1
|
Sun Y, Wang Q, Jiang Y, He J, Jia D, Luo M, Shen W, Wang Q, Qi Y, Lin Y, Zhang Y, Wang L, Wang L, Chen S, Fan L. Lactobacillus intestinalis facilitates tumor-derived CCL5 to recruit dendritic cell and suppress colorectal tumorigenesis. Gut Microbes 2025; 17:2449111. [PMID: 39773173 PMCID: PMC11730368 DOI: 10.1080/19490976.2024.2449111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 11/11/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Gut microbes play a crucial role in regulating the tumor microenvironment (TME) of colorectal cancer (CRC). Nevertheless, the deep mechanism between the microbiota-TME interaction has not been well explored. In this study, we for the first time discovered that Lactobacillus intestinalis (L. intestinalis) effectively suppressed tumor growth both in the AOM/DSS-induced CRC model and the ApcMin/+ spontaneous adenoma model. Our investigation revealed that L. intestinalis increased the infiltration of immune cells, particularly dendritic cells (DC), in the TME. Mechanically, the tumor-derived CCL5 induced by L. intestinalis recruited DC chemotaxis through the NOD1/NF-κB signaling pathway. In clinical samples and datasets, we found positive correlation between L. intestinalis, CCL5 level, and the DC-related genes. Our study provided a new strategy for microbial intervention for CRC and deepened the understanding of the interaction between tumor cells and the immune microenvironment modulated by gut microbes.
Collapse
Affiliation(s)
- Yong Sun
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Qiwen Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yao Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Man Luo
- Department of Nutrition, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Wentao Shen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Qingyi Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yadong Qi
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ying Zhang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Lan Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Prevention and Treatment Research Center of Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Shastry RP, Hameed A, Banerjee S, Prabhu A, Bajire SK, Pavan SR, Dhanyashree HR, Kotimoole CN, Stothard P, Surya S, Keshava Prasad TS, Shetty R, Shen FT, Bhandary YP. Tryptic oncopeptide secreted from the gut bacterium Cronobacter malonaticus PO3 promotes colorectal cancer. Sci Rep 2025; 15:9958. [PMID: 40121280 PMCID: PMC11929907 DOI: 10.1038/s41598-025-94666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
The involvement of Cronobacter, which is frequently associated with meningitis and necrotizing enterocolitis, in human colorectal cancer remains unexplored. In this study, we isolate and characterize a novel strain of C. malonaticus designated PO3 from a fecal sample of a colon cancer patient and demonstrate its proliferative effects on colorectal cancer both in vitro and in vivo. The secretome of PO3 significantly promoted cell proliferation, as evidenced by increased cell viability, fluorescence intensity, and Ki-67 expression, without inducing cell death. Furthermore, using high-resolution mass spectrometry (HRMS), we identified a novel tryptic oncopeptide designated P506, in the PO3 secretome that promotes colorectal cancer. Synthetic P506 further stimulated human colorectal adenocarcinoma cell line HT-29 cell proliferation in a dose-dependent manner. Experiments with the BALB/c mouse model in vivo revealed that both the PO3 secretome and P506 contributed to the development of colorectal polyps and associated histological changes, including dysplasia and altered colonic architecture. These findings suggest that P506, a potent peptide from the PO3 secretome, may have oncogenic potential, promoting colorectal cancer progression.
Collapse
Affiliation(s)
- Rajesh Padumane Shastry
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| | - Shukla Banerjee
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Ashwini Prabhu
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sukesh Kumar Bajire
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sonnenahalli Rudramurthy Pavan
- Division of Cancer Research and Therapeutics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Honagodu Ravichandra Dhanyashree
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Chinmaya Narayana Kotimoole
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Suprith Surya
- Advanced Surgical Skill ENhancement Division (ASSEND), Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | | | - Rohan Shetty
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Fo-Ting Shen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, 40227, Taiwan.
| | - Yashodhar Prabhakar Bhandary
- Division of Cell Biology and Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
3
|
Xu DQ, Geng JX, Gao ZK, Fan CY, Zhang BW, Han X, He LQ, Dai L, Gao S, Yang Z, Zhang Y, Arshad M, Fu Y, Mu XQ. To explore the potential combined treatment strategy for colorectal cancer: Inhibition of cancer stem cells and enhancement of intestinal immune microenvironment. Eur J Pharmacol 2025; 998:177533. [PMID: 40120791 DOI: 10.1016/j.ejphar.2025.177533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND The antibiotic salinomycin, a well-known cancer stem cell inhibitor, may impact the diversity of the intestinal microbiota in colorectal cancer (CRC) mice, which plays a pivotal role in shaping the immune system. This study explores the anti-cancer effects and mechanisms of combining salinomycin and fecal microbiota transplantation (FMT) in treating CRC. METHODS FMT was given via enema, while salinomycin was injected intraperitoneally into the CRC mouse model induced by azoxymethane/dextran sodium sulfate. RESULTS In CRC mice, a large number of LGR5-labeled cancer stem cells and severe disturbances in the intestinal microbiota were observed. Interestingly, salinomycin inhibited the proliferation of cancer stem cells without exacerbating the microbial disorder as expected. In comparison to salinomycin treatment, the combination of salinomycin and FMT significantly improved pathological damage and restored intestinal microbial diversity, which is responsible for shaping the anti-cancer immune microenvironment. The supplementation of FMT significantly increased the levels of propionic acid and butyric acid while also promoting the infiltration of CD8+ T cells and Ly6G+ neutrophils, as well as reducing F4/80+ macrophage recruitment. Notably, cytokines that were not impacted by salinomycin exhibited robust reactions to alterations in the gut microbiota. These included pro-inflammatory factors (IL6, IL12b, IL17, and IL22), chemokine-like protein OPN, and immunosuppressive factor PD-L1. CONCLUSIONS Salinomycin plays the role of "eliminating pathogenic qi," targeting cancer stem cells; FMT plays the role of "strengthening vital qi," reversing the intestinal microbiota disorder and enhancing anti-cancer immunity. They have a synergistic effect on the development of CRC.
Collapse
Affiliation(s)
- Dan-Qi Xu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Jia-Xin Geng
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhan-Kui Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Chao-Yuan Fan
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Bo-Wen Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Xing Han
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Li-Qian He
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Lin Dai
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Shuo Gao
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Zhou Yang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yang Zhang
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Muhammad Arshad
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China
| | - Yin Fu
- School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, Harbin, 150006, China.
| | - Xiao-Qin Mu
- Genomics Research Center (Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province), College of Pharmacy, Harbin Medical University, Harbin, 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin Medical University, Harbin, 150081, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150081, China; HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
4
|
Yang H, Gan Y, Jiang S, Zhu X, Xia Y, Gong D, Xie X, Gong Y, Zhang Y, Lei Q, Wang M, Li J. Genomic alterations in Bacteroides fragilis favor adaptation in colorectal cancer microenvironment. BMC Genomics 2025; 26:269. [PMID: 40102781 PMCID: PMC11921484 DOI: 10.1186/s12864-025-11421-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The occurrence and development of colorectal cancer (CRC) is an incredibly long process that involves continuous changes in the tumor microenvironment. These constant changes may ultimately result in genetic alterations and changes in the metabolic processes of some symbiotic bacteria as a way to adapt to the changing environment. Patients with CRC exhibit an altered abundance of Bacteroides fragilis (B. fragilis) as indicated by several studies. To better understand the genomic characteristics and virulence spectrum of B. fragilis strains in tumor tissues, B. fragilis strains were isolated from tumor and paracancerous tissues of CRC patients. METHODS The isolates were identified using 16 S rRNA sequencing, morphological analysis, physiological and biochemical characterization and PCR, and they were then subjected to whole genome sequencing (WGS) analysis. RESULTS A strain of B. fragilis enterotoxin (BFT) bft1-producing ZY0302 and a non-enterotoxin-producing B. fragilis ZY0804 were isolated from cancerous and paraneoplastic tissues, respectively. Analysis based on the core and nonessential genes showed that the genomic profiles of the isolates, ZY0302 and ZY0804, differed from those of B. fragilis from other tissue sources. This core and the co-evolution of non-essential genes may be the result of their adaptation to fluctuations in the tumor microenvironment and enhancing their survival. In addition, the ZY0302 and ZY0804 genomes underwent extensive horizontal gene transfer and varying degrees of genomic rearrangements, inversions, insertions, and deletion events, which may favor the enhancement of bacteria's ability to adapt to environmental changes. For instance, the virulence factors, such as the capsular biosynthesis gene clusters and components of the type IV secretion system, acquired through horizontal gene transfer, may facilitated B. fragilis in evading immune responses and managing oxidative stress. Moreover, our analysis revealed that multiple virulence factors identified in the isolates were mainly involved in bacterial adhesion and colonization, oxidative stress, iron acquisition, and immune evasion. This observation is worth noting given that enzymes such as neuraminidase, lipase, hemolysin, protease, and phosphatase, along with genes responsible for LPS biosynthesis, which are recognized for their association with the virulence of B. fragilis, were prevalent among the isolates. CONCLUSIONS In summary, it is our assertion that the alterations observed in both core and nonessential genes of B. fragilis, which have been isolated from tissues of colorectal cancer patients, along with significant instances of horizontal gene transfer to the genome, are likely intended to enhance adaptation to the evolving conditions of the tumor microenvironment. This study may provide new insights into the interaction between B. fragilis and the CRC microenvironment.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yu Gan
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shenghai Jiang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianchang Zhu
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yang Xia
- Southwest Guizhou Vocational and Technical College, Xingyi, Guizhou, China
| | - Dengmei Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xianrang Xie
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yao Gong
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China
| | - Qian Lei
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Maijian Wang
- Institute of Gastroenterology, Affiliate Hospital of Zunyi Medical University, Zunyi, Guizhou, China.
- , No. 149, Dalian Road,, Zunyi City, 563003, Guizhou Province, China.
| | - Jida Li
- Institute of Zoonosis, College of Public Health, Zunyi Medical University, Zunyi, Guizhou, China.
- Key Laboratory of Maternal & Child Health and Exposure Science of Guizhou Higher Education Institutes, Zunyi, Guizhou, China.
- , No. 6, Xuefu West Road, Xinpu New District, Zunyi City, 563000, Guizhou Province, China.
| |
Collapse
|
5
|
Liu QL, Zhou H, Wang Z, Chen Y. Exploring the role of gut microbiota in colorectal liver metastasis through the gut-liver axis. Front Cell Dev Biol 2025; 13:1563184. [PMID: 40181829 PMCID: PMC11965903 DOI: 10.3389/fcell.2025.1563184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Colorectal liver metastasis (CRLM) represents a major therapeutic challenge in colorectal cancer (CRC), with complex interactions between the gut microbiota and the liver tumor microenvironment (TME) playing a crucial role in disease progression via the gut-liver axis. The gut barrier serves as a gatekeeper, regulating microbial translocation, which influences liver colonization and metastasis. Through the gut-liver axis, the microbiota actively shapes the TME, where specific microbial species and their metabolites exert dual roles in immune modulation. The immunologically "cold" nature of the liver, combined with the influence of the gut microbiota on liver immunity, complicates effective immunotherapy. However, microbiota-targeted interventions present promising strategies to enhance immunotherapy outcomes by modulating the gut-liver axis. Overall, this review highlights the emerging evidence on the role of the gut microbiota in CRLM and provides insights into the molecular mechanisms driving the dynamic interactions within the gut-liver axis.
Collapse
Affiliation(s)
- Qiu-Luo Liu
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Institute of Digestive Surgery, Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Huijie Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Health Management Center, General Practice Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ziqiang Wang
- Colorectal Cancer Center, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Chen
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Yang X, Wei L. Analysis of long Non-Coding RNA and mRNA expression in Clostridium butyricum-Induced apoptosis in SW480 colon cancer cells. Gene 2025; 940:149208. [PMID: 39755264 DOI: 10.1016/j.gene.2024.149208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/18/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
Colon cancer is a leading cause of cancer-related deaths worldwide and has been increasingly linked to the gut microbiome. Clostridium butyricum (CB), a probiotic, has demonstrated potential in influencing colon cancer cell behavior, particularly through the modulation of long non-coding RNAs (lncRNAs) and mRNAs. This study examines the effects of CB on the expression of lncRNAs and mRNAs in SW480 colon cancer cells and their association with apoptosis. SW480 cells were co-cultured with CB, and total RNA was extracted for microarray analysis to identify differentially expressed lncRNAs and mRNAs. Quantitative real-time PCR and fluorescence staining were utilized to validate the expression changes of selected lncRNAs and to assess markers of apoptosis. Pathway enrichment analysis was performed to explore the biological functions of genes with altered expression. Co-culture with CB resulted in significant changes in lncRNA and mRNA expression, with 50 lncRNAs upregulated and 152 downregulated by more than five-fold. Similarly, 738 mRNAs were upregulated, while 1,088 were downregulated. Apoptosis analysis revealed that CB treatment induced apoptosis in SW480 cells, as evidenced by the upregulation of pro-apoptotic genes such as CASP1, TNF, and BNIP3L, and the downregulation of anti-apoptotic BCL family members. Pathway analysis suggested the involvement of the MAPK signaling pathway, cytokine-cytokine receptor interactions, and other pathways associated with tumor progression. These findings suggest that CB regulates the expression of lncRNAs and mRNAs involved in apoptosis and tumor progression, highlighting their potential as biomarkers and therapeutic targets in colorectal cancer. This study provides a novel therapeutic strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Xiaorong Yang
- Chongqing Institute for Food and Drug Control, Chongqing city, 401121, China.
| | - Lan Wei
- Chongqing Blood Center, Chongqing city, 400015, China.
| |
Collapse
|
7
|
Keane L, Cryan JF, Gleeson JP. Exploiting the gut microbiome for brain tumour treatment. Trends Mol Med 2025; 31:213-223. [PMID: 39256110 DOI: 10.1016/j.molmed.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Increasing evidence suggests that the gut microbiome plays a key role in a host of pathological conditions, including cancer. Indeed, the bidirectional communication that occurs between the gut and the brain, known as the 'gut-brain axis,' has recently been implicated in brain tumour pathology. Here, we focus on current research that supports a gut microbiome-brain tumour link with emphasis on high-grade gliomas, the most aggressive of all brain tumours, and the impact on the glioma tumour microenvironment. We discuss the potential use of gut-brain axis signals to improve responses to current and future therapeutic approaches. We highlight that the success of novel treatment strategies may rely on patient-specific microbiome profiles, and these should be considered for personalised treatment approaches.
Collapse
Affiliation(s)
- Lily Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Jack P Gleeson
- Cancer Research@UCC, College of Medicine and Health, University College Cork, Cork, Ireland; CUH/UCC Cancer Centre, Cork University Hospital, Cork, Ireland.
| |
Collapse
|
8
|
García G, Carlin M, Cano RDJ. Holobiome Harmony: Linking Environmental Sustainability, Agriculture, and Human Health for a Thriving Planet and One Health. Microorganisms 2025; 13:514. [PMID: 40142407 PMCID: PMC11945859 DOI: 10.3390/microorganisms13030514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The holobiome is an interconnected network of microbial ecosystems spanning soil, plants, animals, humans, and the environment. Microbial interactions drive nutrient cycling, pathogen suppression, and climate regulation. Soil microbiomes facilitate carbon sequestration and enhance soil fertility, while marine microbiomes contribute to carbon capture and climate stability. However, industrial agriculture, extensive herbicide use, antibiotic overuse, and climate change threaten microbial diversity, leading to ecosystem and health disruptions. Probiotic interventions help to restore microbial balance. In human health, probiotics support gut microbiota diversity, reduce inflammation, and regulate metabolism. In agriculture, soil probiotics enhance microbial diversity, improve nutrient cycling, and degrade contaminants, increasing crop yields and soil health. Case studies show that microbial inoculants effectively remediate degraded soils and enhance nutrient uptake. Artificial intelligence is transforming microbiome research by enabling predictive modeling, precision probiotic design, and microbial consortia optimization. Interdisciplinary collaboration and supportive policies are essential for restoring microbial equilibria, ensuring ecosystem resilience, and promoting long-term sustainability. The integration of artificial intelligence, clinical research, and sustainable practices is crucial for advancing holobiome science. The holobiome framework underscores the need for interdisciplinary collaboration to address global challenges, bridging environmental sustainability, agriculture, and public health for a resilient future.
Collapse
Affiliation(s)
- Gissel García
- Pathology Department, Hospital Hermanos Ameijeiras, La Habana 10400, Cuba;
| | | | - Raul de Jesus Cano
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA 93407, USA
- Chauvell, LLC, San Luis Obispo, CA 93401, USA
| |
Collapse
|
9
|
Hu ZJ, Zhu HR, Jin YJ, Liu P, Yu XW, Zhang YR. Correlation between gut microbiota and tumor immune microenvironment: A bibliometric and visualized study. World J Clin Oncol 2025; 16:101611. [PMID: 39995564 PMCID: PMC11686564 DOI: 10.5306/wjco.v16.i2.101611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/11/2024] Open
Abstract
BACKGROUND In recent years, numerous reports have been published regarding the relationship between the gut microbiota and the tumor immune microenvironment (TIME). However, to date, no systematic study has been conducted on the relationship between gut microbiota and the TIME using bibliometric methods. AIM To describe the current global research status on the correlation between gut microbiota and the TIME, and to identify the most influential countries, research institutions, researchers, and research hotspots related to this topic. METHODS We searched for all literature related to gut microbiota and TIME published from January 1, 2014, to May 28, 2024, in the Web of Science Core Collection database. We then conducted a bibliometric analysis and created visual maps of the published literature on countries, institutions, authors, keywords, references, etc., using CiteSpace (6.2R6), VOSviewer (1.6.20), and bibliometrics (based on R 4.3.2). RESULTS In total, 491 documents were included, with a rapid increase in the number of publications starting in 2019. The country with the highest number of publications was China, followed by the United States. Germany has the highest number of citations in literature. From a centrality perspective, the United States has the highest influence in this field. The institutions with the highest number of publications were Shanghai Jiao Tong University and Zhejiang University. However, the institution with the most citations was the United States National Cancer Institute. Among authors, Professor Giorgio Trinchieri from the National Institutes of Health has the most local impact in this field. The most cited author was Fan XZ. The results of journal publications showed that the top three journals with the highest number of published papers were Frontiers in Immunology, Cancers, and Frontiers in Oncology. The three most frequently used keywords were gut microbiota, tumor microenvironment, and immunotherapy. CONCLUSION This study systematically elaborates on the research progress related to gut microbiota and TIME over the past decade. Research results indicate that the number of publications has rapidly increased since 2019, with research hotspots including "gut microbiota", "tumor microenvironment" and "immunotherapy". Exploring the effects of specific gut microbiota or derived metabolites on the behavior of immune cells in the TIME, regulating the secretion of immune molecules, and influencing immunotherapy are research hotspots and future research directions.
Collapse
Affiliation(s)
- Zheng-Jun Hu
- Department of Oncology, Shanghai Jiading District Hospital of Traditional Chinese Medicine, Shanghai 200000, China
| | - Hui-Rong Zhu
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yong-Jie Jin
- Department of Oncology, Shanghai Jiading District Hospital of Traditional Chinese Medicine, Shanghai 200000, China
| | - Pan Liu
- School of Chinese Medicine, Anhui University of Traditional Chinese Medicine, Hefei 230000, Anhui Province, China
| | - Xiao-Wei Yu
- Department of Oncology, Shanghai Jiading District Hospital of Traditional Chinese Medicine, Shanghai 200000, China
| | - Yu-Ren Zhang
- Department of Oncology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200000, China
| |
Collapse
|
10
|
Ma L, Shi M, Zhang X, Liu Y, Jin H, Li D, Zhang H, Feng L, Zuo J, Wang Y, Liu J, Han J. Circulating microbiome DNA features and its effect on predicting clinicopathological characteristics of patients with colorectal cancer. J Transl Med 2025; 23:178. [PMID: 39948576 PMCID: PMC11827206 DOI: 10.1186/s12967-025-06164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) presents a complex tumor microenvironment influenced by genetic and microbial factors. Microbial DNA from the gut and tumor microenvironment can translocate into the bloodstream, forming a circulating microbiome associated with prognosis and clinicopathological features. This study investigates the peripheral venous blood microbiome in CRC patients using 2bRAD-M sequencing and evaluates its clinical significance. METHODS Peripheral venous blood samples from 29 CRC patients (19 males, 10 females; mean age 57 years) and 10 healthy controls were analyzed to assess microbial diversity. Additionally, 20 tumor tissue samples from CRC patients were examined via RT-qPCR to validate blood-tumor microbial correlations. Statistical analyses evaluated associations between microbial abundance and clinical features, including metastasis and PD-L1 Combined Positive Score (CPS). Comparative analyses between CRC patients and healthy controls were performed to identify disease-specific microbial signatures. RESULTS A total of 270 microbial species were identified, with dominant phyla including Actinomycetota, Bacillota, Bacteroidota, and Pseudomonadota. Bosea lupini was significantly associated with metastasis stage (p = 0.034), while Mycobacterium tuberculosis (p = 0.022), Porphyromonas pasteri (p = 0.017), and Bosea lupini (p = 0.045) correlated with CPS. Microbes such as Bosea lupini, Ralstonia mannitolilytica, and Porphyromonas pasteri suggested potential tumor-derived translocation into the bloodstream. CONCLUSION This study identifies a distinct peripheral venous blood microbiome in CRC patients, highlighting specific microbes associated with clinicopathological features and disease progression. These findings suggest the potential of blood microbiomes as noninvasive biomarkers for CRC prognosis and therapeutic targets, warranting further investigation in larger cohorts.
Collapse
Affiliation(s)
- Liang Ma
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingliang Shi
- Department of Oncology, Jinan People's Hospital, Jinan, China
| | - Xue Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Jin
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan Li
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Zhang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Feng
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zuo
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yudong Wang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiayin Liu
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Han
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
11
|
Hou X, Zhai L, Fu L, Lu J, Guo P, Zhang Y, Zheng D, Ma G. Advances in Engineered Phages for Disease Treatment. SMALL METHODS 2025:e2401611. [PMID: 39935185 DOI: 10.1002/smtd.202401611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/15/2025] [Indexed: 02/13/2025]
Abstract
Phage therapy presents a promising solution for combating multidrug-resistant (MDR) bacterial infections and other bacteria-related diseases, attributed to their innate ability to target and lyse bacteria. Recent clinical successes, particularly in treating MDR-related respiratory and post-surgical infections, validated the therapeutic potential of phage therapy. However, the complex microenvironment within the human body poses significant challenges to phage activity and efficacy in vivo. To overcome these barriers, recent advances in phage engineering have aimed to enhance targeting accuracy, improve stability and survivability, and explore synergistic combinations with other therapeutic modalities. This review provides a comprehensive overview of phage therapy, emphasizing the application of engineered phages in antibacterial therapy, tumor therapy, and vaccine development. Furthermore, the review highlights the current challenges and future trends for advancing phage therapy toward broader clinical applications.
Collapse
Affiliation(s)
- Xiaolin Hou
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
| | - Lin Zhai
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laiying Fu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junna Lu
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
| | - Peilin Guo
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Zhang
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Diwei Zheng
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biopharmaceutical Preparation and Delivery Institute of Process Engineering, Chinese Academy of Sciences, Bejing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Turocy T, Crawford JM. Bacterial small molecule metabolites implicated in gastrointestinal cancer development. Nat Rev Microbiol 2025; 23:106-121. [PMID: 39375475 DOI: 10.1038/s41579-024-01103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 10/09/2024]
Abstract
Numerous associations have been identified between cancer and the composition and function of the human microbiome. As cancer remains the second leading global cause of mortality, investigating the carcinogenic contributions of microbiome members could advance our understanding of cancer risk and support potential therapeutic interventions. Although fluctuations in bacterial species have been associated with cancer progression, studying their small molecule metabolites offers one avenue to establish support for causal relationships and the molecular mechanisms governing host-microorganism interactions. In this Review, we explore the expanding repertoire of small molecule metabolites and their mechanisms implicated in the risk of developing gastrointestinal cancers.
Collapse
Affiliation(s)
- Tayah Turocy
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA.
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA.
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Wu XR, He XH, Xie YF. Characteristics of gut microbiota dysbiosis in patients with colorectal polyps. World J Gastrointest Oncol 2025; 17:98872. [PMID: 39817124 PMCID: PMC11664624 DOI: 10.4251/wjgo.v17.i1.98872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 12/12/2024] Open
Abstract
This editorial, inspired by a recent study published in the World Journal of Gastrointestinal Oncology, covers the research findings on microbiota changes in various diseases. In recurrent colorectal polyps, the abundances of Klebsiella, Parvimonas, and Clostridium increase, while those of Bifidobacterium and Lactobacillus decrease. This dysbiosis may promote the formation and recurrence of polyps. Similar microbial changes have also been observed in colorectal cancer, inflammatory bowel disease, autism spectrum disorder, and metabolic syndrome, indicating the role of increased pathogens and decreased probiotics in these conditions. Regulating the gut microbiota, particularly by increasing probiotic levels, may help prevent polyp recurrence and promote gut health. This microbial intervention strategy holds promise as an adjunctive treatment for patients with colorectal polyps.
Collapse
Affiliation(s)
- Xian-Rong Wu
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| | - Xiao-Hong He
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| | - Yong-Fang Xie
- School of Life Health Information Science and Engineering, Chongqing Post and Communications University, Chongqing 400065, China
| |
Collapse
|
14
|
Zhang H, Xu BT, Luo DP, He TF. Interplay and therapeutic implications of colorectal cancer stem cells, tumor microenvironment, and gut microbiota. World J Stem Cells 2024; 16:1110-1114. [PMID: 39734482 PMCID: PMC11669981 DOI: 10.4252/wjsc.v16.i12.1110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
This article discusses the interplay between colorectal cancer (CRC) stem cells, tumor microenvironment (TME), and gut microbiota, emphasizing their dynamic roles in cancer progression and treatment resistance. It highlights the adaptability of CRC stem cells, the bidirectional influence of TME, and the multifaceted impact of gut microbiota on CRC. The manuscript proposes innovative therapeutic strategies focusing on these interactions, advocating for a shift towards personalized and ecosystem-targeted treatments in CRC. The conclusion underscores the importance of continued research in these areas for developing effective, personalized therapies.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Emergency Surgery, Zhuji People's Hospital, Zhuji 311800, Zhejiang Province, China.
| | - Bo-Tao Xu
- Department of Cardiothoracic Surgery, Zhuji People's Hospital, Zhuji 311800, Zhejiang Province, China
| | - Di-Ping Luo
- Department of Vascular Surgery, Zhuji People's Hospital, Zhuji 311800, Zhejiang Province, China
| | - Tie-Fei He
- Department of Vascular Surgery, Zhuji People's Hospital, Zhuji 311800, Zhejiang Province, China
| |
Collapse
|
15
|
Zhao H, Zhang L, Du D, Mai L, Liu Y, Morigen M, Fan L. The RIG-I-like receptor signaling pathway triggered by Staphylococcus aureus promotes breast cancer metastasis. Int Immunopharmacol 2024; 142:113195. [PMID: 39303544 DOI: 10.1016/j.intimp.2024.113195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Host microbes are increasingly recognized as key components in various types of cancer, although their exact impact remains unclear. This study investigated the functional significance of Staphylococcus aureus (S. aureus) in breast cancer tumorigenesis and progression. We found that S. aureus invasion resulted in a compromised DNA damage response process, as evidenced by the absence of G1-phase arrest and apoptosis in breast cells in the background of double strand breaks production and the activation of the ataxia-telangiectasia mutated (ATM)-p53 signaling pathway. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies revealed that S. aureus facilitates breast cell metastasis through the innate immune pathway, particularly in cancer cells. During metastasis, S. aureus initially induced the expression of RIG-I-like receptors (RIG-I in normal breast cells, RIG-I and MDA5 in breast cancer cells), which in turn activated NF-κB p65 expression. We further showed that NF-κB p65 activated the CCL5-CCR5 pathway, contributing to breast cell metastasis. Our study provides novel evidence that the innate immune system, triggered by bacterial infection, plays a role in bacterial-driven cancer metastasis.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Linzhe Zhang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Dongdong Du
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Lisu Mai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, PR China
| | - Morigen Morigen
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia, PR China.
| |
Collapse
|
16
|
Dong X, Sun F, Secaira-Morocho H, Hui A, Wang K, Cai C, Udgata S, Low B, Wei S, Chen X, Qi M, Pasch CA, Xu W, Jiang J, Zhu Q, Huan T, Deming DA, Fu T. The dichotomous roles of microbial-modified bile acids 7-oxo-DCA and isoDCA in intestinal tumorigenesis. Proc Natl Acad Sci U S A 2024; 121:e2317596121. [PMID: 39531490 PMCID: PMC11588130 DOI: 10.1073/pnas.2317596121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/16/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiota has a significant impact on the development and function of intestinal epithelial cells (IECs) by modifying bile acid (BA) metabolites. Recently, specific gut microbiome-derived BAs, such as 7-oxo-deoxycholic acid (7-oxo-DCA) and isodeoxycholic acid (isoDCA), have been identified to be shifted inversely in colitis and hepatic liver diseases. Although the responsible gut microbes have been identified, metabolites' effects on IECs remain largely unclear. We found that although high-fat diet treatment in mice elevated both 7-oxo-DCA and isoDCA levels, during intestinal tumorigenesis, 7-oxo-DCA levels rise while isoDCA levels decrease. Interestingly, 7-oxo-DCA promotes cancer cell growth, while isoDCA suppresses it. Moreover, 7-oxo-DCA promotes whereas isoDCA inhibits the proliferation of intestinal stem cells in organoids derived from WT and APCMin/+ mice, as well as in patient-derived colon cancer organoids. The APCMin/+ mice administered with 7-oxo-DCA heightened gut permeability and increased tumor burden, whereas isoDCA protected gut barrier and reduced tumor loads. Both BAs reshape the BA pool and shifted gut microbiome. Mechanistically, we identified 7-oxo-DCA as a natural antagonist of Farnesoid X Receptor (FXR) to downregulate FXR signaling, as opposed to isoDCA, which is a potent FXR agonist to upregulate FXR signaling. In conclusion, we unveiled the opposing roles of 7-oxo-DCA and isoDCA to promote or inhibit intestinal tumorigenesis, respectively. Manipulating the BA-FXR axis during tumor initiation and progression holds great promise for developing innovative diagnostic and therapeutic approaches for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Xingchen Dong
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | - Fei Sun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | | | - Alisa Hui
- Department of Chemistry, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Ke Wang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | - Chunmiao Cai
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | - Shirsa Udgata
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin–Madison, Madison, WI53705
| | - Brian Low
- Department of Chemistry, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Songlin Wei
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | - Xinyi Chen
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | - Ming Qi
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | - Cheri A. Pasch
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin–Madison, Madison, WI53705
| | - Wei Xu
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI53705
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, Madison, WI53792
| | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
| | - Qiyun Zhu
- School of Life Science, Arizona State University, Tempe, AZ85287
| | - Tao Huan
- Department of Chemistry, University of British Columbia, Vancouver, BCV6T 1Z1, Canada
| | - Dustin A. Deming
- Division of Hematology and Oncology, Department of Medicine, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin–Madison, Madison, WI53705
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, Madison, WI53792
| | - Ting Fu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin–Madison, Madison, WI53705
- School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, Madison, WI53792
| |
Collapse
|
17
|
Lee JY, Bays DJ, Savage HP, Bäumler AJ. The human gut microbiome in health and disease: time for a new chapter? Infect Immun 2024; 92:e0030224. [PMID: 39347570 PMCID: PMC11556149 DOI: 10.1128/iai.00302-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024] Open
Abstract
The gut microbiome, composed of the colonic microbiota and their host environment, is important for many aspects of human health. A gut microbiome imbalance (gut dysbiosis) is associated with major causes of human morbidity and mortality. Despite the central part our gut microbiome plays in health and disease, mechanisms that maintain homeostasis and properties that demarcate dysbiosis remain largely undefined. Here we discuss that sorting taxa into meaningful ecological units reveals that the availability of respiratory electron acceptors, such as oxygen, in the host environment has a dominant influence on gut microbiome health. During homeostasis, host functions that limit the diffusion of oxygen into the colonic lumen shelter a microbial community dominated by primary fermenters from atmospheric oxygen. In turn, primary fermenters break down unabsorbed nutrients into fermentation products that support host nutrition. This symbiotic relationship is disrupted when host functions that limit the luminal availability of host-derived electron acceptors become weakened. The resulting changes in the host environment drive alterations in the microbiota composition, which feature an elevated abundance of facultatively anaerobic microbes. Thus, the part of the gut microbiome that becomes imbalanced during dysbiosis is the host environment, whereas changes in the microbiota composition are secondary to this underlying cause. This shift in our understanding of dysbiosis provides a novel starting point for therapeutic strategies to restore microbiome health. Such strategies can either target the microbes through metabolism-based editing or strengthen the host functions that control their environment.
Collapse
Affiliation(s)
- Jee-Yon Lee
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| | - Derek J. Bays
- Department of Internal Medicine, Division of Infectious Diseases, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Hannah P. Savage
- Department of Pathology Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, USA
| |
Collapse
|
18
|
Antonacci A, Bizzoca C, Barile G, Andriola V, Vincenti L, Bartolomeo N, Abbinante A, Orrù G, Corsalini M. Evaluation of Periodontitis and Fusobacterium nucleatum Among Colorectal Cancer Patients: An Observational Cross-Sectional Study. Healthcare (Basel) 2024; 12:2189. [PMID: 39517401 PMCID: PMC11545387 DOI: 10.3390/healthcare12212189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Periodontitis has been associated with an increased risk of CRC, as well as a worse prognosis due to increased inflammation mediators and carcinogenic factors. Moreover, direct and indirect virulence factors from periodontal pathogens, such as Fusobacterium nucleatum, could play a pivotal role in malignant transformation and progression. This cross-sectional study aims to evaluate the presence and the stage of periodontitis in a cohort of patients with CRC. The secondary aim is to assess the presence of F. nucleatum and its relationship with patients' general characteristics, concomitant pathologies, tumor characteristics, and drug therapy. MATERIALS AND METHODS Patients affected by CRC underwent dental examination and periodontal charting with the "North Carolina" probe to assess the presence and stage of periodontitis, according to the new classification of periodontal diseases of the World Workshop of the European Federation of Periodontology (EFP) and the American Academy of Periodontology (AAP) 2017. F. nucleatum presence was assessed by a dorsal tongue swab and related to the patient's general characteristics, concomitant pathologies, tumor characteristics, and drug therapy. RESULTS Periodontal disease was found in 94.3% of I/II CRC stage patients and 100% of III/IV CRC stage patients. Severe periodontitis was found in 76% of the advanced CRC stage and 87.9% of patients with initial CRC, while initial periodontitis was found in 12.1% of initial CRC and 24% of late CRC stages, respectively, without significant differences. F. nucleatum presence showed no correlation between the patient's and tumor's characteristics, comorbidities, and drug assumed. CONCLUSIONS Periodontal disease showed a high prevalence among CRC patients. Moreover, severe periodontitis has a higher prevalence in CRC patients compared to initial periodontitis. F. nucleatum presence was unrelated to CRC stage, site, other comorbidities, and drug therapies. With these data, it is not possible to admit a direct relationship between CRC and periodontal disease, but further case-control studies must be carried out to further prove this aspect. Preventive and operative targeted strategies to maintain a healthy oral status are suggested in CRC patients.
Collapse
Affiliation(s)
- Anna Antonacci
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Cinzia Bizzoca
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70100 Bari, Italy; (C.B.); (V.A.); (M.C.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Valeria Andriola
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70100 Bari, Italy; (C.B.); (V.A.); (M.C.)
| | - Leonardo Vincenti
- General Surgery Unit, National Institute of Gastroenterology IRCCS Saverio de Bellis, Research Hospital, Via Turi 27, 0013 Bari, Italy;
| | - Nicola Bartolomeo
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Antonia Abbinante
- Department of Interdisciplinary Medicine, ‘Aldo Moro’, University of Bari, 70100 Bari, Italy; (A.A.); (N.B.); (A.A.)
| | - Germano Orrù
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Massimo Corsalini
- Department of General Surgery “Ospedaliera”, Polyclinic Hospital of Bari, 70100 Bari, Italy; (C.B.); (V.A.); (M.C.)
| |
Collapse
|
19
|
Zhou J, Hu Z, Wang L, Hu Q, Chen Z, Lin T, Zhou R, Cai Y, Wu Z, Zhang Z, Yang Y, Zhang C, Li G, Zeng L, Su K, Li H, Su Q, Zeng G, Cheng B, Wu T. Tumor-colonized Streptococcus mutans metabolically reprograms tumor microenvironment and promotes oral squamous cell carcinoma. MICROBIOME 2024; 12:193. [PMID: 39369210 PMCID: PMC11452938 DOI: 10.1186/s40168-024-01907-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 08/13/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) remains a major death cause in head and neck cancers, but the exact pathogenesis mechanisms of OSCC are largely unclear. RESULTS Saliva derived from OSCC patients but not healthy controls (HCs) significantly promotes OSCC development and progression in rat models, and metabolomic analyses reveal saliva of OSCC patients but not HCs and OSCC tissues but not adjacent non-tumor tissues contain higher levels of kynurenic acid (KYNA). Furthermore, large amounts of Streptococcus mutans (S. mutans) colonize in OSCC tumor tissues, and such intratumoral S. mutans mediates KYNA overproductions via utilizing its protein antigen c (PAc). KYNA shifts the cellular types in the tumor microenvironment (TME) of OSCC and predominantly expedites the expansions of S100a8highS100a9high neutrophils to produce more interleukin 1β (IL-1β), which further expands neutrophils and induces CD8 + T cell exhaustion in TME and therefore promotes OSCC. Also, KYNA compromises the therapeutic effects of programmed cell death ligand 1 (PD-L1) and IL-1β blockades in oral carcinogenesis model. Moreover, KYNA-mediated immunosuppressive program and aryl hydrocarbon receptor (AHR) expression correlate with impaired anti-tumor immunity and poorer survival of OSCC patients. CONCLUSIONS Thus, aberration of oral microbiota and intratumoral colonization of specific oral bacterium such as S. mutans may increase the production of onco-metabolites, exacerbate the oral mucosal carcinogenesis, reprogram a highly immunosuppressive TME, and promote OSCC, highlighting the potential of interfering with oral microbiota and microbial metabolism for OSCC preventions and therapeutics. Video Abstract.
Collapse
Affiliation(s)
- Jiaying Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Zixuan Hu
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, 330006, China
- Jiangxi Province Clinical Research Center for Oral Diseases, Nanchang, 330006, China
| | - Lei Wang
- BGI Research, Chongqing, 401329, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI Research, Shenzhen, 518083, China
| | - Qinchao Hu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Zixu Chen
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Tao Lin
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Rui Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Yongjie Cai
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiying Wu
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhiyi Zhang
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yi Yang
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | | | - Guibo Li
- BGI Research, Chongqing, 401329, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, BGI Research, Shenzhen, 518083, China
- Shenzhen Key Laboratory of Single-Cell Omics, BGI Research, Shenzhen, 518083, China
| | - Lingchan Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
| | - Kai Su
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China
| | - Huan Li
- Department of Intensive Care Unit (ICU), State Key Laboratory of Oncology in South China, CollaborativeInnovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Qiao Su
- Animal Experiment Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Gucheng Zeng
- Department of Microbiology, Key Laboratory for Tropical Diseases Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Bin Cheng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China.
| | - Tong Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Lingyuan Road West, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510080, China.
| |
Collapse
|
20
|
Zhou Y, Meyle J, Groeger S. Periodontal pathogens and cancer development. Periodontol 2000 2024; 96:112-149. [PMID: 38965193 PMCID: PMC11579836 DOI: 10.1111/prd.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/03/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024]
Abstract
Increasing evidence suggests a significant association between periodontal disease and the occurrence of various cancers. The carcinogenic potential of several periodontal pathogens has been substantiated in vitro and in vivo. This review provides a comprehensive overview of the diverse mechanisms employed by different periodontal pathogens in the development of cancer. These mechanisms induce chronic inflammation, inhibit the host's immune system, activate cell invasion and proliferation, possess anti-apoptotic activity, and produce carcinogenic substances. Elucidating these mechanisms might provide new insights for developing novel approaches for tumor prevention, therapeutic purposes, and survival improvement.
Collapse
Affiliation(s)
- Yuxi Zhou
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Joerg Meyle
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
| | - Sabine Groeger
- Department of PeriodontologyJustus‐Liebig‐University of GiessenGiessenGermany
- Department of OrthodonticsJustus‐Liebig‐University of GiessenGiessenGermany
| |
Collapse
|
21
|
Guo J, Meng F, Hu R, Chen L, Chang J, Zhao K, Ren H, Liu Z, Hu P, Wang G, Tai J. Inhibition of the NF-κB/HIF-1α signaling pathway in colorectal cancer by tyrosol: a gut microbiota-derived metabolite. J Immunother Cancer 2024; 12:e008831. [PMID: 39343509 PMCID: PMC11440206 DOI: 10.1136/jitc-2024-008831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The development and progression of colorectal cancer (CRC) are influenced by the gut environment, much of which is modulated by microbial-derived metabolites. Although some research has been conducted on the gut microbiota, there have been limited empirical investigations on the role of the microbial-derived metabolites in CRC. METHODS In this study, we used LC-MS and 16S rRNA sequencing to identify gut microbiome-associated fecal metabolites in patients with CRC and healthy controls. Moreover, we examined the effects of Faecalibacterium prausnitzii and tyrosol on CRC by establishing orthotopic and subcutaneous tumor mouse models. Additionally, we conducted in vitro experiments to investigate the mechanism through which tyrosol inhibits tumor cell growth. RESULTS Our study revealed changes in the gut microbiome and metabolome that are linked to CRC. We observed that Faecalibacterium prausnitzii, a bacterium known for its multiple anti-CRC properties, is significantly more abundant in the intestines of healthy individuals than in those of individuals with CRC. In mouse tumor models, our study illustrated that Faecalibacterium prausnitzii has the ability to inhibit tumor growth by reducing inflammatory responses and enhancing tumor immunity. Additionally, research investigating the relationship between CRC-associated features and microbe-metabolite interactions revealed a correlation between Faecalibacterium prausnitzii and tyrosol, both of which are less abundant in the intestines of tumor patients. Tyrosol demonstrated antitumor activity in vivo and specifically targeted CRC cells without affecting intestinal epithelial cells in cell experiments. Moreover, tyrosol treatment effectively reduced the levels of reactive oxygen species (ROS) and inflammatory cytokines in MC38 cells. Western blot analysis further revealed that tyrosol inhibited the activation of the NF-κB and HIF-1 signaling pathways. CONCLUSIONS This study investigated the relationship between CRC development and changes in the gut microbiota and microbial-derived metabolites. Specifically, the intestinal metabolite tyrosol exhibits antitumor effects by inhibiting HIF-1α/NF-κB signaling pathway activation, leading to a reduction in the levels of ROS and inflammatory factors. These findings indicate that manipulating the gut microbiota and its metabolites could be a promising approach for preventing and treating CRC and could provide insights for the development of anticancer drugs.
Collapse
Affiliation(s)
- Jian Guo
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Fanqi Meng
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ruixue Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lei Chen
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ke Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
22
|
Piotrowska U, Orzechowska K. Advances in Chitosan-Based Smart Hydrogels for Colorectal Cancer Treatment. Pharmaceuticals (Basel) 2024; 17:1260. [PMID: 39458901 PMCID: PMC11510048 DOI: 10.3390/ph17101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Despite advancements in early detection and treatment in developed countries, colorectal cancer (CRC) remains the third most common malignancy and the second-leading cause of cancer-related deaths worldwide. Conventional chemotherapy, a key option for CRC treatment, has several drawbacks, including poor selectivity and the development of multiple drug resistance, which often lead to severe side effects. In recent years, the use of polysaccharides as drug delivery systems (DDSs) to enhance drug efficacy has gained significant attention. Among these polysaccharides, chitosan (CS), a linear, mucoadhesive polymer, has shown promise in cancer treatment. This review summarizes current research on the potential applications of CS-based hydrogels as DDSs for CRC treatment, with a particular focus on smart hydrogels. These smart CS-based hydrogel systems are categorized into two main types: stimuli-responsive injectable hydrogels that undergo sol-gel transitions in situ, and single-, dual-, and multi-stimuli-responsive CS-based hydrogels capable of releasing drugs in response to various triggers. The review also discusses the structural characteristics of CS, the methods for preparing CS-based hydrogels, and recent scientific advances in smart CS-based hydrogels for CRC treatment.
Collapse
Affiliation(s)
- Urszula Piotrowska
- Department of Pharmaceutical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | | |
Collapse
|
23
|
Chen J, Tao R, Qiu Y, Yuan Q. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization. Brief Bioinform 2024; 25:bbae481. [PMID: 39327064 PMCID: PMC11427075 DOI: 10.1093/bib/bbae481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Predicting associations between microbes and diseases opens up new avenues for developing diagnostic, preventive, and therapeutic strategies. Given that laboratory-based biological tests to verify these associations are often time-consuming and expensive, there is a critical need for innovative computational frameworks to predict new microbe-disease associations. In this work, we introduce a novel prediction algorithm called Predicting Human Disease-Microbe Associations using Cross-Domain Matrix Factorization (CMFHMDA). Initially, we calculate the composite similarity of diseases and the Gaussian interaction profile similarity of microbes. We then apply the Weighted K Nearest Known Neighbors (WKNKN) algorithm to refine the microbe-disease association matrix. Our CMFHMDA model is subsequently developed by integrating the network data of both microbes and diseases to predict potential associations. The key innovations of this method include using the WKNKN algorithm to preprocess missing values in the association matrix and incorporating cross-domain information from microbes and diseases into the CMFHMDA model. To validate CMFHMDA, we employed three different cross-validation techniques to evaluate the model's accuracy. The results indicate that the CMFHMDA model achieved Area Under the Receiver Operating Characteristic Curve scores of 0.9172, 0.8551, and 0.9351$\pm $0.0052 in global Leave-One-Out Cross-Validation (LOOCV), local LOOCV, and five-fold CV, respectively. Furthermore, many predicted associations have been confirmed by published experimental studies, establishing CMFHMDA as an effective tool for predicting potential disease-associated microbes.
Collapse
Affiliation(s)
- Jing Chen
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Ran Tao
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Yi Qiu
- School of Electronic and Information Engineering, Suzhou University of Science and Technology, 215009 Suzhou, China
| | - Qun Yuan
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, 215153 Suzhou, China
| |
Collapse
|
24
|
Hwang S, Jo M, Hong JE, Kim WS, Kang DH, Yoo SH, Kang K, Rhee KJ. Caffeic Acid Phenethyl Ester Administration Reduces Enterotoxigenic Bacteroides fragilis-Induced Colitis and Tumorigenesis. Toxins (Basel) 2024; 16:403. [PMID: 39330861 PMCID: PMC11435740 DOI: 10.3390/toxins16090403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
The human colonic commensal enterotoxigenic Bacteroides fragilis (ETBF) is associated with chronic colitis and colon cancer. ETBF colonization induces colitis via the Bacteroides fragilis toxin (BFT). BFT secreted by ETBF cause colon inflammation via E-cadherin cleavage/NF-κB signaling. ETBF promotes colon tumorigenesis via interleukin 17A (IL-17A)/CXCL-dependent inflammation, but its bioactive therapeutics in ETBF-promoted tumorigenesis remain unexplored. In the current study, we investigated the caffeic acid phenethyl ester (CAPE) in the murine model of ETBF colitis and tumorigenesis. In this study, we observed that CAPE treatment mitigated inflammation induced by ETBF in mice. Additionally, our findings indicate that CAPE treatment offers protective effects against ETBF-enhanced colon tumorigenesis in a mouse model of colitis-associated colon cancer induced by azoxymethane (AOM) and dextran sulfate sodium. Notably, the decrease in colon tumorigenesis following CAPE administration correlates with a reduction in the expression of IL-17A and CXCL1 in the gastrointestinal tract. The molecular mechanism for CAPE-induced protection against ETBF-mediated tumorigenesis is mediated by IL-17A/CXCL1, and by NF-κB activity in intestinal epithelial cells. Our findings indicate that CAPE may serve as a preventive agent against the development of ETBF-induced colitis and colorectal cancer (CRC).
Collapse
Affiliation(s)
- Soonjae Hwang
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea; (S.H.); (M.J.); (J.-E.H.); (W.-S.K.); (D.-H.K.); (S.-H.Y.)
- Department of Biochemistry, Lee Gil Ya Cancer and Diabetes Institute, College of Medicine, Gachon University, 155 Gaetbeol-ro, Yeonsu-gu, Inchon 21999, Republic of Korea
| | - Minjeong Jo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea; (S.H.); (M.J.); (J.-E.H.); (W.-S.K.); (D.-H.K.); (S.-H.Y.)
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ju-Eun Hong
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea; (S.H.); (M.J.); (J.-E.H.); (W.-S.K.); (D.-H.K.); (S.-H.Y.)
| | - Woo-Seung Kim
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea; (S.H.); (M.J.); (J.-E.H.); (W.-S.K.); (D.-H.K.); (S.-H.Y.)
| | - Da-Hye Kang
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea; (S.H.); (M.J.); (J.-E.H.); (W.-S.K.); (D.-H.K.); (S.-H.Y.)
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| | - Sang-Hyeon Yoo
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea; (S.H.); (M.J.); (J.-E.H.); (W.-S.K.); (D.-H.K.); (S.-H.Y.)
| | - Kyungsu Kang
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea;
| | - Ki-Jong Rhee
- Department of Biomedical Laboratory Science, College of Software and Digital Healthcare Convergence, Yonsei University MIRAE Campus, Wonju 26493, Republic of Korea; (S.H.); (M.J.); (J.-E.H.); (W.-S.K.); (D.-H.K.); (S.-H.Y.)
| |
Collapse
|
25
|
Godínez-Santillán RI, Kuri-García A, Ramírez-Pérez IF, Herrera-Hernández MG, Ahumada-Solórzano SM, Guzmán-Maldonado SH, Vergara-Castañeda HA. Characterization of Extractable and Non-Extractable Phenols and Betalains in Berrycactus ( Myrtillocactus geometrizans) and Its Chemoprotective Effect in Early Stage of Colon Cancer In Vivo. Antioxidants (Basel) 2024; 13:1112. [PMID: 39334771 PMCID: PMC11428399 DOI: 10.3390/antiox13091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
This research identified the bioactive compounds and antioxidant capacity of the extractable (EP) and non-extractable (NEP) polyphenol fractions of berrycactus (BC). Additionally, the effects of BC and its residue (BCR) on preventing AOM/DSS-induced early colon carcinogenesis were evaluated in vivo. Male Sprague Dawley rats were randomly assigned to six groups (n = 12/group): healthy control (C), AOM/DSS, BC, BCR, BC+AOM/DSS, and BCR+AOM/DSS. NEP was obtained through acid hydrolysis using H2SO4 and HCl (1 M or 4 M). The HCl-NEP fraction exhibited the highest total phenolic and flavonoid content, while condensed tannins were more abundant in the H2SO4-NEP fraction. A total of 33 polyphenols were identified by UPLC-QTOF-MSE in both EP and NEP, some of which were novel to BC. Both NEP hydrolysates demonstrated significant total antioxidant capacity (TEAC), with HCl-NEP exhibiting the highest ORAC values. The BC+AOM/DSS and BCR+AOM/DSS groups exhibited fewer aberrant crypt foci (p < 0.05), reduced colonic epithelial injury, and presented lower fecal β-glucuronidase activity, when compared to AOM/DSS group. No differences in butyric acid concentrations were observed between groups. This study presents novel bioactive compounds in EP and NEP from BC that contribute to chemopreventive effects in early colon carcinogenesis, while reducing fecal β-glucuronidase activity and preserving colonic mucosal integrity.
Collapse
Affiliation(s)
- Rosa Iris Godínez-Santillán
- Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Campus Aeropuerto Carretera a Chichimequillas S/N, Ejido Bolaños, Querétaro 76140, Querétaro, Mexico;
| | - Aarón Kuri-García
- Department of Cell and Molecular Biology, School of Natural Sciences, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico;
| | - Iza Fernanda Ramírez-Pérez
- School of Chemistry, Universidad Autónoma de Querétaro, Cerro de las Campanas, Querétaro 76076, Querétaro, Mexico;
| | - María Guadalupe Herrera-Hernández
- Unidad de Biotecnología, Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Celaya 38110, Guanajuato, Mexico;
| | - Santiaga Marisela Ahumada-Solórzano
- Investigación Interdisciplinaria en Biomedicina, School of Natural Sciences, Universidad Autónoma de Querétaro, Querétaro 76230, Querétaro, Mexico;
| | - Salvador Horacio Guzmán-Maldonado
- Unidad de Biotecnología, Campo Experimental Bajío, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Celaya 38110, Guanajuato, Mexico;
| | - Haydé Azeneth Vergara-Castañeda
- Center for Advanced Biomedical Research, School of Medicine, Autonomous University of Queretaro, Campus Aeropuerto Carretera a Chichimequillas S/N, Ejido Bolaños, Querétaro 76140, Querétaro, Mexico;
| |
Collapse
|
26
|
Réthi-Nagy Z, Juhász S. Microbiome's Universe: Impact on health, disease and cancer treatment. J Biotechnol 2024; 392:161-179. [PMID: 39009231 DOI: 10.1016/j.jbiotec.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/27/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.
Collapse
Affiliation(s)
- Zsuzsánna Réthi-Nagy
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary
| | - Szilvia Juhász
- Hungarian Centre of Excellence for Molecular Medicine, Cancer Microbiome Core Group, Budapesti út 9, Szeged H-6728, Hungary.
| |
Collapse
|
27
|
Deng Y, Mao J, Choi J, Lê Cao KA. StableMate: a statistical method to select stable predictors in omics data. NAR Genom Bioinform 2024; 6:lqae130. [PMID: 39345755 PMCID: PMC11437361 DOI: 10.1093/nargab/lqae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/16/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Identifying statistical associations between biological variables is crucial to understanding molecular mechanisms. Most association studies are based on correlation or linear regression analyses, but the identified associations often lack reproducibility and interpretability due to the complexity and variability of omics datasets, making it difficult to translate associations into meaningful biological hypotheses. We developed StableMate, a regression framework, to address these challenges through a process of variable selection across heterogeneous datasets. Given datasets from different environments, such as experimental batches, StableMate selects environment-agnostic (stable) and environment-specific predictors in predicting the response of interest. Stable predictors represent robust functional dependencies with the response, and can be used to build regression models that make generalizable predictions in unseen environments. We applied StableMate to (i) RNA sequencing data of breast cancer to discover genes that consistently predict estrogen receptor expression across disease status; (ii) metagenomics data to identify microbial signatures that show persistent association with colon cancer across study cohorts; and (iii) single-cell RNA sequencing data of glioblastoma to discern signature genes associated with the development of pro-tumour microglia regardless of cell location. Our case studies demonstrate that StableMate is adaptable to regression and classification analyses and achieves comprehensive characterization of biological systems for different omics data types.
Collapse
Affiliation(s)
- Yidi Deng
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, Melbourne, 3052, Australia
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan Street, Melbourne, 3010, Australia
| | - Jiadong Mao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, Melbourne, 3052, Australia
| | - Jarny Choi
- Department of Anatomy and Physiology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan Street, Melbourne, 3010, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, The University of Melbourne, Royal Parade, Melbourne, 3052, Australia
| |
Collapse
|
28
|
Yanık HD, Akçelik N, Has EG, Akçelik M. Relationship of Salmonella Typhimurium 14028 strain and its dam and seqA mutants with gut microbiota dysbiosis in rats. J Med Microbiol 2024; 73. [PMID: 39329274 DOI: 10.1099/jmm.0.001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
Introduction. Disruptions in gut microbiota, known as dysbiosis, have been increasingly linked to pathogenic infections, with Salmonella Typhimurium being a notable contributor to these disturbances.Hypothesis. We hypothesize that the S. Typhimurium 14028 WT strain induces significant dysbiosis in the rat gut microbiota and that the dam and seqA genes play crucial roles in this process.Aim. In this study, it was aimed at investigating the dysbiotic activity of the S. Typhimurium 14028 WT strain on the rat gut microbiota and the roles of dam and seqA genes on this activity.Method. Changes in the rat gut microbiota were determined by examining the anal swap samples taken from the experimental groups of these animals using 16S rRNA high-throughput sequencing technology.Results. In the experimental groups, the dominant phyla were determined to be Firmicutes and Bacteroidetes (P<0.05). However, while the rate of Bacteroidetes was significantly reduced in those treated with the WT and seqA mutants, no significant difference was observed in the dam mutant compared to the control group (P<0.05). In all experimental animals, the dominant species was determined to be Prevotella copri, regardless of the experiment time and application. The analysis results of the samples taken on the third day from the rat groups infected with the S. Typhimurium 14028 WT strain (W2) presented the most striking data of this study.Conclusion. Through distance analysis, we demonstrated that a successful Salmonella infection completely changes the composition of the microbiota, dramatically reduces species diversity and richness in the microbiota and encourages the growth of opportunistic pathogens.
Collapse
Affiliation(s)
- Hafize Dilşad Yanık
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey
| | - Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey
| |
Collapse
|
29
|
Nourrisson C, Moniot M, Vercruysse L, Bonnin V, Pereira B, Barnich N, Bonnet M, Jary M, Pezet D, Gagnière J, Poirier P. Increased levels of anti-Encephalitozoon intestinalis antibodies in patients with colorectal cancer. PLoS Negl Trop Dis 2024; 18:e0012459. [PMID: 39250479 PMCID: PMC11412658 DOI: 10.1371/journal.pntd.0012459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/19/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The prevalence of microsporidiosis in the general population, or within specific groups of individuals/patients, is largely underestimated. The absence of specific seroprevalence tools limits knowledge of the epidemiology of these opportunistic pathogens, although known since the 1980s. Since microsporidia hijack the machinery of its host cell and certain species multiply within intestinal cells, a potential link between the parasite and colorectal cancer (CRC) has been suggested. METHODOLOGY/PRINCIPAL FINDINGS To explore a potential epidemiological link between microsporidia and CRC, we evaluated the seroprevalence of Encephalitozoon intestinalis among CRC patients and healthy subjects using ELISA assays based on two recombinant proteins, namely rEiPTP1 and rEiSWP1, targeting polar tube and spore wall proteins. ELISA were performed in 141 CRC patients and 135 healthy controls. Patients with CRC had significantly higher anti-rEiPTP1 IgG levels than subjects in the control group. Anti-rEiPTP1 IgG, anti-rEiSWP1 IgG and anti-rEiPTP1 IgA levels were significantly increased among men with CRC compared to healthy men. Women with CRC who had died had higher rEiSWP1 IgG levels than those who were still alive. CONCLUSIONS/SIGNIFICANCE These higher antibody levels against microsporidia in patients with CRC suggest a relationship between microsporidia and pathophysiology of CRC.
Collapse
Affiliation(s)
- Céline Nourrisson
- Parasitology-Mycology Department, CHU Clermont-Ferrand, 3IHP, Clermont-Ferrand, France
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
- National Reference Center (NRC) for cryptosporidiosis, microsporidia and other digestive protozoa, Clermont-Ferrand, France
| | - Maxime Moniot
- Parasitology-Mycology Department, CHU Clermont-Ferrand, 3IHP, Clermont-Ferrand, France
- National Reference Center (NRC) for cryptosporidiosis, microsporidia and other digestive protozoa, Clermont-Ferrand, France
| | - Leslie Vercruysse
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
| | - Virginie Bonnin
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit, DRCI, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Nicolas Barnich
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
| | - Mathilde Bonnet
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
| | - Marine Jary
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
- Digestive Oncology Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Denis Pezet
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
- Digestive Surgery Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Johan Gagnière
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
- Digestive Surgery Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Philippe Poirier
- Parasitology-Mycology Department, CHU Clermont-Ferrand, 3IHP, Clermont-Ferrand, France
- Clermont Auvergne University, « Microbes, Intestin, Inflammation et Susceptibilité de l'Hôte » M2iSH, UMR INSERM 1071, INRAe 1382, Clermont-Ferrand, France
- National Reference Center (NRC) for cryptosporidiosis, microsporidia and other digestive protozoa, Clermont-Ferrand, France
| |
Collapse
|
30
|
Mishra V, Mishra Y. Role of Gut Microbiome in Cancer Treatment. Indian J Microbiol 2024; 64:1310-1325. [PMID: 39282183 PMCID: PMC11399371 DOI: 10.1007/s12088-024-01340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/17/2024] [Indexed: 09/18/2024] Open
Abstract
The gut microbiota influences the effectiveness and side effects of cancer treatments, particularly immunotherapy and associated immune-related complications. This important involvement of the microbiome is supported by the patients receiving antibiotics responding poorly to immunotherapy. Relatively few research has examined the underlying processes, and until recently, data regarding the detection of the microbial organisms that trigger these effects were inconsistent. Since then, a deeper comprehension of the processes of action and taxonomic classification of the relevant species has been attained. It's been demonstrated that certain bacterial species can enhance the body's reaction to immune checkpoint inhibitors through the release of distinct metabolites or products. Nonetheless, in certain patients who are not responding, Gram-negative bacteria may have a dominating suppressive impact. Patients' propensity to react to immunotherapy can be somewhat accurately predicted by machine learning techniques based on their microbiome makeup. Consequently, there has been an increase in interest in modifying the microbiome makeup to enhance patient reaction to medication. Clinical proof-of-concept studies demonstrate that dietary modifications or fecal microbiota transplantation (FMT) might be used therapeutically to increase the efficacy of immunotherapy in cancer patients. Current developments and new approaches for microbiota-based cancer treatments have been emphasized. In conclusion, preclinical research on animals and human clinical trials has made tremendous progress in our understanding of the function of the gut microbiome in health and illness. These investigations have shed light on the effects of food, FMT, probiotics, prebiotics, and microbiome-disease connections. However, there are still a lot of issues and restrictions that must be resolved before this research can be used in real-world clinical settings. Graphical Abstract
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411 India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411 India
| |
Collapse
|
31
|
Xie W, Sharma A, Kaushik H, Sharma L, Nistha, Anwer MK, Sachdeva M, Elossaily GM, Zhang Y, Pillappan R, Kaur M, Behl T, Shen B, Singla RK. Shaping the future of gastrointestinal cancers through metabolic interactions with host gut microbiota. Heliyon 2024; 10:e35336. [PMID: 39170494 PMCID: PMC11336605 DOI: 10.1016/j.heliyon.2024.e35336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Gastrointestinal (GI) cancers represent a significant global health challenge, driving relentless efforts to identify innovative diagnostic and therapeutic approaches. Recent strides in microbiome research have unveiled a previously underestimated dimension of cancer progression that revolves around the intricate metabolic interplay between GI cancers and the host's gut microbiota. This review aims to provide a comprehensive overview of these emerging metabolic interactions and their potential to catalyze a paradigm shift in precision diagnosis and therapeutic breakthroughs in GI cancers. The article underscores the groundbreaking impact of microbiome research on oncology by delving into the symbiotic connection between host metabolism and the gut microbiota. It offers valuable insights into tailoring treatment strategies to individual patients, thus moving beyond the traditional one-size-fits-all approach. This review also sheds light on novel diagnostic methodologies that could transform the early detection of GI cancers, potentially leading to more favorable patient outcomes. In conclusion, exploring the metabolic interactions between host gut microbiota and GI cancers showcases a promising frontier in the ongoing battle against these formidable diseases. By comprehending and harnessing the microbiome's influence, the future of precision diagnosis and therapeutic innovation for GI cancers appears more optimistic, opening doors to tailored treatments and enhanced diagnostic precision.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Hitesh Kaushik
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Nistha
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P, 173229, India
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monika Sachdeva
- Fatima College of Health Sciences, Al Ain, United Arab Emirates
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia
| | - Yingbo Zhang
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Ramkumar Pillappan
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Mangaluru, Karnataka, India
| | - Maninderjit Kaur
- Department of Pharmaceutical Sciences, lovely Professional University, Phagwara, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Sahibzada Ajit Singh Nagar, Punjab, India
| | - Bairong Shen
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 1444411, India
| |
Collapse
|
32
|
Baas FS, Brusselaers N, Nagtegaal ID, Engstrand L, Boleij A. Navigating beyond associations: Opportunities to establish causal relationships between the gut microbiome and colorectal carcinogenesis. Cell Host Microbe 2024; 32:1235-1247. [PMID: 39146796 DOI: 10.1016/j.chom.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
The gut microbiota has been recognized as an important determinant in the initiation and progression of colorectal cancer (CRC), with recent studies shining light on the molecular mechanisms that may contribute to the interactions between microbes and the CRC microenvironment. Despite the increasing wealth of associations being established in the field, proving causality remains challenging. Obstacles include the high variability of the microbiome and its context, both across individuals and across time. Additionally, there is a lack of large and representative cohort studies with long-term follow-up and/or appropriate sampling methods for studying the mucosal microbiome. Finally, most studies focus on CRC, whereas interactions between host and bacteria in early events in carcinogenesis remain elusive, reinforced by the heterogeneity of CRC development. Here, we discuss these current most prominent obstacles, the recent developments, and research needs.
Collapse
Affiliation(s)
- Floor S Baas
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nele Brusselaers
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden; Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Iris D Nagtegaal
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Centre for Translational Microbiome Research, Karolinska Institutet, Karolinska Hospital, Stockholm, Sweden
| | - Annemarie Boleij
- Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
33
|
Onyeaghala GC, Sharma S, Oyenuga M, Staley CM, Milne GL, Demmer RT, Shaukat A, Thyagarajan B, Straka RJ, Church TR, Prizment AE. The Effects of Aspirin Intervention on Inflammation-Associated Lingual Bacteria: A Pilot Study from a Randomized Clinical Trial. Microorganisms 2024; 12:1609. [PMID: 39203451 PMCID: PMC11357305 DOI: 10.3390/microorganisms12081609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024] Open
Abstract
Several bacterial taxa enriched in inflammatory bowel diseases and colorectal cancer (CRC) are found in the oral cavity. We conducted a pilot study nested within a six-week aspirin intervention in a randomized placebo-controlled trial to test their response to aspirin intervention. Fifty healthy subjects, 50-75 years old, were randomized to receive 325 mg aspirin (n = 30) or placebo (n = 20) orally once daily for six weeks. Oral tongue swabs were collected at baseline and week six. We estimated the association between aspirin use and the temporal changes in the relative abundance of pre-specified genus level taxa from pre- to post-treatment. The temporal change in relative abundance differed for eight genus level taxa between the aspirin and placebo groups. In the aspirin group, there were significant increases in the relative abundances of Neisseria, Streptococcus, Actinomyces, and Rothia and significant decreases in Prevotella, Veillonella, Fusobacterium, and Porphyromonas relative to placebo. The log ratio of Neisseria to Fusobacterium declined more in the aspirin group than placebo, signaling a potential marker associated with aspirin intervention. These preliminary findings should be validated using metagenomic sequencing and may guide future studies on the role of aspirin on taxa in various oral ecological niches.
Collapse
Affiliation(s)
- Guillaume C. Onyeaghala
- Division of Nephrology, Hennepin Healthcare, University of Minnesota, Minneapolis, MN 55415, USA;
| | - Shweta Sharma
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
| | - Mosunmoluwa Oyenuga
- Department of Internal Medicine, SSM Health St. Mary’s Hospital—St. Louis, St. Louis, MO 63117, USA;
| | - Christopher M. Staley
- Department of Surgery, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Ginger L. Milne
- Department of Medicine, Vanderbilt School of Medicine, Nashville, TN 37232, USA;
| | - Ryan T. Demmer
- Mayo Clinic College of Medicine & Sciences, Rochester, MN 55905, USA;
| | - Aasma Shaukat
- Department of Population Health, New York University Grossman School of Medicine, New York University, New York, NY 10016, USA;
| | - Bharat Thyagarajan
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Timothy R. Church
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anna E. Prizment
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN 55455, USA; (S.S.); (B.T.)
- Department of Laboratory Medicine & Pathology, Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Liu W, Li Y, Wu P, Guo X, Xu Y, Jin L, Zhao D. The intratumoral microbiota: a new horizon in cancer immunology. Front Cell Infect Microbiol 2024; 14:1409464. [PMID: 39135638 PMCID: PMC11317474 DOI: 10.3389/fcimb.2024.1409464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 08/15/2024] Open
Abstract
Over the past decade, advancements in high-throughput sequencing technologies have led to a qualitative leap in our understanding of the role of the microbiota in human diseases, particularly in oncology. Despite the low biomass of the intratumoral microbiota, it remains a crucial component of the tumor immune microenvironment, displaying significant heterogeneity across different tumor tissues and individual patients. Although immunotherapy has emerged a major strategy for treating tumors, patient responses to these treatments vary widely. Increasing evidence suggests that interactions between the intratumoral microbiota and the immune system can modulate host tumor immune responses, thereby influencing the effectiveness of immunotherapy. Therefore, it is critical to gain a deep understanding of how the intratumoral microbiota shapes and regulates the tumor immune microenvironment. Here, we summarize the latest advancements on the role of the intratumoral microbiota in cancer immunity, exploring the potential mechanisms through which immune functions are influenced by intratumoral microbiota within and outside the gut barrier. We also discuss the impact of the intratumoral microbiota on the response to cancer immunotherapy and its clinical applications, highlighting future research directions and challenges in this field. We anticipate that the valuable insights into the interactions between cancer immunity and the intratumoral microbiota provided in this review will foster the development of microbiota-based tumor therapies.
Collapse
Affiliation(s)
- Wei Liu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yuming Li
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Ping Wu
- General Surgery Department of Liaoyuan Central Hospital, Jilin, China
| | - Xinyue Guo
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Yifei Xu
- College of Laboratory Medicine, Jilin Medical University, Jilin, China
| | - Lianhai Jin
- Low Pressure and Low Oxygen Environment and Health Intervention Innovation Center, Jilin Medical University, Jilin, China
| | - Donghai Zhao
- College of Basic Medicine, Jilin Medical University, Jilin, China
| |
Collapse
|
35
|
González A, Fullaondo A, Odriozola A. Microbiota-associated mechanisms in colorectal cancer. ADVANCES IN GENETICS 2024; 112:123-205. [PMID: 39396836 DOI: 10.1016/bs.adgen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, ranking third in terms of incidence and second as a cause of cancer-related death. There is growing scientific evidence that the gut microbiota plays a key role in the initiation and development of CRC. Specific bacterial species and complex microbial communities contribute directly to CRC pathogenesis by promoting the neoplastic transformation of intestinal epithelial cells or indirectly through their interaction with the host immune system. As a result, a protumoural and immunosuppressive environment is created conducive to CRC development. On the other hand, certain bacteria in the gut microbiota contribute to protection against CRC. In this chapter, we analysed the relationship of the gut microbiota to CRC and the associations identified with specific bacteria. Microbiota plays a key role in CRC through various mechanisms, such as increased intestinal permeability, inflammation and immune system dysregulation, biofilm formation, genotoxin production, virulence factors and oxidative stress. Exploring the interaction between gut microbiota and tumourigenesis is essential for developing innovative therapeutic approaches in the fight against CRC.
Collapse
Affiliation(s)
- Adriana González
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain.
| | - Asier Fullaondo
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| | - Adrian Odriozola
- Hologenomics Research Group, Department of Genetics, Physical Anthropology, and Animal Physiology, University of the Basque Country, Spain
| |
Collapse
|
36
|
Gómez García AM, López Muñoz F, García-Rico E. The Microbiota in Cancer: A Secondary Player or a Protagonist? Curr Issues Mol Biol 2024; 46:7812-7831. [PMID: 39194680 DOI: 10.3390/cimb46080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
The intestinal microbiota and the human body are in a permanent interaction. There is a symbiotic relationship in which the microbiota plays a vitally important role in the performance of numerous functions, including digestion, metabolism, the development of lymphoid tissue, defensive functions, and other processes. It is a true metabolic organ essential for life and has potential involvement in various pathological states, including cancer and pathologies other than those of a digestive nature. A growing topic of great interest for its implications is the relationship between the microbiota and cancer. Dysbiosis plays a role in oncogenesis, tumor progression, and even the response to cancer treatment. The effect of the microbiota on tumor development goes beyond a local effect having a systemic effect. Another aspect of great interest regarding the intestinal microbiota is its relationship with drugs, modifying their activity. There is increasing evidence that the microbiota influences the therapeutic activity and side effects of antineoplastic drugs and also modulates the response of several tumors to antineoplastic therapy through immunological circuits. These data suggest the manipulation of the microbiota as a possible adjuvant to improve oncological treatment. Is it possible to manipulate the microbiota for therapeutic purposes?
Collapse
Affiliation(s)
- Ana María Gómez García
- Internal Medicine Unit, Hospital Universitario HM Madrid, 28015 Madrid, Spain
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco López Muñoz
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Eduardo García-Rico
- Facultad HM de Ciencias de la Salud de la Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
- Medical Oncology Unit, Hospital Universitario HM Torrelodones, 28250 Torrelodones, Spain
| |
Collapse
|
37
|
Song CH, Kim N, Nam RH, Choi SI, Jang JY, Kim EH, Choi J, Choi Y, Yoon H, Lee SM, Seok YJ. The Possible Preventative Role of Lactate- and Butyrate-Producing Bacteria in Colorectal Carcinogenesis. Gut Liver 2024; 18:654-666. [PMID: 38030382 PMCID: PMC11249946 DOI: 10.5009/gnl230385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Background/Aims : The gut microbiome has emerged as a key player that mechanistically links various risk factors to colorectal cancer (CRC) etiology. However, the role of the gut microbiome in CRC pathogenesis remains unclear. This study aimed to characterize the gut microbiota in healthy controls (HCs) and patients with colorectal adenoma (AD) and CRC in subgroups based on sex and age. Methods : Study participants who visited the hospital for surveillance of CRC or gastrointestinal symptoms were prospectively enrolled, and the gut microbiome was analyzed based on fecal samples. Results : In terms of HC-AD-CRC sequence, commensal bacteria, including lactate-producing (Streptococcus salivarius) and butyrate-producing (Faecalibacterium prausnitzii, Anaerostipes hadrus, and Eubacterium hallii) bacteria, were more abundant in the HC group than in the AD and CRC groups. In the sex comparison, the female HC group had more lactate-producing bacteria (Bifidobacterium adolescentis, Bifidobacterium catenulatum, and Lactobacillus ruminis) than the male HC group. In age comparison, younger subjects had more butyrate-producing bacteria (Agathobaculum butyriciproducens and Blautia faecis) than the older subjects in the HC group. Interestingly, lactate-producing bacteria (B. catenulatum) were more abundant in females than males among younger HC group subjects. However, these sex- and age-dependent differences were not observed in the AD and CRC groups. Conclusions : The gut microbiome, specifically lactate- and butyrate-producing bacteria, which were found to be abundant in the HC group, may play a role in preventing the progression of CRC. In particular, lactate-producing bacteria, which were found to be less abundant in healthy male controls may contribute to the higher incidence of CRC in males.
Collapse
Affiliation(s)
- Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jae Young Jang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eun Hye Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jina Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yonghoon Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyuk Yoon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sun Min Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| |
Collapse
|
38
|
Benjamaa R, Zhu A, Kim S, Kim D, Essamadi AK, Moujanni A, Terrab A, Cho N, Hong J. Two spurge species, Euphorbia resinifera O. Berg and Euphorbia officinarum subsp. echinus (Hook.f. & Coss.) Vindt inhibit colon cancer. BMC Complement Med Ther 2024; 24:261. [PMID: 38987732 PMCID: PMC11238497 DOI: 10.1186/s12906-024-04566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Colon cancer, a prominent contributor to global cancer-related deaths, prompts the need for innovative treatment strategies. Euphorbia resinifera O. Berg (E. resinifera) and Euphorbia officinarum subsp. echinus Hook. f. & Coss Vindt (E. echinus) and their bee-derived products have been integral to traditional Moroccan medicine due to their potential health benefits. These plants have historical use in addressing various health issues, including cancer. However, their effects against colon cancer remain unclear, and the specific mechanisms underlying their anti-cancer effects lack comprehensive investigation. METHODS The study aimed to assess the potential anti-cancer effects of Euphorbia extract on colon cancer cell lines (DLD-1) through various techniques. The apoptosis, migration, and proliferation of DLD-1 cells were measured in DLD-1 cells. In addition, we conducted High-Performance Liquid Chromatography (HPLC) analysis to identify the profile of phenolic compounds present in the studied extracts. RESULTS The extracts demonstrated inhibition of colon cancer cell migration. E. resinifera flower and E. echinus stem extracts show significant anti-migratory effects. Regarding anti-proliferative activity, E. resinifera flower extract hindered proliferation, whereas E. echinus flower extract exhibited dose-dependent inhibition. Apoptosis assays revealed E. resinifera flower extract inducing early-stage apoptosis and E. echinus flower extract promoting late-stage apoptosis. While apoptotic protein expression indicated, E. resinifera stem and propolis extracts had minimal impact on apoptosis. CONCLUSION The findings provide evidence supporting the beneficial effects of E resinifera and E. echinus extracts on colon cancer and exerting anti-cancer properties.
Collapse
Affiliation(s)
- Rania Benjamaa
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources, and Environment, Hassan First University of Settat, Settat, 26000, Morocco
| | - Anlin Zhu
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea
- CaniCatiCare Inc., Daegu, 42078, South Korea
| | - Soeun Kim
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Dohyang Kim
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea
| | - Abdel Khalid Essamadi
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources, and Environment, Hassan First University of Settat, Settat, 26000, Morocco
| | - Abdelkarim Moujanni
- Faculty of Sciences and Technologies, Laboratory of Biochemistry, Neurosciences, Natural Resources, and Environment, Hassan First University of Settat, Settat, 26000, Morocco
| | - Anass Terrab
- Department of Plant Biology and Ecology, University of Seville, Seville, 41012, Spain
| | - Namki Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, 42472, South Korea.
- CaniCatiCare Inc., Daegu, 42078, South Korea.
| |
Collapse
|
39
|
Abedi Elkhichi P, Nazemalhosseini Mojarad E, Dabiri H, Rezasoltani S, Yadegar A, Azizmohamad looha M, Mojtahedi A, Nasiri MJ. Prevalence of Campylobacter Species, Helicobacter pylori, Human Papillomavirus, and JC Polyomavirus in Patients with Colorectal Cancer in Iran. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2024; 19. [DOI: 10.5812/archcid-132362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 01/03/2025]
Abstract
Background: Colorectal cancer (CRC) is a complex disease with diverse gene expression patterns, which can arise from common adenomas or serrated polyps. The role of intestinal microbiota in the development of CRC is still a subject of debate. Objectives: This study aimed to explore the prevalence of a selection of gastrointestinal microbiota in Iranian patients with CRC. Methods: A total of 86 biopsy specimens (17 samples from normal tissues and 69 samples from cancer tissues) were analyzed from normal controls and patients with CRC. The presence of Helicobacter pylori, Campylobacter species (including C. jejuni, C. coli, C. upsaliensis, C. bovis, and C. fetus), as well as human papillomavirus (HPV) and JC polyomavirus (JCV) in tissue specimens, was examined using PCR. Results: The prevalence of the targeted bacterial and viral agents in CRC patients exhibited significant variations compared to normal controls. Notably, there was a higher prevalence of the Helicobacter genus in patients with CRC compared to normal controls. Patients with CRC were found to be at an increased risk of Campylobacter infection, with various Campylobacter species identified. Additionally, HPV and JCV genomes were detected in cancer samples at a higher rate than in normal controls. Conclusions: Our findings demonstrated a higher prevalence of the Helicobacter genus, Campylobacter species, HPV, and JCV in patients with CRC compared to normal controls. However, further research is required to elucidate the potential role of these bacterial and viral agents in the development of CRC.
Collapse
|
40
|
Zhu J, Li M, Li J, Wu J. Sialic acid metabolism of oral bacteria and its potential role in colorectal cancer and Alzheimer's disease. Carbohydr Res 2024; 541:109172. [PMID: 38823062 DOI: 10.1016/j.carres.2024.109172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Sialic acid metabolism in oral bacteria is a complex process involving nutrient acquisition, immune evasion, cell surface modification, and the production of metabolites that contribute to bacterial persistence and virulence in the oral cavity. In addition to causing various periodontal diseases, certain oral pathogenic bacteria, such as Porphyromonas gingivalis, Tannerella forsythia, and Fusobacterium nucleatum, can induce inflammatory reactions and influence the immunity of host cells. These associations with host cells are linked to various diseases, particularly colorectal cancer and Alzheimer's disease. Sialic acid can be found in the host oral mucosa, saliva, or food residues in the oral cavity, and it may promote the colonization of oral bacteria and contribute to disease development. This review aims to summarize the role of sialic acid metabolism in oral bacteria and discuss its effect on the pathogenesis of colorectal cancer and Alzheimer's disease.
Collapse
Affiliation(s)
- Jiao Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinfang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
41
|
Dang Q, Zuo L, Hu X, Zhou Z, Chen S, Liu S, Ba Y, Zuo A, Xu H, Weng S, Zhang Y, Luo P, Cheng Q, Liu Z, Han X. Molecular subtypes of colorectal cancer in the era of precision oncotherapy: Current inspirations and future challenges. Cancer Med 2024; 13:e70041. [PMID: 39054866 PMCID: PMC11272957 DOI: 10.1002/cam4.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most hackneyed malignancies. Even patients with identical clinical symptoms and the same TNM stage still exhibit radically different clinical outcomes after receiving equivalent treatment regimens, indicating extensive heterogeneity of CRC. Myriad molecular subtypes of CRC have been exploited for decades, including the most compelling consensus molecular subtype (CMS) classification that has been broadly applied for patient stratification and biomarker-drug combination formulation. Encountering barriers to clinical translation, however, CMS classification fails to fully reflect inter- or intra-tumor heterogeneity of CRC. As a consequence, addressing heterogeneity and precisely managing CRC patients with unique characteristics remain arduous tasks for clinicians. REVIEW In this review, we systematically summarize molecular subtypes of CRC and further elaborate on their clinical applications, limitations, and future orientations. CONCLUSION In recent years, exploration of subtypes through cell lines, animal models, patient-derived xenografts (PDXs), organoids, and clinical trials contributes to refining biological insights and unraveling subtype-specific therapies in CRC. Therapeutic interventions including nanotechnology, clustered regulatory interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9), gut microbiome, and liquid biopsy are powerful tools with the possibility to shift the immunologic landscape and outlook for CRC precise medicine.
Collapse
Affiliation(s)
- Qin Dang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Lulu Zuo
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Xinru Hu
- Department of Cardiology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Zhaokai Zhou
- Department of UrologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shuang Chen
- Center for Reproductive MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Shutong Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuhao Ba
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Anning Zuo
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Hui Xu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Siyuan Weng
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Yuyuan Zhang
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
- Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinwei Han
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenanChina
- Interventional Treatment and Clinical Research Center of Henan ProvinceZhengzhouHenanChina
- Interventional Institute of Zhengzhou UniversityZhengzhouHenanChina
| |
Collapse
|
42
|
Lee Y, So YJ, Jung WH, Kim TR, Sohn M, Jeong YJ, Imm JY. Lactiplantibacillus plantarum LM1001 Improves Digestibility of Branched-Chain Amino Acids in Whey Proteins and Promotes Myogenesis in C2C12 Myotubes. Food Sci Anim Resour 2024; 44:951-965. [PMID: 38974720 PMCID: PMC11222699 DOI: 10.5851/kosfa.2024.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 07/09/2024] Open
Abstract
Lactiplantibacillus plantarum is a valuable potential probiotic species with various proven health-beneficial effects. L. plantarum LM1001 strain was selected among ten strains of L. plantarum based on proteolytic activity on whey proteins. L. plantarum LM1001 produced higher concentrations of total free amino acids and branched-chain amino acids (Ile, Leu, and Val) than other L. plantarum strains. Treatment of C2C12 myotubes with whey protein culture supernatant (1%, 2% and 3%, v/v) using L. plantarum LM1001 significantly increased the expression of myogenic regulatory factors, such as Myf-5, MyoD, and myogenin, reflecting the promotion of myotubes formation (p<0.05). L. plantarum LM1001 displayed β-galactosidase activity but did not produce harmful β-glucuronidase. Thus, the intake of whey protein together with L. plantarum LM1001 has the potential to aid protein digestion and utilization.
Collapse
Affiliation(s)
- Youngjin Lee
- Microbiome R&D Center, Lactomason
Co. Ltd., Jinju 52840, Korea
| | - Yoon Ju So
- Microbiome R&D Center, Lactomason
Co. Ltd., Jinju 52840, Korea
| | - Woo-Hyun Jung
- Microbiome R&D Center, Lactomason
Co. Ltd., Jinju 52840, Korea
| | - Tae-Rahk Kim
- Microbiome R&D Center, Lactomason
Co. Ltd., Jinju 52840, Korea
| | - Minn Sohn
- Microbiome R&D Center, Lactomason
Co. Ltd., Jinju 52840, Korea
| | - Yu-Jin Jeong
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| | - Jee-Young Imm
- Department of Foods and Nutrition, Kookmin
University, Seoul 02707, Korea
| |
Collapse
|
43
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
44
|
Profir M, Roşu OA, Creţoiu SM, Gaspar BS. Friend or Foe: Exploring the Relationship between the Gut Microbiota and the Pathogenesis and Treatment of Digestive Cancers. Microorganisms 2024; 12:955. [PMID: 38792785 PMCID: PMC11124004 DOI: 10.3390/microorganisms12050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Digestive cancers are among the leading causes of cancer death in the world. However, the mechanisms of cancer development and progression are not fully understood. Accumulating evidence in recent years pointing to the bidirectional interactions between gut dysbiosis and the development of a specific type of gastrointestinal cancer is shedding light on the importance of this "unseen organ"-the microbiota. This review focuses on the local role of the gut microbiota imbalance in different digestive tract organs and annexes related to the carcinogenic mechanisms. Microbiota modulation, either by probiotic administration or by dietary changes, plays an important role in the future therapies of various digestive cancers.
Collapse
Affiliation(s)
- Monica Profir
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania; (M.P.); (O.A.R.)
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Surgery Clinic, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania;
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
45
|
Ahmad A, Mahmood N, Raza MA, Mushtaq Z, Saeed F, Afzaal M, Hussain M, Amjad HW, Al-Awadi HM. Gut microbiota and their derivatives in the progression of colorectal cancer: Mechanisms of action, genome and epigenome contributions. Heliyon 2024; 10:e29495. [PMID: 38655310 PMCID: PMC11035079 DOI: 10.1016/j.heliyon.2024.e29495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Gut microbiota interacts with host epithelial cells and regulates many physiological functions such as genetics, epigenetics, metabolism of nutrients, and immune functions. Dietary factors may also be involved in the etiology of colorectal cancer (CRC), especially when an unhealthy diet is consumed with excess calorie intake and bad practices like smoking or consuming a great deal of alcohol. Bacteria including Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis (ETBF), and Escherichia coli (E. coli) actively participate in the carcinogenesis of CRC. Gastrointestinal tract with chronic inflammation and immunocompromised patients are at high risk for CRC progression. Further, the gut microbiota is also involved in Geno-toxicity by producing toxins like colibactin and cytolethal distending toxin (CDT) which cause damage to double-stranded DNA. Specific microRNAs can act as either tumor suppressors or oncogenes depending on the cellular environment in which they are expressed. The current review mainly highlights the role of gut microbiota in CRC, the mechanisms of several factors in carcinogenesis, and the role of particular microbes in colorectal neoplasia.
Collapse
Affiliation(s)
- Awais Ahmad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Nasir Mahmood
- Department of Zoology, University of Central Punjab Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ahtisham Raza
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zarina Mushtaq
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Hafiz Wasiqe Amjad
- International Medical School, Jinggangshan University, Ji'an, Jiangxi, China
| | | |
Collapse
|
46
|
Bilski K, Żeber-Lubecka N, Kulecka M, Dąbrowska M, Bałabas A, Ostrowski J, Dobruch A, Dobruch J. Microbiome Sex-Related Diversity in Non-Muscle-Invasive Urothelial Bladder Cancer. Curr Issues Mol Biol 2024; 46:3595-3609. [PMID: 38666955 PMCID: PMC11048804 DOI: 10.3390/cimb46040225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Sex-specific discrepancies in bladder cancer (BCa) are reported, and new studies imply that microbiome may partially explain the diversity. We aim to provide characterization of the bladder microbiome in both sexes diagnosed with non-muscle-invasive BCa with specific insight into cancer grade. In our study, 16S rRNA next-generation sequencing was performed on midstream urine, bladder tumor sample, and healthy-appearing bladder mucosa. Bacterial DNA was isolated using QIAamp Viral RNA Mini Kit. Metagenomic analysis was performed using hypervariable fragments of the 16S rRNA gene on Ion Torrent Personal Genome Machine platform. Of 41 sample triplets, 2153 taxa were discovered: 1739 in tumor samples, 1801 in healthy-appearing bladder mucosa and 1370 in midstream urine. Women were found to have smaller taxa richness in Chao1 index than men (p = 0.03). In comparison to low-grade tumors, patients with high-grade lesions had lower bacterial diversity and richness in urine. Significant differences between sexes in relative abundance of communities at family level were only observed in high-grade tumors.
Collapse
Affiliation(s)
- Konrad Bilski
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre for Postgraduate Medical Education, 02-781 Warsaw, Poland; (N.Ż.-L.); (M.K.); (J.O.)
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (M.D.); (A.B.)
| | | | - Jakub Dobruch
- Department of Urology, Centre of Postgraduate Medical Education, Independent Public Hospital of Prof. W. Orlowski, 00-416 Warsaw, Poland;
| |
Collapse
|
47
|
Feng K, Ren F, Shang Q, Wang X, Wang X. Association between oral microbiome and breast cancer in the east Asian population: A Mendelian randomization and case-control study. Thorac Cancer 2024; 15:974-986. [PMID: 38485288 PMCID: PMC11045337 DOI: 10.1111/1759-7714.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The causal relationship between breast cancer (BC) and the oral microbiome remains unclear. In this case-control study, using two-sample Mendelian randomization (MR), we thoroughly explored the relationship between the oral microbiome and BC in the East Asian population. METHODS Genetic summary data related to oral microbiota and BC were collected from genome-wide association studies involving participants of East Asian descent. MR estimates were generated by conducting various analyses. Sequencing data from a case-control study were used to verify the validity of these findings. RESULTS MR analysis revealed that 30 tongue and 37 salivary bacterial species were significantly associated with BC. Interestingly, in both tongue and salivary microbiomes, we observed the causal effect of six genera, namely, Aggregatibacter, Streptococcus, Prevotella, Haemophilus, Lachnospiraceae, Oribacterium, and Solobacterium, on BC. Our case-control study findings suggest differences in specific bacteria between patients with BC and healthy controls. Moreover, sequencing data confirmed the MR analysis results, demonstrating that compared with the healthy control group, the BC group had a higher relative abundance of Pasteurellaceae and Streptococcaceae but a lower relative abundance of Bacteroidaceae. CONCLUSIONS Our MR analysis suggests that the oral microbiome exerts a causative effect on BC risk, supported by the sequencing data of a case-control study. In the future, studies should be undertaken to comprehensively understand the complex interaction mechanisms between the oral microbiota and BC.
Collapse
Affiliation(s)
- Kexin Feng
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Fei Ren
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingyao Shang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xin Wang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xiang Wang
- Department of Breast Surgical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
48
|
Qin X, Fang Z, Zhang J, Zhao W, Zheng N, Wang X. Regulatory effect of Ganoderma lucidum and its active components on gut flora in diseases. Front Microbiol 2024; 15:1362479. [PMID: 38572237 PMCID: PMC10990249 DOI: 10.3389/fmicb.2024.1362479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Driven by the good developmental potential and favorable environment at this stage, Ganoderma lucidum is recognized as a precious large fungus with medicinal and nutritional health care values. Among them, polysaccharides, triterpenoids, oligosaccharides, trace elements, etc. are important bioactive components in G. lucidum. These bioactive components will have an impact on gut flora, thus alleviating diseases such as hyperglycemia, hyperlipidemia and obesity caused by gut flora disorder. While numerous studies have demonstrated the ability of G. lucidum and its active components to regulate gut flora, a systematic review of this mechanism is currently lacking. The purpose of this paper is to summarize the regulatory effects of G. lucidum and its active components on gut flora in cardiovascular, gastrointestinal and renal metabolic diseases, and summarize the research progress of G. lucidum active components in improving related diseases by regulating gut flora. Additionally, review delves into the principle by which G. lucidum and its active components can treat or assist treat diseases by regulating gut flora. The research progress of G. lucidum in intestinal tract and its potential in medicine, health food and clinical application were fully explored for researchers.
Collapse
Affiliation(s)
- Xinjie Qin
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Zinan Fang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Jinkang Zhang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Wenbo Zhao
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Ni Zheng
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| | - Xiaoe Wang
- College of Food Engineering, Jilin Engineering Normal University, Changchun, China
- Jilin Province Key Field of Social Sciences (Food Industry) Research Base, Changchun, China
| |
Collapse
|
49
|
Chowdhury MR, Hone KGMS, Prévost K, Balthazar P, Avino M, Arguin M, Beaudoin J, Malick M, Desgagné M, Robert G, Scott M, Dubé J, Laforest-Lapointe I, Massé E. Optimizing Fecal Occult Blood Test (FOBT) Colorectal Cancer Screening Using Gut Bacteriome as a Biomarker. Clin Colorectal Cancer 2024; 23:22-34.e2. [PMID: 37980216 DOI: 10.1016/j.clcc.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 11/20/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is a major cause of cancer mortality in the world. One of the most widely used screening tests for CRC is the immunochemical fecal occult blood test (iFOBT), which detects human hemoglobin from patient's stool sample. Although it is highly efficient in detecting blood from patients with gastro-intestinal lesions, such as polyps and cancers, the iFOBT has a high rate of false positive discovery. Recent studies suggested gut bacteria as a promising noninvasive biomarker for improving the diagnosis of CRC. In this study, we examined the composition of gut bacteria using iFOBT leftover from patients undergoing screening test along with a colonoscopy. METHODS After collecting data from more than 800 patients, we considered 4 groups for this study. The first and second groups were respectively "healthy" in which the patients had either no blood in their stool or had blood but no lesions. The third and fourth groups of patients had both blood in their stools with precancerous and cancerous lesions and considered either as low-grade and high-grade lesion groups, respectively. An amplification of 16S rRNA (V4 region) gene was performed, followed by sequencing along with various statistical and bioinformatic analysis. RESULTS We analyzed the composition of the gut bacteriome at phylum, class, genus, and species levels. Although members of the Firmicute phylum increased in the 3 groups compared to healthy patients, the phylum Actinobacteriota was found to decrease. Moreover, Blautia obeum and Anaerostipes hadrus from the phylum Firmicutes were increased and Collinsella aerofaciens from phylum Actinobacteriota was found decreased when healthy group is compared to the patients with high-grade lesions. Finally, among the 5 machine learning algorithms used to perform our analysis, both elastic net (AUC > 0.7) and random forest (AUC > 0.8) performs well in differentiating healthy patients from 3 other patient groups having blood in their stool. CONCLUSION Our study integrates the iFOBT screening tool with gut bacterial composition to improve the prediction of CRC lesions.
Collapse
Affiliation(s)
- Moumita Roy Chowdhury
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Karina Gisèle Mac Si Hone
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada; Department of Biology, University of Sherbrooke, Sherbrooke, Canada
| | - Karine Prévost
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Philippe Balthazar
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Mariano Avino
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Mélina Arguin
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Jude Beaudoin
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Mandy Malick
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Michael Desgagné
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Gabriel Robert
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Michelle Scott
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | - Jean Dubé
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada
| | | | - Eric Massé
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|
50
|
Mishra Y, Ranjan A, Mishra V, Chattaraj A, Aljabali AAA, El-Tanani M, Hromić-Jahjefendić A, Uversky VN, Tambuwala MM. The role of the gut microbiome in gastrointestinal cancers. Cell Signal 2024; 115:111013. [PMID: 38113978 DOI: 10.1016/j.cellsig.2023.111013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The gut microbiota present in the human digestive system is incredibly varied and is home to trillions of microorganisms. The gut microbiome is shaped at birth, while numerous genetic, dietary, and environmental variables primarily influence the microbiome composition. The importance of gut microbiota on host health is becoming more widely acknowledged. Digestion, intestinal permeability, and immunological and metabolism responses can all be affected by changes in the composition and function of the gut microbiota. There is mounting evidence that the microbial population's complex traits are important biomarkers and indicators of patient outcomes in cancer and its therapies. Numerous studies have demonstrated that changed commensal gut microorganisms contribute to the development and spread of cancer through various routes. Despite the ongoing controversy surrounding the gut microbiome and gastrointestinal cancer, accumulating evidence points to a potentially far more intricate connection than a simple cause-and-effect relationship. SIMPLE SUMMARY: Due to their high frequency and fatality rate, gastrointestinal cancers are regarded as a severe public health issue with complex medical and economic burdens. The gut microbiota may directly or indirectly interact with existing therapies like immunotherapy and chemotherapy, affecting how well a treatment works. The gut microbiome influences the immune response's activity, function, and development. Generally, certain gut bacteria impact the antitumor actions during cancer by creating particular metabolites or triggering T-cell responses. Yet, certain bacterial species have been found to promote cellular proliferation and metastasis in cancer, and comprehending these interactions in the context of cancer may help identify possible treatment targets. Notwithstanding the improvements in the field, additional research is still required to comprehend the underlying processes, examine the effects on existing therapies, and pinpoint certain bacteria and immune cells that can cause this interaction.
Collapse
Affiliation(s)
- Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Abhigyan Ranjan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aditi Chattaraj
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Alaa A A Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University, Irbid, Jordan
| | - Mohamed El-Tanani
- College of Pharmacy, Ras Alkhama Medical and Health Sciences University, United Arab Emirates
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, England, United Kingdom.
| |
Collapse
|