell, were studied for clinical applications in regenerative medicine. To date, the safety evaluations of intravenous infusion of allogeneic hUC-MSCs were focused on fever, infection, malignancy, and death. However, the characteristics of dynamical changes in vital signs during hUC-MSCs infusion are largely unknown. In this study, twenty participants with allogeneic hUC-MSCs transplanted (MSC group) and twenty sex- and age-matched individuals with cardiovascular disease who treated with the equal volume of 0.9% normal saline were recruited (NS group). Heart rate, respiratory rate, oxygen saturation, systolic and diastolic blood pressure, and temperature were monitored at intervals of 15 min during infusion. Adverse events were recorded during infusion and within seven days after infusion. No adverse events were observed during and after infusion in both groups. Compared with the baseline, the mean systolic blood pressure (SBP) levels were significantly decreased at 15 min, 30 min, 45 min and 60 min in the MSC group (all P < 0.05) during infusion. In addition, SBP changed significantly from baseline during hUC-MSCs infusion when compared with that of NS group (P < 0.05). Repeated measures analysis of variance confirmed difference over time on the SBP levels (P < 0.05). Our results showed that the process of allogeneic hUC-MSCs intravenous infusion was safe and the vital signs were stable, whereas a slight decrease in SBP was observed.
Collapse
Affiliation(s)
- Yue Wang
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Haiping Yu
- Nursing Department, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Hongming Tang
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Rong Zhu
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yiqi Shi
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Changqin Xu
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Yan Li
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Hua Wang
- Catheterization Room, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yuanyuan Chen
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Peichen Shen
- Department of Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Jinfang Xu
- Department of Health Statistics, Second Military Medical University, Shanghai 200433, China
| | - Congrong Wang
- Department of Endocrinology & Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhongmin Liu
- Clinical Research Center for Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
- Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| |
Collapse
|
9
|
Yu W, Gao H, Hu T, Tan X, Liu Y, Liu H, He S, Chen Z, Guo S, Huang J. Insulin-like growth factor binding protein 2: a core biomarker of left ventricular dysfunction in dilated cardiomyopathy. Hereditas 2023; 160:36. [PMID: 37904201 PMCID: PMC10617082 DOI: 10.1186/s41065-023-00298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND RNA modifications, especially N6-methyladenosine, N1-methyladenosine and 5-methylcytosine, play an important role in the progression of cardiovascular disease. However, its regulatory function in dilated cardiomyopathy (DCM) remains to be undefined. METHODS In the study, key RNA modification regulators (RMRs) were screened by three machine learning models. Subsequently, a risk prediction model for DCM was developed and validated based on these important genes, and the diagnostic efficiency of these genes was assessed. Meanwhile, the relevance of these genes to clinical traits was explored. In both animal models and human subjects, the gene with the strongest connection was confirmed. The expression patterns of important genes were investigated using single-cell analysis. RESULTS A total of 4 key RMRs were identified. The risk prediction models were constructed basing on these genes which showed a good accuracy and sensitivity in both the training and test set. Correlation analysis showed that insulin-like growth factor binding protein 2 (IGFBP2) had the highest correlation with left ventricular ejection fraction (LVEF) (R = -0.49, P = 0.00039). Further validation expression level of IGFBP2 indicated that this gene was significantly upregulated in DCM animal models and patients, and correlation analysis validation showed a significant negative correlation between IGFBP2 and LVEF (R = -0.87; P = 6*10-5). Single-cell analysis revealed that this gene was mainly expressed in endothelial cells. CONCLUSION In conclusion, IGFBP2 is an important biomarker of left ventricular dysfunction in DCM. Future clinical applications could possibly use it as a possible therapeutic target.
Collapse
Affiliation(s)
- Wei Yu
- Department of Cardiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Gao
- Department of Cardiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Tianyang Hu
- Precision Medicine Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingling Tan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiheng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongli Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siming He
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Chen
- Department of Cardiology, The Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Sheng Guo
- Department of Cardiology, The People's Hospital of Rongchang District, Chongqing, China.
| | - Jing Huang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
10
|
Saltzman RG, G Campbell K, J Ripps S, Golan R, Cabreja-Castillo MA, Garzon AM, Rahman F, Caceres LV, Tovar JA, Khan A, Hare JM, Ramasamy R. The impact of cell-based therapy on female sexual dysfunction: a systematic review and meta-analysis. Sex Med Rev 2023; 11:333-341. [PMID: 37279578 PMCID: PMC12017765 DOI: 10.1093/sxmrev/qead023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Female sexual dysfunction (FSD) is a complex issue affecting women of all ages; it involves several overlapping body systems and profoundly affects quality of life. The use of cell-based therapy, such as mesenchymal stem cells, has recently been investigated as a potential treatment for FSD. OBJECTIVES This systematic review and meta-analysis aim to assess FSD outcomes following cell-based therapy. METHODS We evaluated peer-reviewed articles from multiple online databases through November 2022 to identify studies that used cell-based therapy and reported sexual function outcomes in women. We performed a meta-analysis using data pooled from 3 clinical trials at our institution: CRATUS (NCT02065245), ACESO (NCT02886884), and CERES (NCT03059355). All 3 trials collected data from the Sexual Quality of Life-Female (SQOL-F) questionnaire as an exploratory outcome. RESULTS Existing literature on this topic is scarce. Five clinical studies and 1 animal study were included in the systematic review, and only 2 clinical studies were considered good quality: 1 reported significant SQOL-F improvement in women 6 months after cell therapy, and 1 reported posttherapy sexual satisfaction in all women. When individual patient data were pooled in a meta-analysis from 29 women across 3 trials at our institution, the SQOL-F was not significantly improved. CONCLUSION Despite growing interest in cell-based therapy for women's sexual health, this important issue is understudied in the literature. The optimal route, source, and dose of cell therapy to produce clinically meaningful change have yet to be determined, and further research is needed in larger randomized placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Russell G Saltzman
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Katherine G Campbell
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Sarah J Ripps
- College of Medicine, Florida State University, Tallahassee, FL 32304, United States
| | - Roei Golan
- College of Medicine, Florida State University, Tallahassee, FL 32304, United States
| | - Maria A Cabreja-Castillo
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Ana Maria Garzon
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Farah Rahman
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Lina V Caceres
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Jairo A Tovar
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
- Division of Cardiovascular Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, 33136. United States
| | - Ranjith Ramasamy
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
- Desai Sethi Urology Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, United States
| |
Collapse
|
11
|
Sundin A, Ionescu SI, Balkan W, Hare JM. Mesenchymal STRO-1/STRO-3 + precursor cells for the treatment of chronic heart failure with reduced ejection fraction. Future Cardiol 2023; 19:567-581. [PMID: 37933628 PMCID: PMC10652293 DOI: 10.2217/fca-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
The heart is susceptible to proinflammatory and profibrotic responses after myocardial injury, leading to further worsening of cardiac dysfunction. Important developments in the management of heart failure with reduced ejection fraction have reduced morbidity and mortality; however, these therapies focus on optimizing cardiac function through hemodynamic and neurohormonal pathways and not by repairing the underlying cardiac injury. The potential of cell-based therapy to reverse cardiac injury has received substantial attention. Herein are examined the phase II and III studies of bone marrow-derived mesenchymal STRO-1+ or STRO-1/STRO-3+ precursor cells in patients with ischemic and nonischemic heart failure with reduced ejection fraction, addressing the safety and efficacy of cell-based therapy throughout multiple clinical trials, the optimal dose and the steps toward revolutionizing the treatment of heart failure.
Collapse
Affiliation(s)
- Andrew Sundin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Simona I Ionescu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
12
|
Rabino M, Sommariva E, Zacchigna S, Pompilio G. From bedside to the bench: patient-specific hiPSC-EC models uncover endothelial dysfunction in genetic cardiomyopathies. Front Physiol 2023; 14:1237101. [PMID: 37538375 PMCID: PMC10394630 DOI: 10.3389/fphys.2023.1237101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
Genetic cardiomyopathies are a group of inherited disorders in which myocardial structure and function are damaged. Many of these pathologies are rare and present with heterogenous phenotypes, thus personalized models are required to completely uncover their pathological mechanisms and develop valuable therapeutic strategies. Both cardiomyocytes and fibroblasts, differentiated from patient-specific human induced pluripotent stem cells, represent the most studied human cardiac cell models in the context of genetic cardiomyopathies. While endothelial dysfunction has been recognized as a possible pathogenetic mechanism, human induced pluripotent stem cell-derived endothelial cells are less studied, despite they constitute a suitable model to specifically dissect the role of the dysfunctional endothelium in the development and progression of these pathologies. In this review, we summarize the main studies in which human induced pluripotent stem cell-derived endothelial cells are used to investigate endothelial dysfunction in genetic-based cardiomyopathies to highlight new potential targets exploitable for therapeutic intervention, and we discuss novel perspectives that encourage research in this direction.
Collapse
Affiliation(s)
- Martina Rabino
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
| | - Serena Zacchigna
- Unit of Cardio-Oncology, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino—IRCCS, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Kanashiro-Takeuchi RM, Takeuchi LM, Dulce RA, Kazmierczak K, Balkan W, Cai R, Sha W, Schally AV, Hare JM. Efficacy of a growth hormone-releasing hormone agonist in a murine model of cardiometabolic heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 324:H739-H750. [PMID: 36897749 PMCID: PMC10151038 DOI: 10.1152/ajpheart.00601.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) represents a major unmet medical need owing to its diverse pathophysiology and lack of effective therapies. Potent synthetic, agonists (MR-356 and MR-409) of growth hormone-releasing hormone (GHRH) improve the phenotype of models of HF with reduced ejection fraction (HFrEF) and in cardiorenal models of HFpEF. Endogenous GHRH exhibits a broad range of regulatory influences in the cardiovascular (CV) system and aging and plays a role in several cardiometabolic conditions including obesity and diabetes. Whether agonists of GHRH can improve the phenotype of cardiometabolic HFpEF remains untested and unknown. Here we tested the hypothesis that MR-356 can mitigate/reverse the cardiometabolic HFpEF phenotype. C57BL6N mice received a high-fat diet (HFD) plus the nitric oxide synthase inhibitor (l-NAME) for 9 wk. After 5 wk of HFD + l-NAME regimen, animals were randomized to receive daily injections of MR-356 or placebo during a 4-wk period. Control animals received no HFD + l-NAME or agonist treatment. Our results showed the unique potential of MR-356 to treat several HFpEF-like features including cardiac hypertrophy, fibrosis, capillary rarefaction, and pulmonary congestion. MR-356 improved cardiac performance by improving diastolic function, global longitudinal strain (GLS), and exercise capacity. Importantly, the increased expression of cardiac pro-brain natriuretic peptide (pro-BNP), inducible nitric oxide synthase (iNOS), and vascular endothelial growth factor-A (VEGF-A) was restored to normal levels suggesting that MR-356 reduced myocardial stress associated with metabolic inflammation in HFpEF. Thus, agonists of GHRH may be an effective therapeutic strategy for the treatment of cardiometabolic HFpEF phenotype.NEW & NOTEWORTHY This randomized study used rigorous hemodynamic tools to test the efficacy of a synthetic GHRH agonist to improve cardiac performance in a cardiometabolic HFpEF. Daily injection of the GHRH agonist, MR-356, reduced the HFpEF-like effects as evidenced by improved diastolic dysfunction, reduced cardiac hypertrophy, fibrosis, and pulmonary congestion. Notably, end-diastolic pressure and end-diastolic pressure-volume relationship were reset to control levels. Moreover, treatment with MR-356 increased exercise capacity and reduced myocardial stress associated with metabolic inflammation in HFpEF.
Collapse
Affiliation(s)
- Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Katarzyna Kazmierczak
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| | - Renzhi Cai
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Andrew V Schally
- Division of Oncology, Department of Medicine and Endocrinology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Endocrinology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, United States
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, United States
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, Florida, United States
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, United States
- Division of Cardiology, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States
| |
Collapse
|
14
|
Kaushal S, Hare JM, Hoffman JR, Boyd RM, Ramdas KN, Pietris N, Kutty S, Tweddell JS, Husain SA, Menon SC, Lambert LM, Danford DA, Kligerman SJ, Hibino N, Korutla L, Vallabhajosyula P, Campbell MJ, Khan A, Naioti E, Yousefi K, Mehranfard D, McClain-Moss L, Oliva AA, Davis ME. Intramyocardial cell-based therapy with Lomecel-B during bidirectional cavopulmonary anastomosis for hypoplastic left heart syndrome: the ELPIS phase I trial. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead002. [PMID: 36950450 PMCID: PMC10026620 DOI: 10.1093/ehjopen/oead002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Aims Hypoplastic left heart syndrome (HLHS) survival relies on surgical reconstruction of the right ventricle (RV) to provide systemic circulation. This substantially increases the RV load, wall stress, maladaptive remodelling, and dysfunction, which in turn increases the risk of death or transplantation. Methods and results We conducted a phase 1 open-label multicentre trial to assess the safety and feasibility of Lomecel-B as an adjunct to second-stage HLHS surgical palliation. Lomecel-B, an investigational cell therapy consisting of allogeneic medicinal signalling cells (MSCs), was delivered via intramyocardial injections. The primary endpoint was safety, and measures of RV function for potential efficacy were obtained. Ten patients were treated. None experienced major adverse cardiac events. All were alive and transplant-free at 1-year post-treatment, and experienced growth comparable to healthy historical data. Cardiac magnetic resonance imaging (CMR) suggested improved tricuspid regurgitant fraction (TR RF) via qualitative rater assessment, and via significant quantitative improvements from baseline at 6 and 12 months post-treatment (P < 0.05). Global longitudinal strain (GLS) and RV ejection fraction (EF) showed no declines. To understand potential mechanisms of action, circulating exosomes from intramyocardially transplanted MSCs were examined. Computational modelling identified 54 MSC-specific exosome ribonucleic acids (RNAs) corresponding to changes in TR RF, including miR-215-3p, miR-374b-3p, and RNAs related to cell metabolism and MAPK signalling. Conclusion Intramyocardially delivered Lomecel-B appears safe in HLHS patients and may favourably affect RV performance. Circulating exosomes of transplanted MSC-specific provide novel insight into bioactivity. Conduct of a controlled phase trial is warranted and is underway.Trial registration number NCT03525418.
Collapse
Affiliation(s)
- Sunjay Kaushal
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Joshua M Hare
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Jessica R Hoffman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Riley M Boyd
- The Heart Center, Division of Cardiovascular-Thoracic Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Chicago, IL 60611, USA
| | - Kevin N Ramdas
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Nicholas Pietris
- Division of Pediatric Cardiology, Department of Pediatrics, University of Maryland School of Medicine, 110 S. Paca Street, Baltimore, MD 21201, USA
| | - Shelby Kutty
- Helen B. Taussig Heart Center, The Johns Hopkins Hospital and Johns Hopkins University, 1800 Orleans St., Baltimore, MD 21287, USA
| | - James S Tweddell
- Heart Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - S Adil Husain
- Division of Pediatric Cardiothoracic Surgery, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, Utah 84108, USA
| | - Shaji C Menon
- Department of Radiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Linda M Lambert
- Division of Pediatric Cardiology, University of Utah/Primary Children's Medical Center, 295 Chipeta Way, Salt Lake City, UT 84108, USA
| | - David A Danford
- Division of Cardiology, Children's Hospital & Medical Center, Nebraska Medicine, Department of Pediatrics, University of Nebraska, 983332 Nebraska Medical Center, Omaha, NE 68198, USA
| | - Seth J Kligerman
- Department of Radiology, University of California San Diego, 200 W. Arbor Drive, San Diego, CA 92103, USA
| | - Narutoshi Hibino
- Department of Surgery, The University of Chicago Medical Center, 5841 S. Maryland Avenue, Chicago, IL 60637, USA
| | - Laxminarayana Korutla
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Prashanth Vallabhajosyula
- Department of Surgery (Cardiac), Yale School of Medicine, Yale University, 789 Howard Avenue, New Haven, CT 06510, USA
| | - Michael J Campbell
- Department of Pediatrics, Duke University School of Medicine, 2301 Erwin Road, Durham, NC 27705, USA
| | - Aisha Khan
- Department of Medicine and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Eric Naioti
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Keyvan Yousefi
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | | | | | - Anthony A Oliva
- Longeveron Inc, 1951 NW 7th Avenue, Suite 520, Miami, FL 33136, USA
| | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
15
|
Qu W, Wang Z, Engelberg-Cook E, Yan D, Siddik AB, Bu G, Allickson JG, Kubrova E, Caplan AI, Hare JM, Ricordi C, Pepine CJ, Kurtzberg J, Pascual JM, Mallea JM, Rodriguez RL, Nayfeh T, Saadi S, Durvasula RV, Richards EM, March K, Sanfilippo FP. Efficacy and Safety of MSC Cell Therapies for Hospitalized Patients with COVID-19: A Systematic Review and Meta-Analysis. Stem Cells Transl Med 2022; 11:688-703. [PMID: 35640138 PMCID: PMC9299515 DOI: 10.1093/stcltm/szac032] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/09/2022] [Indexed: 08/10/2023] Open
Abstract
MSC (a.k.a. mesenchymal stem cell or medicinal signaling cell) cell therapies show promise in decreasing mortality in acute respiratory distress syndrome (ARDS) and suggest benefits in treatment of COVID-19-related ARDS. We performed a meta-analysis of published trials assessing the efficacy and adverse events (AE) rates of MSC cell therapy in individuals hospitalized for COVID-19. Systematic searches were performed in multiple databases through November 3, 2021. Reports in all languages, including randomized clinical trials (RCTs), non-randomized interventional trials, and uncontrolled trials, were included. Random effects model was used to pool outcomes from RCTs and non-randomized interventional trials. Outcome measures included all-cause mortality, serious adverse events (SAEs), AEs, pulmonary function, laboratory, and imaging findings. A total of 736 patients were identified from 34 studies, which included 5 RCTs (n = 235), 7 non-randomized interventional trials (n = 370), and 22 uncontrolled comparative trials (n = 131). Patients aged on average 59.4 years and 32.2% were women. When compared with the control group, MSC cell therapy was associated with a reduction in all-cause mortality (RR = 0.54, 95% CI: 0.35-0.85, I 2 = 0.0%), reduction in SAEs (IRR = 0.36, 95% CI: 0.14-0.90, I 2 = 0.0%) and no significant difference in AE rate. A sub-group with pulmonary function studies suggested improvement in patients receiving MSC. These findings support the potential for MSC cell therapy to decrease all-cause mortality, reduce SAEs, and improve pulmonary function compared with conventional care. Large-scale double-blinded, well-powered RCTs should be conducted to further explore these results.
Collapse
Affiliation(s)
- Wenchun Qu
- Corresponding co-authors: Wenchun Qu, MD, PhD, Department of Pain Medicine, Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224.
| | - Zhen Wang
- Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | | | - Dan Yan
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Guojun Bu
- Center for Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Arnold I Caplan
- Skeletal Research Center, Biology Department, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute and Cardiology Division, Department of Medicine, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Camillo Ricordi
- Department of Surgery, Diabetes Research Institute and Cell Transplant Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carl J Pepine
- Division of Cardiovascular Medicine, and Center for Regenerative Medicine, University of Florida, Gainesville, FL, USA
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures, Duke University School of Medicine, Durham, NC, USA
| | - Jorge M Pascual
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Jorge M Mallea
- Division of Pulmonary, Allergy and Sleep Medicine, Department of Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Tarek Nayfeh
- Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Samer Saadi
- Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | | | - Elaine M Richards
- Department of Physiology and Functional Genomics, Center of Regenerative Medicine, University of Florida, Gainesville, FL, USA
| | - Keith March
- Division of Cardiovascular Medicine, and Center for Regenerative Medicine, University of Florida, Gainesville, FL, USA
| | - Fred P Sanfilippo
- Fred P. Sanfilippo, MD, PhD, Pathology and Laboratory Medicine, School of Medicine, Emory University, 1518 Clifton Road, 730GCR, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
Bui L, Edwards S, Hall E, Alderfer L, Round K, Owen M, Sainaghi P, Zhang S, Nallathamby PD, Haneline LS, Hanjaya-Putra D. Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells. Commun Biol 2022; 5:635. [PMID: 35768543 PMCID: PMC9243106 DOI: 10.1038/s42003-022-03578-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine. Drug-loaded liposomal nanoparticles conjugated to endothelial colony-forming cells can improve the vasculogenic potential of vascular progenitor cells exposed to gestational diabetes mellitus.
Collapse
Affiliation(s)
- Loan Bui
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Shanique Edwards
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kellen Round
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Madeline Owen
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Pietro Sainaghi
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Siyuan Zhang
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, 46556, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Prakash D Nallathamby
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laura S Haneline
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children at Indiana University Health, Indianapolis, IN, 46202, USA.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA. .,Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
17
|
Huang H, Huang W. Regulation of Endothelial Progenitor Cell Functions in Ischemic Heart Disease: New Therapeutic Targets for Cardiac Remodeling and Repair. Front Cardiovasc Med 2022; 9:896782. [PMID: 35677696 PMCID: PMC9167961 DOI: 10.3389/fcvm.2022.896782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of morbidity and mortality worldwide. Ischemia and hypoxia following myocardial infarction (MI) cause subsequent cardiomyocyte (CM) loss, cardiac remodeling, and heart failure. Endothelial progenitor cells (EPCs) are involved in vasculogenesis, angiogenesis and paracrine effects and thus have important clinical value in alternative processes for repairing damaged hearts. In fact, this study showed that the endogenous repair of EPCs may not be limited to a single cell type. EPC interactions with cardiac cell populations and mesenchymal stem cells (MSCs) in ischemic heart disease can attenuate cardiac inflammation and oxidative stress in a microenvironment, regulate cell survival and apoptosis, nourish CMs, enhance mature neovascularization, alleviate adverse ventricular remodeling after infarction and enhance ventricular function. In this review, we introduce the definition and discuss the origin and biological characteristics of EPCs and summarize the mechanisms of EPC recruitment in ischemic heart disease. We focus on the crosstalk between EPCs and endothelial cells (ECs), smooth muscle cells (SMCs), CMs, cardiac fibroblasts (CFs), cardiac progenitor cells (CPCs), and MSCs during cardiac remodeling and repair. Finally, we discuss the translation of EPC therapy to the clinic and treatment strategies.
Collapse
|
18
|
Hare JM, Yang P. Regenerating Endothelium and Restoring Microvascular Endothelial Function. JACC Cardiovasc Imaging 2022; 15:825-827. [PMID: 35512955 DOI: 10.1016/j.jcmg.2022.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Joshua M Hare
- The University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Phillip Yang
- Stanford University Medical School, Stanford, California, USA
| |
Collapse
|
19
|
Lederer CW, Koniali L, Buerki-Thurnherr T, Papasavva PL, La Grutta S, Licari A, Staud F, Bonifazi D, Kleanthous M. Catching Them Early: Framework Parameters and Progress for Prenatal and Childhood Application of Advanced Therapies. Pharmaceutics 2022; 14:pharmaceutics14040793. [PMID: 35456627 PMCID: PMC9031205 DOI: 10.3390/pharmaceutics14040793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 01/19/2023] Open
Abstract
Advanced therapy medicinal products (ATMPs) are medicines for human use based on genes, cells or tissue engineering. After clear successes in adults, the nascent technology now sees increasing pediatric application. For many still untreatable disorders with pre- or perinatal onset, timely intervention is simply indispensable; thus, prenatal and pediatric applications of ATMPs hold great promise for curative treatments. Moreover, for most inherited disorders, early ATMP application may substantially improve efficiency, economy and accessibility compared with application in adults. Vindicating this notion, initial data for cell-based ATMPs show better cell yields, success rates and corrections of disease parameters for younger patients, in addition to reduced overall cell and vector requirements, illustrating that early application may resolve key obstacles to the widespread application of ATMPs for inherited disorders. Here, we provide a selective review of the latest ATMP developments for prenatal, perinatal and pediatric use, with special emphasis on its comparison with ATMPs for adults. Taken together, we provide a perspective on the enormous potential and key framework parameters of clinical prenatal and pediatric ATMP application.
Collapse
Affiliation(s)
- Carsten W. Lederer
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
- Correspondence: ; Tel.: +357-22-392764
| | - Lola Koniali
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Panayiota L. Papasavva
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| | - Stefania La Grutta
- Institute of Translational Pharmacology, IFT National Research Council, 90146 Palermo, Italy;
| | - Amelia Licari
- Pediatric Clinic, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic;
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche (CVBF) and European Paediatric Translational Research Infrastructure (EPTRI), 70122 Bari, Italy;
| | - Marina Kleanthous
- The Molecular Genetics Thalassemia Department, The Cyprus Institute of Neurology & Genetics, Nicosia 2371, Cyprus; (L.K.); (P.L.P.); (M.K.)
| |
Collapse
|
20
|
Martinez CA, Rikhi R, Pester MS, Parker M, Gonzalez A, Larson M, Chavez J, Mendez A, Raines JK, Kolber MA, Schulman IH, Alcaide ML, Hurwitz BE. Abacavir antiretroviral therapy and indices of subclinical vascular disease in persons with HIV. PLoS One 2022; 17:e0264445. [PMID: 35271614 PMCID: PMC8912137 DOI: 10.1371/journal.pone.0264445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
Objective Indices of cardiovascular disease (CVD) risk, vascular endothelial dilation, arterial stiffness and endothelial repair were examined in persons with HIV (PWH) on an antiretroviral therapy (ART) that included abacavir (ABC+) in comparison with PWH on ART without abacavir (ABC-), and with HIV seronegative (HIV-) individuals. Approach The 115 participants (63% men), aged 30–50 years, did not have CVD, metabolic, endocrine, or chronic renal conditions. PWH were on stable ART for six-months or more. Vascular assessments included flow-mediated dilation (FMD), aortic, radial and femoral arterial stiffness (cAIx, crPWV, cfPWV), and thigh and calf arterial compliance (Vmax50). Endothelial repair was indexed by endothelial progenitor cell colony forming units (EPC-CFU). Traditional CVD risk measures included blood pressure, central adiposity, lipids, insulin resistance (HOMA-IR), CRP and ASCVD score. Analyses controlled for demographics (age, sex, education), medications (antihypertensive, statin/fibrate, antipsychotic), and substance abuse (ASSIST). Results No group differences were observed in central adiposity, HOMA-IR, CRP, or ASCVD risk score. However, the ABC- group displayed greater dyslipidemia. The ABC+ group displayed no difference on FMD, cAIx, cfPWV or calf Vmax50 compared with other groups. When CD4 count and viral load were controlled, no additional differences between the ABC+ and ABC- groups emerged. Analyses of crPWV and thigh Vmax50 suggested supported by a trend toward lower EPC-CFU in the HIV+ groups than the HIV- group. Conclusions Findings indicate that ABC treatment of 30–50 year-old PWH on stable ART is not likely to contribute in a robust way to higher CVD risk.
Collapse
Affiliation(s)
- Claudia A. Martinez
- Division of Cardiology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| | - Rishi Rikhi
- Division of Cardiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Mollie S. Pester
- Behavioral Medicine Research Center, University of Miami, Miami, Florida, United States of America
- Department of Psychology, University of Miami, Coral Gables, Florida, United States of America
| | - Meela Parker
- Behavioral Medicine Research Center, University of Miami, Miami, Florida, United States of America
| | - Alex Gonzalez
- Behavioral Medicine Research Center, University of Miami, Miami, Florida, United States of America
| | - Michaela Larson
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jennifer Chavez
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Armando Mendez
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| | - Jeffrey K. Raines
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Michael A. Kolber
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Ivonne H. Schulman
- Katz Family Division of Nephrology & Hypertension, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Maria L. Alcaide
- Division of Infectious Disease, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Barry E. Hurwitz
- Behavioral Medicine Research Center, University of Miami, Miami, Florida, United States of America
- Department of Psychology, University of Miami, Coral Gables, Florida, United States of America
- Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
21
|
Rieger AC, Tompkins BA, Natsumeda M, Florea V, Banerjee MN, Rodriguez J, Rosado M, Porras V, Valasaki K, Takeuchi LM, Collon K, Desai S, Bellio MA, Khan A, Kashikar ND, Landin AM, Hardin DV, Rodriguez DA, Balkan W, Hare JM, Schulman IH. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:59-72. [PMID: 35641169 PMCID: PMC8895493 DOI: 10.1093/stcltm/szab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/29/2021] [Indexed: 11/28/2022] Open
Abstract
Background Left ventricular hypertrophy and heart failure with preserved ejection fraction (HFpEF) are primary manifestations of the cardiorenal syndrome in patients with chronic kidney disease (CKD). Therapies that improve morbidity and mortality in HFpEF are lacking. Cell-based therapies promote cardiac repair in ischemic and non-ischemic cardiomyopathies. We hypothesized that cell-based therapy ameliorates CKD-induced HFpEF. Methods and Results Yorkshire pigs (n = 26) underwent 5/6 embolization-mediated nephrectomy. CKD was confirmed by increased creatinine and decreased glomerular filtration rate (GFR). Mean arterial pressure (MAP) was not different between groups from baseline to 4 weeks. HFpEF was evident at 4 weeks by increased LV mass, relative wall thickening, end-diastolic pressure, and end-diastolic pressure-volume relationship, with no change in ejection fraction (EF). Four weeks post-embolization, allogeneic (allo) bone marrow-derived mesenchymal stem cells (MSC; 1 × 107 cells), allo-kidney-derived stem cells (KSC; 1 × 107 cells), allo-cell combination therapy (ACCT; MSC + KSC; 1:1 ratio; total = 1 × 107 cells), or placebo (Plasma-Lyte) was delivered via intra-renal artery. Eight weeks post-treatment, there was a significant increase in MAP in the placebo group (21.89 ± 6.05 mmHg) compared to the ACCT group. GFR significantly improved in the ACCT group. EF, relative wall thickness, and LV mass did not differ between groups at 12 weeks. EDPVR improved in the ACCT group, indicating decreased ventricular stiffness. Conclusions Intra-renal artery allogeneic cell therapy was safe in a CKD swine model manifesting the characteristics of HFpEF. The beneficial effect on renal function and ventricular compliance in the ACCT group supports further research of cell therapy for cardiorenal syndrome.
Collapse
Affiliation(s)
- Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Bryon A Tompkins
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Makoto Natsumeda
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monisha N Banerjee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Marcos Rosado
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valeria Porras
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Collon
- Department of Orthopedic Surgery, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Sohil Desai
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Ana Marie Landin
- Cell Therapy and Vaccine Lab, Moffitt Cancer Center, Tampa, FL, USA
| | - Darrell V Hardin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel A Rodriguez
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Cardiovascular Division, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Corresponding author: Ivonne H. Schulman, MD, Program Director, Translational and Clinical Studies of Acute Kidney Injury, Division of Kidney, Urologic and Hematologic Diseases (KUH), National Institutes of Health (NIH), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), Two Democracy Plaza, Room #6077, 6707 Democracy Blvd, Bethesda, MD 20892-5458, USA. Tel: 301-435-3350; Mobile: 301-385-5744; Fax: 301-480-3510, ,
| |
Collapse
|
22
|
Durand N, Zubair AC. Autologous versus allogeneic mesenchymal stem cell therapy: The pros and cons. Surgery 2021; 171:1440-1442. [PMID: 34863523 DOI: 10.1016/j.surg.2021.10.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/28/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Nisha Durand
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL.
| | - Abba C Zubair
- Center for Regenerative Medicine and Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL; Sheikh Shakhbout Medical City, Mayo Clinic Joint Venture, Abu Dhabi, UAE
| |
Collapse
|
23
|
Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021; 28:1708-1725. [PMID: 34624232 DOI: 10.1016/j.stem.2021.09.006] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An exceptional safety profile has been shown in a large number of cell therapy clinical trials that use mesenchymal stromal cells (MSCs). However, reliable potency assays are still lacking to predict MSC immunosuppressive efficacy in the clinical setting. Nevertheless, MSCs are approved in Japan and Europe for the treatment of graft-versus-host and Crohn's fistular diseases, but not in the United States for any clinical indication. We discuss potential mechanisms of action for the therapeutic effects of MSC transplantation, experimental models that dissect tissue modulating function of MSCs, and approaches for identifying MSC effects in vivo by integrating biomarkers of disease and MSC activity.
Collapse
Affiliation(s)
- Mauro Krampera
- Section of Hematology and Bone Marrow Transplant Unit, Department of Medicine, University of Verona, Verona, Italy.
| | - Katarina Le Blanc
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institutet, Stockholm, Sweden; Center of Allogeneic Stem Cell Transplantation and Cellular Therapy (CAST), Karolinska University Hospital, Huddinge, Stockholm, Sweden.
| |
Collapse
|
24
|
Abu-El-Rub E, Khasawneh RR, Almahasneh F, Altaany Z, Bataineh N, Zegallai H, Sekaran S. Mesenchymal stem cells and COVID-19: What they do and what they can do. World J Stem Cells 2021; 13:1318-1337. [PMID: 34630865 PMCID: PMC8474724 DOI: 10.4252/wjsc.v13.i9.1318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or coronavirus disease 2019 (COVID-19) pandemic has exhausted the health systems in many countries with thousands cases diagnosed daily. The currently used treatment guideline is to manage the common symptoms like fever and cough, but doesn't target the virus itself or halts serious complications arising from this viral infection. Currently, SARS-CoV-2 exhibits many genetic modulations which have been associated with the appearance of highly contagious strains. The number of critical cases of COVID-19 increases markedly, and many of the infected people die as a result of respiratory failure and multiple organ dysfunction. The regenerative potential of mesenchymal stem cells (MSCs) has been extensively studied and confirmed. The impressive immunomodulation and anti-inflammatory activity of MSCs have been recognized as a golden opportunity for the treatment of COVID-19 and its associated complications. Moreover, MSCs regenerative and repairing abilities have been corroborated by many studies with positive outcomes and high recovery rates. Based on that, MSCs infusion could be an effective mechanism in managing and stemming the serious complications and multiple organ failure associated with COVID-19. In the present review, we discuss the commonly reported complications of COVID-19 viral infection and the established and anticipated role of MSCs in managing these complications.
Collapse
Affiliation(s)
- Ejlal Abu-El-Rub
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg R2H2A6, Canada
- Department of Physiology and Pathophysiology, Basic Medical Sciences, Yarmouk University, IRBID 21163, Jordan.
| | - Ramada R Khasawneh
- Department of Anatomy and Histology, Basic Medical Sciences, Yarmouk University, IRBID 21163, Jordan
| | - Fatimah Almahasneh
- Department of Physiology and Pharmacology, Basic Medical Sciences, Yarmouk University, IRBID 21163, Jordan
| | - Zaid Altaany
- Department of Biochemistry and Genetics, Basic Medical Sciences, Yarmouk University, IRBID 21163, Jordan
| | - Nesreen Bataineh
- Department of Pathology, Basic Medical Sciences, Yarmouk University, IRBID 21163, Jordan
| | - Hana Zegallai
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg R2H2A6, Canada
| | - Saravanan Sekaran
- Department of Pharmacology, Saveetha Dental College and Hospitals to be University, Chennai 600077, India
| |
Collapse
|
25
|
Zaki MM, Lesha E, Said K, Kiaee K, Robinson-McCarthy L, George H, Hanna A, Appleton E, Liu S, Ng AHM, Khoshakhlagh P, Church GM. Cell therapy strategies for COVID-19: Current approaches and potential applications. SCIENCE ADVANCES 2021; 7:eabg5995. [PMID: 34380619 PMCID: PMC8357240 DOI: 10.1126/sciadv.abg5995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/22/2021] [Indexed: 05/03/2023]
Abstract
Coronavirus disease 2019 (COVID-19) continues to burden society worldwide. Despite most patients having a mild course, severe presentations have limited treatment options. COVID-19 manifestations extend beyond the lungs and may affect the cardiovascular, nervous, and other organ systems. Current treatments are nonspecific and do not address potential long-term consequences such as pulmonary fibrosis, demyelination, and ischemic organ damage. Cell therapies offer great potential in treating severe COVID-19 presentations due to their customizability and regenerative function. This review summarizes COVID-19 pathogenesis, respective areas where cell therapies have potential, and the ongoing 89 cell therapy trials in COVID-19 as of 1 January 2021.
Collapse
Affiliation(s)
- Mark M Zaki
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Michigan, 1500 E Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Emal Lesha
- GC Therapeutics Inc., Cambridge, MA 02139, USA
- Department of Neurosurgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khaled Said
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiavash Kiaee
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Angy Hanna
- Department of Medicine, Beaumont Hospital, Royal Oak, MI, USA
| | - Evan Appleton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Songlei Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Alex H M Ng
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - Parastoo Khoshakhlagh
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| | - George M Church
- GC Therapeutics Inc., Cambridge, MA 02139, USA.
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA
| |
Collapse
|
26
|
Diaz-Navarro R, Urrútia G, Cleland JG, Poloni D, Villagran F, Acosta-Dighero R, Bangdiwala SI, Rada G, Madrid E. Stem cell therapy for dilated cardiomyopathy. Cochrane Database Syst Rev 2021; 7:CD013433. [PMID: 34286511 PMCID: PMC8406792 DOI: 10.1002/14651858.cd013433.pub2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Stem cell therapy (SCT) has been proposed as an alternative treatment for dilated cardiomyopathy (DCM), nonetheless its effectiveness remains debatable. OBJECTIVES To assess the effectiveness and safety of SCT in adults with non-ischaemic DCM. SEARCH METHODS We searched CENTRAL in the Cochrane Library, MEDLINE, and Embase for relevant trials in November 2020. We also searched two clinical trials registers in May 2020. SELECTION CRITERIA Eligible studies were randomized controlled trials (RCT) comparing stem/progenitor cells with no cells in adults with non-ischaemic DCM. We included co-interventions such as the administration of stem cell mobilizing agents. Studies were classified and analysed into three categories according to the comparison intervention, which consisted of no intervention/placebo, cell mobilization with cytokines, or a different mode of SCT. The first two comparisons (no cells in the control group) served to assess the efficacy of SCT while the third (different mode of SCT) served to complement the review with information about safety and other information of potential utility for a better understanding of the effects of SCT. DATA COLLECTION AND ANALYSIS Two review authors independently screened all references for eligibility, assessed trial quality, and extracted data. We undertook a quantitative evaluation of data using random-effects meta-analyses. We evaluated heterogeneity using the I² statistic. We could not explore potential effect modifiers through subgroup analyses as they were deemed uninformative due to the scarce number of trials available. We assessed the certainty of the evidence using the GRADE approach. We created summary of findings tables using GRADEpro GDT. We focused our summary of findings on all-cause mortality, safety, health-related quality of life (HRQoL), performance status, and major adverse cardiovascular events. MAIN RESULTS We included 13 RCTs involving 762 participants (452 cell therapy and 310 controls). Only one study was at low risk of bias in all domains. There were many shortcomings in the publications that did not allow a precise assessment of the risk of bias in many domains. Due to the nature of the intervention, the main source of potential bias was lack of blinding of participants (performance bias). Frequently, the format of the continuous data available was not ideal for use in the meta-analysis and forced us to seek strategies for transforming data in a usable format. We are uncertain whether SCT reduces all-cause mortality in people with DCM compared to no intervention/placebo (mean follow-up 12 months) (risk ratio (RR) 0.84, 95% confidence interval (CI) 0.54 to 1.31; I² = 0%; studies = 7, participants = 361; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection in people with DCM (data could not be pooled; studies = 7; participants = 361; very low-certainty evidence). We are uncertain whether SCT improves HRQoL (standardized mean difference (SMD) 0.62, 95% CI 0.01 to 1.23; I² = 72%; studies = 5, participants = 272; very low-certainty evidence) and functional capacity (6-minute walk test) (mean difference (MD) 70.12 m, 95% CI -5.28 to 145.51; I² = 87%; studies = 5, participants = 230; very low-certainty evidence). SCT may result in a slight functional class (New York Heart Association) improvement (data could not be pooled; studies = 6, participants = 398; low-certainty evidence). None of the included studies reported major adverse cardiovascular events as defined in our protocol. SCT may not increase the risk of ventricular arrhythmia (data could not be pooled; studies = 8, participants = 504; low-certainty evidence). When comparing SCT to cell mobilization with granulocyte-colony stimulating factor (G-CSF), we are uncertain whether SCT reduces all-cause mortality (RR 0.46, 95% CI 0.16 to 1.31; I² = 39%; studies = 3, participants = 195; very low-certainty evidence). We are uncertain whether SCT increases the risk of procedural complications associated with cells injection (studies = 1, participants = 60; very low-certainty evidence). SCT may not improve HRQoL (MD 4.61 points, 95% CI -5.62 to 14.83; studies = 1, participants = 22; low-certainty evidence). SCT may improve functional capacity (6-minute walk test) (MD 140.14 m, 95% CI 119.51 to 160.77; I² = 0%; studies = 2, participants = 155; low-certainty evidence). None of the included studies reported MACE as defined in our protocol or ventricular arrhythmia. The most commonly reported outcomes across studies were based on physiological measures of cardiac function where there were some beneficial effects suggesting potential benefits of SCT in people with non-ischaemic DCM. However, it is unclear if this intermediate effects translates into clinical benefits for these patients. With regard to specific aspects related to the modality of cell therapy and its delivery, uncertainties remain as subgroup analyses could not be performed as planned, making it necessary to wait for the publication of several studies that are currently in progress before any firm conclusion can be reached. AUTHORS' CONCLUSIONS We are uncertain whether SCT in people with DCM reduces the risk of all-cause mortality and procedural complications, improves HRQoL, and performance status (exercise capacity). SCT may improve functional class (NYHA), compared to usual care (no cells). Similarly, when compared to G-CSF, we are also uncertain whether SCT in people with DCM reduces the risk of all-cause mortality although some studies within this comparison observed a favourable effect that should be interpreted with caution. SCT may not improve HRQoL but may improve to some extent performance status (exercise capacity). Very low-quality evidence reflects uncertainty regarding procedural complications. These suggested beneficial effects of SCT, although uncertain due to the very low certainty of the evidence, are accompanied by favourable effects on some physiological measures of cardiac function. Presently, the most effective mode of administration of SCT and the population that could benefit the most is unclear. Therefore, it seems reasonable that use of SCT in people with DCM is limited to clinical research settings. Results of ongoing studies are likely to modify these conclusions.
Collapse
Affiliation(s)
- Rienzi Diaz-Navarro
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Gerard Urrútia
- Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - John Gf Cleland
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Daniel Poloni
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Francisco Villagran
- Department of Internal Medicine, School of Medicine, Universidad de Valparaiso, Vina del Mar, Chile
| | - Roberto Acosta-Dighero
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
- School of Physiotherapy, Faculty of Health Sciences, Universidad San Sebastian, Santiago, Chile
| | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Gabriel Rada
- Department of Internal Medicine and Evidence-Based Healthcare Program, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Eva Madrid
- Interdisciplinary Centre for Health Studies CIESAL, Universidad de Valparaíso, Viña del Mar, Chile
- Cochrane Chile Associate Centre, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
27
|
Razeghian-Jahromi I, Matta AG, Canitrot R, Zibaeenezhad MJ, Razmkhah M, Safari A, Nader V, Roncalli J. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res Ther 2021; 12:361. [PMID: 34162424 PMCID: PMC8220796 DOI: 10.1186/s13287-021-02443-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
While existing remedies failed to fully address the consequences of heart failure, stem cell therapy has been introduced as a promising approach. The present review is a comprehensive appraisal of the impacts of using mesenchymal stem cells (MSCs) in clinical trials mainly conducted on ischemic cardiomyopathy. The benefits of MSC therapy for dysfunctional myocardium are likely attributed to numerous secreted paracrine factors and immunomodulatory effects. The positive outcomes associated with MSC therapy are scar size reduction, reverse remodeling, and angiogenesis. Also, a decreasing in the level of chronic inflammatory markers of heart failure progression like TNF-α is observed. The intense inflammatory reaction in the injured myocardial micro-environment predicts a poor response of scar tissue to MSC therapy. Subsequently, the interval delay between myocardial injury and MSC therapy is not yet determined. The optimal requested dose of cells ranges between 100 to 150 million cells. Allogenic MSCs have different advantages compared to autogenic cells and intra-myocardial injection is the preferred delivery route. The safety and efficacy of MSCs-based therapy have been confirmed in numerous studies, however several undefined parameters like route of administration, optimal timing, source of stem cells, and necessary dose are limiting the routine use of MSCs therapeutic approach in clinical practice. Lastly, pre-conditioning of MSCs and using of exosomes mediated MSCs or genetically modified MSCs may improve the overall therapeutic effect. Future prospective studies establishing a constant procedure for MSCs transplantation are required in order to apply MSC therapy in our daily clinical practice and subsequently improving the overall prognosis of ischemic heart failure patients.
Collapse
Affiliation(s)
| | - Anthony G Matta
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France.,Faculty of medicine, Holy Spirit University of Kaslik, Kaslik, Lebanon
| | - Ronan Canitrot
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France
| | | | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vanessa Nader
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France.,Faculty of Pharmacy, Lebanese University, Beirut, Lebanon
| | - Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, Toulouse, France. .,Service de Cardiologie A, CHU de Toulouse, Hôpital de Rangueil, 1 avenue Jean Poulhès, TSA 50032, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
28
|
Khan A, Bellio MA, Schulman IH, Levi AD, Longsomboon B, Brooks A, Valasaki K, DiFede DL, Pujol MV, Yavagal DR, Bates KE, Si MS, Kaushal S, Green BA, Anderson KD, Guest JD, Burks SS, Silvera R, Santamaria AJ, Lalwani A, Dietrich WD, Hare JM. The Interdisciplinary Stem Cell Institute's Use of Food and Drug Administration-Expanded Access Guidelines to Provide Experimental Cell Therapy to Patients With Rare Serious Diseases. Front Cell Dev Biol 2021; 9:675738. [PMID: 34169074 PMCID: PMC8217825 DOI: 10.3389/fcell.2021.675738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022] Open
Abstract
The U.S. Food and Drug Administration (FDA) provides guidance for expanded access to experimental therapies, which in turn plays an important role in the Twenty-first Century Cures Act mandate to advance cell-based therapy. In cases of incurable diseases where there is a lack of alternative treatment options, many patients seek access to cell-based therapies for the possibility of treatment responses demonstrated in clinical trials. Here, we describe the use of the FDA’s expanded access to investigational new drug (IND) to address rare and emergency conditions that include stiff-person syndrome, spinal cord injury, traumatic brain stem injury, complex congenital heart disease, ischemic stroke, and peripheral nerve injury. We have administered both allogeneic bone marrow-derived mesenchymal stem cell (MSC) and autologous Schwann cell (SC) therapy to patients upon emergency request using Single Patient Expanded Access (SPEA) INDs approved by the FDA. In this report, we present our experience with 10 completed SPEA protocols.
Collapse
Affiliation(s)
- Aisha Khan
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States.,The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Michael A Bellio
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Ivonne H Schulman
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States.,Katz Family Division of Nephrology and Hypertension, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Allan D Levi
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Bangon Longsomboon
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Adriana Brooks
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States.,The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Krystalenia Valasaki
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Darcy L DiFede
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Marietsy V Pujol
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States
| | - Dileep R Yavagal
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States.,The Department of Clinical Neurology and Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Karen E Bates
- The Department of Clinical Neurology and Neurosurgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Ming-Sing Si
- Section of Pediatric Cardiovascular Surgery, Department of Cardiac Surgery, Michigan Medicine, C.S. Mott Children's Hospital, Ann Arbor, MI, United States
| | - Sunjay Kaushal
- Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Barth A Green
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | | | - James D Guest
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Stephen Shelby Burks
- The Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Risset Silvera
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States.,The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Andrea J Santamaria
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Anil Lalwani
- Medtronic ST Neurosurgery, Louisville, CO, United States
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States.,The Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Joshua M Hare
- Leonard M. Miller School of Medicine, The Interdisciplinary Stem Cell Institute, University of Miami, Miami, FL, United States.,Division of Cardiology, Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
29
|
Shahani P, Datta I. Mesenchymal stromal cell therapy for coronavirus disease 2019: which? when? and how much? Cytotherapy 2021; 23:861-873. [PMID: 34053857 PMCID: PMC8084615 DOI: 10.1016/j.jcyt.2021.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/27/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
Mesenchymal stromal cells (MSCs) are under active consideration as a treatment strategy for controlling the hyper-inflammation and slow disease progression associated with coronavirus disease 2019 (COVID-19). The possible mechanism of protection through their immunoregulatory and paracrine action has been reviewed extensively. However, the importance of process control in achieving consistent cell quality, maximum safety and efficacy—for which the three key questions are which, when and how much—remains unaddressed. Any commonality, if it exists, in ongoing clinical trials has yet to be analyzed and reviewed. In this review, the authors have therefore compiled study design data from ongoing clinical trials to address the key questions of “which” with regard to tissue source, donor profile, isolation technique, culture conditions, long-term culture and cryopreservation of MSCs; “when” with regard to defining the transplantation window by identifying and staging patients based on their pro-inflammatory profile; and “how much” with regard to the number of cells in a single administration, number of doses and route of transplantation. To homogenize MSC therapy for COVID-19 on a global scale and to make it readily available in large numbers, a shared understanding and uniform agreement with respect to these fundamental issues are essential.
Collapse
Affiliation(s)
- Pradnya Shahani
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
30
|
Cardiac Differentiation of Mesenchymal Stem Cells: Impact of Biological and Chemical Inducers. Stem Cell Rev Rep 2021; 17:1343-1361. [PMID: 33864233 DOI: 10.1007/s12015-021-10165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disorders (CVDs) are the leading cause of global death, widely occurs due to irreparable loss of the functional cardiomyocytes. Stem cell-based therapeutic approaches, particularly the use of Mesenchymal Stem Cells (MSCs) is an emerging strategy to regenerate myocardium and thereby improving the cardiac function after myocardial infarction (MI). Most of the current approaches often employ the use of various biological and chemical factors as cues to trigger and modulate the differentiation of MSCs into the cardiac lineage. However, the recent advanced methods of using specific epigenetic modifiers and exosomes to manipulate the epigenome and molecular pathways of MSCs to modify the cardiac gene expression yield better profiled cardiomyocyte like cells in vitro. Hitherto, the role of cardiac specific inducers triggering cardiac differentiation at the cellular and molecular level is not well understood. Therefore, the current review highlights the impact and recent trends in employing biological and chemical inducers on cardiac differentiation of MSCs. Thereby, deciphering the interactions between the cellular microenvironment and the cardiac inducers will help us to understand cardiomyogenesis of MSCs. Additionally, the review also provides an insight on skeptical roles of the cell free biological factors and extracellular scaffold assisted mode for manipulation of native and transplanted stem cells towards translational cardiac research.
Collapse
|
31
|
Ma M, Yang W, Cai Z, Wang P, Li H, Mi R, Jiang Y, Xie Z, Sui P, Wu Y, Shen H. SMAD-specific E3 ubiquitin ligase 2 promotes angiogenesis by facilitating PTX3 degradation in MSCs from patients with ankylosing spondylitis. STEM CELLS (DAYTON, OHIO) 2021; 39:581-599. [PMID: 33547700 PMCID: PMC8248389 DOI: 10.1002/stem.3332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 11/18/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Dysregulated angiogenesis of mesenchymal stem cells (MSCs) is closely related to inflammation and disrupted bone metabolism in patients with various autoimmune diseases. However, the role of MSCs in the development of abnormal angiogenesis in patients with ankylosing spondylitis (AS) remains unclear. In this study, we cultured human umbilical vein endothelial cells (HUVECs) with bone marrow-derived MSCs from patients with AS (ASMSCs) or healthy donors (HDMSCs) in vitro. Then, the cocultured HUVECs were assayed using a cell counting kit-8 (CCK-8) to evaluate the cell proliferation. A wound healing assay was performed to investigate cell migration, and a tube formation assay was conducted to determine the angiogenesis efficiency. ASMSCs exhibited increased angiogenesis, and increased expression of SMAD-specific E3 ubiquitin ligase 2 (Smurf2) in MSCs was the main cause of abnormal angiogenesis in patients with AS. Downregulation of Smurf2 in ASMSCs blocked angiogenesis, whereas overexpression of Smurf2 in HDMSCs promoted angiogenesis. The pro-angiogenic effect of Smurf2 was confirmed by the results of a Matrigel plug assay in vivo. By functioning as an E3 ubiquitin ligase in MSCs, Smurf2 regulated the levels of pentraxin 3 (PTX3), which has been shown to suppress angiogenesis through the PTX3-fibroblast growth factor 2 pathway. Moreover, Smurf2 transcription was regulated by activating transcription factor 4-induced endoplasmic reticulum stress. In conclusion, these results identify novel roles of Smurf2 in negatively regulating PTX3 stability and promoting angiogenesis in ASMSCs.
Collapse
Affiliation(s)
- Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Pengfei Sui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, People's Republic of China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
32
|
Kerstan A, Niebergall-Roth E, Esterlechner J, Schröder HM, Gasser M, Waaga-Gasser AM, Goebeler M, Rak K, Schrüfer P, Endres S, Hagenbusch P, Kraft K, Dieter K, Ballikaya S, Stemler N, Sadeghi S, Tappenbeck N, Murphy GF, Orgill DP, Frank NY, Ganss C, Scharffetter-Kochanek K, Frank MH, Kluth MA. Ex vivo-expanded highly pure ABCB5 + mesenchymal stromal cells as Good Manufacturing Practice-compliant autologous advanced therapy medicinal product for clinical use: process validation and first in-human data. Cytotherapy 2021; 23:165-175. [PMID: 33011075 PMCID: PMC8310651 DOI: 10.1016/j.jcyt.2020.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 08/29/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AIM Mesenchymal stromal cells (MSCs) hold promise for the treatment of tissue damage and injury. However, MSCs comprise multiple subpopulations with diverse properties, which could explain inconsistent therapeutic outcomes seen among therapeutic attempts. Recently, the adenosine triphosphate-binding cassette transporter ABCB5 has been shown to identify a novel dermal immunomodulatory MSC subpopulation. METHODS The authors have established a validated Good Manufacturing Practice (GMP)-compliant expansion and manufacturing process by which ABCB5+ MSCs can be isolated from skin tissue and processed to generate a highly functional homogeneous cell population manufactured as an advanced therapy medicinal product (ATMP). This product has been approved by the German competent regulatory authority to be tested in a clinical trial to treat therapy-resistant chronic venous ulcers. RESULTS As of now, 12 wounds in nine patients have been treated with 5 × 105 autologous ABCB5+ MSCs per cm2 wound area, eliciting a median wound size reduction of 63% (range, 32-100%) at 12 weeks and early relief of pain. CONCLUSIONS The authors describe here their GMP- and European Pharmacopoeia-compliant production and quality control process, report on a pre-clinical dose selection study and present the first in-human results. Together, these data substantiate the idea that ABCB5+ MSCs manufactured as ATMPs could deliver a clinically relevant wound closure strategy for patients with chronic therapy-resistant wounds.
Collapse
Affiliation(s)
- Andreas Kerstan
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Martin Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Ana M Waaga-Gasser
- Department of Surgery, University Hospital Würzburg, Würzburg, Germany; Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Goebeler
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Katrin Rak
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Schrüfer
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Sabrina Endres
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Petra Hagenbusch
- Department of Dermatology, Venereology, and Allergology, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | - George F Murphy
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, Massachusetts, USA; Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Christoph Ganss
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany
| | | | - Markus H Frank
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Transplant Research Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA; School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Mark A Kluth
- TICEBA GmbH, Heidelberg, Germany; RHEACELL GmbH & Co. KG, Heidelberg, Germany.
| |
Collapse
|
33
|
Huang WP, Yin WH, Chen JS, Huang PH, Chen JW, Lin SJ. Fenofibrate attenuates doxorubicin-induced cardiac dysfunction in mice via activating the eNOS/EPC pathway. Sci Rep 2021; 11:1159. [PMID: 33441969 PMCID: PMC7806979 DOI: 10.1038/s41598-021-80984-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs) improve endothelial impairment, which in turn restores endothelial function in patients with heart failure (HF). In the present study, we tested whether fenofibrate, with its anti-inflammatory and vasoprotective effects, could improve myocardial function by activating EPCs through the eNOS pathway in a doxorubicin (DOX)-induced cardiomyopathy mouse model. Wild-type mice were divided into 4 groups and treated with vehicle, DOX + saline, DOX + fenofibrate, and DOX + fenofibrate + L-NAME (N(ω)-nitro-L-arginine methyl ester). DOX-induced cardiac atrophy, myocardial dysfunction, the number of circulating EPCs and tissue inflammation were analyzed. Mice in the DOX + fenofibrate group had more circulating EPCs than those in the DOX + saline group (2% versus 0.5% of total events, respectively) after 4 weeks of treatment with fenofibrate. In addition, the inhibition of eNOS by L-NAME in vivo further abolished the fenofibrate-induced suppression of DOX-induced cardiotoxic effects. Protein assays revealed that, after DOX treatment, the differential expression of MMP-2 (matrix metalloproteinase-2), MMP-9 (matrix metalloproteinase-9), TNF-α (tumor necrosis factor-α), and NT-pro-BNP (N-terminal pro-B-type natriuretic peptide) between saline- and DOX-treated mice was involved in the progression of HF. Mechanistically, fenofibrate promotes Akt/eNOS and VEGF (vascular endothelial growth factor), which results in the activation of EPC pathways, thereby ameliorating DOX-induced cardiac toxicity.
Collapse
Affiliation(s)
- Wen-Pin Huang
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Hsian Yin
- Division of Cardiology, Cheng-Hsin Rehabilitation Medical Centre, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, 112, No. 201, Sec. 2, Shih-Pai Road, Taipei, Taiwan. .,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan. .,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan. .,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
34
|
Lv X, Niu H. Mesenchymal Stem Cell Transplantation for the Treatment of Cognitive Frailty. J Nutr Health Aging 2021; 25:795-801. [PMID: 34179936 DOI: 10.1007/s12603-021-1632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
As life expectancy increases, frailty and cognitive impairment have become major factors influencing healthy aging in elderly individuals. Frailty is a complicated clinical condition characterized by decreased physiological reserve and multisystem abnormalities. Cognitive frailty is a subtype of frailty that has aroused widespread concern among the scientific community and public health organizations. We herein review the pathogenesis of cognitive frailty, such as chronic inflammatory response, immunological hypofunction, imbalanced oxidative stress, reduced regenerative function, endocrine dysfunction, and energy metabolism disorder. Although existing interventions show some therapeutic effects, they do not meet the current clinical needs. To date, studies using stem cell technology for treating age-related diseases have achieved remarkable success. This suggests the possibility of applying stem cell treatment to cognitive frailty. We analyzed stem cell-based strategies for targeting anti-inflammation, antioxidation, regeneration, and immunoregulation using mesenchymal stem cells, as well as potential therapeutic targets for cognitive frailty. Based on this investigation, we propose a highly effective and low-cost stem cell-based replacement strategy. However, there is a lack of comprehensive research on the prospect of stem cell transplantation for improving cognitive frailty. In this review, we aim to provide the scientific background and a theoretical basis for testing cell therapy in future research.
Collapse
Affiliation(s)
- X Lv
- Huiyan Niu, 36 Sanhao street, Shenyang, Liaoning province, China, Tel :+86 18940255686,
| | | |
Collapse
|
35
|
Ohta H, Liu X, Maeda M. Autologous adipose mesenchymal stem cell administration in arteriosclerosis and potential for anti-aging application: a retrospective cohort study. Stem Cell Res Ther 2020; 11:538. [PMID: 33308301 PMCID: PMC7733281 DOI: 10.1186/s13287-020-02067-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
Objective Arteriosclerosis is an age-related disease and a leading cause of cardiovascular disease. In animal experiments, mesenchymal stem cells and its culture-conditioned medium have been shown to be promising tools for prevention or treatment of arteriosclerosis. On the basis of these evidences, we aimed to assess whether administration of autologous adipose-derived mesenchymal stem cells (Ad-MSC) is safe and effective for treatment of arteriosclerosis. Methods We retrospectively reviewed clinical records of patients with arteriosclerosis who had received autologous Ad-MSC administration at our clinic. Patients’ characteristics were recorded and data on lipid profile, intimal-media thickness (IMT), cardio-ankle vascular index (CAVI), and ankle-brachial index (ABI) before and after Ad-MSC administration were collected and compared. Results Treatment with Ad-MSC significantly improved HDL, LDL, and remnant-like particle (RLP) cholesterol levels. No adverse effect or toxicity was observed in relation to the treatment. Of the patients with abnormal HDL values before treatment, the vast majority showed improvement in the values. Overall, the measurements after treatment were significantly increased compared with those before treatment (p < 0.01). In addition, decreases in LDL cholesterol and RLP levels were observed after treatment in patients who had abnormal LDL cholesterol or RLP levels before treatment. The majority of patients with pre-treatment abnormal CAVI values had improved values after treatment. In patients with available IMT values, a significant decrease in the IMT values was found after therapy (p < 0.01). All patients with borderline arteriosclerosis disease had improved laboratory findings after treatment. In general, post-treatment values were significantly decreased as compared with pre-treatment values. Of the patients with normal ABI values before treatment at the same time as CAVI, the vast majority remained normal after treatment. Conclusions These findings suggest that Ad-MSC administration is safe and effective in patients developing arteriosclerosis, thereby providing an attractive tool for anti-aging application.
Collapse
Affiliation(s)
- Hiroki Ohta
- Regenerative Medicine, Sun Field Clinic, TIME24 Building 1F 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| | - Xiaolan Liu
- Regenerative Medicine, Sun Field Clinic, TIME24 Building 1F 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Miho Maeda
- Regenerative Medicine, Sun Field Clinic, TIME24 Building 1F 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
36
|
Ellison-Hughes GM, Colley L, O'Brien KA, Roberts KA, Agbaedeng TA, Ross MD. The Role of MSC Therapy in Attenuating the Damaging Effects of the Cytokine Storm Induced by COVID-19 on the Heart and Cardiovascular System. Front Cardiovasc Med 2020; 7:602183. [PMID: 33363221 PMCID: PMC7756089 DOI: 10.3389/fcvm.2020.602183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 2019 (COVID-19) has led to 47 m infected cases and 1. 2 m (2.6%) deaths. A hallmark of more severe cases of SARS-CoV-2 in patients with acute respiratory distress syndrome (ARDS) appears to be a virally-induced over-activation or unregulated response of the immune system, termed a "cytokine storm," featuring elevated levels of pro-inflammatory cytokines such as IL-2, IL-6, IL-7, IL-22, CXCL10, and TNFα. Whilst the lungs are the primary site of infection for SARS-CoV-2, in more severe cases its effects can be detected in multiple organ systems. Indeed, many COVID-19 positive patients develop cardiovascular complications, such as myocardial injury, myocarditis, cardiac arrhythmia, and thromboembolism, which are associated with higher mortality. Drug and cell therapies targeting immunosuppression have been suggested to help combat the cytokine storm. In particular, mesenchymal stromal cells (MSCs), owing to their powerful immunomodulatory ability, have shown promise in early clinical studies to avoid, prevent or attenuate the cytokine storm. In this review, we will discuss the mechanistic underpinnings of the cytokine storm on the cardiovascular system, and how MSCs potentially attenuate the damage caused by the cytokine storm induced by COVID-19. We will also address how MSC transplantation could alleviate the long-term complications seen in some COVID-19 patients, such as improving tissue repair and regeneration.
Collapse
Affiliation(s)
- Georgina M. Ellison-Hughes
- Faculty of Life Sciences & Medicine, Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London Guy's Campus, London, United Kingdom
| | - Liam Colley
- School of Sport, Health, and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Katie A. O'Brien
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Kirsty A. Roberts
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Thomas A. Agbaedeng
- Faculty of Health & Medical Sciences, Centre for Heart Rhythm Disorders, School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Mark D. Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
37
|
Efficacy and Mode of Action of Mesenchymal Stem Cells in Non-Ischemic Dilated Cardiomyopathy: A Systematic Review. Biomedicines 2020; 8:biomedicines8120570. [PMID: 33291410 PMCID: PMC7762005 DOI: 10.3390/biomedicines8120570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Non-ischemic dilated cardiomyopathy (NIDCM) constitutes one of the most common causes to non-ischemic heart failure. Despite treatment, the disease often progresses, causing severe morbidity and mortality, making novel treatment strategies necessary. Due to the regenerative actions of mesenchymal stem cells (MSCs), they have been proposed as a treatment for NIDCM. This systematic review aims to evaluate efficacy and mode of action (MoA) of MSC-based therapies in NIDCM. A systematic literature search was conducted in Medline (Pubmed) and Embase. A total of 27 studies were included (3 clinical trials and 24 preclinical studies). MSCs from different tissues and routes of delivery were reported, with bone marrow-derived MSCs and direct intramyocardial injections being the most frequent. All included clinical trials and 22 preclinical trials reported an improvement in cardiac function following MSC treatment. Furthermore, preclinical studies demonstrated alterations in tissue structure, gene, and protein expression patterns, primarily related to fibrosis and angiogenesis. Consequently, MSC treatment can improve cardiac function in NIDCM patients. The MoA underlying this effect involves anti-fibrosis, angiogenesis, immunomodulation, and anti-apoptosis, though these processes seem to be interdependent. These encouraging results calls for larger confirmatory clinical studies, as well as preclinical studies utilizing unbiased investigation of the potential MoA.
Collapse
|
38
|
Beldi G, Bahiraii S, Lezin C, Nouri Barkestani M, Abdelgawad ME, Uzan G, Naserian S. TNFR2 Is a Crucial Hub Controlling Mesenchymal Stem Cell Biological and Functional Properties. Front Cell Dev Biol 2020; 8:596831. [PMID: 33344453 PMCID: PMC7746825 DOI: 10.3389/fcell.2020.596831] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have drawn lots of attention as gold standard stem cells in fundamental and clinical researches during the last 20 years. Due to their tissue and vascular repair capacities, MSCs have been used to treat a variety of degenerative disorders. Moreover, MSCs are able to modulate immune cells’ functions, particularly T cells while inducing regulatory T cells (iTregs). MSCs are very sensitive to inflammatory signals. Their biological functions could remarkably vary after exposure to different pro-inflammatory cytokines, notably TNFα. In this article, we have explored the importance of TNFR2 expression in a series of MSCs’ biological and functional properties. Thus, MSCs from wild-type (WT) and TNFR2 knockout (TNFR2 KO) mice were isolated and underwent several ex vivo experiments to investigate the biological significance of TNFR2 molecule in MSC main functions. Hampering in TNFR2 signaling resulted in reduced MSC colony-forming units and proliferation rate and diminished the expression of all MSC characteristic markers such as stem cell antigen-1 (Sca1), CD90, CD105, CD44, and CD73. TNFR2 KO-MSCs produced more pro-inflammatory cytokines like TNFα, IFNγ, and IL-6 and less anti-inflammatory mediators such as IL-10, TGFβ, and NO and induced Tregs with less suppressive effect. Furthermore, the TNFR2 blockade remarkably decreased MSC regenerative functions such as wound healing, complex tube formation, and endothelial pro-angiogenic support. Therefore, our results reveal the TNFα–TNFR2 axis as a crucial regulator of MSC immunological and regenerative functions.
Collapse
Affiliation(s)
- Ghada Beldi
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France
| | - Sheyda Bahiraii
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Chloé Lezin
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | | | - Mohamed Essameldin Abdelgawad
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Georges Uzan
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France
| | - Sina Naserian
- INSERM UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France.,Paris-Saclay University, Villejuif, France.,CellMedEx, Saint Maur Des Fossés, France
| |
Collapse
|
39
|
The role of mesenchymal stem/stromal cells in the acute clinical setting. Am J Emerg Med 2020; 46:572-578. [PMID: 33279332 DOI: 10.1016/j.ajem.2020.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Accumulating evidence supports the use of mesenchymal stem/stromal cells (MSCs), particularly bone marrow derived, as a safe and promising biologic therapy for promoting tissue repair and regeneration in various chronic diseases and disorders. Despite growing evidence that MSCs are potent anti-inflammatory mediators that can provide substantial benefits in acute organ injury, there are limited clinical trials utilizing MSCs in acute care settings, such as in the emergency department (ED) or intensive care unit (ICU). OBJECTIVE This article reviews the current state of MSC-based therapeutics and further explores the untapped potential role to treat various acute, life-threating injuries in the ED and ICU. DISCUSSION All clinical trials using MSCs in acute myocardial infarction (AMI), acute respiratory distress syndrome (ARDS), sepsis and acute kidney injury (AKI) demonstrated safety. While some also demonstrate clinical efficacy, efficacy data is inconsistent, with some studies limited by sample size, cell integrity and different dosages, necessitating further studies. CONCLUSION MSCs are potentially promising novel biologic therapeutics for clinical application in AMI, ARDS, sepsis, AKI and COVID-19 that have demonstrated safety in all clinical trials. More rigorous clinical trials are necessary and warranted to determine the efficacy of MSCs as a novel therapeutic in an acute setting, such as the ED.
Collapse
|
40
|
Ryu JS, Jeong EJ, Kim JY, Park SJ, Ju WS, Kim CH, Kim JS, Choo YK. Application of Mesenchymal Stem Cells in Inflammatory and Fibrotic Diseases. Int J Mol Sci 2020; 21:ijms21218366. [PMID: 33171878 PMCID: PMC7664655 DOI: 10.3390/ijms21218366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Eun-Jeong Jeong
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Chang-Hyun Kim
- College of Medicine, Dongguk University, Goyang 10326, Korea;
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
- Correspondence:
| |
Collapse
|
41
|
Florea V, Rieger AC, Natsumeda M, Tompkins BA, Banerjee MN, Schulman IH, Premer C, Khan A, Valasaki K, Heidecker B, Mantero A, Balkan W, Mitrani RD, Hare JM. The impact of patient sex on the response to intramyocardial mesenchymal stem cell administration in patients with non-ischaemic dilated cardiomyopathy. Cardiovasc Res 2020; 116:2131-2141. [PMID: 32053144 PMCID: PMC7584465 DOI: 10.1093/cvr/cvaa004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 10/31/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
AIMS Sex differences impact the occurrence, presentation, prognosis, and response to therapy in heart disease. Particularly, the phenotypic presentation of patients with non-ischaemic dilated cardiomyopathy (NIDCM) differs between men and women. However, whether the response to mesenchymal stem cell (MSC) therapy is influenced by sex remains unknown. We hypothesize that males and females with NIDCM respond similarly to MSC therapy. METHODS AND RESULTS Male (n = 24) and female (n = 10) patients from the POSEIDON-DCM trial who received MSCs via transendocardial injections were evaluated over 12 months. Endothelial function was measured at baseline and 3 months post-transendocardial stem cell injection (TESI). At baseline, ejection fraction (EF) was lower (P = 0.004) and end-diastolic volume (EDV; P = 0.0002) and end-systolic volume (ESV; P = 0.0002) were higher in males vs. females. In contrast, baseline demographic characteristics, Minnesota Living with Heart Failure Questionnaire (MLHFQ), and 6-min walk test (6MWT) were similar between groups. EF improved in males by 6.2 units (P = 0.04) and in females by 8.6 units (P = 0.04; males vs. females, P = 0.57). EDV and ESV were unchanged over time. The MLHFQ score, New York Heart Association (NYHA) class, endothelial progenitor cell-colony forming units, and serum tumour necrosis factor alpha improved similarly in both groups. CONCLUSION Despite major differences in phenotypic presentation of NIDCM in males and females, this study is the first of its kind to demonstrate that MSC therapy improves a variety of parameters in NIDCM irrespective of patient sex. These findings have important clinical and pathophysiologic implications regarding the impact of sex on responses to cell-based therapy for NIDCM.
Collapse
Affiliation(s)
- Victoria Florea
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Angela C Rieger
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Makoto Natsumeda
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Bryon A Tompkins
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Monisha N Banerjee
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ivonne H Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Krystalenia Valasaki
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
| | - Bettina Heidecker
- Department of Cardiology, Charite Berlin University of Medicine, Berlin, Germany
| | - Alejandro Mantero
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Raul D Mitrani
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building - 9th Floor 1501 NW 10th Ave, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
42
|
Rejuvenation of Senescent Endothelial Progenitor Cells by Extracellular Vesicles Derived From Mesenchymal Stromal Cells. JACC Basic Transl Sci 2020; 5:1127-1141. [PMID: 33294742 PMCID: PMC7691285 DOI: 10.1016/j.jacbts.2020.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/08/2023]
Abstract
EVs derived from young, but not aged, MSCs rejuvenate senescent EPCs in vitro, recapitulating the effect of MSC transplantation. Aged MSCs can be genetically modified to produce tailored EVs with increased EPC rejuvenation capacity in vitro and increased angiogenesis capacity following ischemic event in vivo. EVs represent a promising platform to develop an acellular therapeutic approach in regenerative medicine for cardiovascular diseases. Mesenchymal stromal cell (MSC) transplantation is a form of the stem-cell therapy that has shown beneficial effects for many diseases. The use of stem-cell therapy, including MSC transplantation, however, has limitations such as the tumorigenic potential of stem cells and the lack of efficacy of aged autologous cells. An ideal therapeutic approach would keep the beneficial effects of MSC transplantation while circumventing the limitations associated with the use of intact stem cells. This study provides proof-of-concept evidence that MSC-derived extracellular vesicles represent a promising platform to develop an acellular therapeutic approach that would just do that. Extracellular vesicles are membranous vesicles secreted by MSCs and contain bioactive molecules to mediate communication between different cells. Extracellular vesicles can be taken up by recipient cells, and once inside the recipient cells, the bioactive molecules are released to exert the beneficial effects on the recipient cells. This study, for the first time to our knowledge, shows that extracellular vesicles secreted by MSCs recapitulate the beneficial effects of MSCs on vascular repair and promote blood vessel regeneration after ischemic events. Furthermore, MSCs from aged donors can be engineered to produce extracellular vesicles with improved regenerative potential, comparable to MSCs from young donors, thus eliminating the need for allogenic young donors for elderly patients.
Collapse
Key Words
- BM, bone marrow
- CVD, cardiovascular disease
- EC, endothelial cell
- EPC, endothelial progenitor cell
- EV, extracellular vesicle
- FBS, fetal bovine serum
- MEM, minimum essential medium
- MI, myocardial infarction
- MSC, mesenchymal stromal cell
- NTA, nanotracking analysis
- PBS, phosphate-buffered saline
- TEV, tailored extracellular vesicle
- VEGF, vascular endothelial growth factor
- acellular
- angiogenesis
- extracellular vesicles
- lin− BMC, lineage negative bone marrow cell
- miR, microRNA
- qPCR, quantitative transcription polymerase chain reaction
- regeneration
- senescence
Collapse
|
43
|
Hussein EN, Hamed GM, Seif AA, Ahmed MA, Abu Zahra FAE. Effects of Mesenchymal Stem Cells Therapy on Cardiovascular Risk Factors in Experimental Diabetic Kidney Disease. Can J Kidney Health Dis 2020; 7:2054358120957429. [PMID: 33149923 PMCID: PMC7585901 DOI: 10.1177/2054358120957429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Diabetic kidney disease (DKD) is a progressive kidney disease and a leading cause of end-stage renal disease (ESRD). Diabetic kidney disease has been strongly associated with increased risk of cardiovascular morbidity and mortality. Despite their susceptibility to cardiovascular diseases (CVDs), patients with DKD are less likely to receive appropriate cardiovascular risk modification as they are generally excluded from major cardiovascular trials. Awareness of vulnerability of these patients necessitates investigating potential interventions that would lessen their risk of adverse outcomes. Objectives: This study aimed to explore the effect of bone marrow–derived mesenchymal stem cells (MSCs) in modulating cardiovascular risk factors that develop with the progression of DKD. Methods: A total of 60 adult female albino rats were allocated into 3 groups: control group, untreated DKD group, and mesenchymal stem cells–treated diabetic kidney disease (MSCs-DKD) group. Blood pressure, blood glucose level, lipid profile, and atherogenic index were used to assess cardiovascular risk. All rats were killed and subjected to in vitro aortic reactivity studies 8 weeks after induction of diabetes. The MSCs-DKD rats received a single intravenous injection of MSCs 4 weeks after diabetes induction. Results: Mesenchymal stem cells injection significantly decreased blood pressure, atherogenic index, and blood glucose compared with untreated rats. The MSCs-DKD aorta also exhibited significant enhancement of vascular reactivity parameters despite absence of improvement in kidney function. These findings conformed to tracked MSCs, which were found residing in aortic and pancreatic tissues and absent in kidneys. Conclusions: Mesenchymal stem cells hold hope of improving cardiovascular risk and mortality in patients with DKD, particularly those deteriorating to ESRD.
Collapse
Affiliation(s)
- Einas Nagib Hussein
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Gehane M Hamed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ansam A Seif
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona A Ahmed
- Department of Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
44
|
Mokhtari B, Aboutaleb N, Nazarinia D, Nikougoftar M, Razavi Tousi SMT, Molazem M, Azadi MR. Comparison of the effects of intramyocardial and intravenous injections of human mesenchymal stem cells on cardiac regeneration after heart failure. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:879-885. [PMID: 32774809 PMCID: PMC7395194 DOI: 10.22038/ijbms.2020.40886.9660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Existing studies have demonstrated that intravenous and intramyocardial-administrated mesenchymal stem cells (MSCs) lead to tissue repair after cardiac disorders. We compared the efficiency of both administration methods. MATERIALS AND METHODS A rat model of isoproterenol-induced heart failure (ISO-HF) was established to compare the effects of intravenous and intramyocardial-administrated MSCs on cardiac fibrosis and function. The animals were randomly assigned into six groups: i) control or normal, ii) ISO-HF (HF) iii) ISO-HF rats treated with intramyocardial administration of culture medium (HF+IM/CM), iv) ISO-HF rats treated with intravenous administration of culture medium ( HF+IV/CM), v) ISO-HF rats treated with intravenous administration of MSCs (HF+IV/MSCs), vi) ISO-HF rats treated with intramyocardial administration of MSCs ( HF+IM/MSCs). Cultured MSCs and culture medium were administrated at 4 weeks after final injection of ISO. Heart function, identification of MSCs, osteogenic differentiation, adipogenic differentiation, cardiac fibrosis and tissue damage were evaluated by echocardiography, flow-cytometery, von Kossa, oil red O, Masson's trichrome and H & E staining, respectively. RESULTS Both intravenous and intramyocardial MSCs therapy significantly improved heart function and reduced cardiac fibrosis and tissue damage (P<0.05), whereas the cultured medium had no beneficial effects. CONCLUSION In sum, our results confirm the validity of both administration methods in recovery of HF, but more future research is required.
Collapse
Affiliation(s)
- Behnaz Mokhtari
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Donya Nazarinia
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahin Nikougoftar
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Mohammad Molazem
- Department of Veterinary Diagnostic Imaging, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad-Reza Azadi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Lin Y, Zhu W, Chen X. The involving progress of MSCs based therapy in atherosclerosis. Stem Cell Res Ther 2020; 11:216. [PMID: 32503682 PMCID: PMC7275513 DOI: 10.1186/s13287-020-01728-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/25/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a chronic progressive vascular inflammation characterized by lipid deposition and plaque formation, for which vascular cell dysfunction and impaired immune responses are involved. Up to now, lipid-lowering drugs remain the main therapy for treating atherosclerosis; however, the surgical or interventional therapy is often applied, and yet, morbidity and mortality of such cardiovascular disease remain high worldwide. Over the past decades, an anti-inflammatory approach has become an important therapeutic target for dealing with atherosclerosis, as altered immune responses have been regarded as an essential player in the pathological process of vascular abnormality induced by hyperlipidemia. Interestingly, mesenchymal stem cells, one type of stem cells with the capabilities of self-renewal and multi-potential, have demonstrated their unique immunomodulatory function in the various pathological process, especially in atherosclerosis. While some controversies remain regarding their therapeutic efficacy and working mechanisms, our present review aims to summarize the current research progress on stem cell-based therapy, focusing on its immunomodulatory effects on the pathogenesis of atherosclerosis and how endothelial cells, smooth muscle cells, and other immune cells are regulated by MSC-based therapy.
Collapse
Affiliation(s)
- Ying Lin
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China.,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.,Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology and Key Lab of Cardiovascular Disease, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaomin Chen
- School of Medicine, Ningbo University, Ningbo, Zhejiang, China. .,Department of Cardiology, Ningbo First hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
46
|
Cuthbert RJ, Jones E, Sanjurjo-Rodríguez C, Lotfy A, Ganguly P, Churchman SM, Kastana P, Tan HB, McGonagle D, Papadimitriou E, Giannoudis PV. Regulation of Angiogenesis Discriminates Tissue Resident MSCs from Effective and Defective Osteogenic Environments. J Clin Med 2020; 9:jcm9061628. [PMID: 32481579 PMCID: PMC7355658 DOI: 10.3390/jcm9061628] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: The biological mechanisms that contribute to atrophic long bone non-union are poorly understood. Multipotential mesenchymal stromal cells (MSCs) are key contributors to bone formation and are recognised as important mediators of blood vessel formation. This study examines the role of MSCs in tissue formation at the site of atrophic non-union. Materials and Methods: Tissue and MSCs from non-union sites (n = 20) and induced periosteal (IP) membrane formed following the Masquelet bone reconstruction technique (n = 15) or bone marrow (n = 8) were compared. MSC content, differentiation, and influence on angiogenesis were measured in vitro. Cell content and vasculature measurements were performed by flow cytometry and histology, and gene expression was measured by quantitative polymerase chain reaction (qPCR). Results: MSCs from non-union sites had comparable differentiation potential to bone marrow MSCs. Compared with induced periosteum, non-union tissue contained similar proportion of colony-forming cells, but a greater proportion of pericytes (p = 0.036), and endothelial cells (p = 0.016) and blood vessels were more numerous (p = 0.001) with smaller luminal diameter (p = 0.046). MSCs showed marked differences in angiogenic transcripts depending on the source, and those from induced periosteum, but not non-union tissue, inhibited early stages of in vitro angiogenesis. Conclusions: In vitro, non-union site derived MSCs have no impairment of differentiation capacity, but they differ from IP-derived MSCs in mediating angiogenesis. Local MSCs may thus be strongly implicated in the formation of the immature vascular network at the non-union site. Attention should be given to their angiogenic support profile when selecting MSCs for regenerative therapy.
Collapse
Affiliation(s)
- R. J. Cuthbert
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Jones
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - C. Sanjurjo-Rodríguez
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- Department of Biomedical Sciences, Medicine and Physiotherapy, University of A Coruña, CIBER-BBN-Institute of Biomedical Research of A Coruña (INIBIC), A Coruña 15001, Spain
| | - A. Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt;
| | - P. Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - S. M. Churchman
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - P. Kastana
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - H. B. Tan
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - D. McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
| | - E. Papadimitriou
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras 265 04, Greece; (P.K.); (E.P.)
| | - P. V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Disease, University of Leeds, Leeds LS16 7PS, UK; (R.J.C.); (E.J.); (C.S.-R.); (P.G.); (S.M.C.); (H.B.T.); (D.M.)
- NIHR Leeds Biomedical Research Center, Chapel Allerton Hospital, Leeds LS7 4SA, UK
- Correspondence: ; Tel.: +44-113-392-2750; Fax: +44-113-392-3290
| |
Collapse
|
47
|
Extracellular Vesicles from Interferon-γ-primed Human Umbilical Cord Mesenchymal Stromal Cells Reduce Escherichia coli-induced Acute Lung Injury in Rats. Anesthesiology 2020; 130:778-790. [PMID: 30870158 DOI: 10.1097/aln.0000000000002655] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human umbilical cord mesenchymal stromal cells possess considerable therapeutic promise for acute respiratory distress syndrome. Umbilical cord mesenchymal stromal cells may exert therapeutic effects via extracellular vesicles, while priming umbilical cord mesenchymal stromal cells may further enhance their effect. The authors investigated whether interferon-γ-primed umbilical cord mesenchymal stromal cells would generate mesenchymal stromal cell-derived extracellular vesicles with enhanced effects in Escherichia coli (E. coli) pneumonia. METHODS In a university laboratory, anesthetized adult male Sprague-Dawley rats (n = 8 to 18 per group) underwent intrapulmonary E. coli instillation (5 × 10 colony forming units per kilogram), and were randomized to receive (a) primed mesenchymal stromal cell-derived extracellular vesicles, (b) naïve mesenchymal stromal cell-derived extracellular vesicles (both 100 million mesenchymal stromal cell-derived extracellular vesicles per kilogram), or (c) vehicle. Injury severity and bacterial load were assessed at 48 h. In vitro studies assessed the potential for primed and naïve mesenchymal stromal cell-derived extracellular vesicles to enhance macrophage bacterial phagocytosis and killing. RESULTS Survival increased with primed (10 of 11 [91%]) and naïve (8 of 8 [100%]) mesenchymal stromal cell-derived extracellular vesicles compared with vehicle (12 of 18 [66.7%], P = 0.038). Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles reduced alveolar-arterial oxygen gradient (422 ± 104, 536 ± 58, 523 ± 68 mm Hg, respectively; P = 0.008), reduced alveolar protein leak (0.7 ± 0.3, 1.4 ± 0.4, 1.5 ± 0.7 mg/ml, respectively; P = 0.003), increased lung mononuclear phagocytes (23.2 ± 6.3, 21.7 ± 5, 16.7 ± 5 respectively; P = 0.025), and reduced alveolar tumor necrosis factor alpha concentrations (29 ± 14.5, 35 ± 12.3, 47.2 ± 6.3 pg/ml, respectively; P = 0.026) compared with vehicle. Primed-but not naïve-mesenchymal stromal cell-derived extracellular vesicles enhanced endothelial nitric oxide synthase production in the injured lung (endothelial nitric oxide synthase/β-actin = 0.77 ± 0.34, 0.25 ± 0.29, 0.21 ± 0.33, respectively; P = 0.005). Both primed and naïve mesenchymal stromal cell-derived extracellular vesicles enhanced E. coli phagocytosis and bacterial killing in human acute monocytic leukemia cell line (THP-1) in vitro (36.9 ± 4, 13.3 ± 8, 0.1 ± 0.01%, respectively; P = 0.0004) compared with vehicle. CONCLUSIONS Extracellular vesicles from interferon-γ-primed human umbilical cord mesenchymal stromal cells more effectively attenuated E. coli-induced lung injury compared with extracellular vesicles from naïve mesenchymal stromal cells, potentially via enhanced macrophage phagocytosis and killing of E. coli.
Collapse
|
48
|
Chen K, Huang Y, Singh R, Wang ZZ. Arrhythmogenic risks of stem cell replacement therapy for cardiovascular diseases. J Cell Physiol 2020; 235:6257-6267. [PMID: 31994198 DOI: 10.1002/jcp.29554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
Ischemic heart disease and congestive heart failure are major contributors to high morbidity and mortality. Approximately 1.5 million cases of myocardial infarction occur annually in the United States; the yearly incidence rate is approximately 600 cases per 100,000 people. Although significant progress to improve the survival rate has been made by medications and implantable medical devices, damaged cardiomyocytes are unable to be recovered by current treatment strategies. After almost two decades of research, stem cell therapy has become a very promising approach to generate new cardiomyocytes and enhance the function of the heart. Along with clinical trials with stem cells conducted in cardiac regeneration, concerns regarding safety and potential risks have emerged. One of the contentious issues is the electrical dysfunctions of cardiomyocytes and cardiac arrhythmia after stem cell therapy. In this review, we focus on the cell sources currently used for stem cell therapy and discuss related arrhythmogenic risk.
Collapse
Affiliation(s)
- Kang Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Huang
- Department of Medicine, University of Maryland Medical Center Midtown Campus, Baltimore, Maryland
| | - Radhika Singh
- Center for Biotechnology Education, Johns Hopkins University, Baltimore, Maryland
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
49
|
Li Calzi S, Cook T, Della Rocca DG, Zhang J, Shenoy V, Yan Y, Espejo A, Rathinasabapathy A, Jacobsen MH, Salazar T, Sandusky GE, Shaw LC, March K, Raizada MK, Pepine CJ, Katovich MJ, Grant MB. Complementary Embryonic and Adult Cell Populations Enhance Myocardial Repair in Rat Myocardial Injury Model. Stem Cells Int 2019; 2019:3945850. [PMID: 31781239 PMCID: PMC6875168 DOI: 10.1155/2019/3945850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/09/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
We compared the functional outcome of Isl-1+ cardiac progenitors, CD90+ bone marrow-derived progenitor cells, and the combination of the two in a rat myocardial infarction (MI) model. Isl-1+ cells were isolated from embryonic day 12.5 (E12.5) rat hearts and expanded in vitro. Thy-1+/CD90+ cells were isolated from the bone marrow of adult Sprague-Dawley rats by immunomagnetic cell sorting. Six-week-old female Sprague-Dawley rats underwent permanent left anterior descending (LAD) coronary artery ligation and received intramyocardial injection of either saline, Isl-1+ cells, CD90+ cells, or a combination of Isl-1+ and CD90+ cells, at the time of infarction. Cells were delivered transepicardially to the peri-infarct zone. Left ventricular function was assessed by transthoracic echocardiography at 1- and 4-week post-MI and by Millar catheterization (-dP/dt and +dP/dt) at 4-week post-MI. Fluorescence in situ hybridization (Isl-1+cells) and monochrystalline iron oxide nanoparticles labeling (MION; CD90+ cells) were performed to assess biodistribution of transplanted cells. Only the combination of cells demonstrated a significant improvement of cardiac function as assessed by anterior wall contractility, dP/dt (max), and dP/dt (min), compared to Isl-1+ or CD90+ cell monotherapies. In the combination cell group, viable cells were detected at week 4 when anterior wall motion was completely restored. In conclusion, the combination of Isl-1+ cardiac progenitors and adult bone marrow-derived CD90+ cells shows prolonged and robust myocardial tissue repair and provides support for the use of complementary cell populations to enhance myocardial repair.
Collapse
Affiliation(s)
- Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Todd Cook
- Department of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | | | - Juan Zhang
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | - Vinayak Shenoy
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Yuanqing Yan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrew Espejo
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | | | - Max H. Jacobsen
- Pathology and Laboratory Med., IUPUI, Indianapolis, IN 46202, USA
| | - Tatiana Salazar
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | | | - Lynn C. Shaw
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Keith March
- Department of Medicine, IUPUI, Indianapolis, IN 46202, USA
| | - Mohan K. Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611, USA
| | - Carl J. Pepine
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Michael J. Katovich
- Department of Pharmacodynamics, University of Florida, Gainesville, FL 32611, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| |
Collapse
|
50
|
Tehzeeb J, Manzoor A, Ahmed MM. Is Stem Cell Therapy an Answer to Heart Failure: A Literature Search. Cureus 2019; 11:e5959. [PMID: 31803548 PMCID: PMC6874291 DOI: 10.7759/cureus.5959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart is one of the most industrious organs in the human body. It starts beating in the first few weeks of embryonic life and keeps pumping blood till death. This organ can host a range of diseases as well. Some can hamper the vasculature, while others can affect its electrical activity, the heart valves, etc. All these conditions can lead to end-stage failure where it can no longer meet the requirements of the body’s milieu. This imbalance between supply and demand leads to an array of symptoms. Medical management can reduce these clinical effects and possibly prolong the life expectancy in such patients. However, prescription medications can also have their own adverse effects. This necessitates that each line of treatment should be assessed on a risk vs benefit basis. The conventional approach has been to try and slow down the progression of heart failure (HF). However, the inception of stem cells in the management of HF has the potential for reversal of this pathology. Keeping this in view, many studies and trials are under process. To turn the clock back on the HF, before complications set in or get out of control, is the main focus of the time. This article attempts to evaluate various studies about stem cell therapy (SCT) and highlight the important aspects of this novel modality in changing patients' lives.
Collapse
Affiliation(s)
- Javaria Tehzeeb
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Anam Manzoor
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Munis M Ahmed
- Internal Medicine, St Mary Mercy Livonia Hospital, Livonia, USA
| |
Collapse
|