1
|
Haim IR, Gruber A, Kazma N, Bashai C, Lichtig Kinsbruner H, Caspi O. Modeling Heart Failure With Preserved Ejection Fraction Using Human Induced Pluripotent Stem Cell-Derived Cardiac Organoids. Circ Heart Fail 2025; 18:e011690. [PMID: 39873109 DOI: 10.1161/circheartfailure.124.011690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND The therapeutic armamentarium for heart failure with preserved ejection fraction (HFpEF) remains notably constrained. A factor contributing to this problem could be the scarcity of in vitro models for HFpEF, which hinders progress in developing new therapeutic strategies. Here, we aimed at developing a novel, comorbidity-inspired, human, in vitro model for HFpEF. METHODS Human induced pluripotent stem cells-derived cardiomyocytes were used to produce cardiac organoids. The generated organoids were then subjected to HFpEF-associated, comorbidity-inspired conditions, such as hypertension, diabetes, and obesity-related inflammation. To assess the development of HFpEF pathophysiological features, organoids were thoroughly evaluated for their structural, functional, electrophysiological, and metabolic properties. RESULTS Exposure to the combination of all comorbidity-mimicking conditions resulted in the largest cellular volume of 1692±52 versus 1346±84 µm3 in RPMI (Roswell Park Memorial Institute medium) control group (P=0.003), while lower in obesity, hypertension, and diabetes groups: 1059±40 µm3 (P=0.014), 1276±35 µm3 (P=0.940), and 1575±70 µm3 (P=0.146), respectively. Similarly, ultrastructural fibrosis was most significantly observed after exposure to the combination of all HFpEF-inducing conditions 14.6±1.2% compared with single condition exposure 5.2±1.3% (obesity), 6.7±3.5% (hypertension), and 9.0±1.1% (diabetes; P<0.001). Moreover, HFpEF-related conditions led to an increase in passive force compared with control (7.52±1.08 versus 2.33±0.46 mN/mm, P<0.001), whereas no significant alterations were noted in active contractile forces. Relaxation constant τ was significantly prolonged after exposure to HFpEF conditions showing a prolongation of 95.9 ms (36.4-106.4; P=0.028) compared with a shortening of 35.6 ms (43.3-67.3; P=0.80) in the control. Finally, organoid exposure to HFpEF conditions led to a significant increase in oxidative stress levels and a significant decline in oxygen consumption rate. CONCLUSIONS We established a novel, human, in vitro model for HFpEF, based on comorbidity-inspired conditions. The model faithfully recapitulated the structural, functional, and mechanistic features of HFpEF. This model holds the potential to provide mechanistic insights and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Idan Refael Haim
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Amit Gruber
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Noam Kazma
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Caroline Bashai
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
| | - Hava Lichtig Kinsbruner
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| | - Oren Caspi
- Bruce Rapport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel (I.R.H., N.K., C.B., O.C.)
- The Clinical Research Institute at Rambam, Haifa, Israel (I.R.H., A.G., N.K., C.B., H.L.K., O.C.)
- The Heart Failure Unit, Department of Cardiology, Rambam Health Care Campus, Haifa, Israel (A.G., H.L.K., O.C.)
| |
Collapse
|
2
|
Chong JH, Chuah CTH, Lee CG. Revolutionising Cardio-Oncology Care with Precision Genomics. Int J Mol Sci 2025; 26:2052. [PMID: 40076674 PMCID: PMC11900203 DOI: 10.3390/ijms26052052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular disease is the worldwide leading cause of mortality among survivors of cancer due in part to the cardiotoxicity of anticancer therapies. This paper explores the progress in precision cardio-oncology, particularly in genetic testing and therapeutics, and its impact on cardiovascular diseases in clinical and laboratory settings. These advancements enable clinicians to better assess risk, diagnose conditions, and deliver personalised, cost-effective therapeutics. Through case studies of cancer-therapy-related cardiac dysfunction, clonal haematopoiesis of indeterminate potential, and polygenic risk scoring, we demonstrate the benefits of incorporating precision genomics in individualised care in cardio-oncology. Furthermore, leveraging real-world genomic data in clinical settings can advance our understanding of long noncoding RNAs and microRNAs, which play important regulatory roles in cardio-oncology. Additionally, employing human-induced pluripotent stem cells to stratify risk and guide prevention strategies represents a promising avenue for modelling precision cardio-oncology. While these advancements showcase the significant progress in genetic approaches, they also raise substantial ethical, legal, and societal concerns. Regulatory oversight of genetic and genomic technologies should therefore evolve suitably to keep up with rapid advancements in technology and analysis. Provider education is crucial for the appropriate use of new genetic and genomic applications, including on the existing protection available for patients regarding genetic information. This can provide confidence for diverse study groups to advance genetic studies looking to develop a comprehensive understanding and effective clinical applications for heterogeneous populations. In clinical settings, the implementation of genetic and genomic applications within electronic medical records can offer point-of-care clinical decision support, thus providing timely information to guide clinical management decisions.
Collapse
Affiliation(s)
- Jun Hua Chong
- National Heart Centre Singapore, 5 Hospital Dr, Singapore 169609, Singapore
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Charles T. H. Chuah
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Singapore General Hospital, Outram Road, Singapore 169608, Singapore
| | - Caroline G. Lee
- Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, C/O MD7, Level 2, 8 Medical Drive, Singapore 117597, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Crescent, Singapore 169610, Singapore
- NUS Graduate School, National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|
3
|
Suga T, Kitani T, Kogure M, Oishi M, Ito F, Hoshino A, Ogata T, Ikeda K, Matoba S. TAOK1 suppression improves doxorubicin-induced cardiomyopathy by preventing cardiomyocyte death and dysfunction. Cardiovasc Res 2025:cvaf022. [PMID: 39964965 DOI: 10.1093/cvr/cvaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 10/20/2024] [Accepted: 12/05/2024] [Indexed: 02/20/2025] Open
Abstract
AIMS Doxorubicin (DOX) is one of the most effective chemotherapeutic agents for various types of cancers. However, DOX often causes cardiotoxicity, which is referred to as DOX-induced cardiomyopathy (DIC). Despite extensive research, only a limited number of effective treatments are currently available. In this study, we aimed to identify a potential therapeutic target for DIC by preventing DOX-induced cell injury in cardiomyocytes. METHODS AND RESULTS We performed a kinome-wide CRISPR gene knockout screen in human cardiomyocytes derived from pluripotent stem cells (hPSC-CMs) and identified a member of the STE20 kinase family, thousand and one amino acid protein kinase 1 (TAOK1) as a potential regulator of DOX-induced cardiomyocyte death. Using CRISPR-mediated gene knockout and siRNA-mediated gene knockdown, we demonstrated that TAOK1 suppression improved DOX-induced cardiomyocyte death and dysfunction, including sarcomere disarray, contractile dysfunction, DNA damage, and mitochondrial dysfunction in hPSC-CMs. Transcriptome analysis using RNA-Seq also showed that DOX-induced mitochondrial dysfunction was attenuated by TAOK1 suppression. In contrast to the protective role of TAOK1 against DOX toxicity in cardiomyocytes, TAOK1 suppression did not induce DOX resistance in human cancer cell lines. DOX-induced activation of p38 MAPK was markedly attenuated in TAOK1-knockout hPSC-CMs. Furthermore, DOX-induced cardiomyocyte death and disruption of mitochondrial membrane potential were augmented by TAOK1 overexpression, which was partially attenuated by an inhibitor or knockdown of p38 MAPK or an apoptosis inhibitor. Finally, we demonstrated that TAOK1 suppression using AAV-mediated gene silencing attenuated DOX-induced myocardial damage, including myocardial fibrosis, apoptosis, and cardiomyocyte atrophy, resulting in improved cardiac function in a mouse model of DIC. CONCLUSION Our results indicate that TAOK1 suppression is a promising therapeutic approach for treating DIC in patients with cancer and highlight the advantages of hPSC-CMs as a platform to study drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- Takaomi Suga
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masaya Kogure
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Masatsugu Oishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Fumiaki Ito
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Hoshino
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Takehiro Ogata
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Koji Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Department of Epidemiology for Longevity and Regional Health, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| |
Collapse
|
4
|
Kim M, Cho S, Hwang DG, Shim IK, Kim SC, Jang J, Jang J. Bioprinting of bespoke islet-specific niches to promote maturation of stem cell-derived islets. Nat Commun 2025; 16:1430. [PMID: 39920133 PMCID: PMC11805982 DOI: 10.1038/s41467-025-56665-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Pancreatic islets are densely packed cellular aggregates containing various hormonal cell types essential for blood glucose regulation. Interactions among these cells markedly affect the glucoregulatory functions of islets along with the surrounding niche and pancreatic tissue-specific geometrical organization. However, stem cell (SC)-derived islets generated in vitro often lack the three-dimensional extracellular microenvironment and peri-vasculature, which leads to the immaturity of SC-derived islets, reducing their ability to detect glucose fluctuations and insulin release. Here, we bioengineer the in vivo-like pancreatic niches by optimizing the combination of pancreatic tissue-specific extracellular matrix and basement membrane proteins and utilizing bioprinting-based geometrical guidance to recreate the spatial pattern of islet peripheries. The bioprinted islet-specific niche promotes coordinated interactions between islets and vasculature, supporting structural and functional features resembling native islets. Our strategy not only improves SC-derived islet functionality but also offers significant potential for advancing research on islet development, maturation, and diabetic disease modeling, with future implications for translational applications.
Collapse
Affiliation(s)
- Myungji Kim
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Seungyeun Cho
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Dong Gyu Hwang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - In Kyong Shim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Song Cheol Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
- Division of Hepato-Biliary and Pancreatic Surgery, Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Jiwon Jang
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jinah Jang
- Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Center for 3D Organ Printing and Stem Cells, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Zahoor N, Arif A, Shuaib M, Jin K, Li B, Li Z, Pei X, Zhu X, Zuo Q, Niu Y, Song J, Chen G. Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture. Vet Sci 2024; 11:666. [PMID: 39729006 DOI: 10.3390/vetsci11120666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...].
Collapse
Affiliation(s)
- Nousheen Zahoor
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Areej Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Muhammad Shuaib
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Kai Jin
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Bichun Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zeyu Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xiaomeng Pei
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Xilin Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qisheng Zuo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yingjie Niu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Jiuzhou Song
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Breeding Reproduction and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Stougiannou TM, Christodoulou KC, Karangelis D. In Vitro Models of Cardiovascular Disease: Embryoid Bodies, Organoids and Everything in Between. Biomedicines 2024; 12:2714. [PMID: 39767621 PMCID: PMC11726960 DOI: 10.3390/biomedicines12122714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Cardiovascular disease comprises a group of disorders affecting or originating within tissues and organs of the cardiovascular system; most, if not all, will eventually result in cardiomyocyte dysfunction or death, negatively impacting cardiac function. Effective models of cardiac disease are thus important for understanding crucial aspects of disease progression, while recent advancements in stem cell biology have allowed for the use of stem cell populations to derive such models. These include three-dimensional (3D) models such as stem cell-based models of embryos (SCME) as well as organoids, many of which are frequently derived from embryoid bodies (EB). Not only can they recapitulate 3D form and function, but the developmental programs governing the self-organization of cell populations into more complex tissues as well. Many different organoids and SCME constructs have been generated in recent years to recreate cardiac tissue and the complex developmental programs that give rise to its cellular composition and unique tissue morphology. It is thus the purpose of this narrative literature review to describe and summarize many of the recently derived cardiac organoid models as well as their use for the recapitulation of genetic and acquired disease. Owing to the cellular composition of the models examined, this review will focus on disease and tissue injury associated with embryonic/fetal tissues.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, Democritus University of Thrace University General Hospital, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
7
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Jiang X, Lian X, Wei K, Zhang J, Yu K, Li H, Ma H, Cai Y, Pang L. Maturation of pluripotent stem cell-derived cardiomyocytes: limitations and challenges from metabolic aspects. Stem Cell Res Ther 2024; 15:354. [PMID: 39380099 PMCID: PMC11462682 DOI: 10.1186/s13287-024-03961-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Acute coronary syndromes, such as myocardial infarction (MI), lack effective therapies beyond heart transplantation, which is often hindered by donor scarcity and postoperative complications. Human induced pluripotent stem cells (hiPSCs) offer the possibility of myocardial regeneration by differentiating into cardiomyocytes. However, hiPSC-derived cardiomyocytes (hiPSC-cardiomyocytes) exhibit fetal-like calcium flux and energy metabolism, which inhibits their engraftment. Several strategies have been explored to improve the therapeutic efficacy of hiPSC-cardiomyocytes, such as selectively enhancing energy substrate utilization and improving the transplantation environment. In this review, we have discussed the impact of altered mitochondrial biogenesis and metabolic switching on the maturation of hiPSC-cardiomyocytes. Additionally, we have discussed the limitations inherent in current methodologies for assessing metabolism in hiPSC-cardiomyocytes, and the challenges in achieving sufficient metabolic flexibility akin to that in the healthy adult heart.
Collapse
Affiliation(s)
- Xi Jiang
- Health management center, the First Hospital of Jilin University, Changchun, China
| | - Xin Lian
- Department of Urology, the First Hospital of Jilin University, Changchun, China
| | - Kun Wei
- Department of Rehabilitation, The Second Affiliated Hospital, Shandong University of Traditional Chinese Medicine, Shandong, China
| | - Jie Zhang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Kaihua Yu
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haoming Li
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Haichun Ma
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China
| | - Yin Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Pang
- Department of Anesthesiology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
9
|
Mu J, Gao Z, Bo P, You B. Promotion of maturation in CDM3-induced embryonic stem cell-derived cardiomyocytes by palmitic acid. Biomed Mater Eng 2024:BME240101. [PMID: 39331088 DOI: 10.3233/bme-240101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
BACKGROUND Myocardial infarction leads to myocardial necrosis, and cardiomyocytes are non-renewable. Fatty acid-containing cardiomyocyte maturation medium promotes maturation of stem cell-derived cardiomyocytes. OBJECTIVE To study the effect palmitic acid on maturation of cardiomyocytes derived from human embryonic stem cells (hESCs) to optimize differentiation for potential treatment of myocardial infarction by hESCs. METHODS hESCs were differentiated into cardiomyocytes using standard chemically defined medium 3 (CDM3). Up to day 20 of differentiation, 200 Mm palmitic acid were added, and then the culture was continued for another 8 days to mimic the environment in which human cardiomyocytes mainly use fatty acids as the main energy source. Light microscopy, transmission electron microscopy, immunofluorescence, reverse transcription-polymerase chain reaction, and cellular ATP assays, were carried out to analyze the expression of relevant cardiomyocyte-related genes, cell morphology, metabolism levels, and other indicators cardiomyocyte maturity. RESULTS Cardiomyocytes derived from hESCs under exogenous palmitic acid had an elongated pike shape and a more regular arrangement. Sarcomere stripes were clear, and the cells color was clearly visible. The cell perimeter and elongation rate were also increased. Myogenic fibers were abundant, myofibrillar z-lines were regularly, the numbers of mitochondria and mitochondrial cristae were higher, more myofilaments were observed, and the structure of round-like discs was occasionally seen. Expression of mature cardiomyocyte-associated genes TNNT2, MYL2 and MYH6, and cardiomyocyte-associated genes KCNJ4, RYR2,and PPARα, was upregulated (p < 0.05). Expression of MYH7, MYL7, KCND2, KCND3, GJA1 and TNNI1 genes was unaffected (p > 0.05). Expression of mature cardiomyocyte-associated sarcomere protein MYL2 was significantly increased (p < 0.05), MYH7 protein expression was unaffected (p > 0.05). hESC-derived cardiomyocytes exposed to exogenous palmitic acid produced more ATP per unit time (p < 0.05). CONCLUSION Exogenous palmitic acid induced more mature hESC-CMs in terms of the cellular architecture, expression of cardiomyocyte maturation genes adnprotein, and metabolism.
Collapse
Affiliation(s)
- Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
- The Third Affiliated Hospital of XinXiang Medical University, XinXiang, China
| | - Zhen Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Ping Bo
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
10
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
11
|
Wang M, Mo D, Zhang N, Yu H. Ferroptosis in diabetic cardiomyopathy: Advances in cardiac fibroblast-cardiomyocyte interactions. Heliyon 2024; 10:e35219. [PMID: 39165946 PMCID: PMC11334834 DOI: 10.1016/j.heliyon.2024.e35219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common complication of diabetes, and its pathogenesis remains elusive. Ferroptosis, a process dependent on iron-mediated cell death, plays a crucial role in DCM via disrupted iron metabolism, lipid peroxidation, and weakened antioxidant defenses. Hyperglycemia, oxidative stress, and inflammation may exacerbate ferroptosis in diabetes. This review emphasizes the interaction between cardiac fibroblasts and cardiomyocytes in DCM, influencing ferroptosis occurrence. By exploring ferroptosis modulation for potential therapeutic targets, this article offers a fresh perspective on DCM treatment. The study systematically covers the interplay, mechanisms, and targeted drugs linked to ferroptosis in DCM development.
Collapse
Affiliation(s)
| | | | - Ning Zhang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Haichu Yu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| |
Collapse
|
12
|
Fetterman KA, Blancard M, Lyra-Leite DM, Vanoye CG, Fonoudi H, Jouni M, DeKeyser JML, Lenny B, Sapkota Y, George AL, Burridge PW. Independent compartmentalization of functional, metabolic, and transcriptional maturation of hiPSC-derived cardiomyocytes. Cell Rep 2024; 43:114160. [PMID: 38678564 PMCID: PMC11247623 DOI: 10.1016/j.celrep.2024.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) recapitulate numerous disease and drug response phenotypes, but cell immaturity may limit their accuracy and fidelity as a model system. Cell culture medium modification is a common method for enhancing maturation, yet prior studies have used complex media with little understanding of individual component contribution, which may compromise long-term hiPSC-CM viability. Here, we developed high-throughput methods to measure hiPSC-CM maturation, determined factors that enhanced viability, and then systematically assessed the contribution of individual maturation medium components. We developed a medium that is compatible with extended culture. We discovered that hiPSC-CM maturation can be sub-specified into electrophysiological/EC coupling, metabolism, and gene expression and that induction of these attributes is largely independent. In this work, we establish a defined baseline for future studies of cardiomyocyte maturation. Furthermore, we provide a selection of medium formulae, optimized for distinct applications and priorities, that promote measurable attributes of maturation.
Collapse
Affiliation(s)
- K Ashley Fetterman
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Malorie Blancard
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Davi M Lyra-Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Carlos G Vanoye
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jean-Marc L DeKeyser
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Brian Lenny
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children's Hospital, Memphis, TN, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Dattani A, Singh A, McCann GP, Gulsin GS. Myocardial Calcium Handling in Type 2 Diabetes: A Novel Therapeutic Target. J Cardiovasc Dev Dis 2023; 11:12. [PMID: 38248882 PMCID: PMC10817027 DOI: 10.3390/jcdd11010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Type 2 diabetes (T2D) is a multisystem disease with rapidly increasing global prevalence. Heart failure has emerged as a major complication of T2D. Dysregulated myocardial calcium handling is evident in the failing heart and this may be a key driver of cardiomyopathy in T2D, but until recently this has only been demonstrated in animal models. In this review, we describe the physiological concepts behind calcium handling within the cardiomyocyte and the application of novel imaging techniques for the quantification of myocardial calcium uptake. We take an in-depth look at the evidence for the impairment of calcium handling in T2D using pre-clinical models as well as in vivo studies, following which we discuss potential novel therapeutic approaches targeting dysregulated myocardial calcium handling in T2D.
Collapse
Affiliation(s)
- Abhishek Dattani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester LE3 9QP, UK; (A.S.); (G.P.M.); (G.S.G.)
| | | | | | | |
Collapse
|
14
|
Gorashi R, Rivera‐Bolanos N, Dang C, Chai C, Kovacs B, Alharbi S, Ahmed SS, Goyal Y, Ameer G, Jiang B. Modeling diabetic endothelial dysfunction with patient-specific induced pluripotent stem cells. Bioeng Transl Med 2023; 8:e10592. [PMID: 38023728 PMCID: PMC10658533 DOI: 10.1002/btm2.10592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetes is a known risk factor for various cardiovascular complications, mediated by endothelial dysfunction. Despite the high prevalence of this metabolic disorder, there is a lack of in vitro models that recapitulate the complexity of genetic and environmental factors associated with diabetic endothelial dysfunction. Here, we utilized human induced pluripotent stem cell (iPSC)-derived endothelial cells (ECs) to develop in vitro models of diabetic endothelial dysfunction. We found that the diabetic phenotype was recapitulated in diabetic patient-derived iPSC-ECs, even in the absence of a diabetogenic environment. Subsequent exposure to culture conditions that mimic the diabetic clinical chemistry induced a diabetic phenotype in healthy iPSC-ECs but did not affect the already dysfunctional diabetic iPSC-ECs. RNA-seq analysis revealed extensive transcriptome-wide differences between cells derived from healthy individuals and diabetic patients. The in vitro disease models were used as a screening platform which identified angiotensin receptor blockers (ARBs) that improved endothelial function in vitro for each patient. In summary, we present in vitro models of diabetic endothelial dysfunction using iPSC technology, taking into account the complexity of genetic and environmental factors in the metabolic disorder. Our study provides novel insights into the pathophysiology of diabetic endothelial dysfunction and highlights the potential of iPSC-based models for drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Rayyan Gorashi
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Nancy Rivera‐Bolanos
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
| | - Caitlyn Dang
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Cedric Chai
- Department of Cell and Developmental BiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityChicagoIllinoisUSA
- Center for Reproductive ScienceNorthwestern UniversityChicagoIllinoisUSA
| | - Beatrix Kovacs
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Sara Alharbi
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Syeda Subia Ahmed
- Department of Cell and Developmental BiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityChicagoIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yogesh Goyal
- Department of Cell and Developmental BiologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Center for Synthetic BiologyNorthwestern UniversityChicagoIllinoisUSA
- Center for Reproductive ScienceNorthwestern UniversityChicagoIllinoisUSA
- Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Guillermo Ameer
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| | - Bin Jiang
- Department of Biomedical EngineeringNorthwestern UniversityEvanston and ChicagoIllinoisUSA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIllinoisUSA
- Department of SurgeryFeinberg School of Medicine, Northwestern UniversityChicagoIllinoisUSA
| |
Collapse
|
15
|
Potel KN, Cornelius VA, Yacoub A, Chokr A, Donaghy CL, Kelaini S, Eleftheriadou M, Margariti A. Effects of non-coding RNAs and RNA-binding proteins on mitochondrial dysfunction in diabetic cardiomyopathy. Front Cardiovasc Med 2023; 10:1165302. [PMID: 37719978 PMCID: PMC10502732 DOI: 10.3389/fcvm.2023.1165302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023] Open
Abstract
Vascular complications are the main cause of diabetes mellitus-associated morbidity and mortality. Oxidative stress and metabolic dysfunction underly injury to the vascular endothelium and myocardium, resulting in diabetic angiopathy and cardiomyopathy. Mitochondrial dysfunction has been shown to play an important role in cardiomyopathic disruptions of key cellular functions, including energy metabolism and oxidative balance. Both non-coding RNAs and RNA-binding proteins are implicated in diabetic cardiomyopathy, however, their impact on mitochondrial dysfunction in the context of this disease is largely unknown. Elucidating the effects of non-coding RNAs and RNA-binding proteins on mitochondrial pathways in diabetic cardiomyopathy would allow further insights into the pathophysiological mechanisms underlying diabetic vascular complications and could facilitate the development of new therapeutic strategies. Stem cell-based models can facilitate the study of non-coding RNAs and RNA-binding proteins and their unique characteristics make them a promising tool to improve our understanding of mitochondrial dysfunction and vascular complications in diabetes.
Collapse
Affiliation(s)
- Koray N. Potel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Victoria A. Cornelius
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andrew Yacoub
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Ali Chokr
- Faculty of Medicine, University of Picardie Jules Verne, Amiens, France
| | - Clare L. Donaghy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Sophia Kelaini
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Magdalini Eleftheriadou
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Andriana Margariti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
16
|
Velichkova G, Dobreva G. Human pluripotent stem cell-based models of heart development and disease. Cells Dev 2023; 175:203857. [PMID: 37257755 DOI: 10.1016/j.cdev.2023.203857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/16/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
The heart is a complex organ composed of distinct cell types, such as cardiomyocytes, cardiac fibroblasts, endothelial cells, smooth muscle cells, neuronal cells and immune cells. All these cell types contribute to the structural, electrical and mechanical properties of the heart. Genetic manipulation and lineage tracing studies in mice have been instrumental in gaining critical insights into the networks regulating cardiac cell lineage specification, cell fate and plasticity. Such knowledge has been of fundamental importance for the development of efficient protocols for the directed differentiation of pluripotent stem cells (PSCs) in highly specialized cardiac cell types. In this review, we summarize the evolution and current advances in protocols for cardiac subtype specification, maturation, and assembly in cardiac microtissues and organoids.
Collapse
Affiliation(s)
- Gabriel Velichkova
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; German Centre for Cardiovascular Research (DZHK), Germany.
| |
Collapse
|
17
|
Zhou Y, Huang S, Li C, Qiao Y, Liu Q, Chen T, Wang J, Liu Y. Glucagon-Like Peptide-1 (GLP-1) Rescue Diabetic Cardiac Dysfuntions in Human iPSC-Derived Cardiomyocytes. Adv Biol (Weinh) 2023; 7:e2200130. [PMID: 36373695 DOI: 10.1002/adbi.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) can improve cardiac function and cardiovascular outcomes in diabetic cardiomyopathy; however, the beneficial effect of GLP-1 on human diabetic cardiomyocytes (DCMs) and its mechanism have not been fully elucidated. Here, the DCMs model by human-induced pluripotent stem cells-derived cardiomyocytes is developed. Two subtypes of GLP-1, GLP-17-36 and GLP-19-36 , are evaluated for their efficacy on the DCMs model. Diabetogenic condition is sufficient to induce most characteristics of diabetic cardiomyopathy in vitro, such as cardiac hypertrophy, lipid accumulation, impaired calcium transients, and abnormal electrophysiological properties. GLP-17-36 and GLP-19-36 can restore cardiomyocyte hypertrophic phenotype, impaired calcium transient frequency, abnormal action potential amplitude, depolarization, and repolarization velocity. Interestingly, RNA-seq reveals different pathways altered by GLP-17-36 and GLP-19-36 , respectively. Differentially expressed gene analysis reveals that possible targets of GLP-17-36 involve the regulation of mitotic nuclear division and extracellular matrix-receptor interaction, while possible targets of GLP-19-36 involve kinetochore assembly, and the complement and coagulation cascades. This study demonstrates the therapeutic effects of GLP-1 on human DCMs and provides a novel platform to unveil the cellular mechanisms of diabetic cardiomyopathy, shedding light on discovering better targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| | - Shuting Huang
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| | - Chengwu Li
- HELP Therapeutics, 568 Longmian Avenue, Nanjing, 211166, China
| | - Yue Qiao
- Department of Endocrinology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 210031, China
| | - Qing Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| | - Taotao Chen
- HELP Therapeutics, 568 Longmian Avenue, Nanjing, 211166, China
| | - Jiaxian Wang
- HELP Therapeutics, 568 Longmian Avenue, Nanjing, 211166, China
| | - Yu Liu
- Department of Endocrinology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Avenue, Nanjing, 211166, China
| |
Collapse
|
18
|
Kizub IV. Induced pluripotent stem cells for cardiovascular therapeutics: Progress and perspectives. REGULATORY MECHANISMS IN BIOSYSTEMS 2023; 14:451-468. [DOI: 10.15421/10.15421/022366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The discovery of methods for reprogramming adult somatic cells into induced pluripotent stem cells (iPSCs) opens up prospects of developing personalized cell-based therapy options for a variety of human diseases as well as disease modeling and new drug discovery. Like embryonic stem cells, iPSCs can give rise to various cell types of the human body and are amenable to genetic correction. This allows usage of iPSCs in the development of modern therapies for many virtually incurable human diseases. The review summarizes progress in iPSC research in the context of application in the cardiovascular field including modeling cardiovascular disease, drug study, tissue engineering, and perspectives for personalized cardiovascular medicine.
Collapse
|
19
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
20
|
Beydag-Tasöz BS, Yennek S, Grapin-Botton A. Towards a better understanding of diabetes mellitus using organoid models. Nat Rev Endocrinol 2023; 19:232-248. [PMID: 36670309 PMCID: PMC9857923 DOI: 10.1038/s41574-022-00797-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/22/2023]
Abstract
Our understanding of diabetes mellitus has benefited from a combination of clinical investigations and work in model organisms and cell lines. Organoid models for a wide range of tissues are emerging as an additional tool enabling the study of diabetes mellitus. The applications for organoid models include studying human pancreatic cell development, pancreatic physiology, the response of target organs to pancreatic hormones and how glucose toxicity can affect tissues such as the blood vessels, retina, kidney and nerves. Organoids can be derived from human tissue cells or pluripotent stem cells and enable the production of human cell assemblies mimicking human organs. Many organ mimics relevant to diabetes mellitus are already available, but only a few relevant studies have been performed. We discuss the models that have been developed for the pancreas, liver, kidney, nerves and vasculature, how they complement other models, and their limitations. In addition, as diabetes mellitus is a multi-organ disease, we highlight how a merger between the organoid and bioengineering fields will provide integrative models.
Collapse
Affiliation(s)
- Belin Selcen Beydag-Tasöz
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Siham Yennek
- The Novo Nordisk Foundation Center for Stem Cell Biology, Copenhagen, Denmark
| | - Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Paul Langerhans Institute Dresden, Dresden, Germany.
| |
Collapse
|
21
|
Administration of stem cells against cardiovascular diseases with a focus on molecular mechanisms: Current knowledge and prospects. Tissue Cell 2023; 81:102030. [PMID: 36709696 DOI: 10.1016/j.tice.2023.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
Cardiovascular diseases (CVDs) are a serious global concern for public and human health. Despite the emergence of significant therapeutic advances, it is still the leading cause of death and disability worldwide. As a result, extensive efforts are underway to develop practical therapeutic approaches. Stem cell-based therapies could be considered a promising strategy for the treatment of CVDs. The efficacy of stem cell-based therapeutic approaches is demonstrated through recent laboratory and clinical studies due to their inherent regenerative properties, proliferative nature, and their capacity to differentiate into different cells such as cardiomyocytes. These properties could improve cardiovascular functioning leading to heart regeneration. The two most common types of stem cells with the potential to cure heart diseases are induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs). Several studies have demonstrated the use, efficacy, and safety of MSC and iPSCs-based therapies for the treatment of CVDs. In this study, we explain the application of stem cells, especially iPSCs and MSCs, in the treatment of CVDs with a focus on cellular and molecular mechanisms and then discuss the advantages, disadvantages, and perspectives of using this technology in the treatment of these diseases.
Collapse
|
22
|
Cui S, Fang X, Lee H, Shin YJ, Koh ES, Chung S, Park HS, Lim SW, Lee KI, Lee JY, Yang CW, Chung BH. Modeling of Fabry disease nephropathy using patient derived human induced pluripotent stem cells and kidney organoid system. J Transl Med 2023; 21:138. [PMID: 36814269 PMCID: PMC9948377 DOI: 10.1186/s12967-023-03992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES To explore the possibility of kidney organoids generated using patient derived human induced pluripotent stem cells (hiPSC) for modeling of Fabry disease nephropathy (FDN). METHODS First, we generated hiPSC line using peripheral blood mononuclear cells (PBMCs) from two male FD-patients with different types of GLA mutation: a classic type mutation (CMC-Fb-001) and a non-classic type (CMC-Fb-003) mutation. Second, we generated kidney organoids using wild-type (WT) hiPSC (WTC-11) and mutant hiPSCs (CMC-Fb-001 and CMC-Fb-003). We then compared alpha-galactosidase A (α-GalA) activity, deposition of globotriaosylceremide (Gb-3), and zebra body formation under electromicroscopy (EM). RESULTS Both FD patients derived hiPSCs had the same mutations as those detected in PBMCs of patients, showing typical pluripotency markers, normal karyotyping, and successful tri-lineage differentiation. Kidney organoids generated using WT-hiPSC and both FD patients derived hiPSCs expressed typical nephron markers without structural deformity. Activity of α-GalA was decreased and deposition of Gb-3 was increased in FD patients derived hiPSCs and kidney organoids in comparison with WT, with such changes being far more significant in CMC-Fb-001 than in CMC-Fb-003. In EM finding, multi-lammelated inclusion body was detected in both CMC-Fb-001 and CMC-Fb-003 kidney organoids, but not in WT. CONCLUSIONS Kidney organoids generated using hiPSCs from male FD patients might recapitulate the disease phenotype and represent the severity of FD according to the GLA mutation type.
Collapse
Affiliation(s)
- Sheng Cui
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Xianying Fang
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Hanbi Lee
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea ,grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Yoo Jin Shin
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Eun-Sil Koh
- grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sungjin Chung
- grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hoon Suk Park
- grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun Woo Lim
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | | | | | - Chul Woo Yang
- grid.411947.e0000 0004 0470 4224Transplantation Research Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea ,grid.411947.e0000 0004 0470 4224Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591 South Korea
| | - Byung Ha Chung
- Transplantation Research Center, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, South Korea. .,Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-Gu, Seoul, 06591, South Korea.
| |
Collapse
|
23
|
Abstract
Heart disease is a significant burden on global health care systems and is a leading cause of death each year. To improve our understanding of heart disease, high quality disease models are needed. These will facilitate the discovery and development of new treatments for heart disease. Traditionally, researchers have relied on 2D monolayer systems or animal models of heart disease to elucidate pathophysiology and drug responses. Heart-on-a-chip (HOC) technology is an emerging field where cardiomyocytes among other cell types in the heart can be used to generate functional, beating cardiac microtissues that recapitulate many features of the human heart. HOC models are showing great promise as disease modeling platforms and are poised to serve as important tools in the drug development pipeline. By leveraging advances in human pluripotent stem cell-derived cardiomyocyte biology and microfabrication technology, diseased HOCs are highly tuneable and can be generated via different approaches such as: using cells with defined genetic backgrounds (patient-derived cells), adding small molecules, modifying the cells' environment, altering cell ratio/composition of microtissues, among others. HOCs have been used to faithfully model aspects of arrhythmia, fibrosis, infection, cardiomyopathies, and ischemia, to name a few. In this review, we highlight recent advances in disease modeling using HOC systems, describing instances where these models outperformed other models in terms of reproducing disease phenotypes and/or led to drug development.
Collapse
Affiliation(s)
- Omar Mourad
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Ryan Yee
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Mengyuan Li
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada
| | - Sara S Nunes
- Toronto General Hospital Research Institute (O.M., R.Y., M.L., S.S.N.), University Health Network, Toronto, Canada.,Ajmera Transplant Center (S.S.N.), University Health Network, Toronto, Canada.,Institute of Biomedical Engineering (O.M., R.Y., M.L., S.S.N.), University of Toronto, Canada.,Department of Laboratory Medicine and Pathobiology (S.S.N.), University of Toronto, Canada.,Heart and Stroke/Richard Lewar Centre of Excellence (S.S.N.), University of Toronto, Canada
| |
Collapse
|
24
|
Di Sante M, Antonucci S, Pontarollo L, Cappellaro I, Segat F, Deshwal S, Greotti E, Grilo LF, Menabò R, Di Lisa F, Kaludercic N. Monoamine oxidase A-dependent ROS formation modulates human cardiomyocyte differentiation through AKT and WNT activation. Basic Res Cardiol 2023; 118:4. [PMID: 36670288 PMCID: PMC9859871 DOI: 10.1007/s00395-023-00977-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/21/2023]
Abstract
During embryonic development, cardiomyocytes undergo differentiation and maturation, processes that are tightly regulated by tissue-specific signaling cascades. Although redox signaling pathways involved in cardiomyogenesis are established, the exact sources responsible for reactive oxygen species (ROS) formation remain elusive. The present study investigates whether ROS produced by the mitochondrial flavoenzyme monoamine oxidase A (MAO-A) play a role in cardiomyocyte differentiation from human induced pluripotent stem cells (hiPSCs). Wild type (WT) and MAO-A knock out (KO) hiPSCs were generated by CRISPR/Cas9 genome editing and subjected to cardiomyocyte differentiation. Mitochondrial ROS levels were lower in MAO-A KO compared to the WT cells throughout the differentiation process. MAO-A KO hiPSC-derived cardiomyocytes (hiPSC-CMs) displayed sarcomere disarray, reduced α- to β-myosin heavy chain ratio, GATA4 upregulation and lower macroautophagy levels. Functionally, genetic ablation of MAO-A negatively affected intracellular Ca2+ homeostasis in hiPSC-CMs. Mechanistically, MAO-A generated ROS contributed to the activation of AKT signaling that was considerably attenuated in KO cells. In addition, MAO-A ablation caused a reduction in WNT pathway gene expression consistent with its reported stimulation by ROS. As a result of WNT downregulation, expression of MESP1 and NKX2.5 was significantly decreased in MAO-A KO cells. Finally, MAO-A re-expression during differentiation rescued expression levels of cardiac transcription factors, contractile structure, and intracellular Ca2+ homeostasis. Taken together, these results suggest that MAO-A mediated ROS generation is necessary for the activation of AKT and WNT signaling pathways during cardiac lineage commitment and for the differentiation of fully functional human cardiomyocytes.
Collapse
Affiliation(s)
- Moises Di Sante
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Salvatore Antonucci
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Laura Pontarollo
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Ilaria Cappellaro
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Francesca Segat
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Soni Deshwal
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Elisa Greotti
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Luis F Grilo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Roberta Menabò
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy
| | - Fabio Di Lisa
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
| | - Nina Kaludercic
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Via Ugo Bassi 58/B, 35131, Padua, Italy.
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza (IRP), 35127, Padua, Italy.
| |
Collapse
|
25
|
Bissoli I, D’Adamo S, Pignatti C, Agnetti G, Flamigni F, Cetrullo S. Induced pluripotent stem cell-based models: Are we ready for that heart in a dish? Front Cell Dev Biol 2023; 11:1129263. [PMID: 36743420 PMCID: PMC9892938 DOI: 10.3389/fcell.2023.1129263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Affiliation(s)
- Irene Bissoli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Stefania D’Adamo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Carla Pignatti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Giulio Agnetti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
- Center for Research on Cardiac Intermediate Filaments, Johns Hopkins University, Baltimore, MD, United States
| | - Flavio Flamigni
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| | - Silvia Cetrullo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto Nazionale per le Ricerche Cardiovascolari, Bologna, Italy
| |
Collapse
|
26
|
Luo W, He M, Luo Q, Li Y. Proteome-wide analysis of lysine β-hydroxybutyrylation in the myocardium of diabetic rat model with cardiomyopathy. Front Cardiovasc Med 2023; 9:1066822. [PMID: 36698951 PMCID: PMC9868477 DOI: 10.3389/fcvm.2022.1066822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Lysine ß-hydroxybutyrylation (kbhb), a novel modification of lysine residues with the ß-hydroxybuty group, is associated with ketone metabolism in numerous species. However, its potential role in diabetes, especially in diabetic cardiomyopathy (DCM), remains largely unexplored. In this study, using affinity enrichment and liquid chromatography-mass spectrometry (LC-MS/MS) method, we quantitatively analyze the kbhb residues on heart tissues of a DCM model rat. A total of 3,520 kbhb sites in 1,089 proteins were identified in this study. Further analysis showed that 336 kbhb sites in 143 proteins were differentially expressed between the heart tissues of DCM and wild-type rats. Among them, 284 kbhb sites in 96 proteins were upregulated, while 52 kbhb sites in 47 proteins were downregulated. Bioinformatic analysis of the proteomic results revealed that these kbhb-modified proteins were widely distributed in various components and involved in a wide range of cellular functions and biological processes (BPs). Functional analysis showed that the kbhb-modified proteins were involved in the tricarboxylic acid cycle, oxidative phosphorylation, and propanoate metabolism. Our findings demonstrated how kbhb is related to many metabolic pathways and is mainly involved in energy metabolism. These results provide the first global investigation of the kbhb profile in DCM progression and can be an essential resource to explore DCM's pathogenesis further.
Collapse
Affiliation(s)
- Weiguang Luo
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mei He
- Henan Medical Key Laboratory of Arrhythmia, The 7th People’s Hospital of Zhengzhou, Zhengzhou Cardiovascular Hospital, Zhengzhou, China
| | - Qizhi Luo
- Department of Immunology, Basic Medical School of Central South University, Changsha, Hunan, China
| | - Yi Li
- Department of Clinical Laboratory, Henan Provincial People’s Hospital, Henan University People’s Hospital, Zhengzhou, Henan, China,*Correspondence: Yi Li,
| |
Collapse
|
27
|
Sun X, Jiang Y, Li Q, Tan Q, Dong M, Cai B, Zhang D, Zhao Q. Quantitative proteomics analysis revealed the potential role of lncRNA Ftx in cardiomyocytes. Proteome Sci 2023; 21:2. [PMID: 36604692 PMCID: PMC9814437 DOI: 10.1186/s12953-022-00201-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/30/2022] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVE This study aims to decode the proteomic signature of cardiomyocytes in response to lncRNA Ftx knockdown and overexpression via proteomic analysis, and to study the biological role of lncRNA Ftx in cardiomyocytes. METHODS: The expression level of the lncRNA Ftx in cardiomyocytes cultured in vitro was intervened, and the changes in protein levels in cardiomyocytes were quantitatively detected by liquid chromatography-mass spectrometry. The key molecules and pathways of the lncRNA-Ftx response were further examined by GO, KEGG, and protein interaction analysis. RESULTS A total of 2828 proteins are quantified. With a 1.5-fold change threshold, 32 upregulated proteins and 49 downregulated proteins are identified in the lncRNA Ftx overexpression group, while 67 up-regulated proteins and 54 down-regulated proteins are identified in the lncRNA Ftx knockdown group. Functional clustering analysis of differential genes revealed that the lncRNA Ftx is involved in regulating cardiomyocyte apoptosis and ferroptosis and improving cellular energy metabolism. In addition, Hub genes such as ITGB1, HMGA2, STAT3, GSS, and LPCAT3 are regulated downstream by lncRNA Ftx. CONCLUSION This study demonstrates that lncRNA Ftx plays a vital role in cardiomyocytes and may be involved in the occurrence and development of various myocardial diseases. It provides a potential target for clinical protection of the myocardium and reversal of myocardial fibrosis.
Collapse
Affiliation(s)
- Xiangfei Sun
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Cardiovascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021 Shandong China
| | - Ying Jiang
- grid.460018.b0000 0004 1769 9639Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250021 Jinan, China
| | - Qingbao Li
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China
| | - Qi Tan
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China
| | - Mingliang Dong
- grid.460018.b0000 0004 1769 9639Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677 Jingshi Road, Jinan, 250021 Shandong China
| | - Bi’e Cai
- grid.479672.9Health Management Department of Preventive Treatment Center, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua West Road, Jinan, 250021 Shandong China
| | - Di Zhang
- grid.460018.b0000 0004 1769 9639Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250021 Jinan, China
| | - Qi Zhao
- grid.460018.b0000 0004 1769 9639Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Jinan, 250021 Shandong China ,grid.27255.370000 0004 1761 1174Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250021 Jinan, China
| |
Collapse
|
28
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
29
|
GLUT4 translocation and dispersal operate in multiple cell types and are negatively correlated with cell size in adipocytes. Sci Rep 2022; 12:20535. [PMID: 36446811 PMCID: PMC9708847 DOI: 10.1038/s41598-022-24736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
The regulated translocation of the glucose transporter, GLUT4, to the surface of adipocytes and muscle is a key action of insulin. This is underpinned by the delivery and fusion of GLUT4-containing vesicles with the plasma membrane. Recent studies have revealed that a further action of insulin is to mediate the dispersal of GLUT4 molecules away from the site of GLUT4 vesicle fusion with the plasma membrane. Although shown in adipocytes, whether insulin-stimulated dispersal occurs in other cells and/or is exhibited by other proteins remains a matter of debate. Here we show that insulin stimulates GLUT4 dispersal in the plasma membrane of adipocytes, induced pluripotent stem cell-derived cardiomyocytes and HeLa cells, suggesting that this phenomenon is specific to GLUT4 expressed in all cell types. By contrast, insulin-stimulated dispersal of TfR was not observed in HeLa cells, suggesting that the mechanism may be unique to GLUT4. Consistent with dispersal being an important physiological mechanism, we observed that insulin-stimulated GLUT4 dispersal is reduced under conditions of insulin resistance. Adipocytes of different sizes have been shown to exhibit distinct metabolic properties: larger adipocytes exhibit reduced insulin-stimulated glucose transport compared to smaller cells. Here we show that both GLUT4 delivery to the plasma membrane and GLUT4 dispersal are reduced in larger adipocytes, supporting the hypothesis that larger adipocytes are refractory to insulin challenge compared to their smaller counterparts, even within a supposedly homogeneous population of cells.
Collapse
|
30
|
Abdelsayed M, Kort EJ, Jovinge S, Mercola M. Repurposing drugs to treat cardiovascular disease in the era of precision medicine. Nat Rev Cardiol 2022; 19:751-764. [PMID: 35606425 PMCID: PMC9125554 DOI: 10.1038/s41569-022-00717-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
Abstract
Drug repurposing is the use of a given therapeutic agent for indications other than that for which it was originally designed or intended. The concept is appealing because of potentially lower development costs and shorter timelines than are needed to produce a new drug. To date, drug repurposing for cardiovascular indications has been opportunistic and driven by knowledge of disease mechanisms or serendipitous observation rather than by systematic endeavours to match an existing drug to a new indication. Innovations in two areas of personalized medicine - computational approaches to associate drug effects with disease signatures and predictive model systems to screen drugs for disease-modifying activities - support efforts that together create an efficient pipeline to systematically repurpose drugs to treat cardiovascular disease. Furthermore, new experimental strategies that guide the medicinal chemistry re-engineering of drugs could improve repurposing efforts by tailoring a medicine to its new indication. In this Review, we summarize the historical approach to repurposing and discuss the technological advances that have created a new landscape of opportunities.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Eric J Kort
- DeVos Cardiovascular Program Spectrum Health & Van Andel Institute, Grand Rapids, MI, USA
| | - Stefan Jovinge
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- DeVos Cardiovascular Program Spectrum Health & Van Andel Institute, Grand Rapids, MI, USA.
- Department of Medicine, University of Texas Southwestern, Dallas, TX, USA.
- Department of Clinical Sciences, Scania University Hospital, Lund University, Lund, Sweden.
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
31
|
Ergir E, Oliver-De La Cruz J, Fernandes S, Cassani M, Niro F, Pereira-Sousa D, Vrbský J, Vinarský V, Perestrelo AR, Debellis D, Vadovičová N, Uldrijan S, Cavalieri F, Pagliari S, Redl H, Ertl P, Forte G. Generation and maturation of human iPSC-derived 3D organotypic cardiac microtissues in long-term culture. Sci Rep 2022; 12:17409. [PMID: 36257968 PMCID: PMC9579206 DOI: 10.1038/s41598-022-22225-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide; hence there is an increasing focus on developing physiologically relevant in vitro cardiovascular tissue models suitable for studying personalized medicine and pre-clinical tests. Despite recent advances, models that reproduce both tissue complexity and maturation are still limited. We have established a scaffold-free protocol to generate multicellular, beating human cardiac microtissues in vitro from hiPSCs-namely human organotypic cardiac microtissues (hOCMTs)-that show some degree of self-organization and can be cultured for long term. This is achieved by the differentiation of hiPSC in 2D monolayer culture towards cardiovascular lineage, followed by further aggregation on low-attachment culture dishes in 3D. The generated hOCMTs contain multiple cell types that physiologically compose the heart and beat without external stimuli for more than 100 days. We have shown that 3D hOCMTs display improved cardiac specification, survival and metabolic maturation as compared to standard monolayer cardiac differentiation. We also confirmed the functionality of hOCMTs by their response to cardioactive drugs in long-term culture. Furthermore, we demonstrated that they could be used to study chemotherapy-induced cardiotoxicity. Due to showing a tendency for self-organization, cellular heterogeneity, and functionality in our 3D microtissues over extended culture time, we could also confirm these constructs as human cardiac organoids (hCOs). This study could help to develop more physiologically-relevant cardiac tissue models, and represent a powerful platform for future translational research in cardiovascular biology.
Collapse
Affiliation(s)
- Ece Ergir
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria
| | - Jorge Oliver-De La Cruz
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Soraia Fernandes
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Marco Cassani
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Francesco Niro
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Daniel Pereira-Sousa
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Vrbský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Vladimír Vinarský
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Ana Rubina Perestrelo
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Doriana Debellis
- grid.25786.3e0000 0004 1764 2907Electron Microscopy Facility, Fondazione Istituto Italiano Di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Natália Vadovičová
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Stjepan Uldrijan
- grid.10267.320000 0001 2194 0956Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, 62500 Brno, Czech Republic
| | - Francesca Cavalieri
- grid.1008.90000 0001 2179 088XDepartment of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia ,grid.6530.00000 0001 2300 0941Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Stefania Pagliari
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic
| | - Heinz Redl
- grid.454388.6Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, AUVA Research Center, 1200 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- grid.5329.d0000 0001 2348 4034Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, 1040 Vienna, Austria ,grid.511951.8Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Giancarlo Forte
- grid.412752.70000 0004 0608 7557Center for Translational Medicine (CTM), International Clinical Research Centre (FNUSA-ICRC), St. Anne’s University Hospital, Studentská 812/6, 62500 Brno, Czech Republic ,grid.1374.10000 0001 2097 1371Department of Biomaterials Science, Institute of Dentistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
32
|
Purnama U, Castro-Guarda M, Sahoo OS, Carr CA. Modelling Diabetic Cardiomyopathy: Using Human Stem Cell-Derived Cardiomyocytes to Complement Animal Models. Metabolites 2022; 12:metabo12090832. [PMID: 36144236 PMCID: PMC9503602 DOI: 10.3390/metabo12090832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Diabetes is a global epidemic, with cardiovascular disease being the leading cause of death in diabetic patients. There is a pressing need for an in vitro model to aid understanding of the mechanisms driving diabetic heart disease, and to provide an accurate, reliable tool for drug testing. Human induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have potential as a disease modelling tool. There are several factors that drive molecular changes inside cardiomyocytes contributing to diabetic cardiomyopathy, including hyperglycaemia, lipotoxicity and hyperinsulinemia. Here we discuss these factors and how they can be seen in animal models and utilised in cell culture to mimic the diabetic heart. The use of human iPSC-CMs will allow for a greater understanding of disease pathogenesis and open up new avenues for drug testing.
Collapse
Affiliation(s)
- Ujang Purnama
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Marcos Castro-Guarda
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Om Saswat Sahoo
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713216, India
| | - Carolyn A. Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
- Correspondence: ; Tel.: +44-1865-282247
| |
Collapse
|
33
|
Persad KL, Lopaschuk GD. Energy Metabolism on Mitochondrial Maturation and Its Effects on Cardiomyocyte Cell Fate. Front Cell Dev Biol 2022; 10:886393. [PMID: 35865630 PMCID: PMC9294643 DOI: 10.3389/fcell.2022.886393] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 12/12/2022] Open
Abstract
Alterations in energy metabolism play a major role in the lineage of cardiomyocytes, such as the dramatic changes that occur in the transition from neonate to newborn. As cardiomyocytes mature, they shift from a primarily glycolytic state to a mitochondrial oxidative metabolic state. Metabolic intermediates and metabolites may have epigenetic and transcriptional roles in controlling cell fate by increasing mitochondrial biogenesis. In the maturing cardiomyocyte, such as in the postnatal heart, fatty acid oxidation increases in conjunction with increased mitochondrial biogenesis driven by the transcriptional coregulator PGC1-α. PGC1-α is necessary for mitochondrial biogenesis in the heart at birth, with deficiencies leading to postnatal cardiomyopathy. While stem cell therapy as a treatment for heart failure requires further investigation, studies suggest that adult stem cells may secrete cardioprotective factors which may regulate cardiomyocyte differentiation and survival. This review will discuss how metabolism influences mitochondrial biogenesis and how mitochondrial biogenesis influences cell fate, particularly in the context of the developing cardiomyocyte. The implications of energy metabolism on stem cell differentiation into cardiomyocytes and how this may be utilized as a therapy against heart failure and cardiovascular disease will also be discussed.
Collapse
|
34
|
Schade D, Drowley L, Wang QD, Plowright AT, Greber B. Phenotypic screen identifies FOXO inhibitor to counteract maturation and promote expansion of human iPS cell-derived cardiomyocytes. Bioorg Med Chem 2022; 65:116782. [PMID: 35512484 DOI: 10.1016/j.bmc.2022.116782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 11/15/2022]
Abstract
Achieving pharmacological control over cardiomyocyte proliferation represents a prime goal in therapeutic cardiovascular research. Here, we identify a novel chemical tool compound for the expansion of human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes. The forkhead box O (FOXO) inhibitor AS1842856 was identified as a significant hit from an unbiased proliferation screen in early, immature hiPSC- cardiomyocytes (eCMs). The mitogenic effects of AS1842856 turned out to be robust, dose-dependent, sustained, and reversible. eCM numbers increased >30-fold as induced by AS1842856 over three passages. Phenotypically as well as by marker gene expression, the compound interestingly appeared to counteract cellular maturation both in immature hiPSC-CMs as well as in more advanced ones. Thus, FOXO inhibitor AS1842856 presents a novel proliferation inducer for the chemically defined, xeno-free expansion of hiPSC-derived CMs, while its de-differentiation effect might as well bear potential in regenerative medicine.
Collapse
Affiliation(s)
- Dennis Schade
- Department of Pharmaceutical & Medicinal Chemistry, Christian-Albrechts-University of Kiel, Gutenbergstrasse 76, 24118 Kiel, Germany; Partner Site Kiel, DZHK, German Center for Cardiovascular Research, 24105 Kiel, Germany; Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Lauren Drowley
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Qing-Dong Wang
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alleyn T Plowright
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany; Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany.
| |
Collapse
|
35
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
- Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|
36
|
Heather LC, Hafstad AD, Halade GV, Harmancey R, Mellor KM, Mishra PK, Mulvihill EE, Nabben M, Nakamura M, Rider OJ, Ruiz M, Wende AR, Ussher JR. Guidelines on Models of Diabetic Heart Disease. Am J Physiol Heart Circ Physiol 2022; 323:H176-H200. [PMID: 35657616 PMCID: PMC9273269 DOI: 10.1152/ajpheart.00058.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes is a major risk factor for cardiovascular diseases, including diabetic cardiomyopathy, atherosclerosis, myocardial infarction, and heart failure. As cardiovascular disease represents the number one cause of death in people with diabetes, there has been a major emphasis on understanding the mechanisms by which diabetes promotes cardiovascular disease, and how antidiabetic therapies impact diabetic heart disease. With a wide array of models to study diabetes (both type 1 and type 2), the field has made major progress in answering these questions. However, each model has its own inherent limitations. Therefore, the purpose of this guidelines document is to provide the field with information on which aspects of cardiovascular disease in the human diabetic population are most accurately reproduced by the available models. This review aims to emphasize the advantages and disadvantages of each model, and to highlight the practical challenges and technical considerations involved. We will review the preclinical animal models of diabetes (based on their method of induction), appraise models of diabetes-related atherosclerosis and heart failure, and discuss in vitro models of diabetic heart disease. These guidelines will allow researchers to select the appropriate model of diabetic heart disease, depending on the specific research question being addressed.
Collapse
Affiliation(s)
- Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anne D Hafstad
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ganesh V Halade
- Department of Medicine, The University of Alabama at Birmingham, Tampa, Florida, United States
| | - Romain Harmancey
- Department of Internal Medicine, Division of Cardiology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, United States
| | | | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Erin E Mulvihill
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Miranda Nabben
- Departments of Genetics and Cell Biology, and Clinical Genetics, Maastricht University Medical Center, CARIM School of Cardiovascular Diseases, Maastricht, the Netherlands
| | - Michinari Nakamura
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Oliver J Rider
- University of Oxford Centre for Clinical Magnetic Resonance Research, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matthieu Ruiz
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Adam R Wende
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Lewis‐Israeli YR, Abdelhamid M, Olomu I, Aguirre A. Modeling the Effects of Maternal Diabetes on the Developing Human Heart Using Pluripotent Stem Cell-Derived Heart Organoids. Curr Protoc 2022; 2:e461. [PMID: 35723517 PMCID: PMC9219413 DOI: 10.1002/cpz1.461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital heart defects (CHD) constitute the most common type of birth defect in humans. Maternal diabetes during the first trimester of pregnancy (pregestational diabetes, or PGD) is one of the most prominent factors contributing to CHD, and is present in a significant population of female patients with diabetes in reproductive age. PGD is challenging to manage clinically due to the extreme sensitivity of the developing embryo to glucose oscillations, and constitutes a critical health problem for the mother and the fetus. The prevalence of PGD-induced CHD is increasing due to the ongoing diabetes epidemic. While studies using animal models and cells in culture have demonstrated that PGD alters critical cellular and developmental processes, the mechanisms remain obscure, and it is unclear to what extent these models recapitulate PGD-induced CHD in humans. Clinical practice precludes direct studies in developing human embryos, further highlighting the need for physiologically relevant models. To bypass many of these technical and ethical limitations, we describe here a human pluripotent stem cell (hPSC)-based method to generate developmentally relevant self-organizing human heart organoids. By using glucose and insulin to mimic the diabetic environment that the embryo faces in PGD, this system allows modeling critical features of PGD in a human system with relevant physiology, structure, and cell types. The protocol starts with the generation of hPSC-derived embryoid bodies in a 96-well plate, followed by a small molecule-based three-step Wnt activation/inhibition/activation strategy. Organoids are then differentiated under healthy (normal insulin and glucose) and diabetic conditions (high insulin and glucose) over time, allowing for the study of the effects of pregestational diabetes on the developing human heart. We also provide an immunofluorescence protocol for comparing, characterizing, and analyzing the differences between the healthy and diabetic organoids, and comment on additional steps for preparing the organoids for analysis by other techniques after differentiation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Generation of hPSC-derived embryoid bodies Basic Protocol 2: Differentiation of EBs into heart organoids under healthy and diabetes-like conditions Basic Protocol 3: Immunofluorescence and organoid preparation for other assays.
Collapse
Affiliation(s)
- Yonatan R. Lewis‐Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan
- Department of Biomedical Engineering, College of EngineeringMichigan State UniversityEast LansingMichigan
| | - Mishref Abdelhamid
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human MedicineMichigan State UniversityEast LansingMichigan
| | - Isoken Olomu
- Division of Neonatology, Department of Pediatrics and Human Development, College of Human MedicineMichigan State UniversityEast LansingMichigan
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMichigan
- Department of Biomedical Engineering, College of EngineeringMichigan State UniversityEast LansingMichigan
| |
Collapse
|
38
|
Phang RJ, Ritchie RH, Hausenloy DJ, Lees JG, Lim SY. Cellular interplay between cardiomyocytes and non-myocytes in diabetic cardiomyopathy. Cardiovasc Res 2022; 119:668-690. [PMID: 35388880 PMCID: PMC10153440 DOI: 10.1093/cvr/cvac049] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 03/05/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with Type 2 diabetes mellitus (T2DM) frequently exhibit a distinctive cardiac phenotype known as diabetic cardiomyopathy. Cardiac complications associated with T2DM include cardiac inflammation, hypertrophy, fibrosis and diastolic dysfunction in the early stages of the disease, which can progress to systolic dysfunction and heart failure. Effective therapeutic options for diabetic cardiomyopathy are limited and often have conflicting results. The lack of effective treatments for diabetic cardiomyopathy is due in part, to our poor understanding of the disease development and progression, as well as a lack of robust and valid preclinical human models that can accurately recapitulate the pathophysiology of the human heart. In addition to cardiomyocytes, the heart contains a heterogeneous population of non-myocytes including fibroblasts, vascular cells, autonomic neurons and immune cells. These cardiac non-myocytes play important roles in cardiac homeostasis and disease, yet the effect of hyperglycaemia and hyperlipidaemia on these cell types are often overlooked in preclinical models of diabetic cardiomyopathy. The advent of human induced pluripotent stem cells provides a new paradigm in which to model diabetic cardiomyopathy as they can be differentiated into all cell types in the human heart. This review will discuss the roles of cardiac non-myocytes and their dynamic intercellular interactions in the pathogenesis of diabetic cardiomyopathy. We will also discuss the use of sodium-glucose cotransporter 2 inhibitors as a therapy for diabetic cardiomyopathy and their known impacts on non-myocytes. These developments will no doubt facilitate the discovery of novel treatment targets for preventing the onset and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Ren Jie Phang
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rebecca H Ritchie
- School of Biosciences, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria 3052, Australia.,Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, UK.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia.,Departments of Surgery and Medicine, University of Melbourne, Parkville, Victoria 3010, Australia.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Magdy T, Burridge PW. Prime time for doxorubicin-induced cardiotoxicity genetic testing. Pharmacogenomics 2022; 23:335-338. [PMID: 35380470 PMCID: PMC9006338 DOI: 10.2217/pgs-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/21/2022] Open
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
40
|
Tani H, Tohyama S. Human Engineered Heart Tissue Models for Disease Modeling and Drug Discovery. Front Cell Dev Biol 2022; 10:855763. [PMID: 35433691 PMCID: PMC9008275 DOI: 10.3389/fcell.2022.855763] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 12/29/2022] Open
Abstract
The emergence of human induced pluripotent stem cells (hiPSCs) and efficient differentiation of hiPSC-derived cardiomyocytes (hiPSC-CMs) induced from diseased donors have the potential to recapitulate the molecular and functional features of the human heart. Although the immaturity of hiPSC-CMs, including the structure, gene expression, conduct, ion channel density, and Ca2+ kinetics, is a major challenge, various attempts to promote maturation have been effective. Three-dimensional cardiac models using hiPSC-CMs have achieved these functional and morphological maturations, and disease models using patient-specific hiPSC-CMs have furthered our understanding of the underlying mechanisms and effective therapies for diseases. Aside from the mechanisms of diseases and drug responses, hiPSC-CMs also have the potential to evaluate the safety and efficacy of drugs in a human context before a candidate drug enters the market and many phases of clinical trials. In fact, novel drug testing paradigms have suggested that these cells can be used to better predict the proarrhythmic risk of candidate drugs. In this review, we overview the current strategies of human engineered heart tissue models with a focus on major cardiac diseases and discuss perspectives and future directions for the real application of hiPSC-CMs and human engineered heart tissue for disease modeling, drug development, clinical trials, and cardiotoxicity tests.
Collapse
Affiliation(s)
- Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
- *Correspondence: Shugo Tohyama,
| |
Collapse
|
41
|
Qiao L, Fan X, Yang Z, El-Battrawy I, Zhou X, Akin I. Glucose Counteracts Isoprenaline Effects on Ion Channel Functions in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes. J Cardiovasc Dev Dis 2022; 9:jcdd9030076. [PMID: 35323624 PMCID: PMC8955312 DOI: 10.3390/jcdd9030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Recent studies indicate that the disorder of glucose metabolism in myocardial tissue is involved in the development of Takotsubo syndrome (TTS). This study investigated the effects of a high level of glucose on the pathogenesis of TTS, focusing on the electrophysiological mechanisms. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with toxic concentration of isoprenaline (Iso, 1 mM) and a high level of glucose (22 mM) to mimic the setting of TTS and diabetes mellitus (DM). Iso prolonged action potential duration (APD) through enhancing the late sodium channel current and suppressing the transient outward potassium current (Ito). However, a high level of glucose prevented the APD prolongation and the change in Ito. High-level glucose reduced the expression levels of PI3K/Akt, β1-adrenoceptors, Gs-protein, and PKA, suggesting their involvement in the protective effects of high-level glucose against toxic effects of catecholamine. High glucose level did not influence Iso-induced ROS-generation, suggesting that the protective effects of high-level glucose against Iso did not result from changes in ROS generation. High-level glucose may protect cardiomyocytes from the toxic effects of catecholamine excess through suppressing β1-adrenoceptor-Gs-PKA signaling. DM may reduce the risk for occurrence of arrhythmias due to QT prolongation in TTS patients.
Collapse
Affiliation(s)
- Lin Qiao
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
| | - Xuehui Fan
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Zhen Yang
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
| | - Ibrahim El-Battrawy
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-383-1448; Fax: +49-621-383-1474
| | - Ibrahim Akin
- Department of Cardiology, Angiology, Haemostaseology and Medical Intensive Care, Medical Faculty Mannheim, University Medical Centre Mannheim (UMM), University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; (L.Q.); (X.F.); (Z.Y.); (I.E.-B.); (I.A.)
- European Center for AngioScience (ECAS) and German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, 68167 Mannheim, Germany
| |
Collapse
|
42
|
The role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Semin Cell Dev Biol 2022; 122:56-65. [PMID: 34074592 PMCID: PMC8725317 DOI: 10.1016/j.semcdb.2021.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 02/06/2023]
Abstract
The advent of induced pluripotent stem cells (iPSCs) and identification of transcription factors for cardiac reprogramming have raised hope to cure heart disease, the leading cause of death in the world. Our knowledge in heart development and molecular barriers of cardiac reprogramming is advancing, but many hurdles are yet to be overcome for clinical translation. Importantly, we lack a full understanding of molecular mechanisms governing cell fate conversion toward cardiomyocytes. In this review, we will discuss the role of metabolism in directed differentiation versus trans-differentiation of cardiomyocytes. Cardiomyocytes exhibit a unique metabolic feature distinct from PSCs and cardiac fibroblasts, and there are multiple overlapping molecular mechanisms underlying metabolic reprogramming during cardiomyogenesis. We will discuss key metabolic changes occurring during cardiomyocytes differentiation from PSCs and cardiac fibroblasts, and the potential role of metabolic reprogramming in the enhancement strategies for cardiomyogenesis. Only when such details are discovered will more effective strategies to enhance the de novo production of cardiomyocytes be possible.
Collapse
|
43
|
Pavez-Giani MG, Cyganek L. Recent Advances in Modeling Mitochondrial Cardiomyopathy Using Human Induced Pluripotent Stem Cells. Front Cell Dev Biol 2022; 9:800529. [PMID: 35083221 PMCID: PMC8784695 DOI: 10.3389/fcell.2021.800529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
Around one third of patients with mitochondrial disorders develop a kind of cardiomyopathy. In these cases, severity is quite variable ranging from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. ATP is primarily generated in the mitochondrial respiratory chain via oxidative phosphorylation by utilizing fatty acids and carbohydrates. Genes in both the nuclear and the mitochondrial DNA encode components of this metabolic route and, although mutations in these genes are extremely rare, the risk to develop cardiac symptoms is significantly higher in this patient cohort. Additionally, infants with cardiovascular compromise in mitochondrial deficiency display a worse late survival compared to patients without cardiac symptoms. At this point, the mechanisms behind cardiac disease progression related to mitochondrial gene mutations are poorly understood and current therapies are unable to substantially restore the cardiac performance and to reduce the disease burden. Therefore, new strategies are needed to uncover the pathophysiological mechanisms and to identify new therapeutic options for mitochondrial cardiomyopathies. Here, human induced pluripotent stem cell (iPSC) technology has emerged to provide a suitable patient-specific model system by recapitulating major characteristics of the disease in vitro, as well as to offer a powerful platform for pre-clinical drug development and for the testing of novel therapeutic options. In the present review, we summarize recent advances in iPSC-based disease modeling of mitochondrial cardiomyopathies and explore the patho-mechanistic insights as well as new therapeutic approaches that were uncovered with this experimental platform. Further, we discuss the challenges and limitations of this technology and provide an overview of the latest techniques to promote metabolic and functional maturation of iPSC-derived cardiomyocytes that might be necessary for modeling of mitochondrial disorders.
Collapse
Affiliation(s)
- Mario G Pavez-Giani
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells", University of Göttingen, Göttingen, Germany
| |
Collapse
|
44
|
Magdy T, Jouni M, Kuo H, Weddle CJ, Lyra–Leite D, Fonoudi H, Romero–Tejeda M, Gharib M, Javed H, Fajardo G, Ross CJD, Carleton BC, Bernstein D, Burridge PW. Identification of Drug Transporter Genomic Variants and Inhibitors That Protect Against Doxorubicin-Induced Cardiotoxicity. Circulation 2022; 145:279-294. [PMID: 34874743 PMCID: PMC8792344 DOI: 10.1161/circulationaha.121.055801] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Multiple pharmacogenomic studies have identified the synonymous genomic variant rs7853758 (G > A, L461L) and the intronic variant rs885004 in SLC28A3 (solute carrier family 28 member 3) as statistically associated with a lower incidence of anthracycline-induced cardiotoxicity. However, the true causal variant(s), the cardioprotective mechanism of this locus, the role of SLC28A3 and other solute carrier (SLC) transporters in anthracycline-induced cardiotoxicity, and the suitability of SLC transporters as targets for cardioprotective drugs has not been investigated. METHODS Six well-phenotyped, doxorubicin-treated pediatric patients from the original association study cohort were recruited again, and human induced pluripotent stem cell-derived cardiomyocytes were generated. Patient-specific doxorubicin-induced cardiotoxicity (DIC) was then characterized using assays of cell viability, activated caspase 3/7, and doxorubicin uptake. The role of SLC28A3 in DIC was then queried using overexpression and knockout of SLC28A3 in isogenic human-induced pluripotent stem cell-derived cardiomyocytes using a CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9). Fine-mapping of the SLC28A3 locus was then completed after SLC28A3 resequencing and an extended in silico haplotype and functional analysis. Genome editing of the potential causal variant was done using cytosine base editor. SLC28A3-AS1 overexpression was done using a lentiviral plasmid-based transduction and was validated using stranded RNA-sequencing after ribosomal RNA depletion. Drug screening was done using the Prestwick Chemical Library (n = 1200), followed by in vivo validation in mice. The effect of desipramine on doxorubicin cytotoxicity was also investigated in 8 cancer cell lines. RESULTS Here, using the most commonly used anthracycline, doxorubicin, we demonstrate that patient-derived cardiomyocytes recapitulate the cardioprotective effect of the SLC28A3 locus and that SLC28A3 expression influences the severity of DIC. Using Nanopore-based fine-mapping and base editing, we identify a novel cardioprotective single nucleotide polymorphism, rs11140490, in the SLC28A3 locus; its effect is exerted via regulation of an antisense long noncoding RNA (SLC28A3-AS1) that overlaps with SLC28A3. Using high-throughput drug screening in patient-derived cardiomyocytes and whole organism validation in mice, we identify the SLC competitive inhibitor desipramine as protective against DIC. CONCLUSIONS This work demonstrates the power of the human induced pluripotent stem cell model to take a single nucleotide polymorphism from a statistical association through to drug discovery, providing human cell-tested data for clinical trials to attenuate DIC.
Collapse
Affiliation(s)
- Tarek Magdy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hui–Hsuan Kuo
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Carly J. Weddle
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Davi Lyra–Leite
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hananeh Fonoudi
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Marisol Romero–Tejeda
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Mennat Gharib
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Hoor Javed
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Giovanni Fajardo
- Department of Pediatrics (Division of Cardiology), Stanford University School of Medicine, Stanford, CA
| | - Colin J. D. Ross
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada.,Division of Translational Therapeutics Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Pharmaceutical Outcomes Programme, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Daniel Bernstein
- Department of Pediatrics (Division of Cardiology), Stanford University School of Medicine, Stanford, CA
| | - Paul W. Burridge
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL.,Center for Pharmacogenomics, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
45
|
Bourque K, Hawey C, Jiang A, Mazarura GR, Hébert TE. Biosensor-based profiling to track cellular signalling in patient-derived models of dilated cardiomyopathy. Cell Signal 2022; 91:110239. [PMID: 34990783 DOI: 10.1016/j.cellsig.2021.110239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/06/2021] [Accepted: 12/29/2021] [Indexed: 12/18/2022]
Abstract
Dilated cardiomyopathies (DCM) represent a diverse group of cardiovascular diseases impacting the structure and function of the myocardium. To better treat these diseases, we need to understand the impact of such cardiomyopathies on critical signalling pathways that drive disease progression downstream of receptors we often target therapeutically. Our understanding of cellular signalling events has progressed substantially in the last few years, in large part due to the design, validation and use of biosensor-based approaches to studying such events in cells, tissues and in some cases, living animals. Another transformative development has been the use of human induced pluripotent stem cells (hiPSCs) to generate disease-relevant models from individual patients. We highlight the importance of going beyond monocellular cultures to incorporate the influence of paracrine signalling mediators. Finally, we discuss the recent coalition of these approaches in the context of DCM. We discuss recent work in generating patient-derived models of cardiomyopathies and the utility of using signalling biosensors to track disease progression and test potential therapeutic strategies that can be later used to inform treatment options in patients.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Cara Hawey
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Alyson Jiang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada.
| |
Collapse
|
46
|
Human Induced Pluripotent Stem Cell as a Disease Modeling and Drug Development Platform-A Cardiac Perspective. Cells 2021; 10:cells10123483. [PMID: 34943991 PMCID: PMC8699880 DOI: 10.3390/cells10123483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023] Open
Abstract
A comprehensive understanding of the pathophysiology and cellular responses to drugs in human heart disease is limited by species differences between humans and experimental animals. In addition, isolation of human cardiomyocytes (CMs) is complicated because cells obtained by biopsy do not proliferate to provide sufficient numbers of cells for preclinical studies in vitro. Interestingly, the discovery of human-induced pluripotent stem cell (hiPSC) has opened up the possibility of generating and studying heart disease in a culture dish. The combination of reprogramming and genome editing technologies to generate a broad spectrum of human heart diseases in vitro offers a great opportunity to elucidate gene function and mechanisms. However, to exploit the potential applications of hiPSC-derived-CMs for drug testing and studying adult-onset cardiac disease, a full functional characterization of maturation and metabolic traits is required. In this review, we focus on methods to reprogram somatic cells into hiPSC and the solutions for overcome immaturity of the hiPSC-derived-CMs to mimic the structure and physiological properties of the adult human CMs to accurately model disease and test drug safety. Finally, we discuss how to improve the culture, differentiation, and purification of CMs to obtain sufficient numbers of desired types of hiPSC-derived-CMs for disease modeling and drug development platform.
Collapse
|
47
|
Kim M, Jang J. Construction of 3D hierarchical tissue platforms for modeling diabetes. APL Bioeng 2021; 5:041506. [PMID: 34703970 PMCID: PMC8530538 DOI: 10.1063/5.0055128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus (DM) is one of the most serious systemic diseases worldwide, and the majority of DM patients face severe complications. However, many of underlying disease mechanisms related to these complications are difficult to understand with the use of currently available animal models. With the urgent need to fundamentally understand DM pathology, a variety of 3D biomimetic platforms have been generated by the convergence of biofabrication and tissue engineering strategies for the potent drug screening platform of pre-clinical research. Here, we suggest key requirements for the fabrication of physiomimetic tissue models in terms of recapitulating the cellular organization, creating native 3D microenvironmental niches for targeted tissue using biomaterials, and applying biofabrication technologies to implement tissue-specific geometries. We also provide an overview of various in vitro DM models, from a cellular level to complex living systems, which have been developed using various bioengineering approaches. Moreover, we aim to discuss the roadblocks facing in vitro tissue models and end with an outlook for future DM research.
Collapse
Affiliation(s)
- Myungji Kim
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, 77 Cheongam-ro, Namgu, Pohang, Kyungbuk, 37673, Republic of Korea
| | - Jinah Jang
- Author to whom correspondence should be addressed:
| |
Collapse
|
48
|
Ayotte Y, Bernet E, Bilodeau F, Cimino M, Gagnon D, Lebughe M, Mistretta M, Ogadinma P, Ouali SL, Sow AA, Chatel-Chaix L, Descoteaux A, Manina G, Richard D, Veyrier F, LaPlante SR. Fragment-Based Phenotypic Lead Discovery To Identify New Drug Seeds That Target Infectious Diseases. ACS Chem Biol 2021; 16:2158-2163. [PMID: 34699722 DOI: 10.1021/acschembio.1c00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragment-based lead discovery has emerged over the last decades as one of the most powerful techniques for identifying starting chemical matter to target specific proteins or nucleic acids in vitro. However, the use of such low-molecular-weight fragment molecules in cell-based phenotypic assays has been historically avoided because of concerns that bioassays would be insufficiently sensitive to detect the limited potency expected for such small molecules and that the high concentrations required would likely implicate undesirable artifacts. Herein, we applied phenotype cell-based screens using a curated fragment library to identify inhibitors against a range of pathogens including Leishmania, Plasmodium falciparum, Neisseria, Mycobacterium, and flaviviruses. This proof-of-concept shows that fragment-based phenotypic lead discovery (FPLD) can serve as a promising complementary approach for tackling infectious diseases and other drug-discovery programs.
Collapse
Affiliation(s)
- Yann Ayotte
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Eve Bernet
- Bacterial Symbionts Evolution, Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - François Bilodeau
- NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Quebec H7V 5B7, Canada
| | - Mena Cimino
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, Institut Pasteur, 25-28 Rue du Docteur Roux 75015, Paris, France
| | - Dominic Gagnon
- Centre de recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Marthe Lebughe
- Bacterial Symbionts Evolution, Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Maxime Mistretta
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, Institut Pasteur, 25-28 Rue du Docteur Roux 75015, Paris, France
| | - Paul Ogadinma
- NMX Research and Solutions, Inc., 500 Boulevard Cartier Ouest, Laval, Quebec H7V 5B7, Canada
| | - Sarah-Lisa Ouali
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Aïssatou Aïcha Sow
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Laurent Chatel-Chaix
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Albert Descoteaux
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Giulia Manina
- Microbial Individuality and Infection Group, Cell Biology and Infection Department, Institut Pasteur, 25-28 Rue du Docteur Roux 75015, Paris, France
| | - Dave Richard
- Centre de recherche du CHU de Québec-Université Laval, Département de Microbiologie-Infectiologie et d’Immunologie, Université Laval, Quebec, Quebec G1V 0A6, Canada
| | - Frédéric Veyrier
- Bacterial Symbionts Evolution, Institut national de la recherche scientifique, Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Steven R. LaPlante
- Institut national de la recherche scientifique - Armand-Frappier Santé Biotechnologie Research Centre, 531 Boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| |
Collapse
|
49
|
Shoemaker AR, Jones IE, Jeffris KD, Gabrielli G, Togliatti AG, Pichika R, Martin E, Kiskinis E, Franz CK, Finan J. Biofidelic dynamic compression of human cortical spheroids reproduces neurotrauma phenotypes. Dis Model Mech 2021; 14:273823. [PMID: 34746950 PMCID: PMC8713991 DOI: 10.1242/dmm.048916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Fundamental questions about patient heterogeneity and human-specific pathophysiology currently obstruct progress towards a therapy for traumatic brain injury (TBI). Human in vitro models have the potential to address these questions. 3D spheroidal cell culture protocols for human-origin neural cells have several important advantages over their 2D monolayer counterparts. Three dimensional spheroidal cultures may mature more quickly, develop more biofidelic electrophysiological activity and/or reproduce some aspects of brain architecture. Here, we present the first human in vitro model of non-penetrating TBI employing 3D spheroidal cultures. We used a custom-built device to traumatize these spheroids in a quantifiable, repeatable and biofidelic manner and correlated the heterogeneous, mechanical strain field with the injury phenotype. Trauma reduced cell viability, mitochondrial membrane potential and spontaneous, synchronous, electrophysiological activity in the spheroids. Electrophysiological deficits emerged at lower injury severities than changes in cell viability. Also, traumatized spheroids secreted lactate dehydrogenase, a marker of cell damage, and neurofilament light chain, a promising clinical biomarker of neurotrauma. These results demonstrate that 3D human in vitro models can reproduce important phenotypes of neurotrauma in vitro.
Collapse
Affiliation(s)
- Aaron R Shoemaker
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Ian E Jones
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kira D Jeffris
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Gina Gabrielli
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | | | - Rajeswari Pichika
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric Martin
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Colin K Franz
- Shirley Ryan AbilityLab, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
50
|
Kim KW, Shin YJ, Kim BM, Cui S, Ko EJ, Lim SW, Yang CW, Chung BH. Modeling of endothelial cell dysfunction using human induced pluripotent stem cells derived from patients with end-stage renal disease. Kidney Res Clin Pract 2021; 40:698-711. [PMID: 34781643 PMCID: PMC8685359 DOI: 10.23876/j.krcp.20.252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 07/06/2021] [Indexed: 11/04/2022] Open
Abstract
Background Endothelial cell (EC) dysfunction is a frequent feature in patients with end-stage renal disease (ESRD). The aim of this study was to generate human induced pluripotent stem cells, differentiate ECs (hiPSC-ECs) from patients with ESRD, and appraise the usefulness of hiPSC-ECs as a model to investigate EC dysfunction. Methods We generated hiPSCs using peripheral blood mononuclear cells (PBMCs) isolated from three patients with ESRD and three healthy controls (HCs). Next, we differentiated hiPSC-ECs using the generated hiPSCs and assessed the expression of endothelial markers by immunofluorescence. The differentiation efficacy, EC dysfunction, and molecular signatures of EC-related genes based on microarray analysis were compared between the ESRD and HC groups. Results In both groups, hiPSCs and hiPSC-ECs were successfully obtained based on induced pluripotent stem cell or EC marker expression in immunofluorescence and flow cytometry. However, the efficiency of differentiation of ECs from hiPSCs was lower in the ESRD-hiPSCs than in the HC-hiPSCs. In addition, unlike HC-hiPSC-ECs, ESRD-hiPSC-ECs failed to form interconnecting branching point networks in an in vitro tube formation assay. During microarray analysis, transcripts associated with oxidative stress and inflammation were upregulated and transcripts associated with vascular development and basement membrane extracellular matrix components were downregulated in ESRD-hiPSC-ECs relative to in HC-hiPSC-ECs. Conclusion ESRD-hiPSC-ECs showed a greater level of EC dysfunction than HC-hiPSC-ECs did based on functional assay results and molecular profiles. hiPSC-ECs may be used as a disease model to investigate the pathophysiology of EC dysfunction in ESRD.
Collapse
Affiliation(s)
- Kyoung Woon Kim
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Jin Shin
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Bo-Mi Kim
- Department of Stem Cell Research, NEXEL Co., Seoul, Republic of Korea
| | - Sheng Cui
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Ko
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Sun Woo Lim
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| | - Byung Ha Chung
- Transplant Research Center, Convergent Research Consortium for Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea Seoul, Republic of Korea
| |
Collapse
|