1
|
Lei Y, Zhou R, Mao Q, Qiu X, Mu D. The roles of pleiotrophin in brain injuries: a narrative review of the literature. Ann Med 2025; 57:2452353. [PMID: 39829367 PMCID: PMC11749013 DOI: 10.1080/07853890.2025.2452353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Pleiotrophin (PTN), a secreted multifunctional growth factor, is highly expressed in the developing brain. Recently, many studies have indicated that PTN participates in the development of brain and plays a neuroprotection after brain injury, especially promoting neuronal survival and neurite outgrowth, stimulating oligodendrocyte maturation and myelination, modulating neuroinflammation, and so on. OBJECTIVE However, no reviews comprehensively summarize the roles of PTN in brain injuries. Considering this, this review focuses on the roles and related regulatory pathways of PTN in brain injuries, what is known to date. METHODS PubMed and Embase databases have been searched, and related studies are compiled and summarized. RESULTS Our review has found PTN participates in the repairment of brain injuries, including hypoxic-ischemic brain injury, preterm white matter injury, traumatic brain injury, and neurodegenerative diseases, mainly based on animal data and small sample size studies. Besides, PTN interacts with receptors, such as, Z-type protein tyrosine phosphatase receptor and syndecan-3, regulating related pathways in these events. CONCLUSION It suggests PTN as a promising candidate for the treatment of brain injuries clinically. However, the evidence is early in its development. Further multi-center and large-sample studies are warranted to support our findings and determine the clinical value of PTN for treating brain injuries.
Collapse
Affiliation(s)
- Yupeng Lei
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Ruixi Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Qian Mao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xia Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
2
|
Mihalas AB, Arora S, O'Connor SA, Feldman HM, Cucinotta CE, Mitchell K, Bassett J, Kim D, Jin K, Hoellerbauer P, Delegard J, Ling M, Jenkins W, Kufeld M, Corrin P, Carter L, Tsukiyama T, Aronow B, Plaisier CL, Patel AP, Paddison PJ. KAT5 regulates neurodevelopmental states associated with G0-like populations in glioblastoma. Nat Commun 2025; 16:4327. [PMID: 40346033 PMCID: PMC12064679 DOI: 10.1038/s41467-025-59503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Quiescence cancer stem-like cells may play key roles in promoting tumor cell heterogeneity and recurrence for many tumors, including glioblastoma (GBM). Here we show that the protein acetyltransferase KAT5 is a key regulator of transcriptional, epigenetic, and proliferative heterogeneity impacting transitions into G0-like states in GBM. KAT5 activity suppresses the emergence of quiescent subpopulations with neurodevelopmental progenitor characteristics, while promoting GBM stem-like cell (GSC) self-renewal through coordinately regulating E2F- and MYC- transcriptional networks with protein translation. KAT5 inactivation significantly decreases tumor progression and invasive behavior while increasing survival after standard of care. Further, increasing MYC expression in human neural stem cells stimulates KAT5 activity and protein translation, as well as confers sensitivity to homoharringtonine, to similar levels to those found in GSCs and high-grade gliomas. These results suggest that the dynamic behavior of KAT5 plays key roles in G0 ingress/egress, adoption of quasi-neurodevelopmental states, and aggressive tumor growth in gliomas.
Collapse
Affiliation(s)
- Anca B Mihalas
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Samantha A O'Connor
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Heather M Feldman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Christine E Cucinotta
- College of Arts and Sciences, Department of Molecular Genetics, Ohio State University, Columbus, OH, 43210, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kelly Mitchell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - John Bassett
- Department of Medicine, Karolinska Institute, Huddinge, Sweden
| | - Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kang Jin
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Pia Hoellerbauer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jennifer Delegard
- Department of Neurosurgery, University of Washington, Seattle, WA, 98195, USA
| | - Melissa Ling
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Wesley Jenkins
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Megan Kufeld
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Philip Corrin
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas Carter
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Toshio Tsukiyama
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA
| | - Anoop P Patel
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, 27710, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, 27710, USA.
| | - Patrick J Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
3
|
Li K, Zheng Y, Cai S, Fan Z, Yang J, Liu Y, Liang S, Song M, Du S, Qi L. The subventricular zone structure, function and implications for neurological disease. Genes Dis 2025; 12:101398. [PMID: 39935607 PMCID: PMC11810716 DOI: 10.1016/j.gendis.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/28/2024] [Accepted: 07/28/2024] [Indexed: 02/13/2025] Open
Abstract
The subventricular zone (SVZ) is a region surrounding the lateral ventricles that contains neural stem cells and neural progenitor cells, which can proliferate and differentiate into various neural and glial cells. SVZ cells play important roles in neurological diseases like neurodegeneration, neural injury, and glioblastoma multiforme. Investigating the anatomy, structure, composition, physiology, disease associations, and related mechanisms of SVZ is significant for neural stem cell therapy and treatment/prevention of neurological disorders. However, challenges remain regarding the mechanisms regulating SVZ cell proliferation, differentiation, and migration, delivering cells to damaged areas, and immune responses. In-depth studies of SVZ functions and related therapeutic developments may provide new insights and approaches for treating brain injuries and degenerative diseases, as well as a scientific basis for neural stem cell therapy. This review summarizes research findings on SVZ and neurological diseases to provide references for relevant therapies.
Collapse
Affiliation(s)
- Kaishu Li
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yin Zheng
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shubing Cai
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Zhiming Fan
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Junyi Yang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Yuanrun Liu
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Shengqi Liang
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Meihui Song
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Siyuan Du
- Department of Neurosurgery, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| | - Ling Qi
- Institute of Digestive Diseases, The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong 511518, China
| |
Collapse
|
4
|
Le Y, Rajasekhar K, Loo TYJ, Saunders TE, Wohland T, Winkler C. Midkine-a interacts with Ptprz1b to regulate neural plate convergence and midline formation in the developing zebrafish hindbrain. Dev Biol 2025; 521:52-74. [PMID: 39924070 DOI: 10.1016/j.ydbio.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
A midline in the developing central nervous system allows symmetric distribution of neural progenitors that later establish functional, bilaterally symmetric neural circuits. In the zebrafish hindbrain, a midline forms early during neurulation as a result of coordinated cell convergence and midline-crossing cell divisions (C-divisions). These processes are controlled by the Wnt/planar cell polarity (PCP) pathway that positions progenitors close to a presumptive midline to perform C-divisions. Other upstream cues that control the extent of neural plate convergence, however, remain unclear. Midkine (Mdk) and pleiotrophin (Ptn) are structurally related heparin-binding growth factors that are dynamically expressed in the developing hindbrain. We show that two zebrafish Mdks, Mdka and Mdkb, as well as Ptn interact with distinct affinities in vivo with the protein tyrosine phosphatase receptor Ptprz1b. Zebrafish mdka and ptprz1b mutants exhibit impaired neural plate convergence along with misplaced C-divisions, defective cell polarity and transiently duplicated midlines. These defects are absent in mdka; mdkb double mutants suggesting antagonistic roles of Mdka and Mdkb to coordinate convergence and C-divisions. Overexpression of Drosophila Prickle, a key component of the Wnt/PCP pathway, rescued the midline duplications in mdka and ptprz1b mutants that exhibited significantly reduced levels of prickle pk1b, pk2a, and pk2b expression. Ptprz1b overexpression, on the other hand, up-regulated pk2a transcription. Our findings therefore suggest roles for Mdka, Mdkb and Ptprz1b in coordinating neural plate convergence, neural progenitor positioning and midline formation by controlling the levels of prickle expression.
Collapse
Affiliation(s)
- Yao Le
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Kavitha Rajasekhar
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Tricia Y J Loo
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Timothy E Saunders
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117543, Singapore; Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Thorsten Wohland
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117543, Singapore; Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Ryu H, Li X, Lee TH, Kim TM, Choi SH, Park CK, Lee ST, Park SH, Won JK, Jang BS, Kim IH, Lee JH. Distribution and failure patterns of primary central nervous system lymphoma related to the hippocampus: implications for hippocampal avoidance irradiation. J Neurooncol 2025; 173:95-104. [PMID: 39969784 PMCID: PMC12041158 DOI: 10.1007/s11060-025-04965-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025]
Abstract
PURPOSE Hippocampal injury from WBRT contributes to neurocognitive decline in brain malignancy patients. HA-WBRT may mitigate this by reducing hippocampal radiation exposure, but its feasibility in PCNSL remains unassessed regarding hippocampal involvement and failure rates. This study evaluates hippocampal involvement at diagnosis and after treatment in PCNSL patients. MATERIALS AND METHODS We conducted a retrospective analysis of 278 immunocompetent PCNSL patients diagnosed between 2000 and 2021. Following high-dose methotrexate-based induction chemotherapy, patients either received consolidation therapy, including RT, cytarabine alone, or autologous stem cell transplantation or underwent observation. Hippocampus was outlined on T1 MRI images and expanded by a 5 mm margin to create the hippocampal avoidance region (HAR). Hippocampal failure was defined as recurrence or progression at HAR. The median follow-up was 38.7 months (range 3.1-239.4 months). RESULTS Of the 278 patients diagnosed with PCNSL, 39.9% presented initial lesions at HAR. After induction therapy, 212 evaluable patients received consolidation treatments or observation. Intracranial failures occurred in 47.6% (n = 101), with 66.3% (n = 67) occurring outside the HAR and 33.7% (n = 34) inside the HAR. Unifocal disease (HR 0.61, 95% CI 0.39-0.96, p = 0.025) was associated with a lower risk of hippocampal failures, while initial HAR involvement significantly increased the risk (HR 2.26, 95% CI 1.18-4.47, p = 0.018). Patients with unifocal disease outside the HAR had the lowest 3-year hippocampal failure rate (6.2%). RT that included the hippocampus did not significantly affect hippocampal failure rates in patients without initial HAR lesions (p = 0.282), with three-year rates of 9.2 vs. 14.6% for other treatments. However, among patients with initial HAR involvement, RT including the hippocampus significantly reduced hippocampal failure rates compared to other approaches (p = 0.002). Hippocampal failure rates were comparable, with conventional WBRT at 14.6% and HA-WBRT at 19% in patients without initial HAR lesions (p = 0.734). CONCLUSION The routine application of the HA-WBRT strategy is not supported due to the high risk of hippocampal failures in general and requires further investigation to establish its feasibility and safety in well-defined subgroups. Our results suggest that the HA-WBRT strategy could be evaluated for select PCNSL patients with unifocal lesions or those located outside the HAR.
Collapse
Affiliation(s)
- Hyejo Ryu
- Department of Radiation Oncology, Chung-Ang University Gwangmyeong Hospital, Gwangmyeong, Gyeonggii-Do, Republic of Korea
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Xue Li
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, People's Republic of China
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tae Hoon Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Tae Min Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soon Tae Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Bum-Sup Jang
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Rauch P, Gmeiner M, Aichholzer M, Sterrer M, Wagner H, Katletz S, Serra C, Böhm P, Sonnberger M, Stroh N, Aspalter S, Aufschnaiter-Hiessböck K, Rossmann T, Ruiz-Navarro F, Gollwitzer M, Leibetseder A, Pichler J, Thomae W, Kleiser R, Gruber A, Stefanits H. Low-grade gliomas do not grow along white matter tracts: evidence from quantitative imaging. Brain Commun 2025; 7:fcaf157. [PMID: 40331092 PMCID: PMC12053163 DOI: 10.1093/braincomms/fcaf157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/13/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
Low-grade gliomas are infiltrative brain tumors that can lead to significant neurological deficits due to their invasive nature. The prevailing belief is that low-grade gliomas primarily disseminate along white matter tracts, but quantitative in vivo evidence supporting this concept is lacking. Clarifying their true growth patterns is essential for optimizing therapeutic strategies. We conducted a quantitative analysis of tumor growth patterns in a longitudinal cohort of 43 untreated patients with unigyral World Health Organization grade 2 or 3 gliomas, stratified by their anatomical locations within the neocortex, mesocortex and allocortex. Serial MRI scans were used to generate vector deformation fields, providing detailed three-dimensional representations of tumor evolution over time. These vector deformation fields were compared with diffusion tensor imaging data to assess the alignment of tumor growth with white matter pathways. Quantitative analysis revealed that low-grade gliomas do not predominantly expand along white matter tracts. Instead, they remain confined within specific anatomical boundaries, in respect to their topology of origin. Angular measurements and heat map analysis indicated that tumor growth is directed towards the subventricular zone and may follow their respective radial units. These consistent observations across different anatomical regions challenge the traditional model of glioma progression, suggesting that early-stage glioma expansion is closely governed by ontogenetic factors. In conclusion, this study provides the first quantitative evidence that phenotypical low-grade gliomas do not primarily follow white matter tracts but may instead be influenced by ontogenetic mechanisms. These insights necessitate a re-evaluation of existing models of glioma progression and underscore the importance of incorporating developmental aspects into treatment planning to enhance patient outcomes.
Collapse
Affiliation(s)
- Philip Rauch
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Matthias Gmeiner
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Martin Aichholzer
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Matthias Sterrer
- Department of Applied Statistics, Medical Statistics and Biometry, Johannes Kepler University, Linz 4040, Austria
| | - Helga Wagner
- Department of Applied Statistics, Medical Statistics and Biometry, Johannes Kepler University, Linz 4040, Austria
| | - Stefan Katletz
- Department of Neurology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Carlo Serra
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital, University of Zurich, Zurich 8091, Switzerland
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich 8091, Switzerland
| | - Petra Böhm
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
| | - Michael Sonnberger
- Institute of Neuroradiology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Nico Stroh
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Stefan Aspalter
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Kathrin Aufschnaiter-Hiessböck
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Tobias Rossmann
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Francisco Ruiz-Navarro
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Maria Gollwitzer
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Annette Leibetseder
- Department of Neurology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
- Institute of Internal Medicine and Neuro-oncology, Kepler University Hospital, Johannes Kepler University, Linz 4020, Austria
| | - Josef Pichler
- Institute of Internal Medicine and Neuro-oncology, Kepler University Hospital, Johannes Kepler University, Linz 4020, Austria
| | - Wolfgang Thomae
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Raimund Kleiser
- Institute of Neuroradiology, Kepler University Hospital and Johannes Kepler University, Linz 4020, Austria
| | - Andreas Gruber
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| | - Harald Stefanits
- Department of Neurosurgery, Kepler University Hospital and Johannes Kepler University Linz, Linz 4040, Austria
- Clinical Research Institute for Neuroscience, Faculty of Medicine, Johannes Kepler University Linz, Linz 4020, Austria
| |
Collapse
|
7
|
Zheng Y, Fuse H, Alzoubi I, Graeber MB. Microglia-Derived Brain Macrophages Associate with Glioblastoma Stem Cells: A Potential Mechanism for Tumor Progression Revealed by AI-Assisted Analysis. Cells 2025; 14:413. [PMID: 40136662 PMCID: PMC11940947 DOI: 10.3390/cells14060413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/21/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Malignant gliomas, and notably glioblastoma, are highly aggressive brain tumors. Understanding the mechanisms underlying their progression is crucial for developing more effective treatments. Recent studies have highlighted the role of microglia and brain macrophages in glioblastoma development, but the specific interactions between these immune cells and glioblastoma stem cells (GSCs) remain unclear. Methods: To address this question, we have utilized AI-assisted cell recognition to investigate the spatial relationship between GSCs expressing high levels of CD276 (B7-H3) and microglia- and bone marrow-derived brain macrophages, respectively. Results: Using PathoFusion, our previously developed open-source AI framework, we were able to map specific immunohistochemical phenotypes at the single-cell level within whole-slide images. This approach enabled us to selectively identify Iba1+ and CD163+ macrophages as well as CD276+ GSCs with high specificity and to study their co-localization. Our analysis suggests a closer association of Iba1+ macrophages with GSCs than between CD163+ macrophages and GSCs in glioblastoma. Conclusions: Our findings provide novel insights into the spatial context of tumor immunity in glioblastoma and point to microglia-GSC interactions as a potential mechanism for tumor progression, especially during diffuse tissue infiltration. These findings have significant implications for our understanding of glioblastoma biology, providing a foundation for a comprehensive analysis of microglia activation phenotypes during glioma development. This, in turn, may lead to new therapeutic strategies targeting the early stages of the immune microenvironment of glioblastoma.
Collapse
Affiliation(s)
- Yuqi Zheng
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
| | - Haneya Fuse
- School of Medicine, Sydney Campus, University of Notre Dame, 160 Oxford Street, Darlinghurst, Sydney, NSW 2010, Australia;
| | - Islam Alzoubi
- School of Computer Science, The University of Sydney, J12/1 Cleveland St, Darlington, Sydney, NSW 2008, Australia;
| | - Manuel B. Graeber
- Ken Parker Brain Tumour Research Laboratories, Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, Sydney, NSW 2050, Australia;
- University of Sydney Association of Professors (USAP), University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
8
|
Kim H, Cho B, Kim HK, Kang S, An S, Kwon D, Kim HY, Kim J. PTN activity in quiescent neural stem cells mediates Shank3 overexpression-induced manic behavior. Nat Commun 2025; 16:2435. [PMID: 40069581 PMCID: PMC11897407 DOI: 10.1038/s41467-025-57699-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Mania is a complex psychiatric disease characterized by hyperactivity, elevated mood and reduced anxiety. Despite extensive studies on the mechanism of the manic episodes, the molecular targets that control manic pathogenesis remain largely unclear. Here, through single-cell RNA sequencing (scRNA-seq) analysis, we show aberrant adult neurogenesis due to increased numbers of quiescent neural stem cells (qNSC) in a manic mouse model with Shank3 overexpression. Particularly, we found that the excessive Pleiotrophin (PTN), released by dysregulated qNSCs, is a key factor contributing to the manic-like phenotypes in Shank3-overexpressing mouse models. Pharmacological and molecular inhibition of PTN in qNSCs rescued aberrant neurogenesis and effectively alleviated the manic-like social deficits observed in Shank3-overexpressing mice. Taken together, our findings present an approach for modulating PTN activity in qNSCs, proposing it as a promising therapeutic target for manic development.
Collapse
Affiliation(s)
- Hongwon Kim
- Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Byounggook Cho
- Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Hyung Kyu Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Soi Kang
- Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Saemin An
- Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Daeyeol Kwon
- Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea
| | - Hee Young Kim
- Department of Physiology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jongpil Kim
- Department of Chemistry, Dongguk University, Pildong-ro 1-gil 30, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
9
|
Li X, Kim HJ, Yoo J, Lee Y, Nam CH, Park J, Lee ST, Kim TM, Choi SH, Won JK, Park SH, Ju YS, Park JB, Kim SH, Chang JH, Wu HG, Park CK, Lee JH, Kang SG, Lee JH. Distant origin of glioblastoma recurrence: neural stem cells in the subventricular zone serve as a source of tumor reconstruction after primary resection. Mol Cancer 2025; 24:64. [PMID: 40033380 PMCID: PMC11877783 DOI: 10.1186/s12943-025-02273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/15/2025] [Indexed: 03/05/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive and common type of primary malignant brain cancer in adults. GBM often recurs locally near the resection cavity (RC) following the surgical removal of primary tumors. Recent research has reported that neural stem cells (NSCs) in the subventricular zone (SVZ) harboring cancer-driving mutations serve as the cells of origin for human GBM. However, the pathological role of tumor-initiating NSCs in the SVZ in tumor recurrence remains to be elucidated. Here, we explore the potential contribution of mutation-harboring NSCs in the SVZ to tumor recurrence around the RC following surgical resection. Our hypothesis emerged from performing deep sequencing of longitudinal tissues from 10 patients with GBM, including (i) tumor-free SVZ tissue, (ii) primary tumor tissue, (iii) recurrent tumor tissue, and (iv) blood. As a result of this sequencing, we observed evidence suggesting that recurrent tumors show genetic links to the SVZ in 60% (6/10) of patients, which are distinct from the primary tumors. Using a genome-edited mouse model, we further identified that mutation-harboring NSCs appeared to migrate to the RC through the aberrant growth of oligodendrocyte progenitor cells, potentially contributing to the reconstruction of high-grade malignant gliomas in the RC. This process was associated with the CXCR4/CXCL12 axis, as supported by RNA sequencing data from human recurrent GBM. Taken together, our findings suggest that NSCs in human SVZ tissue may play a role in GBM recurrence, potentially highlighting a novel distant contributor of recurrence.
Collapse
Affiliation(s)
- Xue Li
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, People's Republic of China
| | - Hyun Jung Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Jihwan Yoo
- Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Yeonhee Lee
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Chang Hyun Nam
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jonghan Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Soon-Tae Lee
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Korea
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Hong-Gyun Wu
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul, South Korea
| | - Jeong Ho Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Sovargen Inc, Daejeon, South Korea.
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Medical Sciences, Yonsei University Graduate School, Seoul, South Korea.
| | - Joo Ho Lee
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- Institute of Radiation Medicine, Medical Research Center, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
10
|
Barron T, Yalçın B, Su M, Byun YG, Gavish A, Shamardani K, Xu H, Ni L, Soni N, Mehta V, Maleki Jahan S, Kim YS, Taylor KR, Keough MB, Quezada MA, Geraghty AC, Mancusi R, Vo LT, Castañeda EH, Woo PJ, Petritsch CK, Vogel H, Kaila K, Monje M. GABAergic neuron-to-glioma synapses in diffuse midline gliomas. Nature 2025; 639:1060-1068. [PMID: 39972132 PMCID: PMC11946904 DOI: 10.1038/s41586-024-08579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
High-grade gliomas (HGGs) are the leading cause of brain cancer-related death. HGGs include clinically, anatomically and molecularly distinct subtypes that stratify into diffuse midline gliomas (DMGs), such as H3K27M-altered diffuse intrinsic pontine glioma, and hemispheric HGGs, such as IDH wild-type glioblastoma. Neuronal activity drives glioma progression through paracrine signalling1,2 and neuron-to-glioma synapses3-6. Glutamatergic AMPA receptor-dependent synapses between neurons and glioma cells have been demonstrated in paediatric3 and adult4 high-grade gliomas, and early work has suggested heterogeneous glioma GABAergic responses7. However, neuron-to-glioma synapses mediated by neurotransmitters other than glutamate remain understudied. Using whole-cell patch-clamp electrophysiology, in vivo optogenetics and patient-derived orthotopic xenograft models, we identified functional, tumour-promoting GABAergic neuron-to-glioma synapses mediated by GABAA receptors in DMGs. GABAergic input has a depolarizing effect on DMG cells due to NKCC1 chloride transporter function and consequently elevated intracellular chloride concentration in DMG malignant cells. As membrane depolarization increases glioma proliferation3,6, we found that the activity of GABAergic interneurons promotes DMG proliferation in vivo. The benzodiazepine lorazepam enhances GABA-mediated signalling, increases glioma proliferation and growth, and shortens survival in DMG patient-derived orthotopic xenograft models. By contrast, only minimal depolarizing GABAergic currents were found in hemispheric HGGs and lorazepam did not influence the growth rate of hemispheric glioblastoma xenografts. Together, these findings uncover growth-promoting GABAergic synaptic communication between GABAergic neurons and H3K27M-altered DMG cells, underscoring a tumour subtype-specific mechanism of brain cancer neurophysiology.
Collapse
Affiliation(s)
- Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Minhui Su
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Youkyeong Gloria Byun
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Avishai Gavish
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Neeraj Soni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Vilina Mehta
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin Maleki Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael B Keough
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Linh Thuy Vo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kai Kaila
- Faculty of Bio- and Environmental Sciences (MIBS), University of Helsinki, Helsinki, Finland
- Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
11
|
Uthamacumaran A. Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks. Interdiscip Sci 2025; 17:59-85. [PMID: 39420135 DOI: 10.1007/s12539-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF α , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.
Collapse
Affiliation(s)
- Abicumaran Uthamacumaran
- Department of Physics (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Department of Psychology (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Oxford Immune Algorithmics, Reading, RG1 8EQ, UK.
| |
Collapse
|
12
|
Mann B, Artz N, Darawsheh R, Kram DE, Hingtgen S, Satterlee AB. Opportunities and challenges for patient-derived models of brain tumors in functional precision medicine. NPJ Precis Oncol 2025; 9:47. [PMID: 39953052 PMCID: PMC11828933 DOI: 10.1038/s41698-025-00832-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Here, we review a growing paradigm shift from genomics-based precision medicine toward functional precision medicine, which evaluates therapeutic efficacy by directly treating living patient tumors ex vivo to better predict patient-specific responses to treatment. We discuss several classes of patient-derived models of central nervous system tumors, highlighting unique features of each. Each class of models holds promise to improve treatment selection, prolong survival, and enhance patient outcomes.
Collapse
Affiliation(s)
- Breanna Mann
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nichole Artz
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Rami Darawsheh
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David E Kram
- Division of Pediatric Hematology-Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shawn Hingtgen
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew B Satterlee
- Eshelman School of Pharmacy, Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Eshelman Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Chih YC, Dietsch AC, Koopmann P, Ma X, Agardy DA, Zhao B, De Roia A, Kourtesakis A, Kilian M, Krämer C, Suwala AK, Stenzinger M, Boenig H, Blum A, Pienkowski VM, Aman K, Becker JP, Feldmann H, Bunse T, Harbottle R, Riemer AB, Liu HK, Etminan N, Sahm F, Ratliff M, Wick W, Platten M, Green EW, Bunse L. Vaccine-induced T cell receptor T cell therapy targeting a glioblastoma stemness antigen. Nat Commun 2025; 16:1262. [PMID: 39893177 PMCID: PMC11787355 DOI: 10.1038/s41467-025-56547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
T cell receptor-engineered T cells (TCR-T) could be advantageous in glioblastoma by allowing safe and ubiquitous targeting of the glioblastoma-derived peptidome. Protein tyrosine phosphatase receptor type Z1 (PTPRZ1), is a clinically targetable glioblastoma antigen associated with glioblastoma cell stemness. Here, we identify a therapeutic HLA-A*02-restricted PTPRZ1-reactive TCR retrieved from a vaccinated glioblastoma patient. Single-cell sequencing of primary brain tumors shows PTPRZ1 overexpression in malignant cells, especially in glioblastoma stem cells (GSCs) and astrocyte-like cells. The validated vaccine-induced TCR recognizes the endogenously processed antigen without off-target cross-reactivity. PTPRZ1-specific TCR-T (PTPRZ1-TCR-T) kill target cells antigen-specifically, and in murine experimental brain tumors, their combined intravenous and intracerebroventricular administration is efficacious. PTPRZ1-TCR-T maintain stem cell memory phenotype in vitro and in vivo and lyse all examined HLA-A*02+ primary glioblastoma cell lines with a preference for GSCs and astrocyte-like cells. In summary, we demonstrate the proof of principle to employ TCR-T to treat glioblastoma.
Collapse
MESH Headings
- Glioblastoma/immunology
- Glioblastoma/therapy
- Glioblastoma/pathology
- Glioblastoma/genetics
- Humans
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Mice
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Cancer Vaccines/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Antigens, Neoplasm/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
- HLA-A2 Antigen/immunology
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Female
Collapse
Grants
- Swiss Cancer Foundation (Swiss Bridge Award), the Else Kröner Fresenius Foundation (2019_EKMS.49), the University Heidelberg Foundation (Hella Buühler Award), the DFG (German Research Foundation), project 404521405 (SFB1389 UNITE Glioblastoma B03), the DKFZ Hector institute (T-SIRE), the Hertie Foundation, the University of Heidelberg, ExploreTech! the DKTK Joint Funding AMI2GO, the Rolf Schwiete Foundation (2021-009), the HI-TRON strategy project PACESSETTING, the DKTK Joint Funding Program INNOVATION INVENT4GB.
- The DFG, project 404521405 (SFB1389 UNITE Glioblastoma B01) the DKTK Joint Funding AMI2GO, the Rolf Schwiete Foundation (2021-009), the HI-TRON strategy project PACESSETTING, the DKTK Joint Funding Program INNOVATION INVENT4GB.
Collapse
Affiliation(s)
- Yu-Chan Chih
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Amelie C Dietsch
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Philipp Koopmann
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Xiujian Ma
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Molecular Neurogenetics, DKFZ, DKFZ-ZMBH alliance, Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Binghao Zhao
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Alice De Roia
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Alexandros Kourtesakis
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Kilian
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Krämer
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Abigail K Suwala
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Institute for Pathology, Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Miriam Stenzinger
- Institute for Clinical Transfusion Medicine and Cell Therapy, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Halvard Boenig
- Faculty of Medicine, Goethe University, Frankfurt a.M., Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt a.M., Frankfurt, Germany
| | | | | | - Kuralay Aman
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Jonas P Becker
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Henrike Feldmann
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Richard Harbottle
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Angelika B Riemer
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Hai-Kun Liu
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Molecular Neurogenetics, DKFZ, DKFZ-ZMBH alliance, Heidelberg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Institute for Pathology, Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Miriam Ratliff
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Edward W Green
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Lukas Bunse
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
14
|
Song Y, Li H, Li Y, Xu H, Nazir FH, Jiang W, Zheng L, Tang C. Astrocyte-derived PTN alleviates deficits in hippocampal neurogenesis and cognition in models of multiple sclerosis. Stem Cell Reports 2025; 20:102383. [PMID: 39729991 PMCID: PMC11784482 DOI: 10.1016/j.stemcr.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/29/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating disease that results in motor, sensory, cognitive, and affective deficits. Hippocampal demyelination, a common occurrence in MS, is linked to impaired cognitive function and mood. Despite this, the precise mechanisms underlying cognitive impairments in MS remain elusive. Pleiotrophin (PTN), secreted by neural stem cells and astrocytes, plays a crucial role in regulating cognition. This study investigates the role of astrocyte-derived PTN. We found that genetic deletion of astrocyte-derived PTN hinders hippocampal neurogenesis. Additionally, conditional ablation of PTN in astrocytes exacerbates neurogenic deficits in the demyelinated hippocampus. Importantly, overexpression of PTN in astrocytes reverses neurogenic and cognitive impairments caused by demyelination, underscoring PTN's protective role in MS. PTN cooperates with protein tyrosine phosphatase receptor type Z1 (PTPRZ1) or anaplastic lymphoma kinase (ALK) receptors to activate the AKT signaling pathway, thereby enhancing hippocampal neurogenesis and cognition in demyelinated mice. These findings illuminate novel effects of astrocyte-derived PTN on hippocampal neurogenesis and cognition.
Collapse
Affiliation(s)
- Yanna Song
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Haoyang Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119, South 4th Ring Road West, Fengtai District, Beijing 100070, China
| | - Yuhan Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Faisal Hayat Nazir
- Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wei Jiang
- Department of Neurology, Shandong Key Laboratory of Mitochondrial Medicine and Rare Diseases, Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Lu Zheng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
15
|
Sarker FA, Chen Y, Westhaus A, Lisowski L, O'Neill GM. Identifying adeno-associated virus (AAV) vectors that efficiently target high grade glioma cells, for in vitro monitoring of temporal cell responses. FEBS Open Bio 2024; 14:1914-1925. [PMID: 39256894 PMCID: PMC11532971 DOI: 10.1002/2211-5463.13894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
To improve the translation of preclinical cancer research data to successful clinical effect, there is an increasing focus on the use of primary patient-derived cancer cells with limited growth in culture to reduce genetic and phenotype drift. However, these primary lines are less amenable to standardly used methods of exogenous DNA introduction. Adeno-associated viral (AAV) vectors display tropism for a wide range of human tissues, avidly infect primary cells and have a good safety profile. In the present study, we therefore used a next-generation sequencing (NGS) barcoded AAV screening method to assess transduction capability of a panel of 36 AAVs in primary cell lines representing high-grade glioma (HGG) brain tumours including glioblastoma (GBM) and diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). As proof of principle, we created a reporter construct to analyse activity of the transcriptional co-activators yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ). Transcriptional activation was monitored by promoter-driven expression of the Timer fluorescent tag, a protein that fluoresces green immediately after transcription and transitions to red fluorescence over time. As expected, attempts to express the reporter in primary HGG cells from plasmid expression vectors were unsuccessful. Using the top candidate from the AAV screen, we demonstrate successful AAV-mediated transduction of HGG cells with the YAP/TAZ dynamic activity reporter. In summary, the NGS-screening approach facilitated screening of many potential AAVs, identifying vectors that can be used to study the biology of primary HGG cells.
Collapse
Affiliation(s)
- Farhana A. Sarker
- Children's Hospital Clinical School, Faculty of Medicine and HealthUniversity of SydneyAustralia
- Children's Cancer Research UnitThe Children's Hospital at WestmeadSydneyAustralia
| | - Yuyan Chen
- Children's Hospital Clinical School, Faculty of Medicine and HealthUniversity of SydneyAustralia
- Children's Cancer Research UnitThe Children's Hospital at WestmeadSydneyAustralia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteThe University of SydneyWestmeadAustralia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Faculty of Medicine and Health, Children's Medical Research InstituteThe University of SydneyWestmeadAustralia
- Australian Genome Therapeutics CentreChildren's Medical Research Institute and Sydney Children's Hospitals NetworkWestmeadAustralia
- Laboratory of Molecular Oncology and Innovative TherapiesMilitary Institute of MedicineWarsawPoland
| | - Geraldine M. O'Neill
- Children's Hospital Clinical School, Faculty of Medicine and HealthUniversity of SydneyAustralia
- Children's Cancer Research UnitThe Children's Hospital at WestmeadSydneyAustralia
| |
Collapse
|
16
|
Lee S, Weiss T, Bühler M, Mena J, Lottenbach Z, Wegmann R, Sun M, Bihl M, Augustynek B, Baumann SP, Goetze S, van Drogen A, Pedrioli PGA, Penton D, Festl Y, Buck A, Kirschenbaum D, Zeitlberger AM, Neidert MC, Vasella F, Rushing EJ, Wollscheid B, Hediger MA, Weller M, Snijder B. High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity. Nat Med 2024; 30:3196-3208. [PMID: 39304781 PMCID: PMC11564103 DOI: 10.1038/s41591-024-03224-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/31/2024] [Indexed: 09/22/2024]
Abstract
Glioblastoma, the most aggressive primary brain cancer, has a dismal prognosis, yet systemic treatment is limited to DNA-alkylating chemotherapies. New therapeutic strategies may emerge from exploring neurodevelopmental and neurophysiological vulnerabilities of glioblastoma. To this end, we systematically screened repurposable neuroactive drugs in glioblastoma patient surgery material using a clinically concordant and single-cell resolved platform. Profiling more than 2,500 ex vivo drug responses across 27 patients and 132 drugs identified class-diverse neuroactive drugs with potent anti-glioblastoma efficacy that were validated across model systems. Interpretable molecular machine learning of drug-target networks revealed neuroactive convergence on AP-1/BTG-driven glioblastoma suppression, enabling expanded in silico screening of more than 1 million compounds with high patient validation accuracy. Deep multimodal profiling confirmed Ca2+-driven AP-1/BTG-pathway induction as a neuro-oncological glioblastoma vulnerability, epitomized by the anti-depressant vortioxetine synergizing with current standard-of-care chemotherapies in vivo. These findings establish an actionable framework for glioblastoma treatment rooted in its neural etiology.
Collapse
Affiliation(s)
- Sohyon Lee
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marcel Bühler
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Julien Mena
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Zuzanna Lottenbach
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Rebekka Wegmann
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Miaomiao Sun
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michel Bihl
- Institute of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Bartłomiej Augustynek
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sven P Baumann
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Sandra Goetze
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Audrey van Drogen
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Patrick G A Pedrioli
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - David Penton
- Electrophysiology Facility, University of Zurich, Zurich, Switzerland
| | - Yasmin Festl
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alicia Buck
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Daniel Kirschenbaum
- Department of Neuropathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anna M Zeitlberger
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland
| | - Elisabeth J Rushing
- Department of Neuropathology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bernd Wollscheid
- Department of Health Sciences and Technology, Institute of Translational Medicine (ITM), ETH Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- ETH PHRT Swiss Multi-Omics Center (SMOC), Zurich, Switzerland
| | - Matthias A Hediger
- Membrane Transport Discovery Lab, Department of Nephrology and Hypertension and Department of Biomedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland
| | - Berend Snijder
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
- Comprehensive Cancer Center Zurich, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Zhang X, Duan S, Apostolou PE, Wu X, Watanabe J, Gallitto M, Barron T, Taylor KR, Woo PJ, Hua X, Zhou H, Wei HJ, McQuillan N, Kang KD, Friedman GK, Canoll PD, Chang K, Wu CC, Hashizume R, Vakoc CR, Monje M, McKhann GM, Gogos JA, Zhang Z. CHD2 Regulates Neuron-Glioma Interactions in Pediatric Glioma. Cancer Discov 2024; 14:1732-1754. [PMID: 38767413 PMCID: PMC11456263 DOI: 10.1158/2159-8290.cd-23-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/05/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
High-grade gliomas (HGG) are deadly diseases for both adult and pediatric patients. Recently, it has been shown that neuronal activity promotes the progression of multiple subgroups of HGG. However, epigenetic mechanisms that govern this process remain elusive. Here we report that the chromatin remodeler chromodomain helicase DNA-binding protein 2 (CHD2) regulates neuron-glioma interactions in diffuse midline glioma (DMG) characterized by onco-histone H3.1K27M. Depletion of CHD2 in H3.1K27M DMG cells compromises cell viability and neuron-to-glioma synaptic connections in vitro, neuron-induced proliferation of H3.1K27M DMG cells in vitro and in vivo, activity-dependent calcium transients in vivo, and extends the survival of H3.1K27M DMG-bearing mice. Mechanistically, CHD2 coordinates with the transcription factor FOSL1 to control the expression of axon-guidance and synaptic genes in H3.1K27M DMG cells. Together, our study reveals a mechanism whereby CHD2 controls the intrinsic gene program of the H3.1K27M DMG subtype, which in turn regulates the tumor growth-promoting interactions of glioma cells with neurons. Significance: Neurons drive the proliferation and invasion of glioma cells. Here we show that chromatin remodeler chromodomain helicase DNA-binding protein 2 controls the epigenome and expression of axon-guidance and synaptic genes, thereby promoting neuron-induced proliferation of H3.1K27M diffuse midline glioma and the pathogenesis of this deadly disease.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Shoufu Duan
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- These authors contributed equally
| | - Panagiota E. Apostolou
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jun Watanabe
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Kathryn R. Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Pamelyn J. Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Xu Hua
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hui Zhou
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hong-Jian Wei
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nicholas McQuillan
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kyung-Don Kang
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Pediatrics, Neuro-Oncology Section, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gregory K. Friedman
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Division of Pediatrics, Neuro-Oncology Section, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Peter D. Canoll
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kenneth Chang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rintaro Hashizume
- Department of Pediatrics, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, CA 94305, USA
| | - Guy M. McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joseph A. Gogos
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
18
|
Norton ES, Whaley LA, Jones VK, Brooks MM, Russo MN, Morderer D, Jessen E, Schiapparelli P, Ramos-Fresnedo A, Zarco N, Carrano A, Rossoll W, Asmann YW, Lam TT, Chaichana KL, Anastasiadis PZ, Quiñones-Hinojosa A, Guerrero-Cázares H. Cell-specific cross-talk proteomics reveals cathepsin B signaling as a driver of glioblastoma malignancy near the subventricular zone. SCIENCE ADVANCES 2024; 10:eadn1607. [PMID: 39110807 PMCID: PMC11305394 DOI: 10.1126/sciadv.adn1607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive malignant primary brain tumor. GBM proximal to the lateral ventricles (LVs) is more aggressive, potentially because of subventricular zone contact. Despite this, cross-talk between GBM and neural stem/progenitor cells (NSC/NPCs) is not well understood. Using cell-specific proteomics, we show that LV-proximal GBM prevents neuronal maturation of NSCs through induction of senescence. In addition, GBM brain tumor-initiating cells (BTICs) increase expression of cathepsin B (CTSB) upon interaction with NPCs. Lentiviral knockdown and recombinant protein experiments reveal that both cell-intrinsic and soluble CTSB promote malignancy-associated phenotypes in BTICs. Soluble CTSB stalls neuronal maturation in NPCs while promoting senescence, providing a link between LV-tumor proximity and neurogenesis disruption. Last, we show LV-proximal CTSB up-regulation in patients, showing the relevance of this cross-talk in human GBM biology. These results demonstrate the value of proteomic analysis in tumor microenvironment research and provide direction for new therapeutic strategies in GBM.
Collapse
Affiliation(s)
- Emily S. Norton
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
- Regenerative Sciences Training Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Lauren A. Whaley
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Vanessa K. Jones
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| | - Mieu M. Brooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Marissa N. Russo
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dmytro Morderer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Erik Jessen
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Natanael Zarco
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL 32224, USA
| | - TuKiet T. Lam
- Keck MS and Proteomics Resource, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | |
Collapse
|
19
|
Qi L, Du Y, Huang Y, Kogiso M, Zhang H, Xiao S, Abdallah A, Suarez M, Niu L, Liu ZG, Lindsay H, Braun FK, Stephen C, Davies PJ, Teo WY, Adenkunle A, Baxter P, Su JM, Li XN. CD57 defines a novel cancer stem cell that drive invasion of diffuse pediatric-type high grade gliomas. Br J Cancer 2024; 131:258-270. [PMID: 38834745 PMCID: PMC11263392 DOI: 10.1038/s41416-024-02724-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Diffuse invasion remains a primary cause of treatment failure in pediatric high-grade glioma (pHGG). Identifying cellular driver(s) of pHGG invasion is needed for anti-invasion therapies. METHODS Ten highly invasive patient-derived orthotopic xenograft (PDOX) models of pHGG were subjected to isolation of matching pairs of invasive (HGGINV) and tumor core (HGGTC) cells. RESULTS pHGGINV cells were intrinsically more invasive than their matching pHGGTC cells. CSC profiling revealed co-positivity of CD133 and CD57 and identified CD57+CD133- cells as the most abundant CSCs in the invasive front. In addition to discovering a new order of self-renewal capacities, i.e., CD57+CD133- > CD57+CD133+ > CD57-CD133+ > CD57-CD133- cells, we showed that CSC hierarchy was impacted by their spatial locations, and the highest self-renewal capacities were found in CD57+CD133- cells in the HGGINV front (HGGINV/CD57+CD133- cells) mediated by NANOG and SHH over-expression. Direct implantation of CD57+ (CD57+/CD133- and CD57+/CD133+) cells into mouse brains reconstituted diffusely invasion, while depleting CD57+ cells (i.e., CD57-CD133+) abrogated pHGG invasion. CONCLUSION We revealed significantly increased invasive capacities in HGGINV cells, confirmed CD57 as a novel glioma stem cell marker, identified CD57+CD133- and CD57+CD133+ cells as a new cellular driver of pHGG invasion and suggested a new dual-mode hierarchy of HGG stem cells.
Collapse
Affiliation(s)
- Lin Qi
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Sun Yat-sen University, Shenzhen, Guangdong, 510080, China
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yuchen Du
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulun Huang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Dushu Lake Hospital, Soochow University Medical School, Suzhou, 215007, China
| | - Mari Kogiso
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Sophie Xiao
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Aalaa Abdallah
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Milagros Suarez
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Long Niu
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Zhi-Gang Liu
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer Center, Affiliated Dongguan Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Holly Lindsay
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Frank K Braun
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Clifford Stephen
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Peter J Davies
- Center for Epigenetics & Disease Prevention, Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, 77030, USA
| | - Wan Yee Teo
- The Laboratory of Pediatric Brain Tumor Research Office, SingHealth Duke-NUS Academic Medical Center, Singapore, 169856, Singapore
| | - Adesina Adenkunle
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Baxter
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jack Mf Su
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiao-Nan Li
- Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Ann & Robert H. Lurie Children's Hospital of Chicago, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, 77030, USA.
- Robert H. Laurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Furst LM, Roussel EM, Leung RF, George AM, Best SA, Whittle JR, Firestein R, Faux MC, Eisenstat DD. The Landscape of Pediatric High-Grade Gliomas: The Virtues and Pitfalls of Pre-Clinical Models. BIOLOGY 2024; 13:424. [PMID: 38927304 PMCID: PMC11200883 DOI: 10.3390/biology13060424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Pediatric high-grade gliomas (pHGG) are malignant and usually fatal central nervous system (CNS) WHO Grade 4 tumors. The majority of pHGG consist of diffuse midline gliomas (DMG), H3.3 or H3.1 K27 altered, or diffuse hemispheric gliomas (DHG) (H3.3 G34-mutant). Due to diffuse tumor infiltration of eloquent brain areas, especially for DMG, surgery has often been limited and chemotherapy has not been effective, leaving fractionated radiation to the involved field as the current standard of care. pHGG has only been classified as molecularly distinct from adult HGG since 2012 through Next-Generation sequencing approaches, which have shown pHGG to be epigenetically regulated and specific tumor sub-types to be representative of dysregulated differentiating cells. To translate discovery research into novel therapies, improved pre-clinical models that more adequately represent the tumor biology of pHGG are required. This review will summarize the molecular characteristics of different pHGG sub-types, with a specific focus on histone K27M mutations and the dysregulated gene expression profiles arising from these mutations. Current and emerging pre-clinical models for pHGG will be discussed, including commonly used patient-derived cell lines and in vivo modeling techniques, encompassing patient-derived xenograft murine models and genetically engineered mouse models (GEMMs). Lastly, emerging techniques to model CNS tumors within a human brain environment using brain organoids through co-culture will be explored. As models that more reliably represent pHGG continue to be developed, targetable biological and genetic vulnerabilities in the disease will be more rapidly identified, leading to better treatments and improved clinical outcomes.
Collapse
Affiliation(s)
- Liam M. Furst
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Enola M. Roussel
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan F. Leung
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Ankita M. George
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
| | - Sarah A. Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James R. Whittle
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3010, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ron Firestein
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree C. Faux
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Department of Surgery, University of Melbourne, Parkville, VIC 3010, Australia
| | - David D. Eisenstat
- Department of Paediatrics, University of Melbourne, Parkville, VIC 3052, Australia; (L.M.F.); (E.M.R.); (R.F.L.); (M.C.F.)
- Stem Cell Medicine, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia;
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, 50 Flemington Road, Parkville, VIC 3052, Australia
| |
Collapse
|
21
|
Hu B, Zhang Z, Chen S, Xu Q, Li J. A metric for quantitative evaluation of glioma margin changes in magnetic resonance imaging. Acta Radiol 2024; 65:645-653. [PMID: 38449078 DOI: 10.1177/02841851241229597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
BACKGROUND Gliomas differ from meningiomas in their margins, most of which are not separated from the surrounding tissue by a distinct interface. PURPOSE To characterize the margins of gliomas quantitatively based on the margin sharpness coefficient (MSC) is significant for clinical judgment and invasive analysis of gliomas. MATERIAL AND METHODS The data for this study used magnetic resonance image (MRI) data from 67 local patients and 15 open patients to quantify the intensity of changes in the glioma margins of the brain using MSC. The accuracy of MSC was assessed by consistency analysis and Bland-Altman test analysis, as well as invasive correlations using receiver operating characteristic (ROC) and Spearman correlation coefficients for subjects. RESULTS In grading the tumors, the mean MSC values were significantly lower for high-grade gliomas (HGG) than for low-grade gliomas (LGG). The concordance correlation between the measured gradient and the actual gradient was high (HGG: 0.981; LGG: 0.993), and the Bland-Altman mean difference at the 95% confidence interval (HGG: -0.576; LGG: 0.254) and the limits of concordance (HGG: 5.580; LGG: 5.436) indicated no statistical difference. The correlation between MSC and invasion based on the margins of gliomas showed an AUC of 0.903 and 0.911 for HGG and LGG, respectively. The mean Spearman correlation coefficient of the MSC versus the actual distance of invasion was -0.631 in gliomas. CONCLUSION The relatively low MSC on the blurred margins and irregular shape of gliomas may help in benign-malignant differentiation and invasion prediction of gliomas and has potential application for clinical judgment.
Collapse
Affiliation(s)
- Binwu Hu
- School of Electronics & Information Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Suting Chen
- School of Electronics & Information Engineering, Nanjing University of Information Science and Technology, Nanjing, PR China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| | - Jianrui Li
- Department of Medical Imaging, Jinling Hospital, Nanjing University School of Medicine, Nanjing, PR China
| |
Collapse
|
22
|
Sinha S, Huang MS, Mikos G, Bedi Y, Soto L, Lensch S, Ayushman M, Bintu L, Bhutani N, Heilshorn SC, Yang F. Laminin-associated integrins mediate Diffuse Intrinsic Pontine Glioma infiltration and therapy response within a neural assembloid model. Acta Neuropathol Commun 2024; 12:71. [PMID: 38706008 PMCID: PMC11070088 DOI: 10.1186/s40478-024-01765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/24/2024] [Indexed: 05/07/2024] Open
Abstract
Diffuse Intrinsic Pontine Glioma (DIPG) is a highly aggressive and fatal pediatric brain cancer. One pre-requisite for tumor cells to infiltrate is adhesion to extracellular matrix (ECM) components. However, it remains largely unknown which ECM proteins are critical in enabling DIPG adhesion and migration and which integrin receptors mediate these processes. Here, we identify laminin as a key ECM protein that supports robust DIPG cell adhesion and migration. To study DIPG infiltration, we developed a DIPG-neural assembloid model, which is composed of a DIPG spheroid fused to a human induced pluripotent stem cell-derived neural organoid. Using this assembloid model, we demonstrate that knockdown of laminin-associated integrins significantly impedes DIPG infiltration. Moreover, laminin-associated integrin knockdown improves DIPG response to radiation and HDAC inhibitor treatment within the DIPG-neural assembloids. These findings reveal the critical role of laminin-associated integrins in mediating DIPG progression and drug response. The results also provide evidence that disrupting integrin receptors may offer a novel therapeutic strategy to enhance DIPG treatment outcomes. Finally, these results establish DIPG-neural assembloid models as a powerful tool to study DIPG disease progression and enable drug discovery.
Collapse
Affiliation(s)
- Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Georgios Mikos
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yudhishtar Bedi
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1254, Palo Alto, CA, 94305, USA
| | - Luis Soto
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Sarah Lensch
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Manish Ayushman
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Lacramioara Bintu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Nidhi Bhutani
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1254, Palo Alto, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, 476 Lomita Mall, McCullough Building, Room 246, Palo Alto, CA, 94305, USA.
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
- Departments of Orthopaedic Surgery and Bioengineering, Stanford University, 240 Pasteur Dr., Biomedical Innovation Building 1254, Palo Alto, CA, 94305, USA.
| |
Collapse
|
23
|
Nicholson JG, Cirigliano S, Singhania R, Haywood C, Shahidi Dadras M, Yoshimura M, Vanderbilt D, Liechty B, Fine HA. Chronic hypoxia remodels the tumor microenvironment to support glioma stem cell growth. Acta Neuropathol Commun 2024; 12:46. [PMID: 38528608 DOI: 10.1186/s40478-024-01755-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
Cerebral organoids co-cultured with patient derived glioma stem cells (GLICOs) are an experimentally tractable research tool useful for investigating the role of the human brain tumor microenvironment in glioblastoma. Here we describe long-term GLICOs, a novel model in which COs are grown from embryonic stem cell cultures containing low levels of GSCs and tumor development is monitored over extended durations (ltGLICOs). Single-cell profiling of ltGLICOs revealed an unexpectedly long latency period prior to GSC expansion, and that normal organoid development was unimpaired by the presence of low numbers of GSCs. However, as organoids age they experience chronic hypoxia and oxidative stress which remodels the tumor microenvironment to promote GSC expansion. Receptor-ligand modelling identified astrocytes, which secreted various pro-tumorigenic ligands including FGF1, as the primary cell type for GSC crosstalk and single-cell multi-omic analysis revealed these astrocytes were under the control of ischemic regulatory networks. Functional validation confirmed hypoxia as a driver of pro-tumorigenic astrocytic ligand secretion and that GSC expansion was accelerated by pharmacological induction of oxidative stress. When controlled for genotype, the close association between glioma aggressiveness and patient age has very few proposed biological explanations. Our findings indicate that age-associated increases in cerebral vascular insufficiency and associated regional chronic cerebral hypoxia may contribute to this phenomenon.
Collapse
Affiliation(s)
- J G Nicholson
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - S Cirigliano
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - R Singhania
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - C Haywood
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - M Shahidi Dadras
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - M Yoshimura
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - D Vanderbilt
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - B Liechty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine/New York-Presbyterian Hospital, New York, NY, USA
| | - H A Fine
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
24
|
Bruschi M, Midjek L, Ajlil Y, Vairy S, Lancien M, Ghermaoui S, Kergrohen T, Verreault M, Idbaih A, de Biagi CAO, Liu I, Filbin MG, Beccaria K, Blauwblomme T, Puget S, Tauziede-Espariat A, Varlet P, Dangouloff-Ros V, Boddaert N, Le Teuff G, Grill J, Montagnac G, Elkhatib N, Debily MA, Castel D. Diffuse midline glioma invasion and metastasis rely on cell-autonomous signaling. Neuro Oncol 2024; 26:553-568. [PMID: 37702430 PMCID: PMC10912010 DOI: 10.1093/neuonc/noad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMG) are pediatric tumors with negligible 2-year survival after diagnosis characterized by their ability to infiltrate the central nervous system. In the hope of controlling the local growth and slowing the disease, all patients receive radiotherapy. However, distant progression occurs frequently in DMG patients. Current clues as to what causes tumor infiltration circle mainly around the tumor microenvironment, but there are currently no known determinants to predict the degree of invasiveness. METHODS In this study, we use patient-derived glioma stem cells (GSCs) to create patient-specific 3D avatars to model interindividual invasion and elucidate the cellular supporting mechanisms. RESULTS We show that GSC models in 3D mirror the invasive behavior of the parental tumors, thus proving the ability of DMG to infiltrate as an autonomous characteristic of tumor cells. Furthermore, we distinguished 2 modes of migration, mesenchymal and ameboid-like, and associated the ameboid-like modality with GSCs derived from the most invasive tumors. Using transcriptomics of both organoids and primary tumors, we further characterized the invasive ameboid-like tumors as oligodendrocyte progenitor-like, with highly contractile cytoskeleton and reduced adhesion ability driven by crucial over-expression of bone morphogenetic pathway 7 (BMP7). Finally, we deciphered MEK, ERK, and Rho/ROCK kinases activated downstream of the BMP7 stimulation as actionable targets controlling tumor cell motility. CONCLUSIONS Our findings identify 2 new therapeutic avenues. First, patient-derived GSCs represent a predictive tool for patient stratification in order to adapt irradiation strategies. Second, autocrine and short-range BMP7-related signaling becomes a druggable target to prevent DMG spread and metastasis.
Collapse
Affiliation(s)
- Marco Bruschi
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Lilia Midjek
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Yassine Ajlil
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Stephanie Vairy
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Manon Lancien
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Samia Ghermaoui
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Thomas Kergrohen
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Maite Verreault
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neurologie 2-Mazarin, Paris, France
| | - Ahmed Idbaih
- Sorbonne Université, AP-HP, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, DMU Neurosciences, Service de Neurologie 2-Mazarin, Paris, France
| | - Carlos Alberto Oliveira de Biagi
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Boston, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Kevin Beccaria
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Thomas Blauwblomme
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Stephanie Puget
- Department of Pediatric Neurosurgery, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Arnault Tauziede-Espariat
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, ParisFrance
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR 1266, INSERM, IMA-BRAIN, Université de Paris, Paris, France
| | - Pascale Varlet
- Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, ParisFrance
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR 1266, INSERM, IMA-BRAIN, Université de Paris, Paris, France
| | - Volodia Dangouloff-Ros
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris Cité, Institut Imagine INSERM U1163, ParisFrance
| | - Nathalie Boddaert
- Paediatric Radiology Department, AP-HP, Hôpital Necker Enfants Malades, Université Paris Cité, Institut Imagine INSERM U1163, ParisFrance
| | - Gwenael Le Teuff
- Department of Biostatistics and Epidemiology, Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Jacques Grill
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Cancérologie de l’Enfant et de l’Adolescent, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Nadia Elkhatib
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Marie-Anne Debily
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Département de Biologie, Université Evry Paris-Saclay, Evry, France
| | - David Castel
- Inserm U981, Molecular Predictors and New Targets in Oncology, Team Genomics and Oncogenesis of Pediatric Brain Tumors, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
25
|
Yang X, Cai Z, Wang C, Jiang C, Li J, Chen F, Li W. Integrated multiomic analysis reveals disulfidptosis subtypes in glioblastoma: implications for immunotherapy, targeted therapy, and chemotherapy. Front Immunol 2024; 15:1362543. [PMID: 38504986 PMCID: PMC10950096 DOI: 10.3389/fimmu.2024.1362543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024] Open
Abstract
Introduction Glioblastoma (GBM) presents significant challenges due to its malignancy and limited treatment options. Precision treatment requires subtyping patients based on prognosis. Disulfidptosis, a novel cell death mechanism, is linked to aberrant glucose metabolism and disulfide stress, particularly in tumors expressing high levels of SLC7A11. The exploration of disulfidptosis may provide a new perspective for precise diagnosis and treatment of glioblastoma. Methods Transcriptome sequencing was conducted on samples from GBM patients treated at Tiantan Hospital (January 2022 - December 2023). Data from CGGA and TCGA databases were collected. Consensus clustering based on disulfidptosis features categorized GBM patients into two subtypes (DRGclusters). Tumor immune microenvironment, response to immunotherapy, and drug sensitivity were analyzed. An 8-gene disulfidptosis-based subtype predictor was developed using LASSO machine learning algorithm and validated on CGGA dataset. Results Patients in DRGcluster A exhibited improved overall survival (OS) compared to DRGcluster B. DRGcluster subtypes showed differences in tumor immune microenvironment and response to immunotherapy. The predictor effectively stratified patients into high and low-risk groups. Significant differences in IC50 values for chemotherapy and targeted therapy were observed between risk groups. Discussion Disulfidptosis-based classification offers promise as a prognostic predictor for GBM. It provides insights into tumor immune microenvironment and response to therapy. The predictor aids in patient stratification and personalized treatment selection, potentially improving outcomes for GBM patients.
Collapse
Affiliation(s)
- Xue Yang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zehao Cai
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ce Wang
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chenggang Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianguang Li
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Feng Chen
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-oncology Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Miciaccia M, Rizzo F, Centonze A, Cavallaro G, Contino M, Armenise D, Baldelli OM, Solidoro R, Ferorelli S, Scarcia P, Agrimi G, Zingales V, Cimetta E, Ronsisvalle S, Sipala FM, Polosa PL, Fortuna CG, Perrone MG, Scilimati A. Harmaline to Human Mitochondrial Caseinolytic Serine Protease Activation for Pediatric Diffuse Intrinsic Pontine Glioma Treatment. Pharmaceuticals (Basel) 2024; 17:135. [PMID: 38276008 PMCID: PMC10821046 DOI: 10.3390/ph17010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG), affecting children aged 4-7 years, is a rare, aggressive tumor that originates in the pons and then spreads to nearby tissue. DIPG is the leading cause of death for pediatric brain tumors due to its infiltrative nature and inoperability. Radiotherapy has only a palliative effect on stabilizing symptoms. In silico and preclinical studies identified ONC201 as a cytotoxic agent against some human cancer cell lines, including DIPG ones. A single-crystal X-ray analysis of the complex of the human mitochondrial caseinolytic serine protease type C (hClpP) and ONC201 (PDB ID: 6DL7) allowed hClpP to be identified as its main target. The hyperactivation of hClpP causes damage to mitochondrial oxidative phosphorylation and cell death. In some DIPG patients receiving ONC201, an acquired resistance was observed. In this context, a wide program was initiated to discover original scaffolds for new hClpP activators to treat ONC201-non-responding patients. Harmaline, a small molecule belonging to the chemical class of β-carboline, was identified through Fingerprints for Ligands and Proteins (FLAP), a structure-based virtual screening approach. Molecular dynamics simulations and a deep in vitro investigation showed interesting information on the interaction and activation of hClpP by harmaline.
Collapse
Affiliation(s)
- Morena Miciaccia
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| | - Francesca Rizzo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (F.R.); (P.S.); (G.A.); (P.L.P.)
| | - Antonella Centonze
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| | - Gianfranco Cavallaro
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Marialessandra Contino
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy;
| | - Domenico Armenise
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| | - Olga Maria Baldelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| | - Roberta Solidoro
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| | - Savina Ferorelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (F.R.); (P.S.); (G.A.); (P.L.P.)
| | - Gennaro Agrimi
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (F.R.); (P.S.); (G.A.); (P.L.P.)
| | - Veronica Zingales
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (V.Z.); (E.C.)
| | - Elisa Cimetta
- Department of Industrial Engineering (DII), University of Padua, Via Marzolo 9, 35131 Padova, Italy; (V.Z.); (E.C.)
| | - Simone Ronsisvalle
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (S.R.); (F.M.S.)
| | - Federica Maria Sipala
- Department of Drug and Health Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (S.R.); (F.M.S.)
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies, and Environment, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (F.R.); (P.S.); (G.A.); (P.L.P.)
| | - Cosimo Gianluca Fortuna
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy;
| | - Maria Grazia Perrone
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, Via E. Orabona 4, 70125 Bari, Italy; (M.M.); (A.C.); (D.A.); (O.M.B.); (R.S.); (S.F.)
| |
Collapse
|
27
|
Lv TR, Ma WJ, Liu F, Hu HJ, Jin YW, Li FY. The significance of peri-neural invasion in patients with resected hilar cholangiocarcinoma: A single-center experience in China. Asian J Surg 2024; 47:274-280. [PMID: 37648545 DOI: 10.1016/j.asjsur.2023.08.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/05/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The significance of peri-neural invasion (PNI) in resected patients with hilar cholangiocarcinoma (HCCA) has been rarely explored. Our study was performed to evaluate the significance of PNI in resected HCCA patients in terms of tumor biological features and long-term survival. METHODS We retrospectively reviewed surgically-treated HCCA patients between June, 2000 and June 2018. SPSS 25.0 software was used for statistical analysis. RESULTS A total of 239 resected HCCA patients were included (No. PNI: 138). PNI indicated more aggressive tumor biological features. Major vascular reconstruction was more frequently performed in patients with PNI (34.8% vs 24.8%, P = 0.064). Patients with PNI shared a significantly higher percentage of surgical margin width <5 mm (29.0% vs 16.8%, P = 0.02). The proportion of patients with T1-2 disease (31.2% vs 40.6%, P = 0.085) or I-II disease (21% vs 34.7%, P = 0.014) was significantly lower in patients with PNI. The overall morbidity rate was significantly higher in patients with PNI (P = 0.042). A much worse overall survival (OS) (P = 0.0003) or disease-free survival (DFS) (P = 0.0011) in patients with PNI. Even after matching vital prognostic factors, a significantly worse OS (P = 0.0003) or DFS (P = 0.0002) was still observed in patients with PNI. PNI was an independent prognostic factor in both OS (P = 0.011) and DFS (P = 0.024). CONCLUSION PNI indicated more aggressive tumor biological features and more advanced tumor stage in patients with resected HCCA. PNI can be an independent prognostic factor in both OS and DFS. Future multi-center studies covering various races or populations are required for further validation.
Collapse
Affiliation(s)
- Tian-Run Lv
- Department of Biliary Tract Surgery, General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Wen-Jie Ma
- Department of Biliary Tract Surgery, General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fei Liu
- Department of Biliary Tract Surgery, General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Hai-Jie Hu
- Department of Biliary Tract Surgery, General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yan-Wen Jin
- Department of Biliary Tract Surgery, General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Fu-Yu Li
- Department of Biliary Tract Surgery, General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
28
|
Lombard A, Isci D, Reuter G, Di Valentin E, Hego A, Martin D, Rogister B, Neirinckx V. Development of an intraventricular adeno-associated virus-based labeling strategy for glioblastoma cells nested in the subventricular zone. Neurooncol Adv 2024; 6:vdae161. [PMID: 39445338 PMCID: PMC11497599 DOI: 10.1093/noajnl/vdae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Background Glioblastoma (GBM) is a dreadful brain tumor, with a particular relationship to the adult subventricular zone (SVZ) that has been described as relevant to disease initiation, progression, and recurrence. Methods We propose a novel strategy for the detection and tracking of xenografted GBM cells that are located in the SVZ, based on an intracerebroventricular (icv) recombinant adeno-associated virus (AAV)-mediated color conversion method. We used different patient-derived GBM stem-like cells (GSCs), which we transduced first with a retroviral vector (LRLG) that included a lox-dsRed-STOP-lox cassette, upstream of the eGFP gene, then with rAAVs expressing the Cre-recombinase. Red and green fluorescence is analyzed in vitro and in vivo using flow cytometry and fluorescence microscopy. Results After comparing the efficiency of diverse rAAV serotypes, we confirmed that the in vitro transduction of GSC-LRLG with rAAV-Cre induced a switch from red to green fluorescence. In parallel, we verified that rAAV transduction was confined to the walls of the lateral ventricles. We, therefore, applied this conversion approach in 2 patient-derived orthotopic GSC xenograft models and showed that the icv injection of an rAAV-DJ-Cre after GSC-LRLG tumor implantation triggered the conversion of red GSCs to green, in the periventricular region. Green GSCs were also found at distant places, including the migratory tract and the tumor core. Conclusions This study not only sheds light on the putative outcome of SVZ-nested GBM cells but also shows that icv injection of rAAV vectors allows to transduce and potentially modulate gene expression in hard-to-reach GBM cells of the periventricular area.
Collapse
Affiliation(s)
- Arnaud Lombard
- Neurosurgery Department, CHR Citadelle, Liège, Belgium
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Gilles Reuter
- Neurosurgery Department, University Hospital, Liège, Belgium
| | | | - Alexandre Hego
- GIGA Cell Imaging Platform, University of Liège, Liège, Belgium
| | - Didier Martin
- Neurosurgery Department, University Hospital, Liège, Belgium
| | - Bernard Rogister
- Neurology Department, University Hospital, Liège, Belgium
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| |
Collapse
|
29
|
Taylor KR, Barron T, Hui A, Spitzer A, Yalçin B, Ivec AE, Geraghty AC, Hartmann GG, Arzt M, Gillespie SM, Kim YS, Maleki Jahan S, Zhang H, Shamardani K, Su M, Ni L, Du PP, Woo PJ, Silva-Torres A, Venkatesh HS, Mancusi R, Ponnuswami A, Mulinyawe S, Keough MB, Chau I, Aziz-Bose R, Tirosh I, Suvà ML, Monje M. Glioma synapses recruit mechanisms of adaptive plasticity. Nature 2023; 623:366-374. [PMID: 37914930 PMCID: PMC10632140 DOI: 10.1038/s41586-023-06678-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
The role of the nervous system in the regulation of cancer is increasingly appreciated. In gliomas, neuronal activity drives tumour progression through paracrine signalling factors such as neuroligin-3 and brain-derived neurotrophic factor1-3 (BDNF), and also through electrophysiologically functional neuron-to-glioma synapses mediated by AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors4,5. The consequent glioma cell membrane depolarization drives tumour proliferation4,6. In the healthy brain, activity-regulated secretion of BDNF promotes adaptive plasticity of synaptic connectivity7,8 and strength9-15. Here we show that malignant synapses exhibit similar plasticity regulated by BDNF. Signalling through the receptor tropomyosin-related kinase B16 (TrkB) to CAMKII, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. Linking plasticity of glioma synaptic strength to tumour growth, graded optogenetic control of glioma membrane potential demonstrates that greater depolarizing current amplitude promotes increased glioma proliferation. This potentiation of malignant synaptic strength shares mechanistic features with synaptic plasticity17-22 that contributes to memory and learning in the healthy brain23-26. BDNF-TrkB signalling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of glioma TrkB expression robustly inhibits tumour progression. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of paediatric glioblastoma and diffuse intrinsic pontine glioma. Together, these findings indicate that BDNF-TrkB signalling promotes malignant synaptic plasticity and augments tumour progression.
Collapse
Affiliation(s)
- Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexa Hui
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Belgin Yalçin
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Alexis E Ivec
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Griffin G Hartmann
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Marlene Arzt
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Shawn M Gillespie
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin Maleki Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Helena Zhang
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Minhui Su
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Peter P Du
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Arianna Silva-Torres
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Humsa S Venkatesh
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anitha Ponnuswami
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Sara Mulinyawe
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael B Keough
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Isabelle Chau
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Razina Aziz-Bose
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Mario L Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford California, Stanford, CA, USA.
| |
Collapse
|
30
|
Murnan KM, Horbinski C, Stegh AH. Redox Homeostasis and Beyond: The Role of Wild-Type Isocitrate Dehydrogenases for the Pathogenesis of Glioblastoma. Antioxid Redox Signal 2023; 39:923-941. [PMID: 37132598 PMCID: PMC10654994 DOI: 10.1089/ars.2023.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Significance: Glioblastoma is an aggressive and devastating brain tumor characterized by a dismal prognosis and resistance to therapeutic intervention. To support catabolic processes critical for unabated cellular growth and defend against harmful reactive oxygen species, glioblastoma tumors upregulate the expression of wild-type isocitrate dehydrogenases (IDHs). IDH enzymes catalyze the oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG), NAD(P)H, and CO2. On molecular levels, IDHs epigenetically control gene expression through effects on α-KG-dependent dioxygenases, maintain redox balance, and promote anaplerosis by providing cells with NADPH and precursor substrates for macromolecular synthesis. Recent Advances: While gain-of-function mutations in IDH1 and IDH2 represent one of the most comprehensively studied mechanisms of IDH pathogenic effects, recent studies identified wild-type IDHs as critical regulators of normal organ physiology and, when transcriptionally induced or down regulated, as contributing to glioblastoma progression. Critical Issues: Here, we will discuss molecular mechanisms of how wild-type IDHs control glioma pathogenesis, including the regulation of oxidative stress and de novo lipid biosynthesis, and provide an overview of current and future research directives that aim to fully characterize wild-type IDH-driven metabolic reprogramming and its contribution to the pathogenesis of glioblastoma. Future Directions: Future studies are required to further dissect mechanisms of metabolic and epigenomic reprogramming in tumors and the tumor microenvironment, and to develop pharmacological approaches to inhibit wild-type IDH function. Antioxid. Redox Signal. 39, 923-941.
Collapse
Affiliation(s)
- Kevin M. Murnan
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Malnati Brain Tumor Institute, Northwestern University, Chicago, Illinois, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Alexander H. Stegh
- Department of Neurological Surgery, The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
31
|
Li H, Xu L, Jiang W, Qiu X, Xu H, Zhu F, Hu Y, Liang S, Cai C, Qiu W, Lu Z, Cui Y, Tang C. Pleiotrophin ameliorates age-induced adult hippocampal neurogenesis decline and cognitive dysfunction. Cell Rep 2023; 42:113022. [PMID: 37610873 DOI: 10.1016/j.celrep.2023.113022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/22/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Cognitive impairment has been associated with an age-related decline in adult hippocampal neurogenesis (AHN). The molecular basis of declining neurogenesis in the aging hippocampus remains to be elucidated. Here, we show that pleiotrophin (PTN) expression is decreased with aging in neural stem and progenitor cells (NSPCs). Mice lacking PTN exhibit impaired AHN accompanied by poor learning and memory. Mechanistically, we find that PTN engages with protein tyrosine phosphatase receptor type Z1 (PTPRZ1) to promote NSPC proliferation and differentiation by activating AKT signaling. PTN overexpression or pharmacological activation of AKT signaling in aging mice restores AHN and alleviates relevant memory deficits. Importantly, we also find that PTN overexpression improves impaired neurogenesis in senescence-accelerated mouse prone 8 (SAMP8) mice. We further confirm that PTN is required for enriched environment-induced increases in AHN. These results corroborate the significance of AHN in aging and reveal a possible therapeutic intervention by targeting PTN.
Collapse
Affiliation(s)
- Haoyang Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Yu Hu
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Shuzhen Liang
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Chengcheng Cai
- Medical Research Center, The Third Affiliated Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China.
| |
Collapse
|
32
|
Nagai K, Muto Y, Miura S, Takahashi K, Naruse Y, Hiruta R, Hashimoto Y, Uzuki M, Haga Y, Fujii R, Ueda K, Kawaguchi Y, Fujii M, Kitazume S. Brain-specific glycosylation enzyme GnT-IX maintains levels of protein tyrosine phosphatase receptor PTPRZ, thereby mediating glioma growth. J Biol Chem 2023; 299:105128. [PMID: 37543361 PMCID: PMC10480537 DOI: 10.1016/j.jbc.2023.105128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023] Open
Abstract
Gliomas are the most prevalent primary tumor of the central nervous system. Despite advances in imaging technologies, neurosurgical techniques, and radiotherapy, a cure for high-grade glioma remains elusive. Several groups have reported that protein tyrosine phosphatase receptor type Z (PTPRZ) is highly expressed in glioblastoma, and that targeting PTPRZ attenuates tumor growth in mice. PTPRZ is modified with diverse glycan, including the PTPRZ-unique human natural killer-1 capped O-mannosyl core M2 glycans. However, the regulation and function of these unique glycans are unclear. Using CRISPR genome-editing technology, we first demonstrated that disruption of the PTPRZ gene in human glioma LN-229 cells resulted in profoundly reduced tumor growth in xenografted mice, confirming the potential of PTPRZ as a therapeutic target for glioma. Furthermore, multiple glycan analyses revealed that PTPRZ derived from glioma patients and from xenografted glioma expressed abundant levels of human natural killer-1-capped O-Man glycans via extrinsic signals. Finally, since deficiency of O-Man core M2 branching enzyme N-acetylglucosaminyltransferase IX (GnT-IX) was reported to reduce PTPRZ protein levels, we disrupted the GnT-IX gene in LN-229 cells and found a significant reduction of glioma growth both in vitro and in the xenograft model. These results suggest that the PTPR glycosylation enzyme GnT-IX may represent a promising therapeutic target for glioma.
Collapse
Affiliation(s)
- Kenichiro Nagai
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | - Yui Muto
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Saori Miura
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Kazuto Takahashi
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Yu Naruse
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | - Ryo Hiruta
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Miwa Uzuki
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Yoshimi Haga
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Ueda
- Cancer Proteomics Group, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasushi Kawaguchi
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masazumi Fujii
- Department of Neurosurgery, Fukushima Medical University, Fukushima, Japan.
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan.
| |
Collapse
|
33
|
García-Montaño LA, Licón-Muñoz Y, Martinez FJ, Keddari YR, Ziemke MK, Chohan MO, Piccirillo SG. Dissecting Intra-tumor Heterogeneity in the Glioblastoma Microenvironment Using Fluorescence-Guided Multiple Sampling. Mol Cancer Res 2023; 21:755-767. [PMID: 37255362 PMCID: PMC10390891 DOI: 10.1158/1541-7786.mcr-23-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/25/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
The treatment of the most aggressive primary brain tumor in adults, glioblastoma (GBM), is challenging due to its heterogeneous nature, invasive potential, and poor response to chemo- and radiotherapy. As a result, GBM inevitably recurs and only a few patients survive 5 years post-diagnosis. GBM is characterized by extensive phenotypic and genetic heterogeneity, creating a diversified genetic landscape and a network of biological interactions between subclones, ultimately promoting tumor growth and therapeutic resistance. This includes spatial and temporal changes in the tumor microenvironment, which influence cellular and molecular programs in GBM and therapeutic responses. However, dissecting phenotypic and genetic heterogeneity at spatial and temporal levels is extremely challenging, and the dynamics of the GBM microenvironment cannot be captured by analysis of a single tumor sample. In this review, we discuss the current research on GBM heterogeneity, in particular, the utility and potential applications of fluorescence-guided multiple sampling to dissect phenotypic and genetic intra-tumor heterogeneity in the GBM microenvironment, identify tumor and non-tumor cell interactions and novel therapeutic targets in areas that are key for tumor growth and recurrence, and improve the molecular classification of GBM.
Collapse
Affiliation(s)
- Leopoldo A. García-Montaño
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yamhilette Licón-Muñoz
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Frank J. Martinez
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | - Yasine R. Keddari
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of California, Merced, California
| | - Michael K. Ziemke
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Muhammad O. Chohan
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi
| | - Sara G.M. Piccirillo
- The Brain Tumor Translational Laboratory, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| |
Collapse
|
34
|
Roth JG, Brunel LG, Huang MS, Liu Y, Cai B, Sinha S, Yang F, Pașca SP, Shin S, Heilshorn SC. Spatially controlled construction of assembloids using bioprinting. Nat Commun 2023; 14:4346. [PMID: 37468483 PMCID: PMC10356773 DOI: 10.1038/s41467-023-40006-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
The biofabrication of three-dimensional (3D) tissues that recapitulate organ-specific architecture and function would benefit from temporal and spatial control of cell-cell interactions. Bioprinting, while potentially capable of achieving such control, is poorly suited to organoids with conserved cytoarchitectures that are susceptible to plastic deformation. Here, we develop a platform, termed Spatially Patterned Organoid Transfer (SPOT), consisting of an iron-oxide nanoparticle laden hydrogel and magnetized 3D printer to enable the controlled lifting, transport, and deposition of organoids. We identify cellulose nanofibers as both an ideal biomaterial for encasing organoids with magnetic nanoparticles and a shear-thinning, self-healing support hydrogel for maintaining the spatial positioning of organoids to facilitate the generation of assembloids. We leverage SPOT to create precisely arranged assembloids composed of human pluripotent stem cell-derived neural organoids and patient-derived glioma organoids. In doing so, we demonstrate the potential for the SPOT platform to construct assembloids which recapitulate key developmental processes and disease etiologies.
Collapse
Affiliation(s)
- Julien G Roth
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA
- Complex in Vitro Systems, Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Michelle S Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Yueming Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sauradeep Sinha
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Fan Yang
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Orthopedic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sergiu P Pașca
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sungchul Shin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah C Heilshorn
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute & Bio-X, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
35
|
Da-Veiga MA, Coppieters N, Lombard A, Rogister B, Neirinckx V, Piette C. Comprehensive profiling of stem-like features in pediatric glioma cell cultures and their relation to the subventricular zone. Acta Neuropathol Commun 2023; 11:96. [PMID: 37328883 PMCID: PMC10276389 DOI: 10.1186/s40478-023-01586-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/20/2023] [Indexed: 06/18/2023] Open
Abstract
Pediatric high-grade gliomas (pHGG) are brain tumors occurring in children and adolescents associated with a dismal prognosis despite existing treatments. Therapeutic failure in both adult and pHGG has been partially imputed to glioma stem cells (GSC), a subset of cancer cells endowed with stem-like cell potential and malignant, invasive, adaptative, and treatment-resistant capabilities. Whereas GSC have largely been portrayed in adult tumors, less information has been provided in pHGG. The aim of our study was to comprehensively document the stem-like capacities of seven in-use pediatric glioma cell cultures (Res259, UW479, SF188, KNS42, SF8628, HJSD-DIPG-007 and HJSD-DIPG-012) using parallel in vitro assays assessing stem cell-related protein expression, multipotency, self-renewal and proliferation/quiescence, and in vivo investigation of their tumorigenicity and invasiveness. Data obtained from in vitro experiments revealed glioma subtype-dependent expression of stem cell-related markers and varying abilities for differentiation, self-renewal, and proliferation/quiescence. Among tested cultures, DMG H3-K27 altered cultures displayed a particular pattern of stem-like markers expression and a higher fraction of cells with self-renewal potential. Four cultures displaying distinctive stem-like profiles were further tested for their ability to initiate tumors and invade the brain tissue in mouse orthotopic xenografts. The selected cell cultures all showed a great tumor formation capacity, but only DMG H3-K27 altered cells demonstrated a highly infiltrative phenotype. Interestingly, we detected DMG H3-K27 altered cells relocated in the subventricular zone (SVZ), which has been previously described as a neurogenic area, but also a potential niche for brain tumor cells. Finally, we observed an SVZ-induced phenotypic modulation of the glioma cells, as evidenced by their increased proliferation rate. In conclusion, this study recapitulated a systematic stem-like profiling of various pediatric glioma cell cultures and call to a deeper characterization of DMG H3-K27 altered cells nested in the SVZ.
Collapse
Affiliation(s)
- Marc-Antoine Da-Veiga
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Neurosurgery, CHU Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Neurology, CHU Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, GIGA Institute, University of Liège, Liège, Belgium
- Department of Pediatrics, Division of Hematology-Oncology, CHU Liège, Liège, Belgium
| |
Collapse
|
36
|
Li S, Dong L, Pan Z, Yang G. Targeting the neural stem cells in subventricular zone for the treatment of glioblastoma: an update from preclinical evidence to clinical interventions. Stem Cell Res Ther 2023; 14:125. [PMID: 37170286 PMCID: PMC10173522 DOI: 10.1186/s13287-023-03325-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Glioblastoma is one of the most common and aggressive adult brain tumors. The conventional treatment strategy, surgery combined with chemoradiotherapy, did not change the fact that the recurrence rate was high and the survival rate was low. Over the years, accumulating evidence has shown that the subventricular zone has an important role in the recurrence and treatment resistance of glioblastoma. The human adult subventricular zone contains neural stem cells and glioma stem cells that are probably a part of reason for therapy resistance and recurrence of glioblastoma. MAIN BODY Over the years, both bench and bedside evidences strongly support the view that the presence of neural stem cells and glioma stem cells in the subventricular zone may be the crucial factor of recurrence of glioblastoma after conventional therapy. It emphasizes the necessity to explore new therapy strategies with the aim to target subventricular zone to eradicate neural stem cells or glioma stem cells. In this review, we summarize the recent preclinical and clinical advances in targeting neural stem cells in the subventricular zone for glioblastoma treatment, and clarify the prospects and challenges in clinical application. CONCLUSIONS Although there remain unresolved issues, current advances provide us with a lot of evidence that targeting the neural stem cells and glioma stem cells in subventricular zone may have the potential to solve the dilemma of glioblastoma recurrence and treatment resistance.
Collapse
Affiliation(s)
- Sijia Li
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
| | - Zhenyu Pan
- Department of Radiation Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000 China
| | - Guozi Yang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, Department of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, 130021 China
- Department of Radiation Oncology, Huizhou Third People’s Hospital, Guangzhou Medical University, Huizhou, 516000 China
| |
Collapse
|
37
|
Ganguly D, Schmidt MO, Coleman M, Ngo TVC, Sorrelle N, Dominguez AT, Murimwa GZ, Toombs JE, Lewis C, Fang YV, Valdes-Mora F, Gallego-Ortega D, Wellstein A, Brekken RA. Pleiotrophin drives a prometastatic immune niche in breast cancer. J Exp Med 2023; 220:e20220610. [PMID: 36828390 PMCID: PMC9998964 DOI: 10.1084/jem.20220610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 11/04/2022] Open
Abstract
Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Debolina Ganguly
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel O. Schmidt
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Morgan Coleman
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tuong-Vi Cindy Ngo
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Noah Sorrelle
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adrian T.A. Dominguez
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gilbert Z. Murimwa
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason E. Toombs
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yisheng V. Fang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics group, Precision Medicine Theme, Children’s Cancer Institute, Sydney, Australia
- School of Clinical Medicine, University of NSW Sydney, Sydney, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, Australia
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Rolf A. Brekken
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Cancer Biology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
38
|
Loras A, Gonzalez-Bonet LG, Gutierrez-Arroyo JL, Martinez-Cadenas C, Marques-Torrejon MA. Neural Stem Cells as Potential Glioblastoma Cells of Origin. Life (Basel) 2023; 13:life13040905. [PMID: 37109434 PMCID: PMC10145968 DOI: 10.3390/life13040905] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor in adults and it remains incurable. These tumors are very heterogeneous, resistant to cytotoxic therapies, and they show high rates of invasiveness. Therefore, patients face poor prognosis, and the survival rates remain very low. Previous research states that GBM contains a cell population with stem cell characteristics called glioma stem cells (GSCs). These cells are able to self-renew and regenerate the tumor and, therefore, they are partly responsible for the observed resistance to therapies and tumor recurrence. Recent data indicate that neural stem cells (NSCs) in the subventricular zone (SVZ) are the cells of origin of GBM, that is, the cell type acquiring the initial tumorigenic mutation. The involvement of SVZ-NSCs is also associated with GBM progression and recurrence. Identifying the cellular origin of GBM is important for the development of early detection techniques and the discovery of early disease markers. In this review, we analyze the SVZ-NSC population as a potential GBM cell of origin, and its potential role for GBM therapies.
Collapse
Affiliation(s)
- Alba Loras
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | - Julia L. Gutierrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon de la Plana, Spain
| | | | - Maria Angeles Marques-Torrejon
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon de la Plana, Spain
- Correspondence: ; Tel.: +34-964-387-478
| |
Collapse
|
39
|
Spatial transcriptomics reveals niche-specific enrichment and vulnerabilities of radial glial stem-like cells in malignant gliomas. Nat Commun 2023; 14:1028. [PMID: 36823172 PMCID: PMC9950149 DOI: 10.1038/s41467-023-36707-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Diffuse midline glioma-H3K27M mutant (DMG) and glioblastoma (GBM) are the most lethal brain tumors that primarily occur in pediatric and adult patients, respectively. Both tumors exhibit significant heterogeneity, shaped by distinct genetic/epigenetic drivers, transcriptional programs including RNA splicing, and microenvironmental cues in glioma niches. However, the spatial organization of cellular states and niche-specific regulatory programs remain to be investigated. Here, we perform a spatial profiling of DMG and GBM combining short- and long-read spatial transcriptomics, and single-cell transcriptomic datasets. We identify clinically relevant transcriptional programs, RNA isoform diversity, and multi-cellular ecosystems across different glioma niches. We find that while the tumor core enriches for oligodendrocyte precursor-like cells, radial glial stem-like (RG-like) cells are enriched in the neuron-rich invasive niche in both DMG and GBM. Further, we identify niche-specific regulatory programs for RG-like cells, and functionally confirm that FAM20C mediates invasive growth of RG-like cells in a neuron-rich microenvironment in a human neural stem cell derived orthotopic DMG model. Together, our results provide a blueprint for understanding the spatial architecture and niche-specific vulnerabilities of DMG and GBM.
Collapse
|
40
|
Messinger D, Harris MK, Cummings JR, Thomas C, Yang T, Sweha SR, Woo R, Siddaway R, Burkert M, Stallard S, Qin T, Mullan B, Siada R, Ravindran R, Niculcea M, Dowling AR, Bradin J, Ginn KF, Gener MAH, Dorris K, Vitanza NA, Schmidt SV, Spitzer J, Li J, Filbin MG, Cao X, Castro MG, Lowenstein PR, Mody R, Chinnaiyan A, Desprez PY, McAllister S, Dun MD, Hawkins C, Waszak SM, Venneti S, Koschmann C, Yadav VN. Therapeutic targeting of prenatal pontine ID1 signaling in diffuse midline glioma. Neuro Oncol 2023; 25:54-67. [PMID: 35605606 PMCID: PMC9825316 DOI: 10.1093/neuonc/noac141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in human tumors or therapeutically targeted. METHODS Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor growth was assessed. Patient-reported CBD dosing information was collected. RESULTS Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is associated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, finding that a clinical trial to standardize dosing may be beneficial. CONCLUSIONS H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcriptional program that is therapeutically targetable with CBD.
Collapse
Affiliation(s)
- Dana Messinger
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Micah K Harris
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Jessica R Cummings
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Chase Thomas
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Tao Yang
- Department of Neurology, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Stefan R Sweha
- Department of Pathology, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Rinette Woo
- Cancer Research, California Pacific Medical Center Research Institute; San Francisco, California, USA
| | - Robert Siddaway
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Pathology, Hospital for Sick Children, Toronto, Canada
| | - Martin Burkert
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stefanie Stallard
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, USA
| | - Brendan Mullan
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Ruby Siada
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Ramya Ravindran
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Michael Niculcea
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Abigail R Dowling
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Joshua Bradin
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Kevin F Ginn
- Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Melissa A H Gener
- Department of Pathology and Laboratory Medicine, Children’s Mercy Kansas City, Kansas City, Missouri, USA
| | - Kathleen Dorris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Susanne V Schmidt
- Institute of Innate Immunity, AG Immunogenomics, University Bonn, Bonn, Germany
| | - Jasper Spitzer
- Institute of Innate Immunity, AG Immunogenomics, University Bonn, Bonn, Germany
| | - Jiang Li
- Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Department of Pediatric Oncology, Boston, Massachusetts, USA
| | - Mariella G Filbin
- Dana-Farber Boston Children’s Cancer and Blood Disorders Center, Department of Pediatric Oncology, Boston, Massachusetts, USA
| | - Xuhong Cao
- Department of Pathology, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Rajen Mody
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Arul Chinnaiyan
- Department of Pathology, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Pierre-Yves Desprez
- Cancer Research, California Pacific Medical Center Research Institute; San Francisco, California, USA
| | - Sean McAllister
- Cancer Research, California Pacific Medical Center Research Institute; San Francisco, California, USA
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan NSW, Australia
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre and Division of Pathology, Hospital for Sick Children, Toronto, Canada
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Department of Pediatric Research, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Sriram Venneti
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Carl Koschmann
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, University of Michigan Medical School (UMMS), Ann Arbor, Michigan, USA
| | - Viveka Nand Yadav
- Department of Pediatrics at Children’s Mercy Research Institute, Kansas City, Missouri, USA
| |
Collapse
|
41
|
PTN-PTPRZ1 signaling axis blocking mediates tumor microenvironment remodeling for enhanced glioblastoma treatment. J Control Release 2023; 353:63-76. [PMID: 36402232 DOI: 10.1016/j.jconrel.2022.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/09/2022] [Accepted: 11/13/2022] [Indexed: 11/25/2022]
Abstract
Glioblastoma (GBM) is a malignant brain tumor with a poor prognosis that is highly heterogeneous and invasive. One of the most major challenges of GBM treatment in the clinic is the blood-brain barrier (BBB). Additionally, the tumor microenvironment (TME) is highly enriched with immunosuppressed M2-like tumor-associated macrophages (M2 TAMs) and glioblastoma stem cells (GSCs), which promoted the malignancy of GBM through the PTN-PTPRZ1 signaling axis. Here, we developed a self-assembled dual-targeted hybrid micelle (DT-GM1) as a nanocarrier to deliver the chemotherapeutic agent doxorubicin (DOX). We demonstrated that this DT-GM1/DOX can cross the BBB using in vitro and in vivo GBM models, and that M2pep and PTPRZ1 antibodies allow it to precisely target the tumor microenvironment where M2 TAMs and GSCs are enriched, increasing intracellular drug accumulation via multiple internalization pathways. Additionally, simultaneous elimination of M2 TAMs and GSCs blocked the PTN-PTPRZ1 signaling axis, resulting in less M2 TAM infiltration and increased polarization to the M1 phenotype, reshaping the immune microenvironment. Overall, we have established a nanocarrier that can penetrate the BBB and target the TME while also synergizing with GBM chemotherapeutic agents, providing a promising new strategy for GBM treatment.
Collapse
|
42
|
Degorre C, Sutton IC, Lehman SL, Shankavaram UT, Camphausen K, Tofilon PJ. Glioblastoma cells have increased capacity to repair radiation-induced DNA damage after migration to the olfactory bulb. Cancer Cell Int 2022; 22:389. [PMID: 36482431 PMCID: PMC9733339 DOI: 10.1186/s12935-022-02819-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The invasive nature of GBM combined with the diversity of brain microenvironments creates the potential for a topographic heterogeneity in GBM radioresponse. Investigating the mechanisms responsible for a microenvironment-induced differential GBM response to radiation may provide insights into the molecules and processes mediating GBM radioresistance. METHODS Using a model system in which human GBM stem-like cells implanted into the right striatum of nude mice migrate throughout the right hemisphere (RH) to the olfactory bulb (OB), the radiation-induced DNA damage response was evaluated in each location according to γH2AX and 53BP1 foci and cell cycle phase distribution as determined by flow cytometry and immunohistochemistry. RNAseq was used to compare transcriptomes of tumor cells growing in the OB and the RH. Protein expression and neuron-tumor interaction were defined by immunohistochemistry and confocal microscopy. RESULTS After irradiation, there was a more rapid dispersal of γH2AX and 53BP1 foci in the OB versus in the RH, indicative of increased double strand break repair capacity in the OB and consistent with the OB providing a radioprotective niche. With respect to the cell cycle, by 6 h after irradiation there was a significant loss of mitotic tumor cells in both locations suggesting a similar activation of the G2/M checkpoint. However, by 24 h post-irradiation there was an accumulation of G2 phase cells in the OB, which continued out to at least 96 h. Transcriptome analysis showed that tumor cells in the OB had higher expression levels of DNA repair genes involved in non-homologous end joining and genes related to the spindle assembly checkpoint. Tumor cells in the OB were also found to have an increased frequency of soma-soma contact with neurons. CONCLUSION GBM cells that have migrated to the OB have an increased capacity to repair radiation-induced double strand breaks and altered cell cycle regulation. These results correspond to an upregulation of genes involved in DNA damage repair and cell cycle control. Because the murine OB provides a source of radioresistant tumor cells not evident in other experimental systems, it may serve as a model for investigating the mechanisms mediating GBM radioresistance.
Collapse
Affiliation(s)
- Charlotte Degorre
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Ian C. Sutton
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Stacey L. Lehman
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Uma T. Shankavaram
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Kevin Camphausen
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| | - Philip J. Tofilon
- grid.48336.3a0000 0004 1936 8075Radiation Oncology Branch, National Cancer Institute, 10 Center Drive-MSC 1002, Building 10, B3B69B, Bethesda, MD 20892 USA
| |
Collapse
|
43
|
Zhang H, Wang Y, Zhao Y, Liu T, Wang Z, Zhang N, Dai Z, Wu W, Cao H, Feng S, Zhang L, Cheng Q, Liu Z. PTX3 mediates the infiltration, migration, and inflammation-resolving-polarization of macrophages in glioblastoma. CNS Neurosci Ther 2022; 28:1748-1766. [PMID: 35855654 PMCID: PMC9532932 DOI: 10.1111/cns.13913] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Pentraxin 3 (PTX3) is an essential regulator of the immune system. However, the immune-modulatory role of PTX3 in the tumor microenvironment of glioma has not been elucidated. METHODS The RNA seq samples were obtained from The Cancer Genome Atlas (TCGA) and the China Glioma Genome Atlas (CGGA) datasets. The single-cell sequencing data of glioblastoma (GBM) samples were obtained from the Single Cell Portal platform (http://singlecell.broadinstitute.org). Immunohistochemistry was used to assess PTX3 expression, HAVCR2, PD-1, PD-L1, and CD276 in glioma sections from the Xiangya cohort (n = 60). Multiplex immunofluorescence staining of PTX3, CD68, and CD163 was performed in several solid cancer types, including GBM. HMC3 was cocultured with U251 and U87, and transwell assay and flow cytometry assay were performed to explore the migration and polarization activity of HMC3. RESULTS PTX3 expression is significantly increased in GBM. PTX3 expression predicts worse survival in the Xiangya cohort. PTX3 is closely related to the expression of PD-1, PD-L1, CD276, and HAVCR2 in the tumor microenvironment. Additionally, PTX3 is involved in tumorigenic and immunogenic processes, especially the activity of macrophages based on various signaling pathways in cellular communications and critical transcription factors. Specifically, PTX3 actively mediates macrophages' infiltration, migration, and inflammation-resolving-polarization. PTX3 could also predict immunotherapy response. CONCLUSION PTX3 is critically involved in macrophage infiltration, migration, and inflammation-resolving-polarization and modulates an immunosuppressive microenvironment.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Yifan Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Yihan Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Tao Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Xiangya School of MedicineCentral South UniversityChangshaChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Nan Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityHarbinChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Wantao Wu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Department of Oncology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan ProvinceThe Hospital of Hunan University of Chinese MedicineChangshaChina
| | - Songshan Feng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
44
|
Zhuang Q, Yang H, Mao Y. The Oncogenesis of Glial Cells in Diffuse Gliomas and Clinical Opportunities. Neurosci Bull 2022; 39:393-408. [PMID: 36229714 PMCID: PMC10043159 DOI: 10.1007/s12264-022-00953-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022] Open
Abstract
Glioma is the most common and lethal intrinsic primary tumor of the brain. Its controversial origins may contribute to its heterogeneity, creating challenges and difficulties in the development of therapies. Among the components constituting tumors, glioma stem cells are highly plastic subpopulations that are thought to be the site of tumor initiation. Neural stem cells/progenitor cells and oligodendrocyte progenitor cells are possible lineage groups populating the bulk of the tumor, in which gene mutations related to cell-cycle or metabolic enzymes dramatically affect this transformation. Novel approaches have revealed the tumor-promoting properties of distinct tumor cell states, glial, neural, and immune cell populations in the tumor microenvironment. Communication between tumor cells and other normal cells manipulate tumor progression and influence sensitivity to therapy. Here, we discuss the heterogeneity and relevant functions of tumor cell state, microglia, monocyte-derived macrophages, and neurons in glioma, highlighting their bilateral effects on tumors. Finally, we describe potential therapeutic approaches and targets beyond standard treatments.
Collapse
Affiliation(s)
- Qiyuan Zhuang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute for Translational Brain Research, Fudan University, Shanghai, 200032, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
- Neurosurgical Institute of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
45
|
Qian C, Wang Y, Ji Y, Chen D, Wang C, Zhang G, Wang Y. Neural stem cell‑derived exosomes transfer miR‑124‑3p into cells to inhibit glioma growth by targeting FLOT2. Int J Oncol 2022; 61:115. [PMID: 35929514 PMCID: PMC9387557 DOI: 10.3892/ijo.2022.5405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
Currently, exosomes (EXOs) are being explored as novel drug delivery carriers with greater advantages, including crossing the blood-brain-barrier and loading drugs. The present study utilized EXOs derived from neural stem cells (NSCs) for the delivery of molecular drugs to treat gliomas. miR-124-3p was selected according to previous studies by the authors, and the effects of the delivery of miR-124-3p to glioma cells by NSC-EXOs in vitro and in vivo were evaluated. It was found that NSC-EXOs successfully delivered miR-124-3p into glioma cells, and NSC-EXOs loaded with miR-124-3p significantly inhibited glioma cell proliferation, invasion and migration. Furthermore, the delivery of miR-124-3p by NSC-EXOs suppressed flotillin 2 (FLOT2) expression by specifically binding to the 3' untranslated region of the FLOT2 gene in gliomas; subsequently, AKT1 was found to be associated with the EXO-miR-124-3p/FLOT2 pathway. Moreover, the therapeutic effects of the delivery of miR-124-3p by NSC-EXOs were confirmed in a mouse tumor xenograft model of glioma. Thus, bio-carrier NSC-EXOs loaded with miR-124-3p suppressed glioma growth via the EXO-miR-124-3p/FLOT2/AKT1 pathway. On the whole, the present study provides insight into stem cell-free molecular-targeted therapy based on bio-carrier NSC-EXOs and provides a potential strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - You Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yunxiang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Danmin Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Chuanfang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Guilong Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| | - Yezhong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510260, P.R. China
| |
Collapse
|
46
|
Pan C, Winkler F. Insights and opportunities at the crossroads of cancer and neuroscience. Nat Cell Biol 2022; 24:1454-1460. [PMID: 36097070 DOI: 10.1038/s41556-022-00978-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
The biological and pathological importance of mutual interactions between the nervous system and cancer have become increasingly evident. The emerging field of cancer neuroscience aims to decipher key signalling factors of cancer-nervous system crosstalk and to exploit these modulators as targets for improved anticancer therapies. Here we discuss the key achievements in cancer neuroscience research, inspire further interactions on a variety of related research topics, and provide a roadmap for future studies.
Collapse
Affiliation(s)
- Chenchen Pan
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany. .,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
47
|
Akindona FA, Frederico SC, Hancock JC, Gilbert MR. Exploring the origin of the cancer stem cell niche and its role in anti-angiogenic treatment for glioblastoma. Front Oncol 2022; 12:947634. [PMID: 36091174 PMCID: PMC9454306 DOI: 10.3389/fonc.2022.947634] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
Cancer stem cells are thought to be the main drivers of tumorigenesis for malignancies such as glioblastoma (GBM). They are maintained through a close relationship with the tumor vasculature. Previous literature has well-characterized the components and signaling pathways for maintenance of this stem cell niche, but details on how the niche initially forms are limited. This review discusses development of the nonmalignant neural and hematopoietic stem cell niches in order to draw important parallels to the malignant environment. We then discuss what is known about the cancer stem cell niche, its relationship with angiogenesis, and provide a hypothesis for its development in GBM. A better understanding of the mechanisms of development of the tumor stem cell niche may provide new insights to potentially therapeutically exploit.
Collapse
Affiliation(s)
- Funto A. Akindona
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
| | - Stephen C. Frederico
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - John C. Hancock
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Mark R. Gilbert
- Neuro-Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark R. Gilbert,
| |
Collapse
|
48
|
Han MH, Min KW, Noh YK, Kim JM, Cheong JH, Ryu JI, Won YD, Koh SH, Park YM. Identification of genes from ten oncogenic pathways associated with mortality and disease progression in glioblastoma. Front Oncol 2022; 12:965638. [PMID: 36033456 PMCID: PMC9399757 DOI: 10.3389/fonc.2022.965638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor with an extremely poor prognosis. The Cancer Genome Atlas (TCGA) database has been used to confirm the roles played by 10 canonical oncogenic signaling pathways in various cancers. The purpose of this study was to evaluate the expression of genes in these 10 canonical oncogenic signaling pathways, which are significantly related to mortality and disease progression in GBM patients. Clinicopathological information and mRNA expression data of 525 patients with GBM were obtained from TCGA database. Gene sets related to the 10 oncogenic signaling pathways were investigated via Gene Set Enrichment Analysis. Multivariate Cox regression analysis was performed for all the genes significantly associated with mortality and disease progression for each oncogenic signaling pathway in GBM patients. We found 12 independent genes from the 10 oncogenic signaling pathways that were significantly related to mortality and disease progression in GBM patients. Considering the roles of these 12 significant genes in cancer, we suggest possible mechanisms affecting the prognosis of GBM. We also observed that the expression of 6 of the genes significantly associated with a poor prognosis of GBM, showed negative correlations with CD8+ T-cells in GBM tissue. Using a large-scale open database, we identified 12 genes belonging to 10 well-known oncogenic canonical pathways, which were significantly associated with mortality and disease progression in patients with GBM. We believe that our findings will contribute to a better understanding of the mechanisms underlying the pathophysiology of GBM in the future.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
- *Correspondence: Kyueng-Whan Min, ; Yung-Kyun Noh,
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Yu Deok Won
- Department of Neurosurgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, South Korea
| | - Young Mi Park
- Department of Pediatrics, Gangneung Asan Hospital, Ulsan University College of Medicine, Gangneung-si, South Korea
| |
Collapse
|
49
|
Jiao Y, Wang M, Liu X, Wang J, Shou Y, Sun H. Clinical features and prognostic significance of tumor involved with subventricular zone in pediatric glioblastoma: a 10-year experience in a single hospital. Childs Nerv Syst 2022; 38:1469-1477. [PMID: 35474540 DOI: 10.1007/s00381-022-05522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 04/10/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Tumors involved with subventricular zone (SVZ) predicted an adverse prognosis had been well proved in adult glioblastoma (GBM). However, we still know less about its impact on children due to the rarity of pediatric glioblastoma (pGBM). We performed this retrospective study to better understand the clinical and prognostic features of pGBM involved with SVZ. METHODS Fifty-two patients diagnosed with pGBM at our center between January 2011 and January 2021 were selected for review to demonstrate the characteristics of tumor contacting SVZ. Thirty patients who underwent concurrent chemoradiotherapy and adjuvant chemotherapy postoperatively were selected for survival analysis. RESULTS Of all the 52 patients, 21 were found to contact SVZ and 31 were not. The median PFS and OS in SVZ + patients were 5.2 and 8.9 months, respectively, whereas median PFS and OS were 11.9 and 17.9 months, respectively, in SVZ - patients. Multivariate analysis showed that involvement of SVZ was an independent prognostic factor for OS while focality at diagnosis was an independent prognostic factor for PFS. Tumors contacted with SVZ tend to have larger volumes, lower incidence of epilepsy, and lower total resect rate and they were more likely to originate from midline location. Age at diagnosis; gender; adjuvant therapy; focality at diagnosis; focality at relapse; mutational status of H3K27M, MGMT, IDH1, and IDH2; and expression of P53 and ATRX protein failed to characterize SVZ + patients. CONCLUSION Involvement of SVZ predicted worse OS in pGBM and it had some distinct clinical features in comparison with those that did not contact with SVZ. Multifocal tumor at diagnosis was related to a shorter PFS. We should make a further step to clarify its molecular features.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Meng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Xueyou Liu
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Junkuan Wang
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China
| | - Yuwei Shou
- Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongwei Sun
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Jianshe East Road No 1Henan Province, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
50
|
Autism-associated mutation in Hevin/Sparcl1 induces endoplasmic reticulum stress through structural instability. Sci Rep 2022; 12:11891. [PMID: 35831437 PMCID: PMC9279342 DOI: 10.1038/s41598-022-15784-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Hevin is a secreted extracellular matrix protein that is encoded by the SPARCL1 gene. Recent studies have shown that Hevin plays an important role in regulating synaptogenesis and synaptic plasticity. Mutations in the SPARCL1 gene increase the risk of autism spectrum disorder (ASD). However, the molecular basis of how mutations in SPARCL1 increase the risk of ASD is not been fully understood. In this study, we show that one of the SPARCL1 mutations associated with ASD impairs normal Hevin secretion. We identified Hevin mutants lacking the EF-hand motif through analyzing ASD-related mice with vulnerable spliceosome functions. Hevin deletion mutants accumulate in the endoplasmic reticulum (ER), leading to the activation of unfolded protein responses. We also found that a single amino acid substitution of Trp647 with Arg in the EF-hand motif associated with a familial case of ASD causes a similar phenotype in the EF-hand deletion mutant. Importantly, molecular dynamics (MD) simulation revealed that this single amino acid substitution triggers exposure of a hydrophobic amino acid to the surface, increasing the binding of Hevin with molecular chaperons, BIP. Taken together, these data suggest that the integrity of the EF-hand motif in Hevin is crucial for proper folding and that ASD-related mutations impair the export of Hevin from the ER. Our data provide a novel mechanism linking a point mutation in the SPARCL1 gene to the molecular and cellular characteristics involved in ASD.
Collapse
|