1
|
Klima S, Hurrell T, Goolam M, Gouws C, Engelbrecht AM, Kaur M, van den Bout I. A new dawn: Vitalising translational oncology research in Africa with the help of advanced cell culture models. Transl Oncol 2025; 56:102391. [PMID: 40228390 PMCID: PMC12017847 DOI: 10.1016/j.tranon.2025.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025] Open
Abstract
The advent of in vitro models such as induced pluripotent stem cells (iPSC) and patient derived (disease) organoids is supporting the development of population and patient specific model systems reflecting human physiology and disease. However, there remains a significant underrepresentation of non-European, especially African model systems. The development of such models should be enthusiastically embraced by Sub-Saharan African countries (SSAC) and middle-income countries (LIMC) to direct their own research focused on the improvement of health of their own populations at a sustainable cost within their respective funding environments. Great care needs to be taken to develop national frameworks to direct, sustainably fund and support such efforts in a way that maximises the output of such models for the investment required. Here, we highlight how advanced culture models can play a role in vitalising local healthcare research by focusing on locally relevant health care questions using appropriate cell culture models. We also provide a potential national platform example that could maximise such output at the lowest cost. This framework presents an opportunity for SSAC and LMIC to base their healthcare research on locally relevant models to ensure that developed health care initiatives and interventions are best suited for the populations they serve and thus represent a reset in global health care research at large.
Collapse
Affiliation(s)
- Stefanie Klima
- Centre for Neuroendocrinology and Department of Immunology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Tracey Hurrell
- Bioengineering and Integrated Genomics Group, Council for Scientific and Industrial Research, Pretoria, South Africa; Department of Pharmacology, Faculty of Health Sciences, University of Pretoria, South Africa
| | - Mubeen Goolam
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, South Africa; UCT Neuroscience Institute, Cape Town, South Africa
| | - Chrisna Gouws
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen™), Faculty of Health Sciences, North-West University, South Africa; Desmond Tutu School of Medicine, Faculty of Health Sciences, North-West University, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Mandeep Kaur
- School of Molecular and Cell Biology, University of the Witwatersrand, Private Bag 3, WITS, South Africa
| | - Iman van den Bout
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, South Africa.
| |
Collapse
|
2
|
Guo X, Wang X, Wang J, Ma M, Ren Q. Current Development of iPSC-Based Modeling in Neurodegenerative Diseases. Int J Mol Sci 2025; 26:3774. [PMID: 40332425 PMCID: PMC12027653 DOI: 10.3390/ijms26083774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
Over the past two decades, significant advancements have been made in the induced pluripotent stem cell (iPSC) technology. These developments have enabled the broader application of iPSCs in neuroscience, improved our understanding of disease pathogenesis, and advanced the investigation of therapeutic targets and methods. Specifically, optimizations in reprogramming protocols, coupled with improved neuronal differentiation and maturation techniques, have greatly facilitated the generation of iPSC-derived neural cells. The integration of the cerebral organoid technology and CRISPR/Cas9 genome editing has further propelled the application of iPSCs in neurodegenerative diseases to a new stage. Patient-derived or CRISPR-edited cerebral neurons and organoids now serve as ideal disease models, contributing to our understanding of disease pathophysiology and identifying novel therapeutic targets and candidates. In this review, we examine the development of iPSC-based models in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease.
Collapse
Affiliation(s)
- Xiangge Guo
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Xumeng Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Jiaxuan Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
| | - Min Ma
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- Human Brain Bank, Hebei Medical University, Shijiazhuang 050017, China
| | - Qian Ren
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang 050017, China; (X.G.); (X.W.); (J.W.)
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang 050017, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
3
|
Gómez-Chavarín M, Padilla P, Velázquez-Paniagua M. Rotenone Exposure During Development Conditions Parkinsonian Phenotype in Young Adult Rats. TOXICS 2025; 13:290. [PMID: 40278606 PMCID: PMC12030936 DOI: 10.3390/toxics13040290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Current studies suggest that environmental toxins may play a significant role in the fetal origins of Parkinson's disease (PD). Significant evidence from animal experiments has demonstrated that these toxins can disrupt fetal neurodevelopment. PD is a neurodegenerative disorder related to the loss of dopaminergic neurons in the substantia nigra pars compacta (S. nigra) and accumulation of α-synuclein (α-syn) in the brain. Parkinson's disease has long been associated with an idiopathic etiology, with environmental or ontogenetic factors as causes; however, the list of causal agents continues to expand as their effects are investigated at different stages of development. To explore the potential ontogenetic origins of PD, we exposed female rats subcutaneously (s.c.) to 1 mg/kg of the pesticide rotenone (ROT)-21 days during gestation, 21 days of breastfeeding, or 42 days in both periods-and assessed its long-term effects on their pups in adulthood. Our findings reveal that ROT exposure induces the degeneration of dopaminergic neurons in the S. nigra of adult rats. We administered ROT to dams during specific developmental stages and examined the nigrostriatal pathway and its functionality in offspring upon reaching young adulthood. Our results showed that perinatal ROT exposure led to (1) diminished motor skills, (2) greater concentrations of α-syn in the caudate nucleus (C. nucleus) and S. nigra, (3) reduced numbers of tyrosine hydroxylase immunoreactive neurons, and (4) hypomethylation of global 5-methylcytosine DNA compared to control rats at 60 days of age. The effects were more pronounced in rats exposed to ROT in utero and in both the in utero and breastfeeding periods, with fewer effects observed in those exposed only during breastfeeding. Thus, our findings suggest that exposure to ROT during the early developmental stages predisposes rats to Parkinsonian symptoms later in adulthood.
Collapse
Affiliation(s)
- Margarita Gómez-Chavarín
- Physiology Department, Medicine School, National University of Mexico, Ciudad de México 04500, Mexico;
| | - Patricia Padilla
- Liquid Chromatography Unit, Biomedical Research Institute, National University of Mexico, Ciudad de México 04500, Mexico;
| | - Mireya Velázquez-Paniagua
- Physiology Department, Medicine School, National University of Mexico, Ciudad de México 04500, Mexico;
| |
Collapse
|
4
|
Trudler D, Ghatak S, Bula M, Parker J, Talantova M, Luevanos M, Labra S, Grabauskas T, Noveral SM, Teranaka M, Schahrer E, Dolatabadi N, Bakker C, Lopez K, Sultan A, Patel P, Chan A, Choi Y, Kawaguchi R, Stankiewicz P, Garcia-Bassets I, Kozbial P, Rosenfeld MG, Nakanishi N, Geschwind DH, Chan SF, Lin W, Schork NJ, Ambasudhan R, Lipton SA. Dysregulation of miRNA expression and excitation in MEF2C autism patient hiPSC-neurons and cerebral organoids. Mol Psychiatry 2025; 30:1479-1496. [PMID: 39349966 PMCID: PMC11919750 DOI: 10.1038/s41380-024-02761-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 03/20/2025]
Abstract
MEF2C is a critical transcription factor in neurodevelopment, whose loss-of-function mutation in humans results in MEF2C haploinsufficiency syndrome (MHS), a severe form of autism spectrum disorder (ASD)/intellectual disability (ID). Despite prior animal studies of MEF2C heterozygosity to mimic MHS, MHS-specific mutations have not been investigated previously, particularly in a human context as hiPSCs afford. Here, for the first time, we use patient hiPSC-derived cerebrocortical neurons and cerebral organoids to characterize MHS deficits. Unexpectedly, we found that decreased neurogenesis was accompanied by activation of a micro-(mi)RNA-mediated gliogenesis pathway. We also demonstrate network-level hyperexcitability in MHS neurons, as evidenced by excessive synaptic and extrasynaptic activity contributing to excitatory/inhibitory (E/I) imbalance. Notably, the predominantly extrasynaptic (e)NMDA receptor antagonist, NitroSynapsin, corrects this aberrant electrical activity associated with abnormal phenotypes. During neurodevelopment, MEF2C regulates many ASD-associated gene networks, suggesting that treatment of MHS deficits may possibly help other forms of ASD as well.
Collapse
Affiliation(s)
- Dorit Trudler
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Swagata Ghatak
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
- School of Biological Sciences, National Institute of Science Education and Research (NISER)-Bhubaneswar, an Off Campus Center of Homi Bhabha National Institute, Jatani, Odisha, India
| | - Michael Bula
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - James Parker
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Maria Talantova
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Melissa Luevanos
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sergio Labra
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Titas Grabauskas
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Sarah Moore Noveral
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Mayu Teranaka
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Emily Schahrer
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Clare Bakker
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kevin Lopez
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Abdullah Sultan
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Parth Patel
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Agnes Chan
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Yongwook Choi
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Riki Kawaguchi
- Departments of Psychiatry and Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ivan Garcia-Bassets
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Piotr Kozbial
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, School and Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA, USA
| | - Nobuki Nakanishi
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Daniel H Geschwind
- Department of Neurology, Center for Autism Research and Treatment, Program in Neurobehavioral Genetics, Department of Human Genetics, Department of Psychiatry, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Shing Fai Chan
- Center for Neuroscience, Aging, and Stem Cell Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, Indiana University-Purdue University, Indianapolis, IN, USA
| | - Wei Lin
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Nicholas J Schork
- Translational Genomics Research Institute, Phoenix, AZ, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Rajesh Ambasudhan
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
- Neurodegenerative Disease Center, Scintillon Institute, San Diego, CA, USA.
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA.
| |
Collapse
|
5
|
Shtilbans A, Esneault E, Simon F, Mazzulli JR, Quiriconi DJ, Rom D, Reintsch WE, Krahn AI, Durcan TM. Evaluation of Additive Neuroprotective Effect of Combination Therapy for Parkinson's Disease Using In Vitro Models. Antioxidants (Basel) 2025; 14:396. [PMID: 40298667 PMCID: PMC12024093 DOI: 10.3390/antiox14040396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND All the processes leading to neurodegeneration cannot be addressed with just one medication. Combinations of drugs affecting various disease mechanisms concurrently could demonstrate improved effect in slowing the course of Parkinson's disease (PD). OBJECTIVE This was a drug-repurposing experiment designed to assess several combinations of nine drugs for possible added or synergistic efficacy using in vitro models of PD. METHODS We evaluated 44 combinations of the nine medications (sodium phenylbutyrate, terazosin, exenatide, ambroxol, deferiprone, coenzyme-Q10, creatine, dasatinib and tauroursodeoxycholic acid) selected for their previously demonstrated evidence of their impact on different targets, showing neuroprotective properties in preclinical models of PD. We utilized wild-type induced pluripotent stem-cell-derived human dopaminergic neurons treated with 1-methyl-4-phenylpyridinium for initial screening. We retested some combinations using an idiopathic PD patient-derived induced pluripotent stem cell line and alpha-synuclein triplication line. We assessed anti-neuroinflammatory effects using human microglia cells. As metrics, we evaluated neurite length, number of branch points per mm2, the number of live neurons, neurofilament heavy chain and pro-inflammatory cytokines. RESULTS We have identified four combinations of two to three drugs that showed an additive protective effect in some endpoints. Only the combination of sodium phenylbutyrate, exenatide and tauroursodeoxycholic acid showed improvement in four endpoints studied. CONCLUSIONS We demonstrated that some of the medications, used in combination, can exert an additive neuroprotective effect in preclinical models of PD that is superior to that of each of the compounds individually. This project can lead to the development of the first treatment for PD that can slow or prevent its progression.
Collapse
Affiliation(s)
- Alexander Shtilbans
- Department of Neurology, Hospital for Special Surgery, New York, NY 10021, USA
- Department of Neurology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Elise Esneault
- Porsolt Research Laboratory, 53940 Le Genest-Saint-Isle, France; (E.E.); (F.S.)
| | - Florian Simon
- Porsolt Research Laboratory, 53940 Le Genest-Saint-Isle, France; (E.E.); (F.S.)
| | - Joseph R. Mazzulli
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.R.M.); (D.J.Q.)
| | - Drew J. Quiriconi
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (J.R.M.); (D.J.Q.)
| | - Dror Rom
- Prosoft Clinical, Chesterbrook, PA 19087, USA;
| | - Wolfgang E. Reintsch
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (W.E.R.); (A.I.K.); (T.M.D.)
| | - Andrea I. Krahn
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (W.E.R.); (A.I.K.); (T.M.D.)
| | - Thomas M. Durcan
- The Neuro’s Early Drug Discovery Unit (EDDU), McGill University, Montreal, QC H3A 2B4, Canada; (W.E.R.); (A.I.K.); (T.M.D.)
| |
Collapse
|
6
|
Busquets O, Li H, Syed KM, Jerez PA, Dunnack J, Bu RL, Verma Y, Pangilinan GR, Martin A, Straub J, Du Y, Simon VM, Poser S, Bush Z, Diaz J, Sahagun A, Gao J, Hong S, Hernandez DG, Levine KS, Booth EO, Blanchette M, Bateup HS, Rio DC, Blauwendraat C, Hockemeyer D, Soldner F. iSCORE-PD: an isogenic stem cell collection to research Parkinson's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.12.579917. [PMID: 38405931 PMCID: PMC10888955 DOI: 10.1101/2024.02.12.579917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder caused by complex genetic and environmental factors. Genome-edited human pluripotent stem cells (hPSCs) offer a unique experimental platform to advance our understanding of PD etiology by enabling the generation of disease-relevant cell types carrying patient mutations along with isogenic control cells. To facilitate this approach, we generated a collection of 65 human stem cell lines genetically engineered to harbor high risk or causal variants in genes associated with PD (SNCA A53T, SNCA A30P, PRKN Ex3del, PINK1 Q129X, DJ1/PARK7 Ex1-5del, LRRK2 G2019S, ATP13A2 FS, FBXO7 R498X/FS, DNAJC6 c.801 A>G/FS, SYNJ1 R258Q/FS, VPS13C A444P/FS, VPS13C W395C/FS, GBA1 IVS2+1/FS). All mutations were introduced into a fully characterized and sequenced female human embryonic stem cell (hESC) line (WIBR3; NIH approval number NIHhESC-10-0079) using different genome editing techniques. To ensure the genetic integrity of these cell lines, we implemented rigorous quality controls, including whole-genome sequencing of each line. Our analysis of the genetic variation in this cell line collection revealed that while genome editing, particularly using CRISPR/Cas9, can introduce rare off-target mutations, the predominant source of genetic variants arises from routine cell culture and are fixed in cell lines during clonal isolation. The observed genetic variation was minimal compared to that typically found in patient-derived iPSC experiments and predominantly affected non-coding regions of the genome. Importantly, our analysis outlines strategies for effectively managing genetic variation through stringent quality control measures and careful experimental design. This systematic approach ensures the high quality of our stem cell collection, highlights advantages of prime editing over conventional CRISPR/Cas9 methods and provides a roadmap for the generation of gene-edited hPSC collections at scale in an academic setting. Our iSCORE-PD collection represents an easily accessible and valuable platform to study PD, which can be used by investigators to understand the molecular pathophysiology of PD in a human cellular setting.
Collapse
Affiliation(s)
- Oriol Busquets
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- These authors contributed equally
| | - Hanqin Li
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- These authors contributed equally
| | - Khaja Mohieddin Syed
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Pilar Alvarez Jerez
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
- These authors contributed equally
| | - Jesse Dunnack
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- These authors contributed equally
| | - Riana Lo Bu
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Yogendra Verma
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Gabriella R. Pangilinan
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Annika Martin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jannes Straub
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - YuXin Du
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Vivien M. Simon
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Steven Poser
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zipporiah Bush
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
| | - Jessica Diaz
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Atehsa Sahagun
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jianpu Gao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Samantha Hong
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristin S. Levine
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ezgi O. Booth
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Helen S. Bateup
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Donald C. Rio
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cornelis Blauwendraat
- Center for Alzheimer’s and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dirk Hockemeyer
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Frank Soldner
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY 10461, USA
- Lead contact
| |
Collapse
|
7
|
Kim MS, Yoon S, Choi J, Kim YJ, Lee G. Stem Cell-Based Approaches in Parkinson's Disease Research. Int J Stem Cells 2025; 18:21-36. [PMID: 38449089 PMCID: PMC11867902 DOI: 10.15283/ijsc23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition characterized by the loss of midbrain dopaminergic neurons, leading to motor symptoms. While current treatments provide limited relief, they don't alter disease progression. Stem cell technology, involving patient-specific stem cell-derived neurons, offers a promising avenue for research and personalized regenerative therapies. This article reviews the potential of stem cell-based research in PD, summarizing ongoing efforts, their limitations, and introducing innovative research models. The integration of stem cell technology and advanced models promises to enhance our understanding and treatment strategies for PD.
Collapse
Affiliation(s)
- Min Seong Kim
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Subeen Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Jiwoo Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Korea
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Gabsang Lee
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Stykel MG, Siripala SV, Soubeyrand E, Coackley CL, Lu P, Camargo S, Thevasenan S, Figueroa GB, So RWL, Stuart E, Panchal R, Akrioti EK, Joseph JT, Haji-Ghassemi O, Taoufik E, Akhtar TA, Watts JC, Ryan SD. G6PD deficiency triggers dopamine loss and the initiation of Parkinson's disease pathogenesis. Cell Rep 2025; 44:115178. [PMID: 39772392 DOI: 10.1016/j.celrep.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/20/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Loss of dopaminergic neurons in Parkinson's disease (PD) is preceded by loss of synaptic dopamine (DA) and accumulation of proteinaceous aggregates. Linking these deficits is critical to restoring DA signaling in PD. Using murine and human pluripotent stem cell (hPSC) models of PD coupled with human postmortem tissue, we show that accumulation of α-syn micro-aggregates impairs metabolic flux through the pentose phosphate pathway (PPP). This leads to decreased nicotinamide adenine dinucleotide phosphate (NADP/H) and glutathione (GSH) levels, resulting in DA oxidation and decreased total DA levels. We find that α-syn anchors the PPP enzyme G6PD to synaptic vesicles via the α-syn C terminus and that this interaction is lost in PD. Furthermore, G6PD clinical mutations are associated with PD diagnosis, and G6PD deletion phenocopies PD pathology. Finally, we show that restoring NADPH or GSH levels through genetic and pharmacological intervention blocks DA oxidation and rescues steady-state DA levels, identifying G6PD as a pharmacological target against PD.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Shehani V Siripala
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Eric Soubeyrand
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Carla L Coackley
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Ping Lu
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Suelen Camargo
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Sharanya Thevasenan
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | | | - Raphaella W L So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Erica Stuart
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Rachi Panchal
- Biological Sciences, Hellenic Pasteur Institute, Athens, Greece
| | - Elissavet-Kalliopi Akrioti
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Jeffery T Joseph
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Omid Haji-Ghassemi
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens, Greece
| | - Tariq A Akhtar
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph ON, Canada; Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
9
|
Miyamoto T, Kuboyama K, Honda M, Ohkawa Y, Oki S, Sawamoto K. High spatial resolution gene expression profiling and characterization of neuroblasts migrating in the peri-injured cortex using photo-isolation chemistry. Front Neurosci 2025; 18:1504047. [PMID: 39840011 PMCID: PMC11747130 DOI: 10.3389/fnins.2024.1504047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
In the ventricular-subventricular-zone (V-SVZ) of the postnatal mammalian brain, immature neurons (neuroblasts) are generated from neural stem cells throughout their lifetime. These V-SVZ-derived neuroblasts normally migrate to the olfactory bulb through the rostral migratory stream, differentiate into interneurons, and are integrated into the preexisting olfactory circuit. When the brain is injured, some neuroblasts initiate migration toward the lesion and attempt to repair the damaged neuronal circuitry, but their low regeneration efficiency prevents functional recovery. Elucidation of the molecular basis of neuroblast migration toward lesions is expected to lead to the development of new therapeutic strategies for brain regenerative medicine. Here, we show gene expression profiles of neuroblasts migrating in the peri-injured cortex compared with those migrating in the V-SVZ using photo-isolation chemistry, a method for spatial transcriptome analysis. Differentially expressed gene analysis showed that the expression levels of 215 genes (97 upregulated and 118 downregulated genes) were significantly different in neuroblasts migrating in the peri-injured cortex from those migrating in the V-SVZ. Gene Ontology analysis revealed that in neuroblasts migrating in the peri-injured cortex, expression of genes involved in regulating migration direction and preventing cell death was upregulated, while the expression of genes involved in cell proliferation and maintenance of the immature state was downregulated. Indeed, neuroblasts migrating in the peri-injured cortex had significantly lower Cyclin D2 mRNA and Ki67 protein expression levels than those in the V-SVZ. In the injured brain, amoeboid microglia/macrophages expressed transforming growth factor-β (TGF-β), and neuroblasts migrating in the peri-injured cortex expressed TGF-β receptors. Experiments using primary cultured neuroblasts showed that application of TGF-β significantly decreased proliferating cells labeled with BrdU. These data suggest that the proliferative activity of neuroblasts migrating toward lesions is suppressed by TGF-β secreted from cells surrounding the lesion. This is the first comprehensive study characterizing the gene expression profiles of neuroblasts migrating in the peri-injured cortex.
Collapse
Affiliation(s)
- Takuya Miyamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuya Kuboyama
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mizuki Honda
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Laboratory of Molecular and Cellular Physiology, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kazunobu Sawamoto
- Department of Developmental and Regenerative Neurobiology, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Division of Neural Development and Regeneration, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
10
|
Oh CK, Nakamura T, Zhang X, Lipton SA. Redox regulation, protein S-nitrosylation, and synapse loss in Alzheimer's and related dementias. Neuron 2024; 112:3823-3850. [PMID: 39515322 PMCID: PMC11624102 DOI: 10.1016/j.neuron.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/12/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Redox-mediated posttranslational modification, as exemplified by protein S-nitrosylation, modulates protein activity and function in both health and disease. Here, we review recent findings that show how normal aging, infection/inflammation, trauma, environmental toxins, and diseases associated with protein aggregation can each trigger excessive nitrosative stress, resulting in aberrant protein S-nitrosylation and hence dysfunctional protein networks. These redox reactions contribute to the etiology of multiple neurodegenerative disorders as well as systemic diseases. In the CNS, aberrant S-nitrosylation reactions of single proteins or, in many cases, interconnected networks of proteins lead to dysfunctional pathways affecting endoplasmic reticulum (ER) stress, inflammatory signaling, autophagy/mitophagy, the ubiquitin-proteasome system, transcriptional and enzymatic machinery, and mitochondrial metabolism. Aberrant protein S-nitrosylation and transnitrosylation (transfer of nitric oxide [NO]-related species from one protein to another) trigger protein aggregation, neuronal bioenergetic compromise, and microglial phagocytosis, all of which contribute to the synapse loss that underlies cognitive decline in Alzheimer's disease and related dementias.
Collapse
Affiliation(s)
- Chang-Ki Oh
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xu Zhang
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
11
|
Zhong Z, Wang Y, Feng Y, Xu Y, Zou P, Zhang Z, Jiang Y. Induction of Pluripotent Stem Cells from Muscle Cells of Large Yellow Croaker (Larimichthys Crocea) Via Electrotransfection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:1287-1306. [PMID: 39249631 DOI: 10.1007/s10126-024-10372-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are a new type of pluripotent cells reprogrammed from somatic cells back into an embryonic-like pluripotent state of stem cells to study development, disease and potential gene therapies. The induction and regulation mechanisms of iPSCs in fish are still unclear. By using the transfection technique, we investigated the crucial function of the OSKMNL factor co-expression for somatic reprogramming in the muscle cell line of large yellow croaker (Larimichthys crocea) (LYCMs) and successfully established a stable iPSCs line (Lc-OSNL-iPSCs). Stable culturing of iPSCs with high alkaline phosphatase activity and a stable karyotype was achieved. The qRT-PCR and immunofluorescence labeling results revealed that Lc-OSNL-iPSCs displayed a high expression level of pluripotent marker genes such as Nanog, Oct4, and Sox2. There were significant differences between Lc-OSNL-iPSCs, Lc-OSKMNL-iPSCs, and LYCMs, and the expression of several genes in maintaining cell pluripotency was up-regulated when the pluripotency signal pathway of stem cells was activated. The technical system for inducing iPSCs of Larimichthys crocea was constructed in this study. This system can serve as a basic model to understand germ cell differentiation mechanism, gender control, genetics, and breeding of large yellow croaker and a platform for studying iPSCs in fish. Interestingly, the acquired iPSCs serves as a useful material for the directional induction of muscle stem cells, thereby establishing the groundwork for obtaining "artificial fish" in the future.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361005, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Marne Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, 361021, China.
| |
Collapse
|
12
|
Ding Y, Palecek SP, Shusta EV. iPSC-derived blood-brain barrier modeling reveals APOE isoform-dependent interactions with amyloid beta. Fluids Barriers CNS 2024; 21:79. [PMID: 39394110 PMCID: PMC11468049 DOI: 10.1186/s12987-024-00580-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Three common isoforms of the apolipoprotein E (APOE) gene - APOE2, APOE3, and APOE4 - hold varying significance in Alzheimer's Disease (AD) risk. The APOE4 allele is the strongest known genetic risk factor for late-onset Alzheimer's Disease (AD), and its expression has been shown to correlate with increased central nervous system (CNS) amyloid deposition and accelerated neurodegeneration. Conversely, APOE2 is associated with reduced AD risk and lower CNS amyloid burden. Recent clinical data have suggested that increased blood-brain barrier (BBB) leakage is commonly observed among AD patients and APOE4 carriers. However, it remains unclear how different APOE isoforms may impact AD-related pathologies at the BBB. METHODS To explore potential impacts of APOE genotypes on BBB properties and BBB interactions with amyloid beta, we differentiated isogenic human induced pluripotent stem cell (iPSC) lines with different APOE genotypes into both brain microvascular endothelial cell-like cells (BMEC-like cells) and brain pericyte-like cells. We then compared the effect of different APOE isoforms on BBB-related and AD-related phenotypes. Statistical significance was determined via ANOVA with Tukey's post hoc testing as appropriate. RESULTS Isogenic BMEC-like cells with different APOE genotypes had similar trans-endothelial electrical resistance, tight junction integrity and efflux transporter gene expression. However, recombinant APOE4 protein significantly impeded the "brain-to-blood" amyloid beta 1-40 (Aβ40) transport capabilities of BMEC-like cells, suggesting a role in diminished amyloid clearance. Conversely, APOE2 increased amyloid beta 1-42 (Aβ42) transport in the model. Furthermore, we demonstrated that APOE-mediated amyloid transport by BMEC-like cells is dependent on LRP1 and p-glycoprotein pathways, mirroring in vivo findings. Pericyte-like cells exhibited similar APOE secretion levels across genotypes, yet APOE4 pericyte-like cells showed heightened extracellular amyloid deposition, while APOE2 pericyte-like cells displayed the least amyloid deposition, an observation in line with vascular pathologies in AD patients. CONCLUSIONS While APOE genotype did not directly impact general BMEC or pericyte properties, APOE4 exacerbated amyloid clearance and deposition at the model BBB. Conversely, APOE2 demonstrated a potentially protective role by increasing amyloid transport and decreasing deposition. Our findings highlight that iPSC-derived BBB models can potentially capture amyloid pathologies at the BBB, motivating further development of such in vitro models in AD modeling and drug development.
Collapse
Affiliation(s)
- Yunfeng Ding
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Lal R, Singh A, Watts S, Chopra K. Experimental models of Parkinson's disease: Challenges and Opportunities. Eur J Pharmacol 2024; 980:176819. [PMID: 39029778 DOI: 10.1016/j.ejphar.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 05/29/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024]
Abstract
Parkinson's disease (PD) is a widespread neurodegenerative disorder occurs due to the degradation of dopaminergic neurons present in the substantia nigra pars compacta (SNpc). Millions of people are affected by this devastating disorder globally, and the frequency of the condition increases with the increase in the elderly population. A significant amount of progress has been made in acquiring more knowledge about the etiology and the pathogenesis of PD over the past decades. Animal models have been regarded to be a vital tool for the exploration of complex molecular mechanisms involved in PD. Various animals used as models for disease monitoring include vertebrates (zebrafish, rats, mice, guinea pigs, rabbits and monkeys) and invertebrate models (Drosophila, Caenorhabditis elegans). The animal models most relevant for study of PD are neurotoxin induction-based models (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 6-Hydroxydopamine (6-OHDA) and agricultural pesticides (rotenone, paraquat), pharmacological models (reserpine or haloperidol treated rats), genetic models (α-synuclein, Leucine-rich repeat kinase 2 (LRRK2), DJ-1, PINK-1 and Parkin). Several non-mammalian genetic models such as zebrafish, Drosophila and Caenorhabditis elegance have also gained popularity in recent years due to easy genetic manipulation, presence of genes homologous to human PD, and rapid screening of novel therapeutic molecules. In addition, in vitro models (SH-SY5Y, PC12, Lund human mesencephalic (LUHMES) cells, Human induced pluripotent stem cell (iPSC), Neural organoids, organ-on-chip) are also currently in trend providing edge in investigating molecular mechanisms involved in PD as they are derived from PD patients. In this review, we explain the current situation and merits and demerits of the various animal models.
Collapse
Affiliation(s)
- Roshan Lal
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Aditi Singh
- TR(i)P for Health Laboratory, Centre for Excellence in Functional Foods, Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City, Sector 81, SAS Nagar, Punjab, 140306, India.
| | - Shivam Watts
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences (UIPS), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
14
|
Guo B, Zheng C, Cao J, Luo F, Li H, Hu S, Mingyuan Lee S, Yang X, Zhang G, Zhang Z, Sun Y, Wang Y. Tetramethylpyrazine nitrone exerts neuroprotection via activation of PGC-1α/Nrf2 pathway in Parkinson's disease models. J Adv Res 2024; 64:195-211. [PMID: 37989471 PMCID: PMC11464467 DOI: 10.1016/j.jare.2023.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Parkinson's disease (PD) is common neurodegenerative disease where oxidative stress and mitochondrial dysfunction play important roles in its progression. Tetramethylpyrazine nitrone (TBN), a potent free radical scavenger, has shown protective effects in various neurological conditions. However, the neuroprotective mechanisms of TBN in PD models remain unclear. OBJECTIVES We aimed to investigate TBN's neuroprotective effects and mechanisms in PD models. METHODS TBN's neuroprotection was initially measured in MPP+/MPTP-induced PD models. Subsequently, a luciferase reporter assay was used to detect peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) promoter activity. Effects of TBN on antioxidant damage and the PGC-1α/Nuclear factor erythroid-2-related factor 2 (Nrf2) pathway were thoroughly investigated. RESULTS In MPP+-induced cell model, TBN (30-300 μM) increased cell survival by 9.95 % (P < 0.05), 16.63 % (P < 0.001), and 24.09 % (P < 0.001), respectively. TBN enhanced oxidative phosphorylation (P < 0.05) and restored PGC-1α transcriptional activity suppressed by MPP+ (84.30 % vs 59.03 %, P < 0.01). In MPTP-treated mice, TBN (30 mg/kg) ameliorated motor impairment, increased striatal dopamine levels (16.75 %, P < 0.001), dopaminergic neurons survival (27.12 %, P < 0.001), and tyrosine hydroxylase expression (28.07 %, P < 0.01). Selegiline, a positive control, increased dopamine levels (15.35 %, P < 0.001) and dopaminergic neurons survival (25.34 %, P < 0.001). Additionally, TBN reduced oxidative products and activated the PGC-1α/Nrf2 pathway. PGC-1α knockdown diminished TBN's neuroprotective effects, decreasing cell viability from 73.65 % to 56.87 % (P < 0.001). CONCLUSION TBN has demonstrated consistent effectiveness in MPP+-induced midbrain neurons and MPTP-induced mice. Notably, the therapeutic effect of TBN in mitigating motor deficits and neurodegeneration is superior to selegiline. The neuroprotective mechanisms of TBN are associated with activation of the PGC-1α/Nrf2 pathway, thereby reducing oxidative stress and maintaining mitochondrial function. These findings suggest that TBN may be a promising therapeutic candidate for PD, warranting further development and investigation.
Collapse
Affiliation(s)
- Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou 510632, China
| | - Chengyou Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China; School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
| | - Jie Cao
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Fangcheng Luo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Haitao Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Shengquan Hu
- Shenzhen Institute of Translational Medicine/Shenzhen Institute of Gerontology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong Province, China
| | - Simon Mingyuan Lee
- Institute of Chinese Medical Sciences and State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macao
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen 518055, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou 510632, China
| |
Collapse
|
15
|
Zhang L, Sun H, Han Z. The impact of nimodipine combined with Ginkgo biloba extract on cognitive function and ADL scores in patients with Parkinson's disease: A retrospective study. Medicine (Baltimore) 2024; 103:e38720. [PMID: 39029001 PMCID: PMC11398803 DOI: 10.1097/md.0000000000038720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/06/2024] [Indexed: 07/21/2024] Open
Abstract
This study aims to explore the value of nimodipine combined with Ginkgo biloba extract in improving cognitive function and daily living abilities in patients with Parkinson's disease. Clinical data from 551 patients with Parkinson's disease admitted to the Neurology Department of the Affiliated Hospital of Beihua University from January 2022 to December 2022 were retrospectively collected. Cognitive function and daily living abilities were assessed in patients before treatment, and a reevaluation was conducted after 12 weeks of medication. Patients treated solely with nimodipine were categorized into the monotherapy group, while patients treated with nimodipine combined with Ginkgo biloba extract were included in the combination group. After 1:1 propensity score matching, a total of 83 pairs of patients were matched, and differences in relevant indicators between the 2 groups were compared. The total effective rate of treatment in the combination group was 90.36%, which was higher than the control group at 72.29% (P < .05). However, after treatment, the observation group showed higher Mini-Mental State Examination and activities of daily living scores compared to the control group (P < .05). The combined treatment of nimodipine and Ginkgo biloba extract in patients with Parkinson's disease has a significant effect and can effectively improve cognitive function and enhance daily living abilities.
Collapse
Affiliation(s)
- Lianlian Zhang
- Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin, China
| | - Hua Sun
- Department of Endocrinology, Affiliated Hospital of Beihua University, Jilin, China
| | - Zaigang Han
- Department of Pharmacy, Affiliated Hospital of Beihua University, Jilin, China
| |
Collapse
|
16
|
Shulskaya MV, Semenova EI, Rudenok MM, Partevian SA, Lukashevich MV, Karabanov AV, Fedotova EY, Illarioshkin SN, Slominsky PA, Shadrina MI, Alieva AK. Analysis of LRRN3, MEF2C, SLC22A, and P2RY12 Gene Expression in the Peripheral Blood of Patients in the Early Stages of Parkinson's Disease. Biomedicines 2024; 12:1391. [PMID: 39061965 PMCID: PMC11273708 DOI: 10.3390/biomedicines12071391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Parkinson's disease (PD) is one of the most common human neurodegenerative diseases. Belated diagnoses of PD and late treatment are caused by its elongated prodromal phase. Thus, searching for new candidate genes participating in the development of the pathological process in the early stages of the disease in patients who have not yet received therapy is relevant. Changes in mRNA and protein levels have been described both in the peripheral blood and in the brain of patients with PD. Thus, analysis of changes in the mRNA expression in peripheral blood is of great importance in studying the early stages of PD. This work aimed to analyze the changes in MEF2C, SLC22A4, P2RY12, and LRRN3 gene expression in the peripheral blood of patients in the early stages of PD. We found a statistically relevant and PD-specific change in the expression of the LRRN3 gene, indicating a disruption in the processes of neuronal regeneration and the functioning of synapses. The data obtained during the study indicate that this gene can be considered a potential biomarker of the early stages of PD.
Collapse
Affiliation(s)
- Marina V Shulskaya
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| | - Ekaterina I Semenova
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| | - Margarita M Rudenok
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| | - Suzanna A Partevian
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| | - Maria V Lukashevich
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| | - Alexei V Karabanov
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Volokolamskoye sh., 80, Moscow 125367, Russia
| | - Ekaterina Yu Fedotova
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Volokolamskoye sh., 80, Moscow 125367, Russia
| | - Sergey N Illarioshkin
- Federal State Scientific Institution, Scientific Center of Neurology, Russian Academy of Sciences (RAS), Volokolamskoye sh., 80, Moscow 125367, Russia
| | - Petr A Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| | - Maria I Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| | - Anelya Kh Alieva
- Laboratory of Molecular Genetics of Hereditary Diseases, National Research Center "Kurchatov Institute", Kurchatova pl., 2, Moscow 123082, Russia
| |
Collapse
|
17
|
Pereira MF, Shyti R, Testa G. In and out: Benchmarking in vitro, in vivo, ex vivo, and xenografting approaches for an integrative brain disease modeling pipeline. Stem Cell Reports 2024; 19:767-795. [PMID: 38865969 PMCID: PMC11390705 DOI: 10.1016/j.stemcr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/09/2024] [Accepted: 05/11/2024] [Indexed: 06/14/2024] Open
Abstract
Human cellular models and their neuronal derivatives have afforded unprecedented advances in elucidating pathogenic mechanisms of neuropsychiatric diseases. Notwithstanding their indispensable contribution, animal models remain the benchmark in neurobiological research. In an attempt to harness the best of both worlds, researchers have increasingly relied on human/animal chimeras by xenografting human cells into the animal brain. Despite the unparalleled potential of xenografting approaches in the study of the human brain, literature resources that systematically examine their significance and advantages are surprisingly lacking. We fill this gap by providing a comprehensive account of brain diseases that were thus far subjected to all three modeling approaches (transgenic rodents, in vitro human lineages, human-animal xenografting) and provide a critical appraisal of the impact of xenografting approaches for advancing our understanding of those diseases and brain development. Next, we give our perspective on integrating xenografting modeling pipeline with recent cutting-edge technological advancements.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Neurogenomics Centre, Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
18
|
Naoi M, Maruyama W, Shamoto-Nagai M, Riederer P. Toxic interactions between dopamine, α-synuclein, monoamine oxidase, and genes in mitochondria of Parkinson's disease. J Neural Transm (Vienna) 2024; 131:639-661. [PMID: 38196001 DOI: 10.1007/s00702-023-02730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
Parkinson's disease is characterized by its distinct pathological features; loss of dopamine neurons in the substantia nigra pars compacta and accumulation of Lewy bodies and Lewy neurites containing modified α-synuclein. Beneficial effects of L-DOPA and dopamine replacement therapy indicate dopamine deficit as one of the main pathogenic factors. Dopamine and its oxidation products are proposed to induce selective vulnerability in dopamine neurons. However, Parkinson's disease is now considered as a generalized disease with dysfunction of several neurotransmitter systems caused by multiple genetic and environmental factors. The pathogenic factors include oxidative stress, mitochondrial dysfunction, α-synuclein accumulation, programmed cell death, impaired proteolytic systems, neuroinflammation, and decline of neurotrophic factors. This paper presents interactions among dopamine, α-synuclein, monoamine oxidase, its inhibitors, and related genes in mitochondria. α-Synuclein inhibits dopamine synthesis and function. Vice versa, dopamine oxidation by monoamine oxidase produces toxic aldehydes, reactive oxygen species, and quinones, which modify α-synuclein, and promote its fibril production and accumulation in mitochondria. Excessive dopamine in experimental models modifies proteins in the mitochondrial electron transport chain and inhibits the function. α-Synuclein and familiar Parkinson's disease-related gene products modify the expression and activity of monoamine oxidase. Type A monoamine oxidase is associated with neuroprotection by an unspecific dose of inhibitors of type B monoamine oxidase, rasagiline and selegiline. Rasagiline and selegiline prevent α-synuclein fibrillization, modulate this toxic collaboration, and exert neuroprotection in experimental studies. Complex interactions between these pathogenic factors play a decisive role in neurodegeneration in PD and should be further defined to develop new therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutritional Sciences, Faculty of Health Sciences, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Peter Riederer
- Clinical Neurochemistry, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Stykel MG, Ryan SD. Network analysis of S-nitrosylated synaptic proteins demonstrates unique roles in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119720. [PMID: 38582237 DOI: 10.1016/j.bbamcr.2024.119720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Nitric oxide can covalently modify cysteine thiols on target proteins to alter that protein's function in a process called S-nitrosylation (SNO). S-nitrosylation of synaptic proteins plays an integral part in neurotransmission. Here we review the function of the SNO-proteome at the synapse and whether clusters of SNO-modification may predict synaptic dysfunction associated with disease. We used a systematic search strategy to concatenate SNO-proteomic datasets from normal human or murine brain samples. Identified SNO-modified proteins were then filtered against proteins reported in the Synaptome Database, which provides a detailed and experimentally verified annotation of all known synaptic proteins. Subsequently, we performed an unbiased network analysis of all known SNO-synaptic proteins to identify clusters of SNO proteins commonly involved in biological processes or with known disease associations. The resulting SNO networks were significantly enriched in biological processes related to metabolism, whereas significant gene-disease associations were related to Schizophrenia, Alzheimer's, Parkinson's and Huntington's disease. Guided by an unbiased network analysis, the current review presents a thorough discussion of how clustered changes to the SNO-proteome influence health and disease.
Collapse
Affiliation(s)
- Morgan G Stykel
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, The University of Guelph, Guelph, ON, Canada; Hotchkiss Brain Institute, Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
20
|
Babu HWS, Kumar SM, Kaur H, Iyer M, Vellingiri B. Midbrain organoids for Parkinson's disease (PD) - A powerful tool to understand the disease pathogenesis. Life Sci 2024; 345:122610. [PMID: 38580194 DOI: 10.1016/j.lfs.2024.122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Brain Organiods (BOs) are a promising technique for researching disease progression in the human brain. These organoids, which are produced from human induced pluripotent stem cells (HiPSCs), can construct themselves into structured frameworks. In the context of Parkinson's disease (PD), recent advancements have been made in the development of Midbrain organoids (MBOs) models that consider key pathophysiological mechanisms such as alpha-synuclein (α-Syn), Lewy bodies, dopamine loss, and microglia activation. However, there are limitations to the current use of BOs in disease modelling and drug discovery, such as the lack of vascularization, long-term differentiation, and absence of glial cells. To address these limitations, researchers have proposed the use of spinning bioreactors to improve oxygen and nutrient perfusion. Modelling PD utilising modern experimental in vitro models is a valuable tool for studying disease mechanisms and elucidating previously unknown features of PD. In this paper, we exclusively review the unique methods available for cultivating MBOs using a pumping system that mimics the circulatory system. This mechanism may aid in delivering the required amount of oxygen and nutrients to all areas of the organoids, preventing cell death, and allowing for long-term culture and using co-culturing techniques for developing glial cell in BOs. Furthermore, we emphasise some of the significant discoveries about the BOs and the potential challenges of using BOs will be discussed.
Collapse
Affiliation(s)
- Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Sindduja Muthu Kumar
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Harsimrat Kaur
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Mahalaxmi Iyer
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore-641021, Tamil Nadu, India; Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda 151401, Punjab, India.
| |
Collapse
|
21
|
Samson JS, Ramesh A, Parvathi VD. Development of Midbrain Dopaminergic Neurons and the Advantage of Using hiPSCs as a Model System to Study Parkinson's Disease. Neuroscience 2024; 546:1-19. [PMID: 38522661 DOI: 10.1016/j.neuroscience.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Midbrain dopaminergic (mDA) neurons are significantly impaired in patients inflicted with Parkinson's disease (PD), subsequently affecting a variety of motor functions. There are four pathways through which dopamine elicits its function, namely, nigrostriatal, mesolimbic, mesocortical and tuberoinfundibular dopamine pathways. SHH and Wnt signalling pathways in association with favourable expression of a variety of genes, promotes the development and differentiation of mDA neurons in the brain. However, there is a knowledge gap regarding the complex signalling pathways involved in development of mDA neurons. hiPSC models have been acclaimed to be effective in generating complex disease phenotypes. These models mimic the microenvironment found in vivo thus ensuring maximum reliability. Further, a variety of therapeutic compounds can be screened using hiPSCs since they can be used to generate neurons that could carry an array of mutations associated with both familial and sporadic PD. Thus, culturing hiPSCs to study gene expression and dysregulation of cellular processes associated with PD can be useful in developing targeted therapies that will be a step towards halting disease progression.
Collapse
Affiliation(s)
- Jennifer Sally Samson
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Anuradha Ramesh
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai 600116, India.
| |
Collapse
|
22
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
23
|
Cerneckis J, Cai H, Shi Y. Induced pluripotent stem cells (iPSCs): molecular mechanisms of induction and applications. Signal Transduct Target Ther 2024; 9:112. [PMID: 38670977 PMCID: PMC11053163 DOI: 10.1038/s41392-024-01809-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/09/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
The induced pluripotent stem cell (iPSC) technology has transformed in vitro research and holds great promise to advance regenerative medicine. iPSCs have the capacity for an almost unlimited expansion, are amenable to genetic engineering, and can be differentiated into most somatic cell types. iPSCs have been widely applied to model human development and diseases, perform drug screening, and develop cell therapies. In this review, we outline key developments in the iPSC field and highlight the immense versatility of the iPSC technology for in vitro modeling and therapeutic applications. We begin by discussing the pivotal discoveries that revealed the potential of a somatic cell nucleus for reprogramming and led to successful generation of iPSCs. We consider the molecular mechanisms and dynamics of somatic cell reprogramming as well as the numerous methods available to induce pluripotency. Subsequently, we discuss various iPSC-based cellular models, from mono-cultures of a single cell type to complex three-dimensional organoids, and how these models can be applied to elucidate the mechanisms of human development and diseases. We use examples of neurological disorders, coronavirus disease 2019 (COVID-19), and cancer to highlight the diversity of disease-specific phenotypes that can be modeled using iPSC-derived cells. We also consider how iPSC-derived cellular models can be used in high-throughput drug screening and drug toxicity studies. Finally, we discuss the process of developing autologous and allogeneic iPSC-based cell therapies and their potential to alleviate human diseases.
Collapse
Affiliation(s)
- Jonas Cerneckis
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongxia Cai
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
- Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
24
|
Qiu F, Liu Y, Liu Z. The Role of Protein S-Nitrosylation in Mitochondrial Quality Control in Central Nervous System Diseases. Aging Dis 2024:AD.2024.0099. [PMID: 38739938 DOI: 10.14336/ad.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
S-Nitrosylation is a reversible covalent post-translational modification. Under physiological conditions, S-nitrosylation plays a dynamic role in a wide range of biological processes by regulating the function of substrate proteins. Like other post-translational modifications, S-nitrosylation can affect protein conformation, activity, localization, aggregation, and protein interactions. Aberrant S-nitrosylation can lead to protein misfolding, mitochondrial fragmentation, synaptic damage, and autophagy. Mitochondria are essential organelles in energy production, metabolite biosynthesis, cell death, and immune responses, among other processes. Mitochondrial dysfunction can result in cell death and has been implicated in the development of many human diseases. Recent evidence suggests that S-nitrosylation and mitochondrial dysfunction are important modulators of the progression of several diseases. In this review, we highlight recent findings regarding the aberrant S- nitrosylation of mitochondrial proteins that regulate mitochondrial biosynthesis, fission and fusion, and autophagy. Specifically, we discuss the mechanisms by which S-nitrosylated mitochondrial proteins exercise mitochondrial quality control under pathological conditions, thereby influencing disease. A better understanding of these pathological events may provide novel therapeutic targets to mitigate the development of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
25
|
Parmasad JLA, Ricke KM, Nguyen B, Stykel MG, Buchner-Duby B, Bruce A, Geertsma HM, Lian E, Lengacher NA, Callaghan SM, Joselin A, Tomlinson JJ, Schlossmacher MG, Stanford WL, Ma J, Brundin P, Ryan SD, Rousseaux MWC. Genetic and pharmacological reduction of CDK14 mitigates synucleinopathy. Cell Death Dis 2024; 15:246. [PMID: 38575601 PMCID: PMC10994937 DOI: 10.1038/s41419-024-06534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.
Collapse
Affiliation(s)
- Jean-Louis A Parmasad
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Morgan G Stykel
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Brodie Buchner-Duby
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Amanda Bruce
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Haley M Geertsma
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Eric Lian
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie A Lengacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Alvin Joselin
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Julianna J Tomlinson
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Michael G Schlossmacher
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - William L Stanford
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Program in Neuroscience, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | - Jiyan Ma
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Chinese Institute for Brain Research, Beijing, China
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Scott D Ryan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
26
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
27
|
Suzuki H, Egawa N, Imamura K, Kondo T, Enami T, Tsukita K, Suga M, Yada Y, Shibukawa R, Takahashi R, Inoue H. Mutant α-synuclein causes death of human cortical neurons via ERK1/2 and JNK activation. Mol Brain 2024; 17:14. [PMID: 38444039 PMCID: PMC10916047 DOI: 10.1186/s13041-024-01086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Synucleinopathies refer to a group of disorders characterized by SNCA/α-synuclein (α-Syn)-containing cytoplasmic inclusions and neuronal cell loss in the nervous system including the cortex, a common feature being cognitive impairment. Still, the molecular pathogenesis of cognitive decline remains poorly understood, hampering the development of effective treatments. Here, we generated induced pluripotent stem cells (iPSCs) derived from familial Parkinson's disease (PD) patients carrying SNCA A53T mutation, differentiating them into cortical neurons by a direct conversion method. Patient iPSCs-derived cortical neurons harboring mutant α-Syn exhibited increased α-Syn-positive aggregates, shorter neurites, and time-dependent vulnerability. Furthermore, RNA-sequencing analysis, followed by biochemical validation, identified the activation of the ERK1/2 and JNK cascades in cortical neurons with SNCA A53T mutation. This result was consistent with a reverted phenotype of neuronal death in cortical neurons when treated with ERK1/2 and JNK inhibitors, respectively. Our findings emphasize the role of ERK1/2 and JNK cascades in the vulnerability of cortical neurons in synucleinopathies, and they could pave the way toward therapeutic advancements for synucleinopathies.
Collapse
Affiliation(s)
- Hidefumi Suzuki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naohiro Egawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Keiko Imamura
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Takayuki Kondo
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kayoko Tsukita
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mika Suga
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yuichiro Yada
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Ran Shibukawa
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Haruhisa Inoue
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- Medical-Risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
| |
Collapse
|
28
|
Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. CRISPR/Cas9 system and its applications in nervous system diseases. Genes Dis 2024; 11:675-686. [PMID: 37692518 PMCID: PMC10491921 DOI: 10.1016/j.gendis.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/05/2023] [Indexed: 09/12/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is an acquired immune system of many bacteria and archaea, comprising CRISPR loci, Cas genes, and its associated proteins. This system can recognize exogenous DNA and utilize the Cas9 protein's nuclease activity to break DNA double-strand and to achieve base insertion or deletion by subsequent DNA repair. In recent years, multiple laboratory and clinical studies have revealed the therapeutic role of the CRISPR/Cas9 system in neurological diseases. This article reviews the CRISPR/Cas9-mediated gene editing technology and its potential for clinical application against neurological diseases.
Collapse
Affiliation(s)
- Haibin Jiang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mengyan Tang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zidi Xu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yanan Wang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Mopu Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shuyin Zheng
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jianghu Zhu
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Zhenlang Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| | - Min Zhang
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Perinatal Medicine of Wenzhou, Wenzhou, Zhejiang 325027, China
- Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou, Zhejiang 325000, China
- Zhejiang Provincial Clinical Research Center for Pediatric Disease, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
29
|
Andreyev AY, Yang H, Doulias P, Dolatabadi N, Zhang X, Luevanos M, Blanco M, Baal C, Putra I, Nakamura T, Ischiropoulos H, Tannenbaum SR, Lipton SA. Metabolic Bypass Rescues Aberrant S-nitrosylation-Induced TCA Cycle Inhibition and Synapse Loss in Alzheimer's Disease Human Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306469. [PMID: 38235614 PMCID: PMC10966553 DOI: 10.1002/advs.202306469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Indexed: 01/19/2024]
Abstract
In Alzheimer's disease (AD), dysfunctional mitochondrial metabolism is associated with synaptic loss, the major pathological correlate of cognitive decline. Mechanistic insight for this relationship, however, is still lacking. Here, comparing isogenic wild-type and AD mutant human induced pluripotent stem cell (hiPSC)-derived cerebrocortical neurons (hiN), evidence is found for compromised mitochondrial energy in AD using the Seahorse platform to analyze glycolysis and oxidative phosphorylation (OXPHOS). Isotope-labeled metabolic flux experiments revealed a major block in activity in the tricarboxylic acid (TCA) cycle at the α-ketoglutarate dehydrogenase (αKGDH)/succinyl coenzyme-A synthetase step, metabolizing α-ketoglutarate to succinate. Associated with this block, aberrant protein S-nitrosylation of αKGDH subunits inhibited their enzyme function. This aberrant S-nitrosylation is documented not only in AD-hiN but also in postmortem human AD brains versus controls, as assessed by two separate unbiased mass spectrometry platforms using both SNOTRAP identification of S-nitrosothiols and chemoselective-enrichment of S-nitrosoproteins. Treatment with dimethyl succinate, a cell-permeable derivative of a TCA substrate downstream to the block, resulted in partial rescue of mitochondrial bioenergetic function as well as reversal of synapse loss in AD-hiN. These findings have therapeutic implications that rescue of mitochondrial energy metabolism can ameliorate synaptic loss in hiPSC-based models of AD.
Collapse
Affiliation(s)
- Alexander Y. Andreyev
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Hongmei Yang
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Northeast Asia Institute of Chinese MedicineChangchun University of Chinese MedicineChangchun130021China
- Present address:
The Public Experiment CenterChangchun University of Chinese MedicineChangchun130117China
| | - Paschalis‐Thomas Doulias
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and PharmacologyRaymond and Ruth Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
- Department of Chemistry and Institute of BiosciencesUniversity Research Center of IoanninaUniversity of IoanninaIoannina45110Greece
| | - Nima Dolatabadi
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Xu Zhang
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Melissa Luevanos
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Mayra Blanco
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Christine Baal
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Ivan Putra
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Tomohiro Nakamura
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Research Institute and Departments of Pediatrics and PharmacologyRaymond and Ruth Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
| | - Steven R. Tannenbaum
- Northeast Asia Institute of Chinese MedicineChangchun University of Chinese MedicineChangchun130021China
| | - Stuart A. Lipton
- Department of Molecular Medicine and Neurodegeneration New Medicines CenterThe Scripps Research InstituteLa JollaCA92037USA
- Department of NeurosciencesSchool of MedicineUniversity of California at San DiegoLa JollaCA92093USA
| |
Collapse
|
30
|
Regoni M, Valtorta F, Sassone J. Dopaminergic neuronal death via necroptosis in Parkinson's disease: A review of the literature. Eur J Neurosci 2024; 59:1079-1098. [PMID: 37667848 DOI: 10.1111/ejn.16136] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive dysfunction and loss of dopaminergic neurons of the substantia nigra pars compacta (SNc). Several pathways of programmed cell death are likely to play a role in dopaminergic neuron death, such as apoptosis, necrosis, pyroptosis and ferroptosis, as well as cell death associated with proteasomal and mitochondrial dysfunction. A better understanding of the molecular mechanisms underlying dopaminergic neuron death could inform the design of drugs that promote neuron survival. Necroptosis is a recently characterized regulated cell death mechanism that exhibits morphological features common to both apoptosis and necrosis. It requires activation of an intracellular pathway involving receptor-interacting protein 1 kinase (RIP1 kinase, RIPK1), receptor-interacting protein 3 kinase (RIP3 kinase, RIPK3) and mixed lineage kinase domain-like pseudokinase (MLKL). The potential involvement of this programmed cell death pathway in the pathogenesis of PD has been studied by analysing biomarkers for necroptosis, such as the levels and oligomerization of phosphorylated RIPK3 (pRIPK3) and phosphorylated MLKL (pMLKL), in several PD preclinical models and in PD human tissue. Although there is evidence that other types of cell death also have a role in DA neuron death, most studies support the hypothesis that this cell death mechanism is activated in PD tissues. Drugs that prevent or reduce necroptosis may provide neuroprotection for PD. In this review, we summarize the findings from these studies. We also discuss how manipulating necroptosis might open a novel therapeutic approach to reduce neuronal degeneration in PD.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Hornauer P, Prack G, Anastasi N, Ronchi S, Kim T, Donner C, Fiscella M, Borgwardt K, Taylor V, Jagasia R, Roqueiro D, Hierlemann A, Schröter M. DeePhys: A machine learning-assisted platform for electrophysiological phenotyping of human neuronal networks. Stem Cell Reports 2024; 19:285-298. [PMID: 38278155 PMCID: PMC10874850 DOI: 10.1016/j.stemcr.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/28/2024] Open
Abstract
Reproducible functional assays to study in vitro neuronal networks represent an important cornerstone in the quest to develop physiologically relevant cellular models of human diseases. Here, we introduce DeePhys, a MATLAB-based analysis tool for data-driven functional phenotyping of in vitro neuronal cultures recorded by high-density microelectrode arrays. DeePhys is a modular workflow that offers a range of techniques to extract features from spike-sorted data, allowing for the examination of functional phenotypes both at the individual cell and network levels, as well as across development. In addition, DeePhys incorporates the capability to integrate novel features and to use machine-learning-assisted approaches, which facilitates a comprehensive evaluation of pharmacological interventions. To illustrate its practical application, we apply DeePhys to human induced pluripotent stem cell-derived dopaminergic neurons obtained from both patients and healthy individuals and showcase how DeePhys enables phenotypic screenings.
Collapse
Affiliation(s)
- Philipp Hornauer
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland.
| | - Gustavo Prack
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Nadia Anastasi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Silvia Ronchi
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Taehoon Kim
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | | | - Michele Fiscella
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland; MaxWell Biosystems AG, 8047 Zürich, Switzerland
| | - Karsten Borgwardt
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland; Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Verdon Taylor
- Department of Biomedicine, University of Basel, 4031 Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Damian Roqueiro
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland; Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Andreas Hierlemann
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| | - Manuel Schröter
- Department of Biosystems Science and Engineering, ETH Zürich, 4056 Basel, Switzerland
| |
Collapse
|
32
|
Sturchio A, Rocha EM, Kauffman MA, Marsili L, Mahajan A, Saraf AA, Vizcarra JA, Guo Z, Espay AJ. Recalibrating the Why and Whom of Animal Models in Parkinson Disease: A Clinician's Perspective. Brain Sci 2024; 14:151. [PMID: 38391726 PMCID: PMC10887152 DOI: 10.3390/brainsci14020151] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024] Open
Abstract
Animal models have been used to gain pathophysiologic insights into Parkinson's disease (PD) and aid in the translational efforts of interventions with therapeutic potential in human clinical trials. However, no disease-modifying therapy for PD has successfully emerged from model predictions. These translational disappointments warrant a reappraisal of the types of preclinical questions asked of animal models. Besides the limitations of experimental designs, the one-size convergence and oversimplification yielded by a model cannot recapitulate the molecular diversity within and between PD patients. Here, we compare the strengths and pitfalls of different models, review the discrepancies between animal and human data on similar pathologic and molecular mechanisms, assess the potential of organoids as novel modeling tools, and evaluate the types of questions for which models can guide and misguide. We propose that animal models may be of greatest utility in the evaluation of molecular mechanisms, neural pathways, drug toxicity, and safety but can be unreliable or misleading when used to generate pathophysiologic hypotheses or predict therapeutic efficacy for compounds with potential neuroprotective effects in humans. To enhance the translational disease-modification potential, the modeling must reflect the biology not of a diseased population but of subtypes of diseased humans to distinguish What data are relevant and to Whom.
Collapse
Affiliation(s)
- Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Emily M. Rocha
- Pittsburgh Institute for Neurodegenerative Diseases, Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires C1221ADC, Argentina;
| | - Luca Marsili
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Abhimanyu Mahajan
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Ameya A. Saraf
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| | - Joaquin A. Vizcarra
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 15213, USA;
| | - Ziyuan Guo
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Developmental Biology, Cincinnati Children’s Hospital, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45219, USA; (A.S.); (L.M.); (A.A.S.)
| |
Collapse
|
33
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
34
|
Doulias PT, Yang H, Andreyev AY, Dolatabadi N, Scott H, K Raspur C, Patel PR, Nakamura T, Tannenbaum SR, Ischiropoulos H, Lipton SA. S-Nitrosylation-mediated dysfunction of TCA cycle enzymes in synucleinopathy studied in postmortem human brains and hiPSC-derived neurons. Cell Chem Biol 2023; 30:965-975.e6. [PMID: 37478858 PMCID: PMC10530441 DOI: 10.1016/j.chembiol.2023.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/16/2023] [Accepted: 06/16/2023] [Indexed: 07/23/2023]
Abstract
A causal relationship between mitochondrial metabolic dysfunction and neurodegeneration has been implicated in synucleinopathies, including Parkinson disease (PD) and Lewy body dementia (LBD), but underlying mechanisms are not fully understood. Here, using human induced pluripotent stem cell (hiPSC)-derived neurons with mutation in the gene encoding α-synuclein (αSyn), we report the presence of aberrantly S-nitrosylated proteins, including tricarboxylic acid (TCA) cycle enzymes, resulting in activity inhibition assessed by carbon-labeled metabolic flux experiments. This inhibition principally affects α-ketoglutarate dehydrogenase/succinyl coenzyme-A synthetase, metabolizing α-ketoglutarate to succinate. Notably, human LBD brain manifests a similar pattern of aberrantly S-nitrosylated TCA enzymes, indicating the pathophysiological relevance of these results. Inhibition of mitochondrial energy metabolism in neurons is known to compromise dendritic length and synaptic integrity, eventually leading to neuronal cell death. Our evidence indicates that aberrant S-nitrosylation of TCA cycle enzymes contributes to this bioenergetic failure.
Collapse
Affiliation(s)
- Paschalis-Thomas Doulias
- Children's Hospital of Philadelphia Departments of Pediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Chemistry and University Research Center of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Hongmei Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Changchun University of Chinese Medicine, Changchun 130021, China
| | - Alexander Y Andreyev
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nima Dolatabadi
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry Scott
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charlene K Raspur
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Parth R Patel
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven R Tannenbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Harry Ischiropoulos
- Children's Hospital of Philadelphia Departments of Pediatrics and Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Paul KC, Krolewski RC, Lucumi Moreno E, Blank J, Holton KM, Ahfeldt T, Furlong M, Yu Y, Cockburn M, Thompson LK, Kreymerman A, Ricci-Blair EM, Li YJ, Patel HB, Lee RT, Bronstein J, Rubin LL, Khurana V, Ritz B. A pesticide and iPSC dopaminergic neuron screen identifies and classifies Parkinson-relevant pesticides. Nat Commun 2023; 14:2803. [PMID: 37193692 PMCID: PMC10188516 DOI: 10.1038/s41467-023-38215-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disease with etiology rooted in genetic vulnerability and environmental factors. Here we combine quantitative epidemiologic study of pesticide exposures and PD with toxicity screening in dopaminergic neurons derived from PD patient induced pluripotent stem cells (iPSCs) to identify Parkinson's-relevant pesticides. Agricultural records enable investigation of 288 specific pesticides and PD risk in a comprehensive, pesticide-wide association study. We associate long-term exposure to 53 pesticides with PD and identify co-exposure profiles. We then employ a live-cell imaging screening paradigm exposing dopaminergic neurons to 39 PD-associated pesticides. We find that 10 pesticides are directly toxic to these neurons. Further, we analyze pesticides typically used in combinations in cotton farming, demonstrating that co-exposures result in greater toxicity than any single pesticide. We find trifluralin is a driver of toxicity to dopaminergic neurons and leads to mitochondrial dysfunction. Our paradigm may prove useful to mechanistically dissect pesticide exposures implicated in PD risk and guide agricultural policy.
Collapse
Affiliation(s)
- Kimberly C Paul
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
| | - Richard C Krolewski
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Edinson Lucumi Moreno
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | | | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tim Ahfeldt
- Recursion Pharmaceuticals, Salt Lake City, UT, USA
- Nash Family Department of Neuroscience at Mount Sinai, New York, NY, USA
| | - Melissa Furlong
- University of Arizona, Mel and Enid Zuckerman College of Public Health, Tucson, AZ, USA
| | - Yu Yu
- UCLA Center for Health Policy Research, Los Angeles, CA, USA
| | - Myles Cockburn
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laura K Thompson
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alexander Kreymerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | - Yu Jun Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Heer B Patel
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Jeff Bronstein
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Vikram Khurana
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - Beate Ritz
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Pinjala P, Tryphena KP, Prasad R, Khatri DK, Sun W, Singh SB, Gugulothu D, Srivastava S, Vora L. CRISPR/Cas9 assisted stem cell therapy in Parkinson's disease. Biomater Res 2023; 27:46. [PMID: 37194005 PMCID: PMC10190035 DOI: 10.1186/s40824-023-00381-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/16/2023] [Indexed: 05/18/2023] Open
Abstract
Since its discovery in 2012, CRISPR Cas9 has been tried as a direct treatment approach to correct the causative gene mutation and establish animal models in neurodegenerative disorders. Since no strategy developed until now could completely cure Parkinson's disease (PD), neuroscientists aspire to use gene editing technology, especially CRISPR/Cas9, to induce a permanent correction in genetic PD patients expressing mutated genes. Over the years, our understanding of stem cell biology has improved. Scientists have developed personalized cell therapy using CRISPR/Cas9 to edit embryonic and patient-derived stem cells ex-vivo. This review details the importance of CRISPR/Cas9-based stem cell therapy in Parkinson's disease in developing PD disease models and developing therapeutic strategies after elucidating the possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- Poojitha Pinjala
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Renuka Prasad
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 73 Inchon-Ro, Seongbuk-Gu, Seoul, 12841, Republic of Korea
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India.
| | - Woong Sun
- Department of Anatomy, Korea University College of Medicine, Moonsuk Medical Research Building, 73 Inchon-Ro, Seongbuk-Gu, Seoul, 12841, Republic of Korea
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Dalapathi Gugulothu
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037, Hyderabad, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
37
|
Obergasteiger J, Castonguay AM, Pizzi S, Magnabosco S, Frapporti G, Lobbestael E, Baekelandt V, Hicks AA, Pramstaller PP, Gravel C, Corti C, Lévesque M, Volta M. The small GTPase Rit2 modulates LRRK2 kinase activity, is required for lysosomal function and protects against alpha-synuclein neuropathology. NPJ Parkinsons Dis 2023; 9:44. [PMID: 36973269 PMCID: PMC10042831 DOI: 10.1038/s41531-023-00484-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
In Parkinson's disease (PD) misfolded alpha-synuclein (aSyn) accumulates in the substantia nigra, where dopaminergic neurons are progressively lost. The mechanisms underlying aSyn pathology are still unclear, but they are hypothesized to involve the autophagy-lysosome pathway (ALP). LRRK2 mutations are a major cause of familial and sporadic PD, and LRRK2 kinase activity has been shown to be involved in pS129-aSyn inclusion modulation. We observed selective downregulation of the novel PD risk factor RIT2 in vitro and in vivo. Rit2 overexpression in G2019S-LRRK2 cells rescued ALP abnormalities and diminished aSyn inclusions. In vivo, viral mediated overexpression of Rit2 operated neuroprotection against AAV-A53T-aSyn. Furthermore, Rit2 overexpression prevented the A53T-aSyn-dependent increase of LRRK2 kinase activity in vivo. On the other hand, reduction of Rit2 levels leads to defects in the ALP, similar to those induced by the G2019S-LRRK2 mutation. Our data indicate that Rit2 is required for correct lysosome function, inhibits overactive LRRK2 to ameliorate ALP impairment, and counteracts aSyn aggregation and related deficits. Targeting Rit2 could represent an effective strategy to combat neuropathology in familial and idiopathic PD.
Collapse
Affiliation(s)
- Julia Obergasteiger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Anne-Marie Castonguay
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Sara Pizzi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Stefano Magnabosco
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Giulia Frapporti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
- Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Evy Lobbestael
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Veerle Baekelandt
- Department of Neurosciences, KU Leuven, Herestraat 49 bus 1023, 3000, Leuven, Belgium
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Claude Gravel
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada.
| | - Mattia Volta
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via Volta 21, 39100, Bolzano, Italy.
| |
Collapse
|
38
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
39
|
Ghatak S, Nakamura T, Lipton SA. Aberrant protein S-nitrosylation contributes to hyperexcitability-induced synaptic damage in Alzheimer's disease: Mechanistic insights and potential therapies. Front Neural Circuits 2023; 17:1099467. [PMID: 36817649 PMCID: PMC9932935 DOI: 10.3389/fncir.2023.1099467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is arguably the most common cause of dementia in the elderly and is marked by progressive synaptic degeneration, which in turn leads to cognitive decline. Studies in patients and in various AD models have shown that one of the early signatures of AD is neuronal hyperactivity. This excessive electrical activity contributes to dysregulated neural network function and synaptic damage. Mechanistically, evidence suggests that hyperexcitability accelerates production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) that contribute to neural network impairment and synapse loss. This review focuses on the pathways and molecular changes that cause hyperexcitability and how RNS-dependent posttranslational modifications, represented predominantly by protein S-nitrosylation, mediate, at least in part, the deleterious effects of hyperexcitability on single neurons and the neural network, resulting in synaptic loss in AD.
Collapse
Affiliation(s)
- Swagata Ghatak
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,*Correspondence: Tomohiro Nakamura,
| | - Stuart A. Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States,Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA, United States,Stuart A. Lipton,
| |
Collapse
|
40
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
41
|
Li X, Deng Q, Kuang Y, Mao H, Yao M, Lin C, Luo X, Xu P. Identifying NFKB1, STAT3, and CDKN1A as Baicalein's Potential Hub Targets in Parkinson's Disease-related α-synuclein-mediated Pathways by Integrated Bioinformatics Strategies. Curr Pharm Des 2023; 29:2426-2437. [PMID: 37859325 DOI: 10.2174/0113816128259065231011114116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/18/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.
Collapse
Affiliation(s)
- Xingjian Li
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiyin Deng
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoyun Kuang
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Yao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changsong Lin
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaodong Luo
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
42
|
Capriglia F, Burgess T, Bandmann O, Mortiboys H. Clinical Trial Highlights: Modulators of Mitochondrial Function. JOURNAL OF PARKINSON'S DISEASE 2023; 13:851-864. [PMID: 37694310 PMCID: PMC10578225 DOI: 10.3233/jpd-239003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Francesco Capriglia
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Toby Burgess
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Oliver Bandmann
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
43
|
Steinert JR, Amal H. The contribution of an imbalanced redox signalling to neurological and neurodegenerative conditions. Free Radic Biol Med 2023; 194:71-83. [PMID: 36435368 DOI: 10.1016/j.freeradbiomed.2022.11.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022]
Abstract
Nitric oxide and other redox active molecules such as oxygen free radicals provide essential signalling in diverse neuronal functions, but their excess production and insufficient scavenging induces cytotoxic redox stress which is associated with numerous neurodegenerative and neurological conditions. A further component of redox signalling is mediated by a homeostatic regulation of divalent metal ions, the imbalance of which contributes to neuronal dysfunction. Additional antioxidant molecules such as glutathione and enzymes such as super oxide dismutase are involved in maintaining a physiological redox status within neurons. When cellular processes are perturbed and generation of free radicals overwhelms the antioxidants capacity of the neurons, a resulting redox damage leads to neuronal dysfunction and cell death. Cellular sources for production of redox-active molecules may include NADPH oxidases, mitochondria, cytochrome P450 and nitric oxide (NO)-generating enzymes, such as endothelial, neuronal and inducible NO synthases. Several neurodegenerative and developmental neurological conditions are associated with an imbalanced redox state as a result of neuroinflammatory processes leading to nitrosative and oxidative stress. Ongoing research aims at understanding the causes and consequences of such imbalanced redox homeostasis and its role in neuronal dysfunction.
Collapse
Affiliation(s)
- Joern R Steinert
- Division of Physiology, Pharmacology and Neuroscience, University of Nottingham, School of Life Sciences, Nottingham, NG7 2NR, UK.
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
44
|
O'Reilly CL, Miller BF, Lewis TL. Exercise and mitochondrial remodeling to prevent age-related neurodegeneration. J Appl Physiol (1985) 2023; 134:181-189. [PMID: 36519568 PMCID: PMC9829476 DOI: 10.1152/japplphysiol.00611.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.
Collapse
Affiliation(s)
- Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Association, Oklahoma City, Oklahoma
| | - Tommy L Lewis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
45
|
Intracellular Accumulation of α-Synuclein Aggregates Promotes S-Nitrosylation of MAP1A Leading to Decreased NMDAR-Evoked Calcium Influx and Loss of Mature Synaptic Spines. J Neurosci 2022; 42:9473-9487. [PMID: 36414406 PMCID: PMC9794373 DOI: 10.1523/jneurosci.0074-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 10/11/2022] [Accepted: 11/06/2022] [Indexed: 11/24/2022] Open
Abstract
Cortical synucleinopathies, including dementia with Lewy bodies and Parkinson's disease dementia, collectively known as Lewy body dementia, are characterized by the aberrant aggregation of misfolded α-synuclein (α-syn) protein into large inclusions in cortical tissue, leading to impairments in proteostasis and synaptic connectivity and eventually resulting in neurodegeneration. Here, we show that male and female rat cortical neurons exposed to exogenous α-syn preformed fibrils accumulate large, detergent-insoluble, PS129-labeled deposits at synaptic terminals. Live-cell imaging of calcium dynamics coupled with assessment of network activity reveals that aberrant intracellular accumulation of α-syn inhibits synaptic response to glutamate through NMDARs, although deficits manifest slowly over a 7 d period. Impairments in NMDAR activity temporally correlated with increased nitric oxide synthesis and S-nitrosylation of the dendritic scaffold protein, microtubule-associated protein 1A. Inhibition of nitric oxide synthesis via the nitric oxide synthase inhibitor l-NG-nitroarginine methyl ester blocked microtubule-associated protein 1A S-nitrosylation and normalized NMDAR-dependent inward calcium transients and overall network activity. Collectively, these data suggest that loss of synaptic function in Lewy body dementia may result from synucleinopathy-evoked nitrosative stress and subsequent NMDAR dysfunction.SIGNIFICANCE STATEMENT This work shows the importance of the redox state of microtubule-associated protein 1A in the maintenance of synaptic function through regulation of NMDAR. We show that α-syn preformed fibrils promote nitric oxide synthesis, which triggers S-nitrosylation of microtubule-associated protein 1A, leading to impairment of NMDAR-dependent glutamate responses. This offers insight into the mechanism of synaptic dysfunction in Lewy body dementia.
Collapse
|
46
|
Vrettou S, Wirth B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:15849. [PMID: 36555492 PMCID: PMC9779533 DOI: 10.3390/ijms232415849] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox post-translational modifications are derived from fluctuations in the redox potential and modulate protein function, localization, activity and structure. Amongst the oxidative reversible modifications, the S-glutathionylation of proteins was the first to be characterized as a post-translational modification, which primarily protects proteins from irreversible oxidation. However, a growing body of evidence suggests that S-glutathionylation plays a key role in core cell processes, particularly in mitochondria, which are the main source of reactive oxygen species. S-nitrosylation, another post-translational modification, was identified >150 years ago, but it was re-introduced as a prototype cell-signaling mechanism only recently, one that tightly regulates core processes within the cell’s sub-compartments, especially in mitochondria. S-glutathionylation and S-nitrosylation are modulated by fluctuations in reactive oxygen and nitrogen species and, in turn, orchestrate mitochondrial bioenergetics machinery, morphology, nutrients metabolism and apoptosis. In many neurodegenerative disorders, mitochondria dysfunction and oxidative/nitrosative stresses trigger or exacerbate their pathologies. Despite the substantial amount of research for most of these disorders, there are no successful treatments, while antioxidant supplementation failed in the majority of clinical trials. Herein, we discuss how S-glutathionylation and S-nitrosylation interfere in mitochondrial homeostasis and how the deregulation of these modifications is associated with Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and Friedreich’s ataxia.
Collapse
Affiliation(s)
- Sofia Vrettou
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
47
|
Raja WK, Neves E, Burke C, Jiang X, Xu P, Rhodes KJ, Khurana V, Scannevin RH, Chung CY. Patient-derived three-dimensional cortical neurospheres to model Parkinson's disease. PLoS One 2022; 17:e0277532. [PMID: 36454869 PMCID: PMC9714816 DOI: 10.1371/journal.pone.0277532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
There are currently no preventive or disease-modifying therapies for Parkinson's Disease (PD). Failures in clinical trials necessitate a re-evaluation of existing pre-clinical models in order to adopt systems that better recapitulate underlying disease mechanisms and better predict clinical outcomes. In recent years, models utilizing patient-derived induced pluripotent stem cells (iPSC) have emerged as attractive models to recapitulate disease-relevant neuropathology in vitro without exogenous overexpression of disease-related pathologic proteins. Here, we utilized iPSC derived from patients with early-onset PD and dementia phenotypes that harbored either a point mutation (A53T) or multiplication at the α-synuclein/SNCA gene locus. We generated a three-dimensional (3D) cortical neurosphere culture model to better mimic the tissue microenvironment of the brain. We extensively characterized the differentiation process using quantitative PCR, Western immunoblotting and immunofluorescence staining. Differentiated and aged neurospheres revealed alterations in fatty acid profiles and elevated total and pathogenic phospho-α-synuclein levels in both A53T and the triplication lines compared to their isogenic control lines. Furthermore, treatment of the neurospheres with a small molecule inhibitor of stearoyl CoA desaturase (SCD) attenuated the protein accumulation and aberrant fatty acid profile phenotypes. Our findings suggest that the 3D cortical neurosphere model is a useful tool to interrogate targets for PD and amenable to test small molecule therapeutics.
Collapse
Affiliation(s)
- Waseem K. Raja
- Yumanity Therapeutics, Boston, MA, United States of America
- * E-mail: (CYC); (WKR)
| | - Esther Neves
- Yumanity Therapeutics, Boston, MA, United States of America
| | | | - Xin Jiang
- Yumanity Therapeutics, Boston, MA, United States of America
| | - Ping Xu
- Yumanity Therapeutics, Boston, MA, United States of America
| | | | - Vikram Khurana
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Ann Romney Center for Neurologic Disease, Boston, MA, United States of America
- Harvard Stem Cell Institute, Cambridge, MA, United States of America
- Broad Institute of MIT and Harvard, Cambridge, MA, United States of America
| | | | - Chee Yeun Chung
- Yumanity Therapeutics, Boston, MA, United States of America
- * E-mail: (CYC); (WKR)
| |
Collapse
|
48
|
Virdi GS, Choi ML, Evans JR, Yao Z, Athauda D, Strohbuecker S, Nirujogi RS, Wernick AI, Pelegrina-Hidalgo N, Leighton C, Saleeb RS, Kopach O, Alrashidi H, Melandri D, Perez-Lloret J, Angelova PR, Sylantyev S, Eaton S, Heales S, Rusakov DA, Alessi DR, Kunath T, Horrocks MH, Abramov AY, Patani R, Gandhi S. Protein aggregation and calcium dysregulation are hallmarks of familial Parkinson's disease in midbrain dopaminergic neurons. NPJ Parkinsons Dis 2022; 8:162. [PMID: 36424392 PMCID: PMC9691718 DOI: 10.1038/s41531-022-00423-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Mutations in the SNCA gene cause autosomal dominant Parkinson's disease (PD), with loss of dopaminergic neurons in the substantia nigra, and aggregation of α-synuclein. The sequence of molecular events that proceed from an SNCA mutation during development, to end-stage pathology is unknown. Utilising human-induced pluripotent stem cells (hiPSCs), we resolved the temporal sequence of SNCA-induced pathophysiological events in order to discover early, and likely causative, events. Our small molecule-based protocol generates highly enriched midbrain dopaminergic (mDA) neurons: molecular identity was confirmed using single-cell RNA sequencing and proteomics, and functional identity was established through dopamine synthesis, and measures of electrophysiological activity. At the earliest stage of differentiation, prior to maturation to mDA neurons, we demonstrate the formation of small β-sheet-rich oligomeric aggregates, in SNCA-mutant cultures. Aggregation persists and progresses, ultimately resulting in the accumulation of phosphorylated α-synuclein aggregates. Impaired intracellular calcium signalling, increased basal calcium, and impairments in mitochondrial calcium handling occurred early at day 34-41 post differentiation. Once midbrain identity fully developed, at day 48-62 post differentiation, SNCA-mutant neurons exhibited mitochondrial dysfunction, oxidative stress, lysosomal swelling and increased autophagy. Ultimately these multiple cellular stresses lead to abnormal excitability, altered neuronal activity, and cell death. Our differentiation paradigm generates an efficient model for studying disease mechanisms in PD and highlights that protein misfolding to generate intraneuronal oligomers is one of the earliest critical events driving disease in human neurons, rather than a late-stage hallmark of the disease.
Collapse
Affiliation(s)
- Gurvir S Virdi
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Minee L Choi
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - James R Evans
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Zhi Yao
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Dilan Athauda
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Raja S Nirujogi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Anna I Wernick
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - Noelia Pelegrina-Hidalgo
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Craig Leighton
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Rebecca S Saleeb
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Haya Alrashidi
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Daniela Melandri
- Department of Neurodegenerative Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Sergiy Sylantyev
- Rowett Institute, University of Aberdeen, Ashgrove Rd West, Aberdeen, AB25 2ZD, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Simon Heales
- UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Dmitri A Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Dario R Alessi
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Medical Research Council (MRC) Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Tilo Kunath
- Center for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Andrey Y Abramov
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Neuromuscular Disease, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Sonia Gandhi
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
49
|
Kim H, Lee JY, Park SJ, Kwag E, Kim J, Shin JH. S-nitrosylated PARIS Leads to the Sequestration of PGC-1α into Insoluble Deposits in Parkinson's Disease Model. Cells 2022; 11:cells11223682. [PMID: 36429110 PMCID: PMC9688248 DOI: 10.3390/cells11223682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Neuronal accumulation of parkin-interacting substrate (PARIS), a transcriptional repressor of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), has been observed in Parkinson's disease (PD). Herein, we showed that PARIS can be S-nitrosylated at cysteine 265 (C265), and S-nitrosylated PARIS (SNO-PARIS) translocates to the insoluble fraction, leading to the sequestration of PGC-1α into insoluble deposits. The mislocalization of PGC-1α in the insoluble fraction was observed in S-nitrosocysteine-treated PARIS knockout (KO) cells overexpressing PARIS WT but not S-nitrosylation deficient C265S mutant, indicating that insolubility of PGC-1α is SNO-PARIS-dependent. In the sporadic PD model, α-synuclein preformed fibrils (α-syn PFFs)-injected mice, we found an increase in PARIS, SNO-PARIS, and insoluble sequestration of PGC-1α in substantia nigra (SN), resulting in the reduction of mitochondrial DNA copy number and ATP concentration that were restored by N(ω)-nitro-L-arginine methyl ester, a nitric oxide synthase (NOS) inhibitor. To assess the dopaminergic (DA) neuronal toxicity by SNO-PARIS, lentiviral PARIS WT, C265S, and S-nitrosylation mimic C265W was injected into the SN of either PBS- or α-syn PFFs-injected mice. PARIS WT and C265S caused DA neuronal death to a comparable extent, whereas C265W caused more severe DA neuronal loss in PBS-injected mice. Interestingly, there was synergistic DA loss in both lenti-PARIS WT and α-syn PFFs-injected mice, indicating that SNO-PARIS by α-syn PFFs contributes to the DA toxicity in vivo. Moreover, α-syn PFFs-mediated increment of PARIS, SNO-PARIS, DA toxicity, and behavioral deficits were completely nullified in neuronal NOS KO mice, suggesting that modulation of NO can be a therapeutic for α-syn PFFs-mediated neurodegeneration.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ji-Yeong Lee
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Soo Jeong Park
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Eunsang Kwag
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Jihye Kim
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Joo-Ho Shin
- Department of Pharmacology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence:
| |
Collapse
|
50
|
Wang G, Xu Y, Wang Q, Chai Y, Sun X, Yang F, Zhang J, Wu M, Liao X, Yu X, Sheng X, Liu Z, Zhang J. Rare and undiagnosed diseases: From disease-causing gene identification to mechanism elucidation. FUNDAMENTAL RESEARCH 2022; 2:918-928. [PMID: 38933382 PMCID: PMC11197726 DOI: 10.1016/j.fmre.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Rare and undiagnosed diseases substantially decrease patient quality of life and have increasingly become a heavy burden on healthcare systems. Because of the challenges in disease-causing gene identification and mechanism elucidation, patients are often confronted with difficulty obtaining a precise diagnosis and treatment. Due to advances in sequencing and multiomics analysis approaches combined with patient-derived iPSC models and gene-editing platforms, substantial progress has been made in the diagnosis and treatment of rare and undiagnosed diseases. The aforementioned techniques also provide an operational basis for future precision medicine studies. In this review, we summarize recent progress in identifying disease-causing genes based on GWAS/WES/WGS-guided multiomics analysis approaches. In addition, we discuss recent advances in the elucidation of pathogenic mechanisms and treatment of diseases with state-of-the-art iPSC and organoid models, which are improved by cell maturation level and gene editing technology. The comprehensive strategies described above will generate a new paradigm of disease classification that will significantly promote the precision and efficiency of diagnosis and treatment for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Gang Wang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Yuyan Xu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qintao Wang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yi Chai
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiangwei Sun
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fan Yang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jian Zhang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mengchen Wu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xufeng Liao
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaomin Yu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Sheng
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhihong Liu
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Zhejiang University School of Medicine, Hangzhou 310058, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, China
| | - Jin Zhang
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, The First Affiliated Hospital, Zhejiang University School of Medicine; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|