1
|
Liu S, Chen L, Shang Y. CEACAM5 exacerbates asthma by inducing ferroptosis and autophagy in airway epithelial cells through the JAK/STAT6-dependent pathway. Redox Rep 2025; 30:2444755. [PMID: 39844719 PMCID: PMC11758806 DOI: 10.1080/13510002.2024.2444755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVES Asthma, a prevalent chronic disease, poses significant health threats and burdens healthcare systems. This study focused on the role of bronchial epithelial cells in asthma pathophysiology. METHODS Bioinformatics was used to identify key asthmarelated genes. An ovalbumin-sensitized mouse model and an IL-13-stimulated Beas-2B cell model were established for further investigation. RESULTS Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) was identified as a crucial gene in asthma. CEACAM5 expression was elevated in asthmatic mouse lung tissues and IL-13-stimulated Beas-2B cells, primarily in bronchial epithelial cells. CEACAM5 induced reactive oxygen species (ROS), lipid peroxidation, and ferroptosis. Interfering with CEACAM5 reduced ROS, malondialdehyde levels, and enhanced antioxidant capacity, while inhibiting iron accumulation and autophagy. Overexpression of CEACAM5 in IL-13-stimulated cells activated the JAK/STAT6 pathway, which was necessary for CEACAM5-induced autophagy, ROS accumulation, lipid peroxidation, and ferroptosis. CONCLUSION CEACAM5 promotes ferroptosis and autophagy in airway epithelial cells via the JAK/STAT6 pathway, exacerbating asthma symptoms. It represents a potential target for clinical treatment.
Collapse
Affiliation(s)
- Si Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Li Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yunxiao Shang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
2
|
Xu J, Pu J, Chen H, Sun L, Fei S, Han Z, Tao J, Ju X, Wang Z, Tan R, Gu M. Role of microvascular pericyte dysfunction in antibody-mediated rejection following kidney transplantation. Ren Fail 2025; 47:2458749. [PMID: 39910824 PMCID: PMC11803764 DOI: 10.1080/0886022x.2025.2458749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/05/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
OBJECTIVE To investigate the role of microvascular pericyte dysfunction in antibody-mediated rejection (ABMR) of transplanted kidneys. METHODS A total of 160 patients who underwent kidney transplantation in our hospital from 2004 to 2020 were enrolled, divided into 4 groups: ABMR group (n = 79), TCMR group (n = 20), mixed rejection group (n = 25) and control group (n = 36). Postoperative renal function indicators were compared, and immunohistochemical and immunofluorescence staining was performed on graft tissues and mice models using the pericyte marker PDGFR-β. An in vitro pericyte dysfunction model was co-cultured with vascular endothelial cells for functional assessment through Western blotting, PCR, and wound healing tests. KEGG pathway analysis from the GEO database identified gene expression changes in pericytes, which were further analyzed using electron microscopy and Western blot techniques. RESULTS There were statistically significant differences in creatinine, urea nitrogen, urine protein, and eGFR among the groups over time, with ABMR displaying the poorest outcomes. Immunohistochemistry revealed lower pericyte expression in ABMR, which was confirmed in mouse model studies showing reduced PDGFR-β expression in ABMR. KEGG analysis highlighted decreased autophagy in pericyte dysfunction, supported by electron microscopy and Western blot findings indicating reduced autophagy and pericyte damage, which could be reversed by chloroquine. CONCLUSION ABMR episodes worsened the long-term prognosis of transplanted kidneys. pericyte dysfunction appears to be one of the crucial causes of poor prognosis in ABMR patients. In vitro studies demonstrated that dysfunction of microvascular pericytes can result in damage to vascular endothelial cells, with autophagy impairment being a significant mechanism contributing to pericyte dysfunction.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Junyan Pu
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Hao Chen
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Li Sun
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Shuang Fei
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zhijian Han
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Jun Tao
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaobing Ju
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Zijie Wang
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Ruoyun Tan
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Min Gu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Deparment of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- The First Clinical Medical College, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Yang W, Bian ZZ, Li Z, Zhang YT, Liu LB, Chang JT, Li D, Wang PG, An J, Wang W. An immunocompetent mouse model revealed that congenital Zika virus infection disrupted hippocampal function by activating autophagy. Emerg Microbes Infect 2025; 14:2465327. [PMID: 39945741 PMCID: PMC11873970 DOI: 10.1080/22221751.2025.2465327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Congenital Zika virus (ZIKV) infection significantly affects neurological development in infants and subsequently induces neurodevelopmental abnormality symptoms; however, the potential mechanism is still unknown. Therefore, in order to effectively intervene in neurodevelopmental abnormalities in infected infants, it is necessary to identify the main brain regions affected by congenital infection. In this study, we constructed a congenital ZIKV-infected murine model using immunocompetent human STAT2 knock-in mice, which presented long-term neurodevelopmental abnormalities with abnormal neurodevelopmental symptoms. We found that the hippocampus, which regulates cognitive behaviour and processes spatial information and navigation, was the main brain region affected by congenital infection and that hippocampal cells were more prone to autophagy during the growth period of these mice at the transcriptional and pathological levels. These findings highlighted that congenital ZIKV infection could interrupt hippocampal function by activating autophagy, thus providing a theoretical basis for the clinical treatment of congenital ZIKV-infected infants.
Collapse
Affiliation(s)
- Wei Yang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Zhan-Zhan Bian
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Zhe Li
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Yi-Teng Zhang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Li-Bo Liu
- Department of Parasitology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, People’s Republic of China
| | - Jia-Tong Chang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Dan Li
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| | - Pei-Gang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Wei Wang
- National Center of Technology Innovation for animal model, National Human Diseases Animal Model Resource Center, Key Laboratory of Pathogen Infection Prevention and Control (Peking Union Medical College), Ministry of Education, NHC Key Laboratory of Comparative Medicine, Institute of Laboratory Animal Science, CAMS & PUMC, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Xu S, Jia J, Mao R, Cao X, Xu Y. Mitophagy in acute central nervous system injuries: regulatory mechanisms and therapeutic potentials. Neural Regen Res 2025; 20:2437-2453. [PMID: 39248161 PMCID: PMC11801284 DOI: 10.4103/nrr.nrr-d-24-00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Acute central nervous system injuries, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury, are a major global health challenge. Identifying optimal therapies and improving the long-term neurological functions of patients with acute central nervous system injuries are urgent priorities. Mitochondria are susceptible to damage after acute central nervous system injury, and this leads to the release of toxic levels of reactive oxygen species, which induce cell death. Mitophagy, a selective form of autophagy, is crucial in eliminating redundant or damaged mitochondria during these events. Recent evidence has highlighted the significant role of mitophagy in acute central nervous system injuries. In this review, we provide a comprehensive overview of the process, classification, and related mechanisms of mitophagy. We also highlight the recent developments in research into the role of mitophagy in various acute central nervous system injuries and drug therapies that regulate mitophagy. In the final section of this review, we emphasize the potential for treating these disorders by focusing on mitophagy and suggest future research paths in this area.
Collapse
Affiliation(s)
- Siyi Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
| | - Junqiu Jia
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
| | - Rui Mao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiang Cao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Jiangsu University, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu Province, China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, Jiangsu Province, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu Province, China
- Nanjing Neurology Medical Center, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Wu F, Li C, Song X, Xie L. LAPTM5 confers cisplatin resistance in NSCLC by suppressing LAMP1 ubiquitination to stabilize lysosomal membranes and sustain autophagic flux. Cell Signal 2025; 132:111834. [PMID: 40280227 DOI: 10.1016/j.cellsig.2025.111834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Cisplatin is a widely used chemotherapeutic agent in the treatment of non-small cell lung cancer (NSCLC), but cisplatin resistance remains a significant clinical challenge. Lysosomal transmembrane protein 5 (LAPTM5) is a lysosomal membrane protein implicated in macroautophagy/autophagy, although its precise mechanism has yet to be fully elucidated.In this study, we demonstrated that LAPTM5 promotes cisplatin resistance in NSCLC by maintaining lysosomal membrane stability and preserving autophagic flux. Mechanistic investigations showed that LAPTM5 competes with LAMP1 for binding to WWP2, thereby inhibiting LAMP1 ubiquitination and degradation, which ultimately preserves lysosomal membrane stability. LAPTM5 knockdown increases lysosomal membrane permeability, leading to the release of cathepsin D (CTSD), which elevates intracellular reactive oxygen species (ROS) levels; further destabilizing the lysosomal membrane and accelerating cell death. Our findings elucidate the mechanism by which LAPTM5 contributes to cisplatin resistance through lysosomal membrane stabilization and identify LAPTM5 as a potential therapeutic target for overcoming cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
- Fan Wu
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Chunlan Li
- Department of Pharmacy and Shandong Provincinal key Traditional Chinese Medical Discipline of Clinical Chinese pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China
| | - Xianrang Song
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Li Xie
- Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
6
|
Kim YJ, Lee JR, Kim MR, Jeong JA, Kim JJ, Jeong KW. Protein kinase-mediated inhibition of autophagy by palmitic acid in hepatocytes. Eur J Pharmacol 2025; 998:177528. [PMID: 40113068 DOI: 10.1016/j.ejphar.2025.177528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
Steatosis is characterized by an increase in free fatty acids, such as palmitic acid (PA), in hepatocytes and the accumulation of triglycerides in the liver. However, the role of intracellular autophagy in PA accumulation-induced hepatotoxicity is not clearly understood. Therefore, in this study, we investigated the effects of PA on autophagy in hepatocytes and its underlying mechanism of action. Treatment of HepG2 cells with PA induced a significant increase in intracellular p62 and LC3-II levels, suggesting inhibition of autophagy. Furthermore, PA inhibited autophagic flux in HepG2 cells, as monitored using GFP-RFP-LC3. Mechanistically, PA increased the phosphorylation of the Ser12 and Thr29 residues of LC3, which are autophagy inhibition markers, through protein kinase A (PKA) and protein kinase C (PKC) signaling. Finally, PKA and PKC inhibitors restored PA-induced autophagic flux inhibition, reduced intracellular lipid accumulation, and rescued the altered expression of lipogenic genes, such as SREBP-1c, in HepG2 cells. Thus, our study demonstrates the mechanism of autophagy inhibition by PA in hepatocytes and provides a potential therapeutic approach for preventing and treating hepatic steatosis.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jae Rim Lee
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Myeong Ryeo Kim
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jin Ah Jeong
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea
| | - Jung Ju Kim
- Autophagy Sciences Inc., Seoul, 08376, Republic of Korea
| | - Kwang Won Jeong
- College of Pharmacy, Gachon Research Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21936, Republic of Korea.
| |
Collapse
|
7
|
Han Y, Sun Y, Peng S, Tang T, Zhang B, Yu R, Sun X, Guo S, Ma L, Li P, Yang P. PI3K/AKT pathway: A potential therapeutic target in cerebral ischemia-reperfusion injury. Eur J Pharmacol 2025; 998:177505. [PMID: 40118329 DOI: 10.1016/j.ejphar.2025.177505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Cerebral ischemia is a prevalent cerebrovascular disorder, with the restoration of blocked blood vessels serving as the current standard clinical treatment. However, reperfusion can exacerbate neuronal damage and neurological dysfunction, resulting in cerebral ischemia-reperfusion (I/R) injury. Presently, clinical treatment strategies for cerebral I/R injury are limited, creating an urgent need to identify new effective therapeutic targets. The PI3K/AKT signaling pathway, a pro-survival pathway associated with cerebral I/R injury, has garnered significant attention. We conducted a comprehensive review of the literature on the PI3K/AKT pathway in the context of cerebral I/R. Our findings indicate that activation of the PI3K/AKT signaling pathway following cerebral I/R can alleviate oxidative stress, reduce endoplasmic reticulum stress (ERS), inhibit inflammatory responses, decrease neuronal apoptosis, autophagy, and pyroptosis, mitigate blood-brain barrier (BBB) damage, and promote neurological function recovery. Consequently, this pathway ultimately reduces neuronal death, alleviates brain tissue damage, decreases the volume of cerebral infarction, and improves behavioral impairments. These results suggest that the PI3K/AKT signaling pathway is a promising therapeutic target for further research and drug development, holding significant potential for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Yiming Han
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Yu Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shiyu Peng
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Tingting Tang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Beibei Zhang
- First Clinical College, Xinxiang Medical University, Xinxiang, China
| | - Ruonan Yu
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Xiaoyan Sun
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China
| | - Shanshan Guo
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China; Staff Hospital of Henan Fifth Construction Group Co., Ltd, Zhengzhou, Henan, China
| | - Lijuan Ma
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| | - Pengfei Yang
- College of Pharmacy, Xinxiang Medical University, Henan international Joint Laboratory of Cardiovascular Remodeling and Drug intervention, China; Xinxiang Key Laboratory of Vascular Remodeling intervention and Molecular Targeted Therapy Drug Development, Xinxiang, China.
| |
Collapse
|
8
|
Miura K, Umedera K, Doi T, Nakamura H. Discovery of structurally diverse diazatricyclododecenes as lysosomotropic autophagy inhibitors. Bioorg Med Chem 2025; 124:118200. [PMID: 40253990 DOI: 10.1016/j.bmc.2025.118200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Lysosomotropic autophagy inhibitors were identified from a structurally diverse library of diazatricycloundecanes. Structure activity relationship (SAR) studies on the three side chain substituents (R1-R3) of diazatricycloundecane identified compound 1e as the most potent inducer of LC3-II protein accumulation. Mechanistic analysis revealed that compound 1e functions as a lysosomotropic agent, increasing lysosomal pH and inhibiting autophagy through lysosomal dysfunction. Furthermore, compound 1e was less cytotoxic compared to previously reported lysosomotropic agents and exhibited excellent drug-like physicochemical properties, surpassing those of classical lysosomotropic agents such as chloroquine and hydroxychloroquine.
Collapse
Affiliation(s)
- Kazuki Miura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan; School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Kohei Umedera
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Tomoya Doi
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan; School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
9
|
Duan WL, Gu LH, Guo A, Wang XJ, Ding YY, Zhang P, Zhang BG, Li Q, Yang LX. Molecular mechanisms of programmed cell death and potential targeted pharmacotherapy in ischemic stroke (Review). Int J Mol Med 2025; 56:103. [PMID: 40341937 PMCID: PMC12081036 DOI: 10.3892/ijmm.2025.5544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025] Open
Abstract
Stroke poses a threat to the elderly, being the second leading cause of death and the third leading cause of disability worldwide. Ischemic stroke (IS), resulting from arterial occlusion, accounts for ~85% of all strokes. The pathophysiological processes involved in IS are intricate and complex. Currently, tissue plasminogen activator (tPA) is the only Food and Drug Administration‑approved drug for the treatment of IS. However, due to its limited administration window and the risk of symptomatic hemorrhage, tPA is applicable to only ~10% of patients with stroke. Additionally, the reperfusion process associated with thrombolytic therapy can further exacerbate damage to brain tissue. Therefore, a thorough understanding of the molecular mechanisms underlying IS‑induced injury and the identification of potential protective agents is critical for effective IS treatment. Over the past few decades, advances have been made in exploring potential protective drugs for IS. The present review summarizes the specific mechanisms of various forms of programmed cell death (PCD) induced by IS and highlights potential protective drugs targeting different PCD pathways investigated over the last decade. The present review provides a theoretical foundation for basic research and insights for the development of pharmacotherapy for IS.
Collapse
Affiliation(s)
- Wan-Li Duan
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Li-Hui Gu
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Ai Guo
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Yi-Yue Ding
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
| | - Peng Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| | - Qin Li
- Rehabilitation Medicine and Health College, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Li-Xia Yang
- Medical Research Center, Shaoxing People's Hospital, Shaoxing, Zhejiang 312000, P.R. China
| |
Collapse
|
10
|
Ye S, Yu X, Jia W, Li W, Wang YL, Wang Y. Hydroxychloroquine improves pregnancy outcomes by inhibiting excessive autophagy in extravillous trophoblast caused by an anti-phospholipid syndrome. Int Immunopharmacol 2025; 157:114749. [PMID: 40334623 DOI: 10.1016/j.intimp.2025.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/23/2025] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
OBJECTIVES This study aims to investigate the mechanism of hydroxychloroquine (HCQ) immunoregulation therapy in improving adverse pregnancy outcomes of recurrent miscarriages (RM) caused by antiphospholipid syndrome (APS). METHODS (i) Immunofluorescence staining was used to analyse the potential targets of antiphospholipid antibodies at the maternal-fetal interface in normal early pregnancy; (ii) Immunohistochemical and immunofluorescence techniques were used to compare and analyse the placenta vascular remodeling, villus tissue synthetic secretion function, trophoblastic autophagy and apoptosis levels in first trimester decidual tissue between normal and APS caused recurrent miscarriages (APS-RM) cases; (iii) HTR8/SVneo and BeWo cell lines were treated with serum from normal and APS-RM cases, and quantified by RT-PCR and Western blot to analysis the expression levels of cell invasion, secretion, autophagy and apoptosis-related molecules; (iv) After adding 0.1 μg/ml HCQ to the serum-treated cell line, the expression of autophagy and invasion-related proteins were detected, and invasion and tube formation of HTR8/SVneo cells was assessed by transwell experiments and tube formation assay. RESULTS (i)β2-glycoprotein Ⅰ antigen is expressed in all types of trophoblasts at the maternal-fetal interface in first trimester; (ii) The extravillous trophoblast cells (EVTs) have excessive autophagy in the decidual tissue of the APS-RM cases, and the uterine spiral artery was remodelled insufficiently; (iii) APS-RM cases serum can lead to cell excessive autophagy, and decrease cell invasion and tube formation in vitro; (iv) 0.1 μg/ml HCQ could rescue abnormal cell status caused by APS cases serum in HTR8/SVneo cells in vitro; (v) APS cases serum mainly affects the invasion and tube formation of EVTs, but has little effect on the function of villous trophoblast cells. CONCLUSIONS Antiphospholipid antibodies can lead to excessive autophagy in EVTs, thereby affecting ability of invasion and remodeling of spiral arteries, which is one of the mechanisms leading to adverse pregnancy outcomes. HCQ can rescue adverse pregnancy outcomes in APS patients by inhibiting excessive autophagy.
Collapse
Affiliation(s)
- Shenglong Ye
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, China
| | - Xin Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wentong Jia
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenlong Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yongqing Wang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
11
|
Wang R, Dai F, Deng Z, Tang L, Liu H, Xia L, Cheng Y. ITGA3 participates in the pathogenesis of recurrent spontaneous abortion by downregulating ULK1-mediated autophagy to inhibiting trophoblast function. Am J Physiol Cell Physiol 2025; 328:C1941-C1956. [PMID: 39437445 DOI: 10.1152/ajpcell.00563.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Recurrent spontaneous abortion (RSA) is a significant challenge encountered by couples of reproductive ages, with inadequate trophoblast invasion identified as a primary factor in RSA pathogenesis. However, the precise molecular mechanisms through which trophoblast cell dysfunction leads to RSA remain incompletely understood. Research has highlighted the critical role of integrins in embryo implantation and development. Although integrin α-3 (ITGA3) is recognized for its promotion of invasion in cancer cells, its involvement in miscarriage remains poorly characterized. This investigation initially assessed ITGA3 expression in villous tissues obtained from patients with RSA and patients with induced abortion. The findings demonstrated a notable reduction in ITGA3 levels in the villous tissues of patients with RSA compared with the control group. Subsequent in vitro analyses indicated that ITGA3 knockdown inhibited the migration, invasion, and proliferation of trophoblast cells. Through RNA sequencing and subsequent experimentation, it was revealed that ITGA3 regulated Unc51-like kinase 1 (ULK1)-mediated autophagy to influence trophoblast cell invasion, migration, and proliferation. Furthermore, utilizing a miscarriage animal model, the diminished expression of ITGA3 and ULK1 in the placentas of RSA mice was confirmed. In conclusion, the study findings suggest that the downregulation of ITGA3 suppresses ULK1 expression, consequently impeding autophagy to initiation and impeding trophoblast cell invasion and migration, thereby contributing to the pathological progression of RSA.NEW & NOTEWORTHY There is a strong correlation between the reduced expression of ITGA3 in villous tissues and RSA. ITGA3 facilitates the expression of ULK1, thereby promoting autophagy formation and elevating autophagy levels in trophoblast cells. Consequently, this enhances the invasion and migration abilities of trophoblast cells.
Collapse
Affiliation(s)
- Ruiqi Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhimin Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lujia Tang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Liangbin Xia
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
12
|
Abd El-Fattah AA, Hamid Sadik NA, Shahin AM, Shahin NN. Simvastatin and eugenol restore autophagic flux and alleviate oxidative, inflammatory, and fibrotic perturbations in an arginine-induced chronic pancreatitis rat model. Arch Biochem Biophys 2025; 768:110357. [PMID: 40015469 DOI: 10.1016/j.abb.2025.110357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Chronic pancreatitis (CP), a progressive inflammatory disease characterized by pancreatic tissue destruction and fibrosis, is considered a challenging health burden due to insufficiencies of current management procedures. Autophagy impairment has emerged as a major triggering event in pancreatitis, raising interest in exploring the potential of targeting autophagy as a possible interventional strategy. This study aimed to evaluate the possible ameliorative effect of two autophagy modulators, simvastatin and eugenol, on CP-related perturbations in an arginine-induced rat model. Repeated l-arginine administration (5 g/kg divided into 2 doses with a 1 h interval, given intraperitoneally every 3rd day for a total of 10 times) provoked CP features, demonstrated by acinar damage, oxidative stress, inflammation, and fibrosis. Arginine-triggered pancreatitis was accompanied by hampered pancreatic autophagic flux, evidenced by overexpression of pancreatic p62 and LC3-Ⅱ and downregulation of pancreatic AMPK and LAMP-1 mRNA expression. Treatment with simvastatin (20 mg/kg, intraperitoneally 24 h, before each arginine dose) and eugenol (50 mg/kg/day orally for 30 days) achieved significant anti-oxidative, anti-inflammatory, and anti-fibrotic effects, and reversed the arginine-instigated autophagic blockade, with superior ameliorative effects attained by eugenol. Altogether, simvastatin and eugenol provide a promising interventional approach for CP, at least partly, by restoring the impaired autophagic flux associated with CP.
Collapse
Affiliation(s)
| | | | - Ahmad Mustafa Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Nancy Nabil Shahin
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
13
|
Kojja V, Kumar D, Kalavagunta PK, Bhukya B, Tangutur AD, Nayak PK. 2-(Diarylalkyl)aminobenzothiazole derivatives induce autophagy and apoptotic death through SIRT inhibition and P53 activation In MCF7 breast cancer cells. Comput Biol Chem 2025; 116:108395. [PMID: 39987744 DOI: 10.1016/j.compbiolchem.2025.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
Sirtuins (SIRTs) are multifunctional proteins that exhibit a wide range of substrate preferences and cellular localizations. They are reliant on NAD+ and are essential for the regulation of several cellular functions. The SIRT proteins play important role towards tumor survival and resistance mechanisms in tumor cells. Therefore, molecules targeting SIRT proteins gained significant recognition in cancer research. In this work, we explored the anticancer property, potential and mode of action of 2-(diarylalkyl)aminobenzothiazole derivatives on MCF7 human breast cancer cells. Our studies established that 2-(diarylalkyl)aminobenzothiazole derivatives 1-((6-chlorobenzo[d]thiazol-2-ylamino)(3,4-dichlorophenyl)methyl)naphthalen-2-ol (7ab) and 1-((6-chlorobenzo[d]thiazol-2-ylamino)(4-bromophenyl)methyl)naphthalen-2-ol (7ba) treatment in a dose dependent manner drastically lowered the cell proliferation in MCF7 cells and the IC50 values of 7ab and 7ba was found to be 11.4 µM and 9.6 µM at 24 hr in these cells. Docking and molecular dynamic simulation studies further revealed that 7ab and 7ba show significant binding with SIRT1 protein. Consistently, treatment with 7ab and 7ba reduced the expression levels of SIRT1 protein while increasing acetylation of p53, a known SIRT protein target in MCF-7 cells. We observed that SIRT1inhibition was associated with activation of p53, an essential protein for apoptotic cell death, in MCF-7 cell lines. Furthermore, 7ab and 7ba treatment induced LC3-II expression and vacuole formation in the cytoplasm leading to autophagic cell death. Our findings together reveal the plausible cellular targets and specificity of these new small molecules as SIRT inhibitors, which increase p53 acetylation and suppress the proliferation of MCF-7 human breast cancer cells by triggering autophagic and apoptotic cell death.
Collapse
Affiliation(s)
- Venkateswarlu Kojja
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Dinesh Kumar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Praveen Kumar Kalavagunta
- Crop Protection Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana State 500007, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana State 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| | - Prasanta Kumar Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Liu Q, Tang X, Yang B, Hao T, Han S, Xu X, Zhao Z, Lai W, Li Y, Du J, Mai K, Ai Q. Autophagy and endoplasmic reticulum stress-related protein homeostasis links palmitic acid to hepatic lipotoxicity in zebrafish (Danio rerio), counteracted by linoleic acid. Free Radic Biol Med 2025; 233:148-161. [PMID: 40089081 DOI: 10.1016/j.freeradbiomed.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Saturated fatty acids (SFAs) are the primary contributors to hepatic lipotoxic injuries accompanied by the accumulation of hepatic insoluble protein inclusions that are composed of ubiquitinated proteins and p62, but the role of these inclusions in the SFA-induced hepatic lipotoxic injuries and their regulatory mechanisms are incompletely understood. In this study, we demonstrated that palmitic acid (PA), a dietary SFA, induced aberrant accumulation of hepatic insoluble protein inclusions, leading to hepatic lipotoxic injuries in zebrafish. Mechanistically, the accumulation of hepatic insoluble protein inclusions and the subsequent lipotoxic injuries induced by PA were attributed to reduced autophagy activity and increased endoplasmic reticulum (ER) stress. In addition, the upregulation of p62 by the ER stress response factor XBP1s and ATF4 further exacerbated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries. Importantly, the ω-6 PUFA linoleic acid (LA) attenuated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries by improving defective autophagy and reducing ER stress induced by PA. Overall, the present study provides new mechanisms by which SFAs and ω-6 PUFA influence hepatic lipotoxic injuries. These findings not only advance the understanding of hepatic lipotoxic injuries induced by SFAs, but also provide new insights for optimizing the rational substitution of fish oil by vegetable oils in aquaculture and the balance of fatty acid intake in human diets.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiao Tang
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bingyuan Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China.
| |
Collapse
|
15
|
Shukla M, Narayan M. Proteostasis and Its Role in Disease Development. Cell Biochem Biophys 2025; 83:1725-1741. [PMID: 39422790 DOI: 10.1007/s12013-024-01581-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 10/19/2024]
Abstract
Proteostasis (protein homeostasis) refers to the general biological process that maintains the proper balance between the synthesis of proteins, their folding, trafficking, and degradation. It ensures proteins are functional, locally distributed, and appropriately folded inside cells. Genetic information enclosed in mRNA is translated into proteins. To ensure newly synthesized proteins take on the exact three-dimensional conformation, molecular chaperones assist in proper folding. Misfolded proteins can be refolded or targeted for elimination to stop aggregation. Cells utilize different degradation pathways, for instance, the ubiquitin-proteasome system, the autophagy-lysosome pathway, and the unfolded protein response, to degrade unwanted or damaged proteins. Quality control systems of the cell monitor the folding of proteins. These checkpoint mechanisms are aimed at degrading or refolding misfolded or damaged proteins. Under stress response pathways, such as heat shock response and unfolded protein response, which are triggered under conditions that perturb proteostasis, the capacity for folding is increased, and degradation pathways are activated to help cells handle stressful conditions. The deregulation of proteostasis is implicated in a variety of illnesses, comprising cancer, metabolic diseases, cardiovascular diseases, and neurological disorders. Therapeutic strategies with a deeper insight into the mechanism of proteostasis are crucial for the treatment of illnesses linked with proteostasis and to support cellular health. Thus, proteostasis is required not only for the maintenance of cellular homeostasis and function but also for proper protein function and prevention of injurious protein aggregation. In this review, we have covered the concept of proteostasis, its mechanism, and how disruptions to it can result in a number of disorders.
Collapse
Affiliation(s)
- Manisha Shukla
- Department of Biotechnology, Pandit S.N. Shukla University, Shahdol, Madhya Pradesh, India
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
16
|
Zhou X, Ling Y, Huang L, Yang F, Zhang Y, Lan Y. HIF-3α Facilitates the Proliferation and Migration in Pancreatic Cancer by Inhibiting Autophagy Through Downregulating TP53INP2. Cell Biochem Biophys 2025; 83:2139-2150. [PMID: 39614944 DOI: 10.1007/s12013-024-01624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2024] [Indexed: 05/20/2025]
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, often diagnosed late, leading to a poor prognosis and extremely high mortality rates. In recent years, the role of cellular autophagy in tumors has become increasingly prominent, gradually becoming an important target for malignant tumors. HIF-3α is a member of HIF family with potential oncogenic function. However, the role of HIF-3α in pancreatic cancer is not clear. The present study revealed its role in pancreatic cancer by exploring the regulatory mechanism of HIF-3α on autophagy. HIF-3α was found markedly upregulated in pancreatic cancer cell lines. In HIF-3α silenced MiaPaCa-2 cells, largely declined migration distance, reduced number of invaded cells and colonies, increased number of autophagosome, downregulated p62, and upregulated Beclin1, LC3II/I, and ATG7 were observed, accompanied by elevated TP53INP2 expressions. on the contrary, in HIF-3α overexpressed PANC-1 cells, notably increased migration distance, and elevated number of invaded cells and colonies were observed, along with decreased autophagosome, upregulated p62, and downregulated Beclin1, LC3II/I, ATG7, and TP53INP2. Subsequently, HIF-3α overexpressed PANC-1 cells were transfected with TP53INP2 overexpressing vector. The influence of HIF-3α overexpression on the proliferation, migration, invasion, and autophagy was abolished by TP53INP2 overexpressing. Furthermore, HIF-3α overexpression facilitated the in vivo growth of PANC-1 cells, accompanied by the autophagy inhibition in tumor tissues, which were remarkably abolished by TP53INP2 overexpressing. Collectively, HIF-3α facilitated the proliferation and migration in pancreatic cancer by inhibiting autophagy through downregulating TP53INP2.
Collapse
Affiliation(s)
- Xianfei Zhou
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Yisheng Ling
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Luoshun Huang
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Fan Yang
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Yang Zhang
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China
| | - Yong Lan
- Department of hepatobiliary surgery, Taizhou Municipal Hospital, No. 581, Shifu Avenue East, Jiaojiang District, Taizhou City, 318000, Zhejiang, China.
| |
Collapse
|
17
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
18
|
Abdelaziz AM. Alpha-Synuclein drives NURR1 and NLRP3 Inflammasome dysregulation in Parkinson's disease: From pathogenesis to potential therapeutic strategies. Int Immunopharmacol 2025; 156:114692. [PMID: 40267723 DOI: 10.1016/j.intimp.2025.114692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/17/2025] [Indexed: 04/25/2025]
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disorder, is characterized by the loss of dopaminergic neurons and pathological aggregation of α-synuclein (α-Syn). Emerging evidence highlights the interplay between genetic susceptibility, neuroinflammation, and transcriptional dysregulation in driving PD pathogenesis. This review brings together the latest information on three important players: α-Syn, the transcription factor Orphan nuclear receptor (NURR1), and the NOD-like receptor 3 (NLRP3) inflammasome. Pathogenic α-syn aggregates cause damage to neurons by disrupting mitochondria and lysosomes and spreading in a way similar to prion proteins. They also turn on the NLRP3 inflammasome, which is a key player in neuroinflammation. NLRP3-driven release of pro-inflammatory cytokines exacerbates neurodegeneration and creates a self-sustaining inflammatory milieu. Meanwhile, reduced NURR1 activity, a pivotal modulator of dopaminergic neuron survival and development, exposes neurons to oxidative stress, neuroinflammation, and α-Syn toxicity, hence exacerbating disease progression. So, targeting this trio exhibits transformative potential against PD pathogenesis.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University- Arish Branch, Arish 45511, Egypt.
| |
Collapse
|
19
|
Gong B, Liu Y, Yan W, Cheng C, Yang H, Huang J, Liu Q, Liu Y, Guo J, Deng X, Zhou B, Zheng D, Liu X, Liu Z, Fang W. NAP1L1 degradation by FBXW7 reduces the deubiquitination of HDGF-p62 signaling to stimulate autophagy and induce primary cisplatin chemosensitivity in nasopharyngeal carcinoma. Mol Cancer 2025; 24:152. [PMID: 40414865 DOI: 10.1186/s12943-025-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
Nucleosome assembly protein 1-like 1 (NAP1L1) has been implicated in promoting tumor cell proliferation. However, its role in regulating autophagy in tumors, including nasopharyngeal carcinoma (NPC), remains unclear. In this study, we observed that autophagy-inducing agents reduced NAP1L1 protein levels without affecting its mRNA expression. Reduced NAP1L1 enhanced autophagosome formation and maturation, thereby promoting cisplatin (DDP) chemosensitivity in both in vitro and in vivo NPC models. Mechanistically, reduced NAP1L1 impaired the recruitment of ubiquitin-specific protease 14 (USP14), limiting the deubiquitination of heparin-binding growth factor (HDGF) and decreasing HDGF protein levels. In turn, reduced HDGF suppressed USP14-mediated p62 deubiquitination, leading to further declines in p62 protein levels. Notably, the F-box and WD repeat domain-containing protein 7 (FBXW7), an inhibitory E3 ubiquitin ligase, directly interacted with and ubiquitinated NAP1L1, promoting its degradation. This degradation triggered NPC autophagy and enhanced DDP chemosensitivity by disrupting NAP1L1-induced HDGF/p62 signaling. Clinically, NAP1L1 protein expression was inversely correlated with FBXW7 levels in NPC tissue samples. Patients exhibiting high NAP1L1 and low FBXW7 levels had the poorest DDP chemosensitivity and survival outcomes. Our findings demonstrate that FBXW7-mediated NAP1L1 degradation suppresses HDGF-p62 signaling, thereby inducing autophagy and enhancing DDP chemosensitivity. These results underscore the potential of NAP1L1 and FBXW7 as therapeutic targets for NPC treatment.
Collapse
Affiliation(s)
- Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Yahui Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weiwei Yan
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chao Cheng
- Department of Otolaryngology, Shenzhen Longgang Otolaryngology Hospital, Shenzhen, Guangdong, China
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiyu Huang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qing Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuyan Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiankang Guo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaojie Deng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Beixian Zhou
- Center of Stem Cell and Regenerative Medicine, The People's Hospital of Gaozhou, Gaozhou, China.
| | - Dayong Zheng
- Department of Oncology, Shunde Hospital of Southern Medical Universtiy, Foshan, China.
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhen Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou, Guangdong, China.
- Central Laboratory, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| | - Weiyi Fang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Central Laboratory, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Bonavita R, Prodomo A, Cortone G, Vitale F, Germoglio M, Fleming A, Balk JA, De Lange J, Renna M, Pisani FM. Evidence of an unprecedented cytoplasmic function of DDX11, the Warsaw breakage syndrome DNA helicase, in regulating autophagy. Autophagy 2025. [PMID: 40413757 DOI: 10.1080/15548627.2025.2507617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
DDX11 is a DNA helicase involved in critical cellular functions, including DNA replication/repair/recombination as well as sister chromatid cohesion establishment. Bi-allelic mutations of DDX11 lead to Warsaw breakage syndrome (WABS), a rare genome instability disorder marked by significant prenatal and postnatal growth restriction, microcephaly, intellectual disability, and sensorineural hearing loss. The molecular mechanisms underlying WABS remain largely unclear. In this study, we uncover a novel role of DDX11 in regulating the macroautophagic/autophagic pathway. Specifically, we demonstrate that knockout of DDX11 in RPE-1 cells hinders the progression of autophagy. DDX11 depletion significantly reduces the conversion of MAP1LC3/LC3 (microtubule associated protein 1 light chain 3), suggesting a defect in autophagosome biogenesis. This is supported by imaging analysis with a LC3 reporter fused in tandem with the red and green fluorescent proteins (mRFP-GFP-LC3), which reveals fewer autophagosomes and autolysosomes in DDX11-knockout cells. Moreover, the defect in autophagosome biogenesis, observed in DDX11-depleted cells, is linked to an upstream impairment of the ATG16L1-precursor trafficking and maturation, a step critical to achieve the LC3 lipidation. Consistent with this, DDX11-lacking cells exhibit a diminished capacity to clear aggregates of a mutant HTT (huntingtin) N-terminal fragment fused to the green fluorescent protein (HTTQ74-GFP), an autophagy substrate. Finally, we demonstrate the occurrence of a functional interplay between DDX11 and SQSTM1, an autophagy cargo receptor protein, in supporting LC3 modification during autophagosome biogenesis. Our findings highlight a novel unprecedented function of DDX11 in the autophagy process with important implications for our understanding of WABS etiology.
Collapse
Affiliation(s)
- Raffaella Bonavita
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Antonello Prodomo
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Giuseppe Cortone
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Fulvia Vitale
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Marcello Germoglio
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| | - Angeleen Fleming
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jesper A Balk
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Job De Lange
- Department of Human Genetics, Amsterdam UMC location Vrije Universiteit; Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Maurizio Renna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche. Via Pietro Castellino, Naples, Italy
| |
Collapse
|
21
|
Dan LX, Xie SP. Autophagy in cardiac pathophysiology: Navigating the complex roles and therapeutic potential in cardiac fibrosis. Life Sci 2025:123761. [PMID: 40419108 DOI: 10.1016/j.lfs.2025.123761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/07/2025] [Accepted: 05/23/2025] [Indexed: 05/28/2025]
Abstract
Cardiac fibrosis is a critical factor in cardiac structural remodeling and dysfunction, closely associated with the progression of various cardiovascular diseases (CVDs), including heart failure and myocardial infarction (MI). It is characterized by excessive extracellular matrix (ECM) deposition, which disrupts normal cardiac architecture and impairs cardiac function. Autophagy, a cellular degradation and recycling mechanism, is essential for maintaining cardiac homeostasis, mitigating stress responses, and preventing cellular damage. Recent studies have revealed a significant link between autophagy and cardiac fibrosis, suggesting that autophagic dysregulation can exacerbate fibrosis by promoting fibroblast activation and ECM accumulation. Conversely, proper autophagic activity may attenuate cardiac fibrosis by removing damaged cellular components and regulating fibrotic signaling pathways. This review examines the role of autophagy in cardiac fibrosis. It also emphasizes potential pharmacological strategies that can be used to modulate autophagic processes. These strategies may serve as therapeutic approaches for treating cardiac fibrosis, with the ultimate goal of preventing excessive fibrosis and enhancing cardiac function.
Collapse
Affiliation(s)
- Ling-Xuan Dan
- Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Song-Ping Xie
- Renmin Hospital of Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
22
|
Zhang J, Wang H, Xue X, Wu X, Li W, Lv Z, Su Y, Zhang M, Zhao K, Zhang X, Jia C, Zhu F. Human endogenous retrovirus W family envelope protein (ERVWE1) regulates macroautophagy activation and micromitophagy inhibition via NOXA1 in schizophrenia. Virol Sin 2025:S1995-820X(25)00065-3. [PMID: 40419114 DOI: 10.1016/j.virs.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 05/22/2025] [Indexed: 05/28/2025] Open
Abstract
The human endogenous retrovirus type W envelope glycoprotein (ERVWE1), located at chromosome 7q21-22, has been implicated in the pathophysiology of schizophrenia. Our previous studies have shown elevated ERVWE1 expression in schizophrenia patients. Growing evidence suggests that autophagy dysfunction contributes to schizophrenia, yet the relationship between ERVWE1 and autophagy remains unclear. In this study, bioinformatics analysis of the human prefrontal cortex RNA microarray dataset (GSE53987) revealed that differentially expressed genes were predominantly enriched in autophagy-related pathways. Clinical data further demonstrated that serum levels of microtubule-associated protein 1 light chain 3β (LC3B), a key marker of macroautophagy, were significantly elevated in schizophrenia patients compared to controls, and positively correlated with ERVWE1 expression. Cellular and molecular experiments suggested that ERVWE1 promoted macroautophagy by increasing the LC3B II/I ratio, enhancing autophagosome formation, and reducing sequestosome 1 (SQSTM1) expression via upregulation of NADPH oxidase activator 1 (NOXA1). Concurrently, NOXA1 downregulated the expression of key micromitophagy-related genes, including PTEN-induced kinase 1 (PINK1), Parkin RBR E3 ubiquitin-protein ligase (Parkin), and the pyruvate dehydrogenase E1 subunit α 1 (PDHA1). As a result, ERVWE1, via NOXA1, inhibited micromitophagy by suppressing the expression of PINK1, Parkin, and PDHA1, thereby leading to impaired production of mitochondrial-derived vesicles (MDVs). Mechanistically, ERVWE1 enhanced NOXA1 transcription by upregulating upstream transcription factor 2 (USF2). In conclusion, ERVWE1 promotes macroautophagy and inhibits micromitophagy through USF2-NOXA1 axis, providing novel mechanistic insight into the role autophagy dysregulation in schizophrenia. These findings suggest that targeting autophagy pathways may offer novel therapeutic strategies for schizophrenia treatment.
Collapse
Affiliation(s)
- Jiahang Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Jiefang Road No.238, Wuhan, 430060, China
| | - Xing Xue
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xiulin Wu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Wenshi Li
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhao Lv
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Yaru Su
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Mengqi Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Kexin Zhao
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xu Zhang
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chen Jia
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology and Biosafety, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China; Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China.
| |
Collapse
|
23
|
Wu C, Zhang L, Guo Q, Li Y, Qiu R, Yao S, Lei B. The pathogenicity of a novel frame-shift variant c.2321delC of PROM1 in an autosomal recessive cone-rod dystrophy pedigree may be associated with augment of autophagy. Exp Eye Res 2025; 257:110453. [PMID: 40414337 DOI: 10.1016/j.exer.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
PROM1 gene mutations are increasingly recognized as significant contributors to inherited retinal diseases, demonstrating considerable heterogeneity in mutation loci and types. In our investigation of a Chinese pedigree presenting with autosomal recessive cone-rod dystrophy, we identified two compound heterozygous frame-shift variants of the PROM1 gene: c.1645-1648del (p.K549Qfs∗3) and c.2321delC (p.A774Vfs∗2). We focused on elucidating the pathogenicity and underlying mechanisms of the novel c.2321delC variant. Following the American College of Medical Genetics and Genomics (ACMG) standards and guidelines, this novel variant was assessed as likely pathogenic. Cellular assays demonstrated that the mutated protein exhibited aberrant subcellular localization and decreased stability compared to wild-type counterparts. Notably, cellular models revealed significant autophagic activation evidenced by elevated LC3II/I ratios, while apoptosis markers remained unaffected. Despite preserved apoptotic pathways, the variant induced marked cellular viability impairment.
Collapse
Affiliation(s)
- Chenyu Wu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lujia Zhang
- Institute of Neuroscience, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingge Guo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ya Li
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ruiqi Qiu
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shun Yao
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| | - Bo Lei
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Department of Ophthalmology, Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China.
| |
Collapse
|
24
|
Bai Z, Zhang D, Zhang S, Li T, Wang G, Xu X, Pan X, Zhong Q, Zhou W, Pu Y, Jia Y. Integrating multi-omics and biomarkers to reveal the stress mechanisms of high fluoride on earthworms. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138706. [PMID: 40413976 DOI: 10.1016/j.jhazmat.2025.138706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/17/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Excessive fluorine accumulation poses a significant threat to soil ecology and even human health, yet its impact on soil fauna, especially earthworms, remains poorly understood. This study employed multi-omics and biomarkers to investigate high fluorine-induced biochemical changes that cause tissue damages in Eisenia fetida. The results demonstrated that earthworms exhibited obvious damage with fluorine addition exceeding 200 mg kg-1, with stress levels escalating as fluorine contents increased. Further analysis of the underlying mechanisms revealed that fluorine could upregulate genes encoding mitochondrial respiratory chain complexes I-III and downregulate those for IV-V, leading to reactive oxygen species (ROS) accumulation despite antioxidant system activation. The resulting ROS interfered with deoxyribonucleoside triphosphate synthesis, prompting homologous recombination as the main DNA repair mechanism. Additionally, fluorine-induced ROS also attacked and disrupted protein and lipid related metabolisms ultimately causing oxidative damages. These cumulative oxidative damages from high fluorine contents subsequently triggered autophagy or apoptosis, resulting in tissue ulceration and epithelial exfoliation. Therefore, high fluorine could threaten earthworms by inducing ROS accumulation and subsequent biomolecule damages.
Collapse
Affiliation(s)
- Zhiqiang Bai
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Daixi Zhang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China.
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Xiaomei Pan
- Chengdu Agricultural College, Wenjiang 611130, PR China
| | - Qinmei Zhong
- College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| |
Collapse
|
25
|
Qian Q, Zhao SS, Yang L, Xing G, Chen Y, Liang C, Wang H, Li R, Qiao S, Wang A, Zhang G. Palmitoylation enhances the stability of porcine epidemic diarrhea virus spike protein by antagonizing its degradation via chaperone-mediated autophagy to facilitate viral proliferation. J Virol 2025:e0034725. [PMID: 40401979 DOI: 10.1128/jvi.00347-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025] Open
Abstract
Porcine epidemic diarrhea (PED) is a highly pathogenic and infectious intestinal disease caused by the PED virus (PEDV) and has inflicted substantial economic losses on the global swine industry. Therefore, it is imperative to explore appropriate targets to restrain PEDV infection. PEDV spike (S) protein is crucial for viral infection and is regarded as an ideal target for the development of vaccines and antiviral therapeutics. Palmitoylation is a significant post-translational modification implicated in multiple viral replication cycles. Despite the fact that palmitoylation of certain coronavirus S proteins has been reported, the specific biological significance and underlying molecular mechanisms of PEDV S protein palmitoylation have not been fully defined. In the present study, we uncover that palmitoylation enhances the stability of PEDV S protein to promote viral proliferation. Mechanistically, we identify that a cysteine-rich region within the cytoplasmic tail of PEDV S protein is palmitoylated by the zinc finger Asp-His-His-Cys domain palmitoyltransferase 5 (ZDHHC5). We further illustrate that palmitoylation prevents the recognition of Lys-Phe-Glu-Arg-Gln (KFERQ)-like motif in PEDV S protein by heat shock cognate protein of 70 kDa (HSC70), thereby antagonizing its degradation via chaperone-mediated autophagy (CMA). Collectively, our findings underscore the importance of palmitoylation for PEDV pathogenesis and provide prospective targets for the development of antiviral interventions.IMPORTANCEPEDV poses a serious threat to pig farming worldwide. As a consequence, a comprehensive investigation of PEDV pathogenesis is of great significance for the prevention and control of the virus. Here, we verify that ZDHHC5-mediated palmitoylation of PEDV S protein enhances its stability through impeding recognition by HSC70 and antagonizing degradation via CMA to facilitate viral propagation. Our findings highlight the important role of palmitoylation in PEDV proliferation and support palmitoylation as a promising target for the development of antiviral strategies.
Collapse
Affiliation(s)
- Qisheng Qian
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, China
| | - Shuang-Shuang Zhao
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Lei Yang
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Guangxu Xing
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Haili Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Li
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Songlin Qiao
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Institute for Animal Health, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
- Longhu Laboratory, Zhengzhou, China
| |
Collapse
|
26
|
Li X, Chen WW, Wu JJ, Yuan ZD, Yuan FL, Chen J. METTL3-dependent epigenetic regulation of ULK2 autophagy in hypertrophic scarring. Int J Biol Macromol 2025; 315:144507. [PMID: 40409645 DOI: 10.1016/j.ijbiomac.2025.144507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/08/2025] [Accepted: 05/20/2025] [Indexed: 05/25/2025]
Abstract
Increased autophagy in fibroblasts drives their differentiation into myofibroblasts, a key process in dermal fibrosis during hypertrophic scar (HS) progression. While N6-methyladenosine (m6A) modification is implicated in fibrosis and autophagy, its mechanistic role in HS remains unclear. In this study, we investigated the involvement of fibroblast autophagy in HS progression and the regulatory mechanisms underlying this process. Our findings demonstrated that HS development is associated with significant autophagy in both human patients and rabbit models, as evidenced by the activation of fibroblast-associated alpha-smooth muscle actin (α-SMA) and type I collagen. Pharmacological inhibition of autophagy using 3-methyladenine effectively suppressed fibroblast-to-myofibroblast differentiation. We further discovered that excessive m6A modifications enhanced autophagy in fibroblasts derived from HS tissues. Mechanistically, we elucidated that methyltransferase-like 3 (METTL3)-mediated m6A modification upregulated unc-51-like kinase 2 (ULK2), a key regulator of autophagy initiation, through techniques such as m6A RNA immunoprecipitation sequencing (MeRIP-seq), qRT-PCR, and Western blotting. Silencing METTL3 impaired autophagic flux, as confirmed by transmission electron microscopy and LC3-II/I ratio analysis, thereby inhibiting fibroblast-to-myofibroblast differentiation. Notably, subcutaneous injection of METTL3 small interfering RNA (siRNA) attenuated cellular autophagy in HS tissues and mitigated HS formation in rabbit ears. These results clarify the causal relationship between METTL3-mediated m6A modification, autophagy, and fibroblast-to-myofibroblast differentiation, providing a mechanistic basis for the therapeutic potential of targeting METTL3 in HS treatment.
Collapse
Affiliation(s)
- Xia Li
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Wei-Wei Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China.
| | - Jinghua Chen
- Institute of Integrated Chinese and Western Medicine, The Hospital Affiliated to Jiangnan University, Wuxi, Jiangsu 214041, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
27
|
Wang Q, Peng Z, Chu P, Gui B, Li Y, Liao L, Zhu Z, Ke F, Wang Y, He L. Type II grass carp reovirus utilizes autophagosomes for viroplasm formation and subclinical persistent infection. J Virol 2025; 99:e0035225. [PMID: 40172227 PMCID: PMC12090803 DOI: 10.1128/jvi.00352-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Grass carp reovirus (GCRV) is the most virulent pathogen within the genus Aquareovirus, belonging to the family Spinareoviridae. GCRV is categorized into three genotypes, with type II (GCRV-II) being the predominant strain circulating in China. Reoviruses are known to replicate and assemble in cytoplasmic inclusion bodies termed viroplasms; however, information regarding the formation of GCRV-II viroplasms and their specific roles in virus infection remains largely unknown. In this study, we investigated the formation and characteristics of viroplasms during GCRV-II infection. Immunofluorescence and confocal microscopy indicate that GCRV-II infection induces the formation of viroplasms, with the nonstructural protein NS79 being the key protein responsible for this process. Live-cell imaging and fluorescence recovery after photobleaching assays reveal that GCRV-II viroplasms lack liquid-like properties. Transmission electron microscopy confirms that GCRV-II viroplasms are membranous structures. Notably, we demonstrate that GCRV-II infection induces autophagy and the formation of autophagosomes and that GCRV-II utilizes these autophagosomes for viroplasm formation and virion assembly. Furthermore, we found that GCRV-II uses autophagosomes to evade the host immune system, establishing subclinical persistent infection. GCRV-II also employs autophagosomes for nonlytic release and viral spread. Collectively, these findings highlight distinctive characteristics of GCRV-II viroplasms compared to those of other animal reoviruses, offering valuable insights for the prevention and control of this virus.IMPORTANCEGrass carp reovirus (GCRV) is categorized into three genotypes, with GCRV-II being the most prevalent in China. Despite reoviruses being known for their replication and assembly in viroplasms, the specifics of GCRV-II viroplasm formation and its role in infection were unclear. Our study demonstrates that GCRV-II infection triggers the formation of viroplasms, primarily mediated by the nonstructural protein NS79. GCRV-II viroplasms are membranous structures that lack liquid-like properties, which are significantly different from the viroplasms of other reoviruses. Notably, our research unveils that GCRV-II infection induces autophagy and utilizes autophagosomes for viroplasm formation and virion assembly. Furthermore, we also confirm that GCRV-II utilizes autophagosomes for subclinical persistent infection, nonlytic release, and viral spread. Our results indicate that GCRV-II hijacks autophagosomes to form viroplasms and complete its life cycle. The characteristics of GCRV-II are significantly different from those of other animal reoviruses, providing important information for prevention and control of this virus.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zichao Peng
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Bin Gui
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yongming Li
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Lanjie Liao
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fei Ke
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yaping Wang
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Libo He
- State Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Yang M, Qin W, Dai Q, Wu S, Chen Y, Xie W, Jiang X, Song H, Lei Y, Zheng T, Wang Y, Ouyang S, Guan M, Huang G, Liu X. 18β-glycyrrhetinic acid mitigates lipotoxicity-induced premature senescence of tubular epithelial cells by activating SIRT1-TFEB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156846. [PMID: 40408942 DOI: 10.1016/j.phymed.2025.156846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/27/2025] [Accepted: 05/11/2025] [Indexed: 05/25/2025]
Abstract
BACKGROUND Targeting metabolic disorders has emerged as a promising therapeutic strategy in the treatment of chronic kidney disease (CKD). 18β-glycyrrhetinic acid (18β-GA) is known for its metabolic regulatory and antioxidant effects in various diseases. However, the precise effects and underlying mechanisms of 18β-GA on CKD remain unclear. PURPOSE This study aims to evaluate the therapeutic efficacy of 18β-GA on CKD and to identify the molecular targets of 18β-GA with a particular emphasis on its role in metabolic regulation. STUDY DESIGN AND METHODS A high-fat diet-induced CKD model was established to investigate the influence of 18β-GA on lipid metabolic disorders, cellular senescence and fibrosis in the kidneys. Co-immunoprecipitation was performed to investigate the impact of 18β-GA on the interaction between transcription factor EB (TFEB) and sirtuin 1 (SIRT1). Additionally, network pharmacology and molecular docking analyses were conducted to identify the specific target proteins of 18β-GA. RESULTS 18β-GA alleviated renal lipid accumulation, tubular cell senescence and renal interstitial fibrosis in CKD mice. Treatment with 18β-GA largely restored mitochondrial function and attenuated intracellular lipotoxicity and associated cellular senescence by promoting lipophagy in renal tubular cells. Mechanistically, 18β-GA acting as a partial antagonist of peroxisome proliferator-activated receptor gamma (PPARγ) enhanced lipophagy through SIRT1-mediated nuclear translocation of TFEB which induced the expression of microtubule-associated protein light chain 3 (LC3). CONCLUSION Our findings demonstrate that 18β-GA, functioning as a partial antagonist of PPARγ, counteracts CKD progression by activating the SIRT1-TFEB-LC3 signaling axis-mediated lipophagy and thus uncover a novel mechanism by which 18β-GA improves renal lipid metabolism disorders and exerts renoprotective effects. These results highlight the potential of 18β-GA as a promising therapeutic agent for the treatment and prevention of CKD.
Collapse
Affiliation(s)
- Meng Yang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Weihong Qin
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Qihui Dai
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Shengquan Wu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Yuzhi Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Weiheng Xie
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Xiaoyun Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Haochang Song
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Yiting Lei
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Tingting Zheng
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Yanyan Wang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Suidong Ouyang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China
| | - Min Guan
- Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, PR China.
| | - Gonghua Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China.
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Institute of Aging Research, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, Dongguan 523808, PR China.
| |
Collapse
|
29
|
Wang L, Wang LX, Li MY, Zhang R, Zhou GH. Clinical characterization of CCT2 and its role in autophagy regulation during age-related macular degeneration. Sci Rep 2025; 15:16849. [PMID: 40374738 DOI: 10.1038/s41598-025-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 05/09/2025] [Indexed: 05/18/2025] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in the elderly, and the role of chaperonin containing TCP1 subunit 2 (CCT2) remains unclear. This study aims to elucidate the mechanistic link between CCT2 and AMD, contributing to improved understanding and potential therapeutic strategies. Retinal and RPE-Choroid transcriptome array data from 130 AMD patients and 121 normal donors (GSE29801 dataset) were reanalyzed to assess CCT2 expression across different AMD subtypes, age groups, and genders. Single-sample gene set enrichment analysis was performed to explore correlations with autophagy-related genes and other established AMD causes. Additionally, CCT2 expression was validated in sodium iodate (NaIO₃)-induced 661 W cells (photoreceptor-like cells) using quantitative real-time PCR (qRT-PCR). CCT2 was significantly enriched in advanced AMD retinas compared to intermediate stages in retina (both macular and extramacular) and early stages in extramacular retina (p < 0.05). NaIO3-treated 661 W cells exhibited a similar expression trend, confirming transcriptomic findings. CCT2 is significantly upregulated in advanced AMD and may contribute to drusen degradation. It shows potential as both a biomarker and an independent diagnostic indicator, particularly for advanced-stage AMD.
Collapse
Affiliation(s)
- Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Ling-Xiao Wang
- Department of Colorectal and Anal Surgery, Shanxi Provincial People's Hospital (Fifth Hospital of Shanxi Medical University), Taiyuan, 030001, China
| | - Mu-Ye Li
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Guo-Hong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China.
| |
Collapse
|
30
|
Feng R, Hu L, Yang W, Liang P, Li Y, Tian K, Wang K, Qiu T, Zhang J, Sun X, Yao X. Perfluorooctane sulfonate induced ferritinophagy via detyrosinated alpha tubulin-TRIM21-HERC2-regulated NCOA4 degradation in hepatocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126101. [PMID: 40120846 DOI: 10.1016/j.envpol.2025.126101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/02/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
The persistent organic pollutant perfluorooctane sulfonate (PFOS) is demonstrated to induce hepatotoxicity through disrupting iron homeostasis and subsequent ferroptosis in hepatocytes. However, it is still elusive in the mechanisms underneath the dysfunctional iron metabolism caused by PFOS. In this study, we observed that PFOS activated the nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy in mice liver and human hepatocytes. PFOS reduced the ubiquitination of NCOA4, subsequently causing an increase in the expression of NCOA4. PFOS induced the ubiquitination of HECT and RLD domain-containing E3 ubiquitin protein ligase 2 (HERC2), an upstream negative regulator of NCOA4, leading to the degradation of HERC2. PFOS upregulated the level of detyrosinated α-tubulin (detyr-α-tubulin) in hepatocytes. Under PFOS exposure, detyr-α-tubulin interacted with tripartite motif containing 21 (TRIM21), another E3 ubiquitin ligase responsible for HERC2 degradation. Despite the reduction in the protein level of HERC2, the increases in detyr-α-tubulin and the interaction between detyr-α-tubulin and TRIM21 caused by PFOS facilitated the interaction between TRIM21 and HERC2. Furthermore, inhibiting α-tubulin detyrosination by parthenolide reversed the ferritinophagy and the following ferroptosis caused by PFOS. Collectively, this study points out the existence of ferritinophagy and enriches the understanding of the alteration in iron metabolism under PFOS exposure, providing novel mechanistic insights into the hepatic toxicity of PFOS.
Collapse
Affiliation(s)
- Ruzhen Feng
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Lingli Hu
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Wei Yang
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Peiyao Liang
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Yu Li
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Kefan Tian
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Kejing Wang
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Tianming Qiu
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Jingyuan Zhang
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Xiance Sun
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China
| | - Xiaofeng Yao
- Occupational and Environmental Health Department, Dalian Medical University, 9 West Lvshun South Road, Dalian, China.
| |
Collapse
|
31
|
Szegő ÉM, Höfs L, Antoniou A, Dinter E, Bernhardt N, Schneider A, Di Monte DA, Falkenburger BH. Intermittent fasting reduces alpha-synuclein pathology and functional decline in a mouse model of Parkinson's disease. Nat Commun 2025; 16:4470. [PMID: 40368903 PMCID: PMC12078643 DOI: 10.1038/s41467-025-59249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron degeneration and α-synuclein (aSyn) accumulation. Environmental factors play a significant role in PD progression, highlighting the potential of non-pharmacological interventions. This study investigates the therapeutic effects of intermittent fasting (IF) in an rAAV-aSyn mouse model of PD. IF, initiated four weeks post-induction of aSyn pathology, improved motor function and reduced dopaminergic neuron and axon terminal degeneration. Additionally, IF preserved dopamine levels and synaptic integrity in the striatum. Mechanistically, IF enhanced autophagic activity, promoting phosphorylated-aSyn clearance and reducing its accumulation in insoluble brain fractions. Transcriptome analysis revealed IF-induced modulation of inflammation-related genes and microglial activation. Validation in primary cultures confirmed that autophagy activation and inflammatory modulators (CCL17, IL-36RN) mitigate aSyn pathology. These findings suggest that IF exerts neuroprotective effects, supporting further exploration of IF and IF-mimicking therapies as potential PD treatments.
Collapse
Affiliation(s)
- Éva M Szegő
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| | - Lennart Höfs
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Anna Antoniou
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Elisabeth Dinter
- Department of Neurology, TU Dresden, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, TU Dresden, Dresden, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | | | - Björn H Falkenburger
- Department of Neurology, TU Dresden, Dresden, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.
| |
Collapse
|
32
|
Jiao X, Chen X, Li Q, Li C, Li Y. Porcine reproductive and respiratory syndrome virus nsp2-related proteins induce host translational arrest by specifically impairing the mTOR signaling cascade. Vet Microbiol 2025; 306:110562. [PMID: 40367705 DOI: 10.1016/j.vetmic.2025.110562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/08/2025] [Accepted: 05/12/2025] [Indexed: 05/16/2025]
Abstract
As obligate parasites, viruses strictly rely on the host translation machinery for progeny production. To compete for host translation resources, the porcine reproductive and respiratory syndrome virus (PRRSV) employs multiple strategies to suppress host protein synthesis. Mechanistically, the mRNA nuclear export and canonical translation initiation are suppressed in cells with PRRSV infection. Nsp2 was identified to induce host translation shutoff targeting the mTOR signaling pathway. Nsp2TF shares its N-terminal domains with nsp2, while nsp2N is a C-terminal truncation of nsp2. In this study, we investigated the role of nsp2-related proteins in suppressing host protein synthesis, defining their mechanistic impact on translational regulation. In a puromycin incorporation assay, the inactivation of nsp2TF and nsp2N translation attenuated the inhibitory effect of PRRSV infection on nascent peptide synthesis. PRRSV utilizes a multi-faceted approach to suppress host translation, primarily through modulation of eIF2α phosphorylation before 12 hpi and inhibition of the mTOR signaling pathway at 24 hpi. The nsp2-related proteins (nsp2, nsp2TF, and nsp2N) contribute to the modulation of the mTOR signaling pathway via divergent mechanisms. While nsp2 broadly suppresses mTOR effector proteins (4E-BP1, S6K, and rpS6), nsp2TF and nsp2N mainly downregulate the 4E-BP1 phosphorylation. The activity of mTORC1 may be regulated by additional PRRSV-encoded proteins, suggesting a coordinated viral strategy to hijack host translational machinery. This study provides novel insights into the molecular mechanisms by which nsp2-related proteins subvert host protein synthesis to facilitate viral replication.
Collapse
Affiliation(s)
- Xue Jiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qingyu Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
33
|
Acharya D, Sayyad Z, Hoenigsperger H, Hirschenberger M, Zurenski M, Balakrishnan K, Zhu J, Gableske S, Kato J, Zhang SY, Casanova JL, Moss J, Sparrer KMJ, Gack MU. TRIM23 mediates cGAS-induced autophagy in anti-HSV defense. Nat Commun 2025; 16:4418. [PMID: 40360474 PMCID: PMC12075517 DOI: 10.1038/s41467-025-59338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The cGAS-STING pathway, well-known to elicit interferon (IFN) responses, is also a key inducer of autophagy upon virus infection or other stimuli. Whereas the mediators for cGAS-induced IFN responses are well characterized, much less is known about how cGAS elicits autophagy. Here, we report that TRIM23, a unique TRIM protein harboring both ubiquitin E3 ligase and GTPase activity, is crucial for cGAS-STING-dependent antiviral autophagy. Genetic ablation of TRIM23 impairs autophagic control of HSV-1 infection. HSV-1 infection or cGAS-STING stimulation induces TBK1-mediated TRIM23 phosphorylation at S39, which triggers TRIM23 autoubiquitination and GTPase activity and ultimately elicits autophagy. Fibroblasts from a patient with herpes simplex encephalitis heterozygous for a dominant-negative, kinase-inactivating TBK1 mutation fail to activate autophagy by TRIM23 and cGAS-STING. Our results thus identify the cGAS-STING-TBK1-TRIM23 axis as a key autophagy defense pathway and may stimulate new therapeutic interventions for viral or inflammatory diseases.
Collapse
Affiliation(s)
- Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Zuberwasim Sayyad
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | | | | | - Matthew Zurenski
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
| | - Kannan Balakrishnan
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Junji Zhu
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA
| | - Sebastian Gableske
- Department of Microbiology, The University of Chicago, Chicago, IL, USA
- Eisai GmbH, Frankfurt am Main, Germany
| | - Jiro Kato
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Joel Moss
- The Critical Care Medicine and Pulmonary Branch; National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Konstantin M J Sparrer
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St. Lucie, FL, USA.
- Department of Microbiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
34
|
Zhao L, Zeng J, Wen J, Li Z, Xu J, Wang J, Tang X, Hou L. Global trends and research hotspots in autophagy and tumor drug resistance: a bibliometric analysis. Discov Oncol 2025; 16:734. [PMID: 40354002 PMCID: PMC12069191 DOI: 10.1007/s12672-025-02379-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/11/2025] [Indexed: 05/14/2025] Open
Abstract
Autophagy plays a crucial role in tumor drug resistance by enabling cancer cells to survive under stress conditions, including chemotherapy. It helps tumor cells maintain homeostasis, resist cell death, and contribute to therapy failure. This study analyzed the literature related to autophagy and tumor drug resistance based on the Web of Science Core Collection (WoSCC) database. The results revealed that there are 9284 relevant articles published to date, covering 103 countries and regions, with contributions from 5964 institutions and 37,240 researchers. The annual number of publications has steadily increased since 2004, especially after 2019, indicating the growing importance of autophagy in tumor drug resistance research. China leads globally in terms of publication output, accounting for nearly 50% of the total publications. Additionally, international collaboration and cross-country research have become increasingly prominent, particularly collaborations between China and countries like South Korea and Japan. Journal analysis showed that the International Journal of Molecular Sciences and Oncotarget are the most productive journals, while Autophagy stands out with a higher impact factor. Author, citation, and keyword analyses revealed research hotspots and future trends in the field of autophagy and tumor drug resistance, including chemotherapy resistance, cell death mechanisms, and immunotherapy. This study provides a systematic academic perspective for future research in the field of autophagy and tumor drug resistance and emphasizes the importance of strengthening international cooperation.
Collapse
Affiliation(s)
- Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China
| | - Jiao Zeng
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Junfeng Wen
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Zhaoyang Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, People's Republic of China
| | - Jianguo Xu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jinxiang Wang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, People's Republic of China.
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, No. 1 South Maoyuan Road, Shunqing District, Nanchong, 637000, Sichuan, People's Republic of China.
| | - Lingmi Hou
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, Wuhou District, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
35
|
Wang F, Lei Z, Gao J, Li Z, Liu S, Wan J, Lei Z. P-glycoprotein inhibits the MAPK/NF-KB pathway and activates autophagy and oxidative stress to improve GPS resistance in vivo and in vitro. Int J Biol Macromol 2025; 314:144126. [PMID: 40368213 DOI: 10.1016/j.ijbiomac.2025.144126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Glaesserella parasuis (Gps) is an important pathogen that causes polyserositis, peritonitis and meningitis in pigs, causing considerable economic losses to the pig industry worldwide. In recent years, due to the abuse of antibiotic drugs, Gps drug resistance and multi-drug resistance have become increasingly serious, especially for macrolides. Thus, by inducing Tydigrosin resistant bacteria, we found that PgtP is a Gps-produced virulence gene that plays a crucial role in the disease, but its interaction in host cells remains unclear. To characterize the function of the PgtP gene in Gps, we constructed ΔPgtP mutants. Notably, deletion of the PgtP gene resulted in increased adhesion to mouse macrophages, suggesting that PgtP is essential for adhesion of Gps. In addition, as a member of the cell membrane transporter family, PgtP links activated inflammation with autophagy and oxidative stress metabolism. To further investigate the role of PgtP, we infected mouse macrophages with ΔPgtP mutants and wild strains respectively. We found that ΔPgtP mutations can reduce the level of intracellular reactive oxygen species (ROS), up-regulate the number of intracellular autophagosomes, and down-regulate the expression of cytokines IL-6 and TNF-a. Further mechanistic studies showed that PGTP-associated p38 mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways were involved in autophagy and oxidative stress and demonstrated that the related signaling pathways were also activated in mice. These results highlight the potential of PgtP as a target for therapeutic intervention and provide important new insights into how it contributes to the aggressiveness and persistence of Gps.
Collapse
Affiliation(s)
- Fan Wang
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhiqun Lei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jingyi Gao
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Ze Li
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Shenglan Liu
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Juan Wan
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China; Gannan Innovation and Translational Medicine Research Institute, First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Sichuan Clinical Research Center for Medical Imaging, Dazhou, 635000, China; Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases, Ministry of Education, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
36
|
Guo Z, Chen D, Yao L, Sun Y, Li D, Le J, Dian Y, Zeng F, Chen X, Deng G. The molecular mechanism and therapeutic landscape of copper and cuproptosis in cancer. Signal Transduct Target Ther 2025; 10:149. [PMID: 40341098 PMCID: PMC12062509 DOI: 10.1038/s41392-025-02192-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/13/2024] [Accepted: 02/17/2025] [Indexed: 05/10/2025] Open
Abstract
Copper, an essential micronutrient, plays significant roles in numerous biological functions. Recent studies have identified imbalances in copper homeostasis across various cancers, along with the emergence of cuproptosis, a novel copper-dependent form of cell death that is crucial for tumor suppression and therapeutic resistance. As a result, manipulating copper levels has garnered increasing interest as an innovative approach to cancer therapy. In this review, we first delineate copper homeostasis at both cellular and systemic levels, clarifying copper's protumorigenic and antitumorigenic functions in cancer. We then outline the key milestones and molecular mechanisms of cuproptosis, including both mitochondria-dependent and independent pathways. Next, we explore the roles of cuproptosis in cancer biology, as well as the interactions mediated by cuproptosis between cancer cells and the immune system. We also summarize emerging therapeutic opportunities targeting copper and discuss the clinical associations of cuproptosis-related genes. Finally, we examine potential biomarkers for cuproptosis and put forward the existing challenges and future prospects for leveraging cuproptosis in cancer therapy. Overall, this review enhances our understanding of the molecular mechanisms and therapeutic landscape of copper and cuproptosis in cancer, highlighting the potential of copper- or cuproptosis-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Ziyu Guo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Danyao Chen
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lei Yao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuming Sun
- Department of Plastic and Cosmetic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Daishi Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Jiayuan Le
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yating Dian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Furong Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| | - Guangtong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, China.
- Furong Laboratory, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
37
|
Luo M, Xie X, Wang D, Li X, Ling X, Yuan W, Cong J, Huang H, Zhang Y, Kong Z, Wan B. Senecavirus A nonstructural protein 3A Inhibits Ago2-mediated RNAi antiviral response. Vet Microbiol 2025; 306:110547. [PMID: 40359781 DOI: 10.1016/j.vetmic.2025.110547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/30/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
Senecavirus A (SVA) can infect pigs of all ages and poses a significant risk to the swine industry. RNA interference (RNAi) is a conserved antiviral immune defense pathway in eukaryotes, and many viruses have been proven to encode viral proteins as viral RNAi suppressors (VSRs) to evade RNAi-mediated antiviral response. However, it is unclear whether SVA regulates RNAi for its infection and replication. In this study, it is found that SVA nonstructural protein 3 A has a VSR function. Mechanistically, 3 A effectively inhibited double-stranded RNA and small interfering RNA-induced RNAi, degrading Argonaute2 (Ago2) through autophagy. This paper demonstrated that SVA encoded 3 A as VSR to resist RNAi pathway, escaping host immunity and promoting viral replication, which expands the understanding of the interaction between SVA and its host.
Collapse
Affiliation(s)
- Mengru Luo
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Xingyi Xie
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Dengkun Wang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Xuechen Li
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Xianghui Ling
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Wenju Yuan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Jiahao Cong
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Huihui Huang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China.
| | - Zhengjie Kong
- School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
38
|
Gou ZH, Su N, Li XC, Ren DP, Ren SS, Wang L, Wang Y. Integrated transcriptomic and immune profiling reveals crucial molecular pathways and hub genes associated with postoperative delirium in elderly patients. Front Med (Lausanne) 2025; 12:1580355. [PMID: 40417694 PMCID: PMC12098571 DOI: 10.3389/fmed.2025.1580355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/15/2025] [Indexed: 05/27/2025] Open
Abstract
Background Postoperative delirium (POD) manifests as severe mental disorientation, often experienced by elderly patients undergoing surgery, significantly hindering recovery and deteriorating the quality of life. Despite numerous clinical studies, the molecular mechanisms behind POD in elderly patients are still not well understood, requiring further investigation to identify potential biomarkers and therapeutic targets. Methods This study amalgamates Gene Set Variation Analysis (GSVA), Weighted Gene Co-expression Network Analysis (WGCNA), differential expression analysis, and immune infiltration assessments to identify molecular pathways and hub genes linked to the initiation of POD in the elderly. Gene expression data were sourced from the GSE163943 dataset in the Gene Expression Omnibus (GEO) database. A total of 18,894 protein-coding genes were extracted for analysis. Results We constructed a gene co-expression network using WGCNA and performed GSVA to investigate the link between POD and different types of cell death. The results indicated that POD is positively associated with pyroptosis and parthanatos, while negatively correlated with oxidative stress and disulfidptosis. Differential expression analysis revealed 145 differentially expressed genes (DEGs), including 83 downregulated and 62 upregulated genes. Analysis of functional enrichment revealed that DEGs were enriched in activities like neuron projection development, axonogenesis, and synapse organization, with KEGG pathway analysis identifying neuroactive ligand-receptor interaction and neurodegeneration pathways. Gene Set Enrichment Analysis (GSEA) further revealed the upregulation of the apoptosis pathway and the downregulation of neuroactive ligand-receptor interaction. Protein-protein interaction (PPI) network analysis identified 10 hub genes, including COL18A1, CD63, and LTF. Immune infiltration analysis indicated that the occurrence of POD is strongly associated with immune cell activation, particularly in T cells and macrophages. Conclusion Overall, this research primarily examines the intricate interplay between cell death processes and alterations in the immune microenvironment throughout the development of geriatric POD, pinpointing essential genes that provide vital theoretical support for further studies on geriatric POD. However, this discovery is only an initial one derived from analyzing the datasets. Upcoming research ought to evaluate and scrutinize additional datasets and conduct essential experiments to guarantee the precision and widespread relevance of the analytical findings.
Collapse
Affiliation(s)
- Zi-han Gou
- Department of Anesthesiology, The People’s Hospital of kaizhou District Chongqing, Chongqing, China
| | - Nan Su
- Inner Mongolia People’s Hospital Department of Surgical Anesthesia, Inner Mongolia, China
| | - Xiao-chuan Li
- Department of Orthopaedic, Chongqing Sanbo Changan Hospital, Chongqing, China
| | - Da-peng Ren
- Department of Anesthesiology, The People’s Hospital of kaizhou District Chongqing, Chongqing, China
| | - Shan-shan Ren
- Department of Anesthesiology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Lin Wang
- Department of Anesthesiology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| | - Yao Wang
- Department of Anesthesiology, The Thirteenth People’s Hospital of Chongqing, Chongqing, China
| |
Collapse
|
39
|
Attanasio S. Autophagy in cancer and protein conformational disorders. FEBS Lett 2025. [PMID: 40342093 DOI: 10.1002/1873-3468.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025]
Abstract
Autophagy is a catabolic process by which cells maintain cellular homeostasis through the degradation of dysfunctional cytoplasmic components, such as toxic misfolded proteins and damaged organelles, within the lysosome. It is a multistep process that is tightly regulated by nutrient, energy, and stress-sensing mechanisms. Autophagy plays a pivotal role in various biological processes, including protein and organelle quality control, defense against pathogen infections, cell metabolism, and immune surveillance. As a result, autophagy dysfunction is linked to a variety of pathological conditions. The role of autophagy in cancer is complex and dynamic. Depending on the context, autophagy can have both tumor-suppressive and pro-tumorigenic effects. In contrast, its role is more clearly defined in protein conformational disorders, where autophagy serves as a mechanism to reduce toxic protein aggregation, thereby improving cellular homeostasis. Because autophagy-based therapies hold promising potential for the treatment of cancer and protein conformational disorders, this review will highlight the latest findings and advancements in these areas.
Collapse
Affiliation(s)
- Sergio Attanasio
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
Meng XY, Li Y, Yan ZJ, Ye SZ, Wang KJ, Chen JF, Yu R, Ma Q. Sinularin induces autophagy-dependent cell death by activating ULK1 and enhancing FOXO3-ATG4A axis in prostate cancer cells. Sci Rep 2025; 15:15875. [PMID: 40335577 PMCID: PMC12059013 DOI: 10.1038/s41598-025-00909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/02/2025] [Indexed: 05/09/2025] Open
Abstract
Sinularin is a natural product extracted from soft coral and is shown to exhibit antitumor effects against multiple human cancers. We previously showed that Sinularin induces apoptotic cell death via stabilizing the FOXO3 protein in prostate cancer cells. In this study, we demonstrated that Sinularin triggers autophagy via two different mechanisms in prostate cancer cells. First, Sinularin reduced the S757 phosphorylation of ULK1 protein, which was mediated by mTOR, leading to ULK1 activation and autophagy initiation. Second, Sinularin enhanced the expression of autophagic protein ATG4A, which is the key regulator in the formation of autophagosome, through a FOXO3-dependent transcriptional mechanism. Next, we identified that ATG4A is a new target gene of the transcription factor FOXO3. Additionally, we also found that Sinularin-induced autophagy promoted survivin degradation and led to cell apoptosis. Taken together, these findings suggest that Sinularin induces prostate cancer cell autophagy by promoting autophagy initiation through activation of ULK1 and formation of autophagosome through the FOXO3-ATG4A pathway.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
- Ningbo Top Medical and Health Research Program, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Yi Li
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, #88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ze-Jun Yan
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
- Ningbo Top Medical and Health Research Program, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
- Department of Urology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Sha-Zhou Ye
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
- Ningbo Top Medical and Health Research Program, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Ke-Jie Wang
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
- Ningbo Top Medical and Health Research Program, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Jun-Feng Chen
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
- Ningbo Top Medical and Health Research Program, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China
| | - Rui Yu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, #818 Fenghua Road, Ningbo, 315211, Zhejiang, China.
| | - Qi Ma
- Ningbo Clinical Research Center for Urological Disease, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Comprehensive Genitourinary Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
- Yi-Huan Genitourinary Cancer Group, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
41
|
Sun X, Chen Z, Yang H, Yu J, Lin H, Zhang L. Targeting ferroptosis for precision medicine in cervical cancer. Apoptosis 2025:10.1007/s10495-025-02120-1. [PMID: 40335818 DOI: 10.1007/s10495-025-02120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/09/2025]
Abstract
Cervical cancer (CC) is a prevalent malignant tumor in the female reproductive system, with rising incidence rates among younger women posing a significant public health challenge. Human papillomavirus (HPV) infection is the primary cause, driving carcinogenesis by promoting abnormal proliferation of tumor cells. Ferroptosis is a form of regulated necrosis that is caused by an iron-dependent accumulation of lipid peroxides with rupture of the plasma membrane. Targeting ferroptosis-related molecules and pathways can selectively induce cervical cancer cell death, while alterations in the expression of ferroptosis-related genes provide promising biomarkers for prognostic assessment. Advances in research on biomarkers and molecular targets are improving predictions of therapeutic outcomes, overcoming drug resistance, and optimizing immunotherapy strategies, thereby opening new avenues for precision medicine. This review focuses on the molecular mechanisms underlying ferroptosis in cervical cancer, discusses its potential applications in early diagnosis and prognosis evaluation, and summarizes the latest advancements in targeted therapy, aiming to provide a novel perspective for the clinical management of cervical cancer.
Collapse
Affiliation(s)
- Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Jianing Yu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai, 264100, China.
| | - Haiyan Lin
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
42
|
Liu RQ, Wu YT, Cheng Y, Chang YH, Saleem MAU, Hu ZY, Yang SJ, Wang XQ, Song YJ, Mao XY, Zheng J, Wang YB, Lou M, Zhao Y, Li JL. TBBPA induced hepatocyte ferroptosis by PCBP1-mediated ferritinophagy. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138515. [PMID: 40359755 DOI: 10.1016/j.jhazmat.2025.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/26/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant and has been identified as emerging widespread pollutants. Ferroptosis, a recently characterized form of iron-dependent cell death, is related to a wide range of liver diseases. Ferritinophagy as a novel selective form of autophagy functions in iron processing is essential to induce ferroptosis. Poly(rC)-binding protein 1 (PCBP1) is an iron chaperone involved in iron loading to ferritin. Nevertheless, the potential health risk caused by TBBPA in mammals is unknown. Thus, this study is conducted to explore the molecular mechanism of TBBPA-induced liver injury and the unique role of PCBP1 in it. In this study, we found that TBBPA exposure caused hepatic pathological injury and hepatocyte mitochondrial morphological changes, such as decreased or absent mitochondrial crest, ruptured mitochondrial membranes and mitochondrial shrinkage. The result showed that TBBPA exposure exacerbated glutathione depletion and lipid peroxidation, which are hallmarks of ferroptosis. Consistent with the results in vivo, TBBPA exposure activated ferritinophagy and upregulated indicators related to ferroptosis in hepatocytes. Of note, overexpression of PCBP1 inhibited TBBPA-induced ferroptosis by reducing overstimulated ferritinophagy. Here, we uncover a new mechanism whereby TBBPA triggers hepatocyte ferroptosis through the activation of ferritinophagy. Of note, we identify PCBP1 as critical for liver iron homeostasis, link this molecule to liver disease. Taken together, our findings provide a new therapeutic strategy and potential target for the treatment of liver disease.
Collapse
Affiliation(s)
- Rui-Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu-Tong Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Cheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan-Hang Chang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | | | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shang-Jia Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Qi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Jia Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin-Yue Mao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi-Bo Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China
| |
Collapse
|
43
|
Liang SM, Shen J, Ma RT, Du ND, Wang R, Wu ZM, Shan M, Liang SR, Hu WR, Wang W, Sheng WW, Huang DF, Chen XH. Ferritinophagy-derived iron causes protein nitration and mitochondrial dysfunction in acetaminophen-induced liver injury. Toxicol Appl Pharmacol 2025; 500:117376. [PMID: 40339610 DOI: 10.1016/j.taap.2025.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Acetaminophen (APAP), also known as paracetamol, is a widely used analgesic and antipyretic drug. While the drug is effective and safe at recommended doses, excessive intake can lead to acute liver injury (ALI) due to the formation of the toxic metabolite N-acetyl-p-benzoquinone imine (NAPQI), which depletes glutathione (GSH). Despite regulatory efforts, APAP-related liver injury remains a significant health concern. However, the cellular pathways that contribute to APAP-induced hepatotoxicity-particularly those involving iron metabolism-remain incompletely understood. To address this gap, we investigated whether ferritinophagy-the autophagic degradation of ferritin heavy chain (FTH) mediated by nuclear receptor coactivator 4 (NCOA4)-contributes to APAP-induced ALI. We administered APAP to C57BL/6 J mice and AML-12 hepatocyte cells and monitored markers of ferritinophagy, iron release, and hepatic injury. In parallel, we assessed the protective effect of the iron chelator deferoxamine (DFO) to validate the pathogenic role of free iron in vivo. First, in vivo studies revealed that APAP treatment significantly upregulated NCOA4 and FTH mRNA expression at 6 h post-exposure, coupled with increased LC3II protein and decreased p62, NCOA4, and FTH protein levels-hallmarks of active ferritinophagy. Importantly, pretreatment of mice with DFO markedly attenuated serum ALT elevation and histopathological liver damage, indicating that iron released via ferritinophagy critically mediates APAP-induced hepatotoxicity. To corroborate these findings at the cellular level, we measured free iron and ferritinophagy-related proteins in AML-12 cells following APAP exposure. We observed a progressive increase in free iron, with FTH protein level peaking at 2 h and subsequently declining by 6 and 12 h. Concurrently, LC3II protein level rose while NCOA4 protein decreased at 6 h, confirming activation of ferritinophagy in vitro. Although canonical ferroptosis is driven by iron-catalyzed lipid peroxidation (LPO), our APAP model did not exhibit key ferroptotic signatures. In vivo, malondialdehyde (MDA) level and Ptgs2 mRNA did not increase significantly, nor did GPX4 protein level decrease after APAP administration. Similarly, AML-12 cells failed to show a significant rise in C11-BODIPY oxidation after APAP treatment. Thus, APAP-induced ferritinophagy doesn't result in significant LPO. Instead of LPO, APAP exposure led to pronounced protein nitration and mitochondrial dysfunction. Specifically, the protein level of nitrotyrosine (NT) increased significantly at 6 h in vivo, while AML-12 cells exhibited elevated mitochondrial reactive oxygen species (MtROS) alongside reduced mitochondrial membrane potential (MMP) and ATP level. Collectively, these data suggest that ferritinophagy-derived iron triggers protein nitration and mitochondrial impairment, culminating in cell death. Given NCOA4's central role in ferritinophagy, we next evaluated whether its knock-down could mitigate APAP-induced mitochondrial dysfunction. NCOA4 siRNA in AML-12 cells restored ATP level, enhanced MMP, and reduced Fe2+ accumulation and MtROS generation after APAP treatment. Overall, our findings illuminate ferritinophagy-derived iron as a critical driver of APAP hepatotoxicity and nominate NCOA4 inhibition as a promising therapeutic strategy against APAP-induced ALI.
Collapse
Affiliation(s)
- Shi-Min Liang
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China
| | - Jie Shen
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China; Fujian Medical University, Fuzhou 350000, Fujian Province, China
| | - Rui-Ting Ma
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China; Henan University, Zhengzhou 450000, Henan Province, China
| | - Nan-Di Du
- Traditional Chinese Medicine Preparation Modern Technology Research and Development and Clinical Application Engineering Center of Henan Province, Luohe 462000, Henan Province, China; Key Laboratory of Traditional Chinese Medicine Preparation and Processing of Henan Province, Luohe 462000, Henan Province, China
| | - Rui Wang
- Traditional Chinese Medicine Preparation Modern Technology Research and Development and Clinical Application Engineering Center of Henan Province, Luohe 462000, Henan Province, China; Key Laboratory of Traditional Chinese Medicine Preparation and Processing of Henan Province, Luohe 462000, Henan Province, China
| | - Zuo-Min Wu
- Traditional Chinese Medicine Preparation Modern Technology Research and Development and Clinical Application Engineering Center of Henan Province, Luohe 462000, Henan Province, China; Key Laboratory of Traditional Chinese Medicine Preparation and Processing of Henan Province, Luohe 462000, Henan Province, China
| | - Min Shan
- Department of Neurology, Luohe Central Hospital, Luohe 462000, Henan Province, China
| | - Shi-Rong Liang
- Nanyang Institute of Technology, Nanyang 473000, Henan Province, China
| | - Wei-Rong Hu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe 462000, Henan, China
| | - Wei-Wei Sheng
- Nanjing Drum Tower Hospital, Nanjing 210000, Jiangsu Province, China
| | - De-Feng Huang
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China.
| | - Xiao-Hua Chen
- Department of Gastroenterology, Luohe Central Hospital, Luohe 462000, Henan Province, China.
| |
Collapse
|
44
|
Park H, Heo H, Song Y, Lee MS, Cho Y, Lee JS, Chang J, Lee S. TRIM22 functions as a scaffold protein for autophagy initiation. Anim Cells Syst (Seoul) 2025; 29:296-311. [PMID: 40337095 PMCID: PMC12057787 DOI: 10.1080/19768354.2025.2498926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 04/03/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Tripartite motif (TRIM) family proteins are increasingly recognized as important regulators of autophagy under various physiological and pathological conditions. TRIM22 has been previously shown to mediate autophagosome-lysosome fusion, but its potential role in earlier stages of autophagy remained unexplored. In this study, we investigated the function of TRIM22 in autophagy initiation. Overexpression of TRIM22 increased LC3-II levels and enhanced autophagic flux without affecting mTOR and AMPK activity. We found that TRIM22 interacts with components of both the ULK1 complex and the class III PI3K complex through distinct domains, recruiting them into punctate structures that represent autophagosome formation sites. Domain mapping revealed that the SPRY domain mediates interactions with ATG13 and FIP200, while the N-terminal region interacts with ULK1 and ATG101. The B-box domain of TRIM22 was identified as crucial for its interaction with Beclin-1, a key component of the class III PI3K complex. Deletion of this domain impaired the ability of TRIM22 to assemble the class III PI3K complex and induce autophagic flux. Interestingly, competitive binding assays revealed that Beclin-1 and PLEKHM1 bind to the same region of TRIM22, suggesting a mechanism for coordinating different stages of autophagy. The Alzheimer's disease-associated TRIM22 variant R321K maintained autophagy initiation function in both cell lines and primary neurons. These findings demonstrate that TRIM22 acts as a scaffold protein to promote autophagy initiation, in addition to its previously described role in autophagosome-lysosome fusion. Our study provides new insights into the molecular mechanisms by which TRIM proteins regulate multiple stages of the autophagy process.
Collapse
Affiliation(s)
- Hyungsun Park
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Hansol Heo
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeongseo Song
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Myung Shin Lee
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yebin Cho
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jae-Seon Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Seongju Lee
- Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
- Department of Anatomy, College of Medicine, Inha University, Incheon, Republic of Korea
| |
Collapse
|
45
|
Yin ZY, He SM, Zhang XY, Yu XC, Sheng KX, Fu T, Jiang YX, Xu L, Hu BX, Zhang JB, Li YY, Wang Q, Zhang BB, Qi YM, Adu-Amankwaah J, Zhou XY, Qi Q, Zhang B, Li CL. Apolipoprotein B100 acts as a tumor suppressor in ovarian cancer via lipid/ER stress axis-induced blockade of autophagy. Acta Pharmacol Sin 2025; 46:1445-1461. [PMID: 39880927 PMCID: PMC12032235 DOI: 10.1038/s41401-024-01470-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Ovarian cancer presents a significant treatment challenge due to its insidious nature and high malignancy. As autophagy is a vital cellular process for maintaining homeostasis, targeting the autophagic pathway has emerged as an avenue for cancer therapy. In the present study, we identify apolipoprotein B100 (ApoB100), a key modulator of lipid metabolism, as a potential prognostic biomarker of ovarian cancer. ApoB100 functioned as a tumor suppressor in ovarian cancer, and the knockdown of ApoB100 promoted ovarian cancer progression in vivo. Moreover, ApoB100 blocked autophagic flux, which was dependent on interfering with the lipid accumulation/endoplasmic reticulum (ER) stress axis. The effects of LFG-500, a novel synthetic flavonoid, on ApoB100 induction were confirmed using proteomics and lipidomics analyses. Herein, LFG-500 induced lipid accumulation and ER stress and subsequently blocked autophagy by upregulating ApoB100. Moreover, data from in vivo experiments further demonstrated that ApoB100, as well as the induction of the lipid/ER stress axis and subsequent blockade of autophagy, were responsible for the anti-tumor effects of LFG-500 on ovarian cancer. Hence, our findings support that ApoB100 is a feasible target of ovarian cancer associated with lipid-regulated autophagy and provide evidence for using LFG-500 for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ze-Yuan Yin
- The First Clinical Medical School, Xuzhou Medical University, Xuzhou, 221004, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221004, China
- Cardiovascular Sciences, The University of Manchester, Manchester, M13 9NT, UK
| | - Shi-Min He
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
- Department of Obstetrics and Gynecology, Zhenjiang Fourth People's Hospital, Zhenjiang, 212001, China
| | - Xin-Yuan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiao-Chen Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Kai-Xuan Sheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Tong Fu
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
| | - Yi-Xue Jiang
- Xuzhou Center for Disease Control and Prevention, Xuzhou, 221002, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Bing-Xuan Hu
- The First Clinical Medical School, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jing-Bo Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
| | - Yan-Yu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
| | - Bei-Bei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yun-Meng Qi
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China
| | | | - Xue-Yan Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Drug Ability Assessment; MOE Key Laboratory of Tumor Molecular Biology; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research; Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Bei Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, 221009, China.
| | - Cheng-Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
46
|
Ye K, Zhao X, Liu L, Ge F, Zheng F, Liu Z, Tian M, Han X, Gao X, Xia Q, Wang D. Comparative Analysis of Human Brain RNA-seq Reveals the Combined Effects of Ferroptosis and Autophagy on Alzheimer's Disease in Multiple Brain Regions. Mol Neurobiol 2025; 62:6128-6149. [PMID: 39710824 DOI: 10.1007/s12035-024-04642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024]
Abstract
Ferroptosis and autophagy are closely associated with Alzheimer's disease (AD). Elevated ferric ion levels can induce oxidative stress and chronic inflammatory responses, resulting in brain tissue damage and further neurological cell damage. Autophagy in Alzheimer's has a dual role. On one hand, it protects neurons by removing β-amyloid and cellular damage products caused by oxidative stress and inflammation. On the other hand, abnormal autophagy is linked to neuronal apoptosis and neurodegeneration. However, the intricate interplay between ferroptosis and autophagy in AD remains insufficiently explored. This study focuses on the roles of ferroptosis and autophagy in AD and their interconnection through bioinformatics analysis, shedding light on the disease. Ferroptosis and autophagy significantly correlate with the development and course of AD. Using PPI network analysis and unsupervised consistency clustering analysis, we uncovered a complex network of interactions between ferroptosis and autophagy during disease progression, demonstrating a significant congruence in their modification patterns. Functional analyses further demonstrated that ferroptosis and autophagy together affect the immunological status and synaptic regulation in hippocampal regions in patients with AD, which significantly impacts the start and progression of the disease.
Collapse
Affiliation(s)
- Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Mengjie Tian
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xinyu Han
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, 150000, Heilongjiang, China.
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| |
Collapse
|
47
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
48
|
Peng Y, Zhang J, Guo H, He Z, Jiang Y, Zhang S, Fan T. EPHB2 Promotes the Progression of Oral Squamous Cell Carcinoma Cells Through the Activation of VPS4A-Mediated Autophagy. Cancer Sci 2025; 116:1308-1323. [PMID: 40017157 PMCID: PMC12044653 DOI: 10.1111/cas.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent type of head and neck neoplasm distinguished by a high risk of metastasis and a poor prognosis. Nevertheless, the fundamental mechanisms of OSCC cell proliferation and metastasis remain poorly understood. Autophagy, as the principal intracellular degradation system, has been implicated in OSCC progression; however, its underlying mechanism remains unclear. In this study, transcriptomic sequencing analysis was performed using both The Cancer Genome Atlas (TCGA) database and samples from OSCC patients and revealed significant upregulation of EPHB2 expression, which is positively correlated with OSCC metastasis and a poor prognosis. In subsequent studies, we observed that the knockdown of EPHB2 resulted in the blockade of autophagic flux due to impaired lysosomal function, leading to inhibited proliferation, migration, and invasion in OSCC cells. Furthermore, the knockdown of EPHB2 significantly suppressed the expression of VPS4A, a key mediator that facilitates autolysosomal degradation. The overexpression of VPS4A restored lysosomal function and autophagic flux, thereby attenuating the inhibitory effects of EPHB2 knockdown on OSCC cell progression. The findings of this study demonstrate that the molecular mechanism underlying EPHB2 regulation of autophagic flux to promote OSCC progression is by regulating VPS4A activity and that EPHB2 may be a diagnostic biomarker and therapeutic target for OSCC prevention and treatment.
Collapse
Affiliation(s)
- Yongchun Peng
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Jianbo Zhang
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Haoxuan Guo
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Zhijing He
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Yi Jiang
- Department of PathologyThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Sheng Zhang
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Tengfei Fan
- Department of Oral and Maxillofacial SurgeryThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| |
Collapse
|
49
|
Lu K, Wijaya CS, Yao Q, Jin H, Feng L. Cuproplasia and cuproptosis, two sides of the coin. Cancer Commun (Lond) 2025; 45:505-524. [PMID: 39865459 PMCID: PMC12067395 DOI: 10.1002/cac2.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/03/2025] [Accepted: 01/19/2025] [Indexed: 01/28/2025] Open
Abstract
Copper is an essential micronutrient in the human body, mainly acting as a crucial cofactor required for a wide range of physiological processes across nearly all cell types. Recent advances revealed that tumor cells seize copper to fulfill their rapid proliferation, metastasis, immune evasion, and so on by reprogramming the copper regulatory network, defined as cuproplasia. Thus, targeting copper chelation to reduce copper levels has been considered a rational tumor therapy strategy. However, overloaded copper ions could be toxic, which leads to the aggregation of lipoylated mitochondrial proteins and the depletion of iron-sulfur clusters, ultimately resulting in cell death, termed cuproptosis. Upon its discovery, cuproptosis has attracted great interest from oncologists, and targeting cuproptosis by copper ionophores exhibits as a potential anti-tumor therapy. In this review, we present the underlying mechanisms involved in cuproplasia and cuproptosis. Additionally, we sum up the chemicals targeting either cuproplasia or cuproptosis for cancer therapy. Further attention should be paid to distinguishing cancer patients who are suitable for targeting cuproplasia or cuproptosis.
Collapse
Affiliation(s)
- Kaizhong Lu
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Chandra Sugiarto Wijaya
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qinghua Yao
- Department of OncologyThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityXinhua Hospital of Zhejiang ProvinceHangzhouZhejiangP. R. China
- Key Laboratory for Research on the Pathogenesis of Inflammation‐Cancer Transformation in Intestinal DiseasesZhejiang Engineering Research Center of Intelligent Equipment of Chronic Chinese and Western MedicineHangzhouZhejiangP. R. China
| | - Hongchuan Jin
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| | - Lifeng Feng
- Department of Medical OncologyZhejiang Key Laboratory of Multi‐omics Precision Diagnosis and Treatment of Liver DiseasesCancer Center of Zhejiang UniversitySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP. R. China
| |
Collapse
|
50
|
Fujioka Y, Otani K, Okada M, Yamawaki H. Senescent cardiac fibroblasts-derived extracellular vesicles induced autophagy in cardiac fibroblasts via suppression of ras homolog enriched in brain like 1. J Pharmacol Sci 2025; 158:1-7. [PMID: 40121052 DOI: 10.1016/j.jphs.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/28/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
Cardiac fibroblasts (CFs) play roles in the maintenance of myocardial tissue structure. Cellular senescence is a state of stable cell cycle arrest. We previously reported that extracellular vesicles (EV) secreted by doxorubicin (DOX, 1000 nM)-induced senescent CFs (D103-EV) caused autophagy in CFs. EV mediate cell-to-cell communication through the transfer of microRNA (miRNA). In this study, we focused on miRNA contained in EV and aimed to elucidate mechanisms underlying the autophagy induction by D103-EV in CFs. Neonatal rat CFs (NRCFs) were treated with DOX for the induction of cellular senescence. EV were isolated from culture media of NRCFs. miRNA was extracted from the EV and miRNA profiles were analyzed using miRNA-seq. Seven miRNAs were significantly decreased, whereas 14 miRNAs were significantly increased in D103-EV compared with the vehicle-treated NRCFs-derived EV. Among the target genes of 14 miRNAs, Rhebl1 was identified. D103-EV significantly increased microtubule-associated protein 1 light chain 3 (LC3)-II/LC3-I and decreased protein expression of Ras homolog enriched in brain like 1 (RHEBL1) in NRCFs. Small interfering RNA against Rhebl1 tended to increase LC3-II/LC3-I. In conclusion, we for the first time revealed that the senescent NRCFs-derived EV induced autophagy in NRCFs via the suppression of RHEBL1 protein.
Collapse
Affiliation(s)
- Yusei Fujioka
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|