1
|
Cipriano G, Thum T, Weber N. Exploring hiPSC-CM replacement therapy in ischemic hearts. Basic Res Cardiol 2025:10.1007/s00395-025-01117-w. [PMID: 40493218 DOI: 10.1007/s00395-025-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Revised: 05/26/2025] [Accepted: 05/27/2025] [Indexed: 06/12/2025]
Abstract
Ischemic heart disease is one of the leading causes of heart failure and death worldwide. The loss of cardiomyocytes following a myocardial infarction drives the remodeling process, which, in most cases, ultimately leads to heart failure. Since the available treatment options only slow down the remodeling process without tackling the causes of heart failure onset (i.e., cardiomyocyte loss and inability of the remaining cardiomyocytes to enter the cell cycle and regenerate the heart), in the last two decades, cardiovascular research focused on finding alternative solutions to regenerate the heart. So far, the investigated approaches include a variety of methods aiming at manipulation of non-coding RNAs, such as long non-coding RNA (lncRNA), circular RNA (circRNA), and microRNA (miRNA), and growth factors to enable the cardiomyocytes to re-enter the cell cycle, direct reprogramming of fibroblasts into cardiomyocytes (CM), and CM replacement therapy, all of them with the main goal to replace the loss of cardiomyocytes and restore the heart function. The development of reprogramming protocols from somatic cells to induced pluripotent stem cells (iPSCs) by Yamanaka and Takahashi, along with advancements in differentiation protocols to generate almost pure populations of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), has fostered optimism in cardiac regenerative medicine. Despite these advancements, critical concerns arose regarding the survival and retention of the engrafted cells, arrhythmogenicity, and immune response. Over time, much effort has been put into enhancing iPSC-CM therapy with different methods, ranging from anti-apoptotic small molecule-based approaches to tissue engineering. In this review, we discuss the evolution of cardiac cell therapy, highlighting recent advancements and the remaining challenges that must be overcome to translate this promising approach into clinical practice.
Collapse
Affiliation(s)
- Giuseppe Cipriano
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625, Hannover, Germany.
- Hannover Medical School, Germany, Dean's Office for Academic Career Development, nextGENERATION Medical Scientist Program, Hannover, Germany.
| |
Collapse
|
2
|
Dattoli AA, Kelemen Y, Huang X. Reprogramming of Different Cell Lineages into Functional β-Cell Substitutes. Cell Reprogram 2025. [PMID: 40489334 DOI: 10.1089/cell.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025] Open
Abstract
Since its first use in 1922, insulin therapy has transformed diabetes from a fatal disease to a manageable condition. However, long-term insulin injections lead to significant complications. β-cell replacement, derived from either a limited number of deceased donors or embryonic stem cells, offers an encouraging alternative. While these procedures allow patients to be insulin-independent, they still require systemic immunosuppressants to prevent graft rejection, which poses immunological challenges. Direct reprogramming holds considerable promise as a method for generating β-cells from various sources, enabling autologous therapies that mitigate the risk of immune rejection and eliminate the need to harvest cells from embryos. This review provides an overview of the latest advances in direct reprogramming strategies, with a focus on key transcriptional regulators that drive phenotypic conversion and maintenance of various cell types into β-like cells.
Collapse
Affiliation(s)
- Anna A Dattoli
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yosip Kelemen
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xiaofeng Huang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Yang D, Guo X, Xi R. The Chromatin Accessibility Landscape in Cell Plasticity and Reprogramming: Understanding and Overcoming the Barriers. Bioessays 2025; 47:e70005. [PMID: 40207579 DOI: 10.1002/bies.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025]
Abstract
Cell plasticity enables the dynamic changes in cell identities necessary for normal development and tissue repair. Induced cell reprogramming, which leverages this plasticity, holds great promise for regenerative medicine and personalized therapies. However, the success of cell reprogramming is often impeded by various molecular barriers, such as epigenetic marks, cell senescence, and the activation of alternative or refractory routes. In this review, we examine the cell reprogramming events that occur within or between germ layers and adult stem cell lineages and propose that the overall similarity in the pre-existing chromatin accessibility landscape is a major determinant of reprogramming efficiency from one cell type to another. A better understanding of the regulation and control of chromatin accessibility should facilitate the development of new methods and strategies to improve cell reprogramming efficiency and advance translational research.
Collapse
Affiliation(s)
- Diyi Yang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xingting Guo
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
| | - Rongwen Xi
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Lee Y, Yoo S, Cho S, Kim I, Kim IS. Advances in transcription factor delivery: Target selection, engineering strategies, and delivery platforms. J Control Release 2025; 384:113885. [PMID: 40425091 DOI: 10.1016/j.jconrel.2025.113885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 05/03/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Recent advances in delivery systems for transcription factors (TFs) have opened new therapeutic opportunities in regenerative medicine, cancer therapy, and genetic disorders. However, effective TF delivery still faces substantial obstacles, including limited cellular uptake, inefficient nuclear translocation, low cargo stability, and insufficient target specificity. Furthermore, artificial TFs have enabled targeted modulation of gene expression, further expanding their therapeutic potential. This review comprehensively discusses current progress in TF delivery methodologies, including direct TF protein delivery using cell-penetrating peptides, and extracellular vesicles, as well as TF gene delivery approaches utilizing both lipid-based nanoparticles and viral strategies. Notably, engineered nanoparticles have emerged as promising platforms due to their precise control over TF delivery, improved specificity, and minimized off-target effects. Despite these significant advancements, major hurdles in delivery efficiency, cargo stability, and overall safety persist. Overcoming these obstacles will be essential to accelerate the clinical translation of TF-based therapeutics for a broad spectrum of diseases.
Collapse
Affiliation(s)
- Yeji Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, South Korea
| | - Seongkyeong Yoo
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea
| | - Seongeon Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, South Korea
| | - Iljin Kim
- Department of Pharmacology and Program in Biomedical Science and Engineering, Inha University College of Medicine, Incheon 22212, South Korea; Research Center for Controlling Intercellular Communication, Inha University College of Medicine, Incheon 22212, South Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea; Chemical and Biological Integrative Research Center, Biomedical Research Institute, Korea Institute Science and Technology, Seoul 02792, South Korea.
| |
Collapse
|
5
|
Dong S, Guo K, Zhao N, Xu Y. Au@Pt Nanoparticles Enhance Maturation and Contraction of Mouse Embryonic Stem Cells-Derived and Neonatal Mouse Cardiomyocytes. Tissue Eng Regen Med 2025:10.1007/s13770-025-00724-x. [PMID: 40392512 DOI: 10.1007/s13770-025-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Cardiomyocytes derived from pluripotent stem cells (PSCs) hold great promise in heart damage repair in vivo and drug screening in vitro. However, PSC-derived cardiomyocytes exhibit immature structural and functional properties, which hinder their widespread application. To address this challenge, we designed bimetallic gold-platinum nanoparticles (Au@Pt NPs) endowed with intrinsic oxidase-like, peroxidase-like, and catalase-like activities and high electrical conductivity for promoting cardiomyocyte maturation. METHODS Mouse embryonic stem cell (ESC)-derived and neonatal mouse cardiomyocytes were used to evaluate the effects of Au@Pt NPs on cardiomyocyte maturation. The expression and alignment of cardiomyocyte myofibril proteins were analyzed by qRT-PCR, western blot, and immunofluorescence staining. Cellular functionality was analyzed by the multi-electrode array. RESULTS By adding Au@Pt NPs at different stages of cardiac differentiation of mouse ESCs, we found that treatment with Au@Pt NPs at the late stage could promote the maturation of differentiated cardiomyocytes, evidenced by increased expression of mature myofibril protein isoforms, more aligned myofibrils, and enhanced sarcomere length. Additionally, Au@Pt NPs can enhance the expression of mature sarcomere components, increase sarcomere length, and significantly boost beating amplitude and conduction velocity in neonatal mouse cardiomyocytes. Furthermore, Au@Pt NPs promoted cell cycle arrest, increased intracellular reactive oxygen species levels, and promoted contractility by inducing the ERK1/2 signaling pathway. CONCLUSION Our results indicate that the bimetallic Au@Pt NPs with intrinsic oxidase-like, peroxidase-like, and catalase-like activities and high electrical conductivity could promote the maturation of ESCs-derived and neonatal mouse cardiomyocytes, providing a promising approach for cardiomyocyte maturation and cell therapy for cardiovascular disease.
Collapse
Affiliation(s)
- Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, 510630, China
| | - Kangli Guo
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China.
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, 600# Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
6
|
Appleton E, Tao J, Liu S, Glass C, Fonseca G, Church G. Machine-guided cell-fate engineering. Cell Rep 2025; 44:115726. [PMID: 40382774 DOI: 10.1016/j.celrep.2025.115726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/06/2025] [Accepted: 04/30/2025] [Indexed: 05/20/2025] Open
Abstract
The creation of induced pluripotent stem cells (iPSCs) has enabled scientists to explore the function, mechanisms, and differentiation processes of many types of cells. One of the fastest and most efficient approaches is transcription factor (TF) over-expression. However, finding the right combination of TFs to over-express to differentiate iPSCs directly into other cell types is a difficult task. Here, we describe a machine-learning (ML) pipeline, called CellCartographer, that uses chromatin accessibility and transcriptomics data to design multiplex TF pooled-screening experiments for cell-type conversions that then may be iteratively refined. We validate this method by differentiating iPSCs into twelve cell types at low efficiency in preliminary screens and iteratively refine our TF combinations to achieve high-efficiency differentiation for six of these cell types in <6 days. Finally, we functionally characterize iPSC-derived cytotoxic T cells (iCytoTs), regulatory T cells (iTregs), type II astrocytes (iAstIIs), and hepatocytes (iHeps) to validate functionally accurate differentiation.
Collapse
Affiliation(s)
- Evan Appleton
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Jenhan Tao
- Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Songlei Liu
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Glass
- Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Gregory Fonseca
- Meakins-Christe Laboratories, Research Institute of McGill University Health Centre, Montréal, QC H4A-3J1, Canada; Quantitative Life Sciences, McGill University, Montréal, QC H4A-3J1, Canada; Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC H4A-3J1, Canada
| | - George Church
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Kim J, Kim S, Hwang Y, An S, Park J, Kwon YB, Cho B, Kwon D, Kim Y, Kang S, Kim YK, Kim J. Electromagnetized MXenes Enhance the Efficient Direct Reprogramming of Dopamine Neurons for Parkinson's Disease Therapy. ACS NANO 2025; 19:16744-16759. [PMID: 40257388 DOI: 10.1021/acsnano.5c01457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
MXenes, a two-dimensional transition metal carbide and nitride, have shown significant potential in various biological applications. In particular, the distinct properties of MXenes─including their functionalizable surface, biocompatibility, and conductive characteristics, make them highly promising materials for advancing biomedical technologies. Here, we report that MXene, under specific electromagnetic field (EMF) conditions, effectively promotes the direct lineage reprogramming of induced dopaminergic (iDA) neurons both in vitro and in vivo. Remarkably, we found that electromagnetized MXene leads to specific activation of histone acetylation during the induced dopaminergic neuronal reprogramming process and efficiently alleviates symptoms in a mouse model of Parkinson's disease (PD). Moreover, MXene-mediated electromagnetic stimulation effectively promotes the direct reprogramming of human iDA neurons from skin fibroblasts. Therefore, our study highlights MXene's application in cell reprogramming, offering promising advancements in regenerative medicine through improved efficiency and reliability.
Collapse
Affiliation(s)
- Junyeop Kim
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Sumin Kim
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Yerim Hwang
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Saemin An
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Jeonghyun Park
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Yoo-Bin Kwon
- Sustainable Nanochemistry Laboratory, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Byounggook Cho
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Daeyeol Kwon
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Yunkyung Kim
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Soi Kang
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Young-Kwan Kim
- Sustainable Nanochemistry Laboratory, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| | - Jongpil Kim
- Institute for Stem Cells & Regenerative Medicine, Department of Chemistry, Dongguk University, Seoul 10326, Republic of Korea
| |
Collapse
|
8
|
Lin L, Lam J, Ching WK, Qiu Q, Sun L, Min B. Finite-Time Stabilizers for Large-Scale Stochastic Boolean Networks. IEEE TRANSACTIONS ON CYBERNETICS 2025; 55:2098-2109. [PMID: 40100689 DOI: 10.1109/tcyb.2025.3545689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
This article presents a distributed pinning control strategy aimed at achieving global stabilization of Markovian jump Boolean control networks. The strategy relies on network matrix information to choose controlled nodes and adopts the algebraic state space representation approach for designing pinning controllers. Initially, a sufficient criterion is established to verify the global stability of a given Markovian jump Boolean network (MJBN) with probability one at a specific state within finite time. To stabilize an unstable MJBN at a predetermined state, the selection of pinned nodes involves removing the minimal number of entries, ensuring that the network matrix transforms into a strictly lower (or upper) triangular form. For each pinned node, two types of state feedback controllers are developed: 1) mode-dependent and 2) mode-independent, with a focus on designing a minimally updating controller. The choice of controller type is determined by the feasibility condition of the mode-dependent pinning controller, which is articulated through the solvability of matrix equations. Finally, the theoretical results are illustrated by studying the T cell large granular lymphocyte survival signaling network consisting of 54 genes and 6 stimuli.
Collapse
|
9
|
Xu Q, Chen X, Zhao C, Liu Y, Wang J, Ao X, Ding W. Cell cycle arrest of cardiomyocytes in the context of cardiac regeneration. Front Cardiovasc Med 2025; 12:1538546. [PMID: 40357436 PMCID: PMC12066773 DOI: 10.3389/fcvm.2025.1538546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
The limited capacity of adult mammalian cardiomyocytes to undergo cell division and proliferation is one of the key factors contributing to heart failure. In newborn mice, cardiac proliferation occurs during a brief window, but this proliferative capacity diminishes by 7 days after birth. Current studies on cardiac regeneration focused on elucidating changes in regulatory factors within the heart before and after this proliferative window, aiming to determine whether potential association between these factors and cell cycle arrest in cardiomyocytes. Facilitating the re-entry of cardiomyocytes into the cell cycle or reversing their exit from it represents a critical strategy for cardiac regeneration. This paper provides an overview of the role of cell cycle arrest in cardiac regeneration, briefly describes cardiomyocyte proliferation and cardiac regeneration, and systematically summarizes the regulation of the cell cycle arrest in cardiomyocytes, and the potential metabolic mechanisms underlying cardiomyocyte cycle arrest. Additionally, we highlight the development of cardiovascular disease drugs targeting cardiomyocyte cell cycle regulation and their status in clinical treatment. Our goal is to outline strategies for promoting cardiac regeneration and repair following cardiac injury, while also pointing toward future research directions that may offer new technologies and prospects for treating cardiovascular diseases, such as myocardial infarction, arrhythmia and heart failure.
Collapse
Affiliation(s)
- Qingling Xu
- Department of Comprehensive Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xinhui Chen
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chunyige Zhao
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, Shandong, China
| | - Jianxun Wang
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiang Ao
- Department of Comprehensive Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wei Ding
- Department of Comprehensive Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
10
|
Wang NB, Lende-Dorn BA, Beitz AM, Han P, Adewumi HO, O'Shea TM, Galloway KE. Proliferation history and transcription factor levels drive direct conversion to motor neurons. Cell Syst 2025; 16:101205. [PMID: 40086434 PMCID: PMC12006972 DOI: 10.1016/j.cels.2025.101205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 11/07/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
The sparse and stochastic nature of conversion has obscured our understanding of how transcription factors (TFs) drive cells to new identities. To overcome this limit, we develop a tailored, high-efficiency conversion system that increases the direct conversion of fibroblasts to motor neurons 100-fold. By tailoring the cocktail to a minimal set of transcripts, we reduce extrinsic variation, allowing us to examine how proliferation and TFs synergistically drive conversion. We show that cell state-as set by proliferation history-defines how cells interpret the levels of TFs. Controlling for proliferation history and titrating each TF, we find that conversion correlates with levels of the pioneer TF Ngn2. By isolating cells by both their proliferation history and Ngn2 levels, we demonstrate that levels of Ngn2 expression alone are insufficient to predict conversion rates. Rather, proliferation history and TF levels combine to drive direct conversion. Finally, increasing the proliferation rate of adult human fibroblasts generates morphologically mature induced human motor neurons at high rates.
Collapse
Affiliation(s)
- Nathan B Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brittany A Lende-Dorn
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam M Beitz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Patrick Han
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Honour O Adewumi
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Jia Z, Xiang L, Yu Z, Wang L, Fang J, Liu M, Wu X, Lu Z, Wang L. Enhanced fatty acid oxidation via SCD1 downregulation fuels cardiac reprogramming. Mol Ther 2025; 33:1749-1768. [PMID: 40007118 PMCID: PMC11997510 DOI: 10.1016/j.ymthe.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/05/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025] Open
Abstract
Direct cardiac reprogramming has emerged as a promising therapeutic strategy to remuscularize injured myocardium. This approach converts non-contractile fibroblasts to induced cardiomyocytes (iCMs) that spontaneously contract, yet the intrinsic metabolic requirements driving cardiac reprogramming are not fully understood. Using single-cell metabolic flux estimation and flux balance analysis, we characterized the metabolic heterogeneity of iCMs and identified fatty acid oxidation (FAO) as a critical factor in iCM conversion. Both pharmacological and genetic inhibition of FAO impairs iCM generation. We further identified stearoyl-coenzyme A desaturase 1 (SCD1) as a metabolic switch that suppresses iCM reprogramming. Mechanistically, Scd1 knockdown activates PGC1α and PPARβ signaling, enhancing FAO-related gene expression and mitochondrial biogenesis, thereby improving reprogramming efficacy. Pharmacological manipulations targeting SCD1, PGC1α, and the PPARβ signaling axis further improved iCM generation and mitochondrial function. Our findings collectively highlight FAO as a key determinant of iCM fate and offer new therapeutic avenues for advancing reprogramming strategies.
Collapse
Affiliation(s)
- Zhenhua Jia
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Lilin Xiang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cardiovascular Intervention, Wuhan 430071, China
| | - Zhangyi Yu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Lenan Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Junyan Fang
- College of Life Science, Wuhan University, Wuhan 430071, China
| | - Mengxin Liu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Xin Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China; Hubei Provincial Clinical Research Center for Cardiovascular Intervention, Wuhan 430071, China.
| | - Li Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Institute of Myocardial Injury and Repair, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
12
|
Darieva Z, Zarrineh P, Phillips N, Mallen J, Garcia Mora A, Donaldson I, Bridoux L, Douglas M, Dias Henriques SF, Schulte D, Birket MJ, Bobola N. Ubiquitous MEIS transcription factors actuate lineage-specific transcription to establish cell fate. EMBO J 2025; 44:2232-2262. [PMID: 40021842 PMCID: PMC12000411 DOI: 10.1038/s44318-025-00385-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025] Open
Abstract
Control of gene expression is commonly mediated by distinct combinations of transcription factors (TFs). This cooperative action allows the integration of multiple biological signals at regulatory elements, resulting in highly specific gene expression patterns. It is unclear whether combinatorial binding is also necessary to bring together TFs with distinct biochemical functions, which collaborate to effectively recruit and activate RNA polymerase II. Using a cardiac differentiation model, we find that the largely ubiquitous homeodomain proteins MEIS act as actuators, fully activating transcriptional programs selected by lineage-restricted TFs. Combinatorial binding of MEIS with lineage-enriched TFs, GATA, and HOX, provides selectivity, guiding MEIS to function at cardiac-specific enhancers. In turn, MEIS TFs promote the accumulation of the methyltransferase KMT2D to initiate lineage-specific enhancer commissioning. MEIS combinatorial binding dynamics, dictated by the changing dosage of its partners, drive cells into progressive stages of differentiation. Our results uncover tissue-specific transcriptional activation as the result of ubiquitous actuator TFs harnessing general transcriptional activator at tissue-specific enhancers, to which they are directed by binding with lineage- and domain-specific TFs.
Collapse
Affiliation(s)
- Zoulfia Darieva
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Peyman Zarrineh
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Naomi Phillips
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joshua Mallen
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Araceli Garcia Mora
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ian Donaldson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Laure Bridoux
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Megan Douglas
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Dorothea Schulte
- Goethe University, University Hospital Frankfurt, Neurological Institute (Edinger Institute), Frankfurt am Main, Germany
| | - Matthew J Birket
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
13
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu G, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2025; 58:e13775. [PMID: 39551613 PMCID: PMC11969255 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingChina
| | - Jingyue Liu
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Guang‐Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Shuohao Sun
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
14
|
Hayes JB, Bainbridge AM, Burnette DT. Alpha-actinin-1 stabilizes focal adhesions to facilitate sarcomere assembly in cardiac myocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.28.645933. [PMID: 40196508 PMCID: PMC11974845 DOI: 10.1101/2025.03.28.645933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cardiac sarcomere assembly is a highly orchestrated process requiring integration between intracellular contractile components and extracellular adhesions. While α-actinin-2 (ACTN2) is well known for its structural role at Z-discs, the function of the "non-muscle" paralog α-actinin-1 (ACTN1) in cardiomyocytes remains unclear. Using human induced pluripotent stem cell-derived cardiac myocytes (hiCMs), we demonstrate that ACTN1 is essential for sarcomere assembly. siRNA-mediated depletion of ACTN1 disrupted Z-line formation and impaired sarcomere organization, defects that were rescued by exogenous ACTN1 but not ACTN2, revealing non-redundant functions. Unlike ACTN2, ACTN1 localized predominantly to focal adhesions and was required for adhesion maturation, as evidenced by reduced adhesion size and number following ACTN1 depletion. Live-cell imaging of vinculin dynamics showed decreased stability of adhesion-associated vinculin in ACTN1-deficient cells, whereas paxillin dynamics were unaffected. These results suggest that ACTN1 stabilizes focal adhesions to promote effective force transmission during sarcomere assembly.
Collapse
Affiliation(s)
- James B Hayes
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| | - Anna M Bainbridge
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
- University of Tennessee, Knoxville, TN, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine Basic Sciences, Nashville, TN, USA
| |
Collapse
|
15
|
Zhu F, Nie G. Cell reprogramming: methods, mechanisms and applications. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:12. [PMID: 40140235 PMCID: PMC11947411 DOI: 10.1186/s13619-025-00229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.
Collapse
Affiliation(s)
- Fei Zhu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
16
|
Almeida M, Inácio JM, Vital CM, Rodrigues MR, Araújo BC, Belo JA. Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair. Int J Mol Sci 2025; 26:3063. [PMID: 40243729 PMCID: PMC11988544 DOI: 10.3390/ijms26073063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death globally, with myocardial infarction (MI) being a major contributor. The current therapeutic approaches are limited in effectively regenerating damaged cardiac tissue. Up-to-date strategies for heart regeneration/reconstitution aim at cardiac remodeling through repairing the damaged tissue with an external cell source or by stimulating the existing cells to proliferate and repopulate the compromised area. Cell reprogramming is addressed to this challenge as a promising solution, converting fibroblasts and other cell types into functional cardiomyocytes, either by reverting cells to a pluripotent state or by directly switching cell lineage. Several strategies such as gene editing and the application of miRNA and small molecules have been explored for their potential to enhance cardiac regeneration. Those strategies take advantage of cell plasticity by introducing reprogramming factors that regress cell maturity in vitro, allowing for their later differentiation and thus endorsing cell transplantation, or promote in situ cell proliferation, leveraged by scaffolds embedded with pro-regenerative factors promoting efficient heart restoration. Despite notable advancements, important challenges persist, including low reprogramming efficiency, cell maturation limitations, and safety concerns in clinical applications. Nonetheless, integrating these innovative approaches offers a promising alternative for restoring cardiac function and reducing the dependency on full heart transplants.
Collapse
Affiliation(s)
| | - José M. Inácio
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (M.A.); (C.M.V.); (M.R.R.); (B.C.A.)
| | | | | | | | - José A. Belo
- Stem Cells and Development Laboratory, iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal; (M.A.); (C.M.V.); (M.R.R.); (B.C.A.)
| |
Collapse
|
17
|
Shameem M, Olson SL, Marron Fernandez de Velasco E, Kumar A, Singh BN. Cardiac Fibroblasts: Helping or Hurting. Genes (Basel) 2025; 16:381. [PMID: 40282342 PMCID: PMC12026832 DOI: 10.3390/genes16040381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Cardiac fibroblasts (CFs) are the essential cell type for heart morphogenesis and homeostasis. In addition to maintaining the structural integrity of the heart tissue, muscle fibroblasts are involved in complex signaling cascades that regulate cardiomyocyte proliferation, migration, and maturation. While CFs serve as the primary source of extracellular matrix proteins (ECM), tissue repair, and paracrine signaling, they are also responsible for adverse pathological changes associated with cardiovascular disease. Following activation, fibroblasts produce excessive ECM components that ultimately lead to fibrosis and cardiac dysfunction. Decades of research have led to a much deeper understanding of the role of CFs in cardiogenesis. Recent studies using the single-cell genomic approach have focused on advancing the role of CFs in cellular interactions, and the mechanistic implications involved during cardiovascular development and disease. Arguably, the unique role of fibroblasts in development, tissue repair, and disease progression categorizes them into the friend or foe category. This brief review summarizes the current understanding of cardiac fibroblast biology and discusses the key findings in the context of development and pathophysiological conditions.
Collapse
Affiliation(s)
- Mohammad Shameem
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Shelby L. Olson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Akhilesh Kumar
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bhairab N. Singh
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN 55455, USA;
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Punde A, Rayrikar A, Maity S, Patra C. Extracellular matrix in cardiac morphogenesis, fibrosis, and regeneration. Cells Dev 2025:204023. [PMID: 40154789 DOI: 10.1016/j.cdev.2025.204023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 03/14/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
The extracellular matrix (ECM) plays a crucial role in providing structural integrity and regulating cell communication essential for organ development, homeostasis, and regeneration, including hearts. Evidence indicates that disruptions in the spatiotemporal expression or alterations in ECM components lead to cardiac malformations, including a wide range of congenital heart diseases (CHDs). Furthermore, research on injured hearts across various vertebrate species, some of which show effective regeneration while others experience irreversible fibrosis, underscores the significance of ECM molecules in cardiac regeneration. This review presents an overview of heart development and the dynamics of ECM during cardiac morphogenesis, beginning with the formation of the contractile heart tube and advancing to the development of distinct chambers separated by valves to facilitate unidirectional blood flow. Furthermore, we discuss research emphasizing the multifaceted roles of secreted molecules in mediating fibrosis and regeneration following myocardial injury.
Collapse
Affiliation(s)
- Ashwini Punde
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Amey Rayrikar
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Shreya Maity
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India
| | - Chinmoy Patra
- Department of Developmental Biology, Agharkar Research Institute, Pune, Maharashtra, 411004, India.
| |
Collapse
|
19
|
Carlson WD, Bosukonda D, Keck PC, Bey P, Tessier SN, Carlson FR. Cardiac preservation using ex vivo organ perfusion: new therapies for the treatment of heart failure by harnessing the power of growth factors using BMP mimetics like THR-184. Front Cardiovasc Med 2025; 12:1535778. [PMID: 40171539 PMCID: PMC11960666 DOI: 10.3389/fcvm.2025.1535778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
As heart transplantation continues to be the gold standard therapy for end-stage heart failure, the imbalance between the supply of hearts, and the demand for them, continues to get worse. In the US alone, with less than 4,000 hearts suitable for transplant and over 100,000 potential recipients, this therapy is only available to a very few. The use of hearts Donated after Circulatory Death (DCD) and Donation after Brain Death (DBD) using ex vivo machine perfusion (EVMP) is a promising approach that has already increased the availability of suitable organs for heart transplantation. EVMP offers the promise of enabling the expansion of the overall number of heart transplants and lower rates of early graft dysfunction. These are realized through (1) safe extension of the time between procurement and transplantation and (2) ex vivo assessment of preserved hearts. Notably, ex vivo perfusion has facilitated the donation of DCD hearts and improved the success of transplantation. Nevertheless, DCD hearts suffer from serious preharvest ischemia/reperfusion injury (IRI). Despite these developments, only 40% of hearts offered for transplantation can be utilized. These devices do offer an opportunity to evaluate donor hearts for transplantation, resuscitate organs previously deemed unsuitable for transplantation, and provide a platform for the development of novel therapeutics to limit cardiac injury. Bone Morphogenetic Protein (BMP) signaling is a new target which holds the potential for ameliorating myocardial IRI. Recent studies have demonstrated that BMP signaling has a significant role in blocking the deleterious effects of injury to the heart. We have designed novel small peptide BMP mimetics that act via activin receptor-like kinase (ALK3), a type I BMP receptor. They are capable of (1) inhibiting inflammation and apoptosis, (2) blocking/reversing the epithelial-mesenchymal transition (EMT) and fibrosis, and (3) promoting tissue regeneration. In this review, we explore the promise that novel therapeutics, including these BMP mimetics, offer for the protection of hearts against myocardial injury during ex vivo transportation for cardiac transplantation. This protection represents a significant advance and a promising ex vivo therapeutic approach to expanding the donor pool by increasing the number of transplantable hearts.
Collapse
Affiliation(s)
- William D. Carlson
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | - Dattatreyamurty Bosukonda
- Division of Cardiology, Mass General Hospital/Harvard, Boston, MA, United States
- Therapeutics by Design, Weston, MA, United States
| | | | - Philippe Bey
- Therapeutics by Design, Weston, MA, United States
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children’s Hospital, Boston, MA, United States
| | | |
Collapse
|
20
|
Peng WG, Getachew A, Zhou Y. Decoding the epigenetic and transcriptional basis of direct cardiac reprogramming. Stem Cells 2025; 43:sxaf002. [PMID: 39851272 PMCID: PMC11904897 DOI: 10.1093/stmcls/sxaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
Heart disease, particularly resulting from myocardial infarction (MI), continues to be a leading cause of mortality, largely due to the limited regenerative capacity of the human heart. Current therapeutic approaches seek to generate new cardiomyocytes from alternative sources. Direct cardiac reprogramming, which converts fibroblasts into induced cardiomyocytes (iCMs), offers a promising alternative by enabling in situ cardiac regeneration and minimizing tumorigenesis concerns. Here we review recent advancements in the understanding of transcriptional and epigenetic mechanisms underlying cardiac reprogramming, with a focus on key early-stage molecular events, including epigenetic barriers and regulatory mechanisms that facilitate reprogramming. Despite substantial progress, human cardiac fibroblast reprogramming and iCM maturation remain areas for further exploration. We also discuss the combinatorial roles of reprogramming factors in governing transcriptional and epigenetic changes. This review consolidates current knowledge and proposes future directions for promoting the translational potential of cardiac reprogramming techniques.
Collapse
Affiliation(s)
- William G Peng
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Anteneh Getachew
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| | - Yang Zhou
- Department of Biomedical Engineering, Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, United States
| |
Collapse
|
21
|
Motohashi T, Aoki H, Kunisada T, Osawa M. Epithelial-Mesenchymal Transition Functions as a Driver for the Direct Conversion of Somatic Cells. Stem Cells Dev 2025; 34:117-126. [PMID: 39834178 DOI: 10.1089/scd.2024.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Direct conversion is an innovative new technology that involves the conversion of somatic cells to target cells without passing through a pluripotent state. Forced expression alone or in combination with transcription factors (TFs), which are critical for the generation of target cells, is important for successful direct conversion. However, most somatic cells are unable to directly convert into target cells even with forced expression. We herein demonstrated that epithelial-mesenchymal transition (EMT) is advantageous for the direct conversion of somatic cells. We previously reported that mouse keratinocytes converted into neural crest cells (NCCs) following the forced expression of the NCC specifier Sox10 in combination with expression of the TFs Snail1, Slug, Twist1, and Tcfap2a (4 TFs). 4 TFs induced EMT in keratinocytes; therefore, EMT was considered to be advantageous for direct conversion. The direct conversion of mouse mammary gland epithelial cells (NMuMG cells) into NCCs was not observed with the forced expression of Sox10, but was detected with the expression of Sox10 following the induction of EMT by 4 TFs. Furthermore, TGF-β1-induced EMT and Sox10 expression directly converted NMuMG cells into NCCs. These results suggest that the induction of EMT in somatic cells is advantageous for direct conversion.
Collapse
Affiliation(s)
- Tsutomu Motohashi
- Department of Molecular Design and Synthesis, Functional Biology Division, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hitomi Aoki
- Department of Stem Cell and Regenerative Medicine, Biological Principles Division, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takahiro Kunisada
- Department of Stem Cell and Regenerative Medicine, Biological Principles Division, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masatake Osawa
- Department of Molecular Design and Synthesis, Functional Biology Division, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
22
|
Mirizio G, Sampson S, Iwafuchi M. Interplay between pioneer transcription factors and epigenetic modifiers in cell reprogramming. Regen Ther 2025; 28:246-252. [PMID: 39834592 PMCID: PMC11745816 DOI: 10.1016/j.reth.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
The generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells by Yamanaka factors, including pioneer transcription factors (TFs), has greatly reshaped our traditional understanding of cell plasticity and demonstrated the remarkable potential of pioneer TFs. In addition to iPSC reprogramming, pioneer TFs are pivotal in direct reprogramming or transdifferentiation where somatic cells are converted into different cell types without passing through a pluripotent state. Pioneer TFs initiate a reprogramming process through chromatin opening, thereby establishing competence for new gene regulatory programs. The action of pioneer TFs is both influenced by and exerts influence on epigenetic regulation. Despite significant advances, many direct reprogramming processes remain inefficient, which limits their reliability for clinical applications. In this review, we discuss the molecular mechanisms underlying pioneer TF-driven reprogramming, with a focus on their interactions with epigenetic modifiers, including Polycomb repressive complexes (PRCs), nucleosome remodeling and deacetylase (NuRD) complexes, and the DNA methylation machinery. A deeper understanding of the dynamic interplay between pioneer TFs and epigenetic modifiers will be essential for advancing reprogramming technologies and unlocking their full clinical potential.
Collapse
Affiliation(s)
- Gerardo Mirizio
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Samuel Sampson
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| | - Makiko Iwafuchi
- Division of Developmental Biology, Center for Stem Cell & Organoid Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, OH, 45229, USA
| |
Collapse
|
23
|
Lin H, Wang X, Chung M, Cai S, Pan Y. Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis. J Transl Med 2025; 23:240. [PMID: 40016790 PMCID: PMC11869441 DOI: 10.1186/s12967-024-06060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/26/2024] [Indexed: 03/01/2025] Open
Abstract
Direct reprogramming has garnered considerable attention due to its capacity to directly convert differentiated cells into desired cells. Fibroblasts are frequently employed in reprogramming studies due to their abundance and accessibility. However, they are also the key drivers in the progression of fibrosis, a pathological condition characterized by excessive extracellular matrix deposition and tissue scarring. Furthermore, the initial stage of reprogramming typically involves deactivating fibrotic pathways. Hence, direct reprogramming offers a valuable method to regenerate target cells for tissue repair while simultaneously reducing fibrotic tendencies. Understanding the link between reprogramming and fibrosis could help develop effective strategies to treat damaged tissue with a potential risk of fibrosis. This review summarizes the advances in direct reprogramming and reveals their anti-fibrosis effects in various organs such as the heart, liver, and skin. Furthermore, we dissect the mechanisms of reprogramming influenced by fibrotic molecules including TGF-β signaling, mechanical signaling, inflammation signaling, epigenetic modifiers, and metabolic regulators. Innovative methods for fibroblast reprogramming like small molecules, CRISPRa, modified mRNA, and the challenges of cellular heterogeneity and senescence faced by in vivo direct reprogramming, are also discussed.
Collapse
Affiliation(s)
- Haohui Lin
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Xia Wang
- School of Medicine, The Chinese University of Hong Kong Shenzhen, Shenzhen, China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sa Cai
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| | - Yu Pan
- Laboratory of Regenerative Medicine, The 2nd Affiliated Hospital, Medical School, Shenzhen University, Shenzhen, China.
| |
Collapse
|
24
|
Bann GG. Antagonizing HFpEF by Targeting Fibrosis. Circulation 2025; 151:396-399. [PMID: 39928720 DOI: 10.1161/circulationaha.124.072973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Affiliation(s)
- Glynnis Garry Bann
- Department of Internal Medicine, Division of Cardiology and the Department of Molecular Biology, the Hamon Center for Regenerative Science and Medicine, and Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
25
|
Santos F, Correia M, Dias R, Bola B, Noberini R, Ferreira RS, Trigo D, Domingues P, Teixeira J, Bonaldi T, Oliveira PJ, Bär C, de Jesus BB, Nóbrega‐Pereira S. Age-associated metabolic and epigenetic barriers during direct reprogramming of mouse fibroblasts into induced cardiomyocytes. Aging Cell 2025; 24:e14371. [PMID: 39540462 PMCID: PMC11822649 DOI: 10.1111/acel.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 11/16/2024] Open
Abstract
Heart disease is the leading cause of mortality in developed countries, and novel regenerative procedures are warranted. Direct cardiac conversion (DCC) of adult fibroblasts can create induced cardiomyocytes (iCMs) for gene and cell-based heart therapy, and in addition to holding great promise, still lacks effectiveness as metabolic and age-associated barriers remain elusive. Here, by employing MGT (Mef2c, Gata4, Tbx5) transduction of mouse embryonic fibroblasts (MEFs) and adult (dermal and cardiac) fibroblasts from animals of different ages, we provide evidence that the direct reprogramming of fibroblasts into iCMs decreases with age. Analyses of histone posttranslational modifications and ChIP-qPCR revealed age-dependent alterations in the epigenetic landscape of DCC. Moreover, DCC is accompanied by profound mitochondrial metabolic adaptations, including a lower abundance of anabolic metabolites, network remodeling, and reliance on mitochondrial respiration. In vitro metabolic modulation and dietary manipulation in vivo improve DCC efficiency and are accompanied by significant alterations in histone marks and mitochondrial homeostasis. Importantly, adult-derived iCMs exhibit increased accumulation of oxidative stress in the mitochondria and activation of mitophagy or dietary lipids; they improve DCC and revert mitochondrial oxidative damage. Our study provides evidence that metaboloepigenetics plays a direct role in cell fate transitions driving DCC, highlighting the potential use of metabolic modulation to improve cardiac regenerative strategies.
Collapse
Affiliation(s)
- Francisco Santos
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Magda Correia
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Rafaela Dias
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Bárbara Bola
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Roberta Noberini
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
| | - Rita S. Ferreira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Diogo Trigo
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Pedro Domingues
- Mass Spectrometry Center, Department of ChemistryUniversity of AveiroAveiroPortugal
- LAQV/REQUIMTEUniversity of AveiroAveiroPortugal
| | - José Teixeira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Tiziana Bonaldi
- Department of Experimental OncologyEuropean Institute of Oncology (IEO), IRCCSMilanItaly
- Department of Oncology and Hematology‐OncologyUniversity of MilanoMilanItaly
| | - Paulo J. Oliveira
- CNC‐UC, Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
- CIBB, Center for Innovative Biomedicine and BiotechnologyUniversity of CoimbraCantanhedePortugal
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS)Hannover Medical School (MHH)HannoverGermany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)HannoverGermany
| | - Bruno Bernardes de Jesus
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| | - Sandrina Nóbrega‐Pereira
- Department of Medical Sciences and Institute of Biomedicine – iBiMEDUniversity of AveiroAveiroPortugal
| |
Collapse
|
26
|
Farber G, Takasugi P, Ricketts S, Wang H, Xie Y, Farber E, Liu J, Qian L. Sox17 and Erg synergistically activate endothelial cell fate in reprogramming fibroblasts. J Mol Cell Cardiol 2025; 199:33-45. [PMID: 39689498 PMCID: PMC11883746 DOI: 10.1016/j.yjmcc.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/02/2024] [Accepted: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Sox17-Erg direct reprogramming is a potent tool for the in vitro and in vivo generation of arterial-like induced-endothelial cells from fibroblasts. In this study, we illustrate the pioneering roles of both Sox17 and Erg in the endothelial cell reprogramming process and demonstrate that emergent gene expression only occurs when both factors are co-expressed. Bioinformatic analyses and molecular validation reveal both Bach2 and Etv4 as integral mediators of Sox17-Erg reprogramming with different roles in lung and heart fibroblast reprogramming. The generated organ-specific induced endothelial cells express molecular signatures similar to vasculature found in the starting cell's organ of origin and the starting chromatin architecture plays a role in the acquisition of this organ-specific identity. Overall, the Sox17-Erg reprogramming mechanism provides foundational knowledge for the future recapitulation of vascular heterogeneity through direct reprogramming.
Collapse
Affiliation(s)
- Gregory Farber
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paige Takasugi
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shea Ricketts
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haofei Wang
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Esther Farber
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
27
|
Piven OO, Vaičiulevičiūtė R, Bernotiene E, Dobrzyn P. Cardiomyocyte engineering: The meeting point of transcription factors, signaling networks, metabolism and function. Acta Physiol (Oxf) 2025; 241:e14271. [PMID: 39801134 DOI: 10.1111/apha.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/22/2024] [Accepted: 01/01/2025] [Indexed: 05/02/2025]
Abstract
Direct cardiac reprogramming or transdifferentiation is a relatively new and promising area in regenerative therapy, cardiovascular disease modeling, and drug discovery. Effective reprogramming of fibroblasts is limited by their plasticity, that is, their ability to reprogram, and depends on solving several levels of tasks: inducing cardiomyocyte-like cells and obtaining functionally and metabolically mature cardiomyocytes. Currently, in addition to the use of more classical approaches such as overexpression of exogenous transcription factors, activation of endogenous cardiac transcription factors via controlled nucleases, such as CRISPR, represents another interesting way to obtain cardiomyocytes. Therefore, special attention is given to the potential of synthetic biology, in particular the CRISPR system, for the targeted conversion of only certain subpopulations of fibroblasts into cardiomyocytes. However, obtaining functionally and metabolically mature cardiomyocytes remains a challenge despite the range of recently developed approaches. In this review, we summarized current knowledge on the function and diversity of human cardiac fibroblasts and alternative cell sources for in vitro human cardiomyocyte models. We examined in detail the transcription factors that initiate cardiomyogenic reprogramming and their interactions. Additionally, we critically analyzed the strategies used for the metabolic and physiological maturation of induced cardiomyocytes.
Collapse
Affiliation(s)
- Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Raminta Vaičiulevičiūtė
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Faculty of Fundamental Sciences, VilniusTech University, Vilnius, Lithuania
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
28
|
O'Dwyer MR, Azagury M, Furlong K, Alsheikh A, Hall-Ponsele E, Pinto H, Fyodorov DV, Jaber M, Papachristoforou E, Benchetrit H, Ashmore J, Makedonski K, Rahamim M, Hanzevacki M, Yassen H, Skoda S, Levy A, Pollard SM, Skoultchi AI, Buganim Y, Soufi A. Nucleosome fibre topology guides transcription factor binding to enhancers. Nature 2025; 638:251-260. [PMID: 39695228 PMCID: PMC11798873 DOI: 10.1038/s41586-024-08333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Cellular identity requires the concerted action of multiple transcription factors (TFs) bound together to enhancers of cell-type-specific genes. Despite TFs recognizing specific DNA motifs within accessible chromatin, this information is insufficient to explain how TFs select enhancers1. Here we compared four different TF combinations that induce different cell states, analysing TF genome occupancy, chromatin accessibility, nucleosome positioning and 3D genome organization at the nucleosome resolution. We show that motif recognition on mononucleosomes can decipher only the individual binding of TFs. When bound together, TFs act cooperatively or competitively to target nucleosome arrays with defined 3D organization, displaying motifs in particular patterns. In one combination, motif directionality funnels TF combinatorial binding along chromatin loops, before infiltrating laterally to adjacent enhancers. In other combinations, TFs assemble on motif-dense and highly interconnected loop junctions, and subsequently translocate to nearby lineage-specific sites. We propose a guided-search model in which motif grammar on nucleosome fibres acts as signpost elements, directing TF combinatorial binding to enhancers.
Collapse
Affiliation(s)
- Michael R O'Dwyer
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Katharine Furlong
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Amani Alsheikh
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elisa Hall-Ponsele
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugo Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Papachristoforou
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Hana Benchetrit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - James Ashmore
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marta Hanzevacki
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Samuel Skoda
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Adi Levy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Steven M Pollard
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Abdenour Soufi
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Yang J. Emerging Insights into Sall4's Role in Cardiac Regenerative Medicine. Cells 2025; 14:154. [PMID: 39936946 PMCID: PMC11817359 DOI: 10.3390/cells14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4's emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4's complex molecular mechanisms and their implications for advancing cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
30
|
Kamal NH, Heikal LA, Abdallah OY. The future of cardiac repair: a review on cell-free nanotherapies for regenerative myocardial infarction. Drug Deliv Transl Res 2025:10.1007/s13346-024-01763-y. [PMID: 39833466 DOI: 10.1007/s13346-024-01763-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/22/2025]
Abstract
Cardiovascular diseases as myocardial infarction (MI) represent a major cause for morbidity and mortality worldwide. Even though, patients who survive MI are susceptible to high risk of heart failure. This is mainly attributed to the major loss of cardiomyocytes and limited regenerative potential of myocardium. Despite the availability of various cardiovascular drugs, they fail to address the main cause of MI. The optimum therapeutic goal should therefore focus on enhancing cardiac regeneration through cellular and cell-free therapeutic approaches. This review focused on different mechanisms of cardiac regeneration that can be achieved via non-cellular therapeutic modalities. Passive and active targeting of the infarcted myocardium using various nanoparticles that can be loaded with growth factors, drugs or affordable natural products can reduce negative ventricular remodeling, infarct size and the apoptotic rate of cardiomyocytes. In addition, injectable biomaterials-based nanocomposite can be used as a scaffold to support infarcted heart and recruit cells. Innovative affordable and less invasive cell-free approaches can be implemented to enhance cardiac regeneration post MI.
Collapse
Affiliation(s)
- Nermeen H Kamal
- Department of Pharmaceutics, Division of Pharmaceutical Sciences. College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, P.O. Box 21521, Alexandria, Egypt
| |
Collapse
|
31
|
Grant ZL, Kuang S, Zhang S, Horrillo AJ, Rao KS, Kameswaran V, Joubran C, Lau PK, Dong K, Yang B, Bartosik WM, Zemke NR, Ren B, Kathiriya IS, Pollard KS, Bruneau BG. Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632202. [PMID: 39829922 PMCID: PMC11741296 DOI: 10.1101/2025.01.09.632202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Gladstone Institutes; San Francisco, CA, USA
- Bioinformatics Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | - Abraham J. Horrillo
- Gladstone Institutes; San Francisco, CA, USA
- TETRAD Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | | | | | | | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Irfan S. Kathiriya
- Gladstone Institutes; San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
32
|
He Y, Johnston APR, Pouton CW. Therapeutic applications of cell engineering using mRNA technology. Trends Biotechnol 2025; 43:83-97. [PMID: 39153909 DOI: 10.1016/j.tibtech.2024.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/19/2024]
Abstract
Engineering and reprogramming cells has significant therapeutic potential to treat a wide range of diseases, by replacing missing or defective proteins, to provide transcription factors (TFs) to reprogram cell phenotypes, or to provide enzymes such as RNA-guided Cas9 derivatives for CRISPR-based cell engineering. While viral vector-mediated gene transfer has played an important role in this field, the use of mRNA avoids safety concerns associated with the integration of DNA into the host cell genome, making mRNA particularly attractive for in vivo applications. Widespread application of mRNA for cell engineering is limited by its instability in the biological environment and challenges involved in the delivery of mRNA to its target site. In this review, we examine challenges that must be overcome to develop effective therapeutics.
Collapse
Affiliation(s)
- Yujia He
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Colin W Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
33
|
Huang P, Xu J, Keepers B, Xie Y, Near D, Xu Y, Hua JR, Spurlock B, Ricketts S, Liu J, Wang L, Qian L. Direct cardiac reprogramming via combined CRISPRa-mediated endogenous Gata4 activation and exogenous Mef2c and Tbx5 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102390. [PMID: 39720701 PMCID: PMC11666955 DOI: 10.1016/j.omtn.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/12/2024] [Indexed: 12/26/2024]
Abstract
Direct cardiac reprogramming of fibroblasts into induced cardiomyocytes (iCMs) can be achieved by ectopic expression of cardiac transcription factors (TFs) via viral vectors. However, risks like genomic mutations, viral toxicity, and immune response limited its clinical application. Transactivation of endogenous TFs emerges as an alternative approach that may partially mitigate some of the risks. In this study, we utilized a modified CRISPRa/dCas9 strategy to transactivate endogenous reprogramming factors MEF2C, GATA4, and TBX5 (MGT) to induce iCMs from both mouse and human fibroblasts. We identified single-guide RNAs (sgRNAs) targeting promoters and enhancers of the TFs capable of activating various degrees of endogenous gene expression. CRISPRa-mediated Gata4 activation, combined with exogenous expression of Mef2c and Tbx5, successfully converted fibroblasts into iCMs. Despite extensive sgRNA screening, transactivation of Mef2c and Tbx5 via CRISPRa remained less effective, potentially due to de novo epigenetic barriers. While future work and refined technologies are needed to determine whether cardiac reprogramming could be achieved solely through CRISPRa activation of endogenous factors, our findings provide proof of concept that reliance on exogenous TFs for reprogramming can be reduced through CRISPRa-mediated activation of endogenous factors, particularly Gata4, offering a novel strategy to convert scar-forming fibroblasts into iCMs for regenerative purposes.
Collapse
Affiliation(s)
- Peisen Huang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jun Xu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Benjamin Keepers
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yifang Xie
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David Near
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yangxi Xu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James Rock Hua
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian Spurlock
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shea Ricketts
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Wang
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
34
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
35
|
Yang J. Partial Cell Fate Transitions to Promote Cardiac Regeneration. Cells 2024; 13:2002. [PMID: 39682750 PMCID: PMC11640292 DOI: 10.3390/cells13232002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures. These limitations underscore the need for advanced mechanistic insights and refined reprogramming strategies to improve reparative outcomes in the heart. Partial cellular fate transitions, while still a relatively less well-defined area and primarily explored in longevity and neurobiology, hold remarkable promise for cardiac repair. It enables the reprogramming or rejuvenation of resident cardiac cells into a stem or progenitor-like state with enhanced cardiogenic potential, generating the reparative lineages necessary for comprehensive myocardial recovery while reducing safety risks. As an emerging strategy, partial cellular fate transitions play a pivotal role in reversing myocardial infarction damage and offer substantial potential for therapeutic innovation. This review will summarize current advances in these areas, including recent findings involving two transcription factors that critically regulate stemness and cardiogenesis. It will also explore considerations for further refining these approaches to enhance their therapeutic potential and safety.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
36
|
Wang H, Yang J, Cai Y, Zhao Y. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit. Protein Cell 2024; 15:906-929. [PMID: 38530808 PMCID: PMC11637486 DOI: 10.1093/procel/pwae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024] Open
Abstract
Direct conversion of cardiac fibroblasts (CFs) to cardiomyocytes (CMs) in vivo to regenerate heart tissue is an attractive approach. After myocardial infarction (MI), heart repair proceeds with an inflammation stage initiated by monocytes infiltration of the infarct zone establishing an immune microenvironment. However, whether and how the MI microenvironment influences the reprogramming of CFs remains unclear. Here, we found that in comparison with cardiac fibroblasts (CFs) cultured in vitro, CFs that transplanted into infarct region of MI mouse models resisted to cardiac reprogramming. RNA-seq analysis revealed upregulation of interferon (IFN) response genes in transplanted CFs, and subsequent inhibition of the IFN receptors increased reprogramming efficiency in vivo. Macrophage-secreted IFN-β was identified as the dominant upstream signaling factor after MI. CFs treated with macrophage-conditioned medium containing IFN-β displayed reduced reprogramming efficiency, while macrophage depletion or blocking the IFN signaling pathway after MI increased reprogramming efficiency in vivo. Co-IP, BiFC and Cut-tag assays showed that phosphorylated STAT1 downstream of IFN signaling in CFs could interact with the reprogramming factor GATA4 and inhibit the GATA4 chromatin occupancy in cardiac genes. Furthermore, upregulation of IFN-IFNAR-p-STAT1 signaling could stimulate CFs secretion of CCL2/7/12 chemokines, subsequently recruiting IFN-β-secreting macrophages. Together, these immune cells further activate STAT1 phosphorylation, enhancing CCL2/7/12 secretion and immune cell recruitment, ultimately forming a self-reinforcing positive feedback loop between CFs and macrophages via IFN-IFNAR-p-STAT1 that inhibits cardiac reprogramming in vivo. Cumulatively, our findings uncover an intercellular self-stimulating inflammatory circuit as a microenvironmental molecular barrier of in situ cardiac reprogramming that needs to be overcome for regenerative medicine applications.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junbo Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yihong Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Yang Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Shi H, Spurlock BM, Liu J, Qian L. Control of cell fate upon transcription factor-driven cardiac reprogramming. Curr Opin Genet Dev 2024; 89:102226. [PMID: 39586652 PMCID: PMC11894758 DOI: 10.1016/j.gde.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024]
Abstract
Adult mammals are susceptible to substantial cardiomyocyte (CM) loss following various cardiac diseases due to the limited capacity of CM proliferation and regeneration. Recently, direct cardiac reprogramming, converting fibroblasts into induced CMs, has been achieved both in vitro and in vivo through forced expression of transcription factors (TFs). This review encapsulates the advancements made in enhancing reprogramming efficiency and underlying molecular mechanisms. It covers the optimization of TF-based reprogramming cocktails and in vivo delivery platform and recently identified regulators in enhancing reprogramming efficiency. In addition, we discuss recent insights into the molecular mechanisms of direct cardiac reprogramming from single-cell omics analyses. Finally, we briefly touch on remaining challenges and prospective direction of this field.
Collapse
Affiliation(s)
- Huitong Shi
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian M Spurlock
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA. https://twitter.com/@brineshrimp2
| | - Jiandong Liu
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- The McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pathology and Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
38
|
Lunde IG, Rypdal KB, Van Linthout S, Diez J, González A. Myocardial fibrosis from the perspective of the extracellular matrix: Mechanisms to clinical impact. Matrix Biol 2024; 134:1-22. [PMID: 39214156 DOI: 10.1016/j.matbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Fibrosis is defined by the excessive accumulation of extracellular matrix (ECM) and constitutes a central pathophysiological process that underlies tissue dysfunction, across organs, in multiple chronic diseases and during aging. Myocardial fibrosis is a key contributor to dysfunction and failure in numerous diseases of the heart and is a strong predictor of poor clinical outcome and mortality. The excess structural and matricellular ECM proteins deposited by cardiac fibroblasts, is found between cardiomyocytes (interstitial fibrosis), in focal areas where cardiomyocytes have died (replacement fibrosis), and around vessels (perivascular fibrosis). Although myocardial fibrosis has important clinical prognostic value, access to cardiac tissue biopsies for histological evaluation is limited. Despite challenges with sensitivity and specificity, cardiac magnetic resonance imaging (CMR) is the most applicable diagnostic tool in the clinic, and the scientific community is currently actively searching for blood biomarkers reflecting myocardial fibrosis, to complement the imaging techniques. The lack of mechanistic insights into specific pro- and anti-fibrotic molecular pathways has hampered the development of effective treatments to prevent or reverse myocardial fibrosis. Development and implementation of anti-fibrotic therapies is expected to improve patient outcomes and is an urgent medical need. Here, we discuss the importance of the ECM in the heart, the central role of fibrosis in heart disease, and mechanistic pathways likely to impact clinical practice with regards to diagnostics of myocardial fibrosis, risk stratification of patients, and anti-fibrotic therapy.
Collapse
Affiliation(s)
- Ida G Lunde
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway.
| | - Karoline B Rypdal
- Oslo Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevaal, Oslo, Norway; KG Jebsen Center for Cardiac Biomarkers, Campus Ahus, University of Oslo, Oslo, Norway
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Javier Diez
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Arantxa González
- Program of Cardiovascular Diseases, CIMA Universidad de Navarra, Department of Cardiology, Clínica Universidad de Navarra and IdiSNA Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
39
|
Nam Y, Song Y, Seo SJ, Ko GR, Lee SH, Cha E, Kwak SM, Kim S, Shin M, Jin Y, Lee JS. Metabolic reprogramming via mitochondrial delivery for enhanced maturation of chemically induced cardiomyocyte-like cells. MedComm (Beijing) 2024; 5:e70005. [PMID: 39611044 PMCID: PMC11604293 DOI: 10.1002/mco2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 11/30/2024] Open
Abstract
Heart degenerative diseases pose a significant challenge due to the limited ability of native heart to restore lost cardiomyocytes. Direct cellular reprogramming technology, particularly the use of small molecules, has emerged as a promising solution to prepare functional cardiomyocyte through faster and safer processes without genetic modification. However, current methods of direct reprogramming often exhibit low conversion efficiencies and immature characteristics of the generated cardiomyocytes, limiting their use in regenerative medicine. This study proposes the use of mitochondrial delivery to metabolically reprogram chemically induced cardiomyocyte-like cells (CiCMs), fostering enhanced maturity and functionality. Our findings show that mitochondria sourced from high-energy-demand organs (liver, brain, and heart) can enhance structural maturation and metabolic functions. Notably, heart-derived mitochondria resulted in CiCMs with a higher oxygen consumption rate capacity, enhanced electrical functionality, and higher sensitivity to hypoxic condition. These results are related to metabolic changes caused by increased number and size of mitochondria and activated mitochondrial fusion after mitochondrial treatment. In conclusion, our study suggests that mitochondrial delivery into CiCMs can be an effective strategy to promote cellular maturation, potentially contributing to the advancement of regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Yena Nam
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Yoonji Song
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Seung Ju Seo
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Ga Ryang Ko
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Seung Hyun Lee
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Eunju Cha
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
| | - Su Min Kwak
- Department of MedicineCollege of MedicineYonsei University Graduate SchoolSeoulRepublic of Korea
| | - Sumin Kim
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
| | - Mikyung Shin
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Center for Neuroscience Imaging ResearchInstitute for Basic Science (IBS)SuwonRepublic of Korea
| | - Yoonhee Jin
- Department of PhysiologyGraduate School of Medical ScienceBrain Korea 21 ProjectYonsei University College of MedicineSeoulRepublic of Korea
- Department of MedicineCollege of MedicineYonsei University Graduate SchoolSeoulRepublic of Korea
| | - Jung Seung Lee
- Department of Biomedical EngineeringSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan University (SKKU)SuwonRepublic of Korea
- Department of MetaBioHealthSungkyunkwan University (SKKU)SuwonRepublic of Korea
| |
Collapse
|
40
|
Yang WY, Ben Issa M, Saaoud F, Xu K, Shao Y, Lu Y, Dornas W, Cueto R, Jiang X, Wang H, Yang X. Perspective: Pathological transdifferentiation-a novel therapeutic target for cardiovascular diseases and chronic inflammation. Front Cardiovasc Med 2024; 11:1500775. [PMID: 39660114 PMCID: PMC11628510 DOI: 10.3389/fcvm.2024.1500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Pathological transdifferentiation, where differentiated cells aberrantly transform into other cell types that exacerbate disease rather than promote healing, represents a novel and significant concept. This perspective discusses its role and potential targeting in cardiovascular diseases and chronic inflammation. Current therapies mainly focus on mitigating early inflammatory response through proinflammatory cytokines and pathways targeting, including corticosteroids, TNF-α inhibitors, IL-1β monoclonal antibodies and blockers, IL-6 blockers, and nonsteroidal anti-inflammatory drugs (NSAIDs), along with modulating innate immune memory (trained immunity). However, these approaches often fail to address long-term tissue damage and functional regeneration. For instance, fibroblasts can transdifferentiate into myofibroblasts in cardiac fibrosis, and endothelial cells may undergo endothelial to mesenchymal transition (EndMT) in vascular remodeling, resulting in fibrosis and impaired tissue function. Targeting pathological transdifferentiation represents a promising therapeutic avenue by focusing on key signaling pathways that drive these aberrant cellular phenotypic and transcriptomic transitions. This approach seeks to inhibit these pathways or modulate cellular plasticity to promote effective tissue regeneration and prevent fibrosis. Such strategies have the potential to address inflammation, cell death, and the resulting tissue damage, providing a more comprehensive and sustainable treatment solution. Future research should focus on understanding the mechanisms behind pathological transdifferentiation, identifying relevant biomarkers and master regulators, and developing novel therapies through preclinical and clinical trials. Integrating these new therapies with existing anti-inflammatory treatments could enhance efficacy and improve patient outcomes. Highlighting pathological transdifferentiation as a therapeutic target could transform treatment paradigms, leading to better management and functional recovery of cardiovascular tissues in diseases and chronic inflammation.
Collapse
Affiliation(s)
- William Y. Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Mohammed Ben Issa
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Waleska Dornas
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ramon Cueto
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaohua Jiang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Lemole Center for Integrated Lymphatics and Vascular Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
- Department of Cardiovascular Sciences, Metabolic Disease Research and Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
41
|
He S, Yan L, Yuan C, Li W, Wu T, Chen S, Li N, Wu M, Jiang J. The role of cardiomyocyte senescence in cardiovascular diseases: A molecular biology update. Eur J Pharmacol 2024; 983:176961. [PMID: 39209099 DOI: 10.1016/j.ejphar.2024.176961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, and advanced age is a main contributor to the prevalence of CVD. Cellular senescence is an irreversible state of cell cycle arrest that occurs in old age or after cells encounter various stresses. Senescent cells not only result in the reduction of cellular function, but also produce senescence-associated secretory phenotype (SASP) to affect surrounding cells and tissue microenvironment. There is increasing evidence that the gradual accumulation of senescent cardiomyocytes is causally involved in the decline of cardiovascular system function. To highlight the role of senescent cardiomyocytes in the pathophysiology of age-related CVD, we first introduced that senescent cardiomyoyctes can be identified by structural changes and several senescence-associated biomarkers. We subsequently provided a comprehensive summary of existing knowledge, outlining the compelling evidence on the relationship between senescent cardiomyocytes and age-related CVD phenotypes. In addition, we discussed that the significant therapeutic potential represented by the prevention of accelerated senescent cardiomyocytes, and the current status of some existing geroprotectors in the prevention and treatment of age-related CVD. Together, the review summarized the role of cardiomyocyte senescence in CVD, and explored the molecular knowledge of senescent cardiomyocytes and their potential clinical significance in developing senescent-based therapies, thereby providing important insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Shuangyi He
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Li Yan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Pharmacy, Wuhan Asia General Hospital, Wuhan, 430056, China
| | - Chao Yuan
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Tian Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Suya Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Niansheng Li
- Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China
| | - Meiting Wu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Department of Nephrology, Institute of Nephrology, 2nd Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
| | - Junlin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
42
|
Holman AR, Tran S, Destici E, Farah EN, Li T, Nelson AC, Engler AJ, Chi NC. Single-cell multi-modal integrative analyses highlight functional dynamic gene regulatory networks directing human cardiac development. CELL GENOMICS 2024; 4:100680. [PMID: 39437788 PMCID: PMC11605693 DOI: 10.1016/j.xgen.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Illuminating the precise stepwise genetic programs directing cardiac development provides insights into the mechanisms of congenital heart disease and strategies for cardiac regenerative therapies. Here, we integrate in vitro and in vivo human single-cell multi-omic studies with high-throughput functional genomic screening to reveal dynamic, cardiac-specific gene regulatory networks (GRNs) and transcriptional regulators during human cardiomyocyte development. Interrogating developmental trajectories reconstructed from single-cell data unexpectedly reveal divergent cardiomyocyte lineages with distinct gene programs based on developmental signaling pathways. High-throughput functional genomic screens identify key transcription factors from inferred GRNs that are functionally relevant for cardiomyocyte lineages derived from each pathway. Notably, we discover a critical heat shock transcription factor 1 (HSF1)-mediated cardiometabolic GRN controlling cardiac mitochondrial/metabolic function and cell survival, also observed in fetal human cardiomyocytes. Overall, these multi-modal genomic studies enable the systematic discovery and validation of coordinated GRNs and transcriptional regulators controlling the development of distinct human cardiomyocyte populations.
Collapse
Affiliation(s)
- Alyssa R Holman
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shaina Tran
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugin Destici
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elie N Farah
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ting Li
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aileena C Nelson
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093, USA
| | - Neil C Chi
- Division of Cardiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Engineering Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
43
|
Nagai H, Saito M, Iwata H. Direct conversion of urine-derived cells into functional motor neuron-like cells by defined transcription factors. Sci Rep 2024; 14:27011. [PMID: 39505927 PMCID: PMC11541886 DOI: 10.1038/s41598-024-73759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/20/2024] [Indexed: 11/08/2024] Open
Abstract
Direct cell-type conversion of somatic cells into cell types of interest has garnered great attention because it circumvents rejuvenation and preserves the hallmarks of cellular aging (unlike induced pluripotent stem cells [iPSCs]) and is more suitable for modeling diseases with strong age-related and epigenetic contributions. Fibroblasts are commonly used for direct conversion; however, obtaining these cells requires highly invasive skin biopsies. Urine-derived cells (UDCs) are an alternative cell source and can be obtained via noninvasive procedures. Herein, induced motor neuron-like cells (iMNs) were generated from UDCs by transducing transcription factors involved in motor neuron (MN) differentiation. iMNs exhibited neuronal morphology, upregulation of pan-neuron and MN markers, and MN functionality, including spontaneous calcium oscillation and bungarotoxin-positive neuromuscular junction formation, when co-cultured with myotubes. Altogether, the findings of this study indicated that UDCs can be converted to functional MNs. This technology may allow us to understand disease pathogenesis and progression and discover biomarkers and drugs for MN-related diseases at the population level.
Collapse
Affiliation(s)
- Hiroaki Nagai
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan.
| | - Masayo Saito
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan
| | - Hidehisa Iwata
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, 251-8555, Kanagawa, Japan.
| |
Collapse
|
44
|
Chen ZY, Ji SJ, Huang CW, Tu WZ, Ren XY, Guo R, Xie X. In situ reprogramming of cardiac fibroblasts into cardiomyocytes in mouse heart with chemicals. Acta Pharmacol Sin 2024; 45:2290-2299. [PMID: 38890526 PMCID: PMC11489685 DOI: 10.1038/s41401-024-01308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 06/20/2024]
Abstract
Cardiomyocytes are terminal differentiated cells and have limited ability to proliferate or regenerate. Condition like myocardial infarction causes massive death of cardiomyocytes and is the leading cause of death. Previous studies have demonstrated that cardiac fibroblasts can be induced to transdifferentiate into cardiomyocytes in vitro and in vivo by forced expression of cardiac transcription factors and microRNAs. Our previous study have demonstrated that full chemical cocktails could also induce fibroblast to cardiomyocyte transdifferentiation both in vitro and in vivo. With the development of tissue clearing techniques, it is possible to visualize the reprogramming at the whole-organ level. In this study, we investigated the effect of the chemical cocktail CRFVPTM in inducing in situ fibroblast to cardiomyocyte transdifferentiation with two strains of genetic tracing mice, and the reprogramming was observed at whole-heart level with CUBIC tissue clearing technique and 3D imaging. In addition, single-cell RNA sequencing (scRNA-seq) confirmed the generation of cardiomyocytes from cardiac fibroblasts which carries the tracing marker. Our study confirms the use of small molecule cocktails in inducing in situ fibroblast to cardiomyocyte reprogramming at the whole-heart level and proof-of-conceptly providing a new source of naturally incorporated cardiomyocytes to help heart regeneration.
Collapse
Affiliation(s)
- Zi-Yang Chen
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si-Jia Ji
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Chen-Wen Huang
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Zhi Tu
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Xin-Yue Ren
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ren Guo
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264119, China
| | - Xin Xie
- State Key Laboratory of Drug Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264119, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
45
|
Parmar B, Bhatia D. Small Molecular Approaches for Cellular Reprogramming and Tissue Engineering: Functions as Mediators of the Cell Signaling Pathway. Biochemistry 2024; 63:2542-2556. [PMID: 39312802 DOI: 10.1021/acs.biochem.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Utilizing induced pluripotent stem cells (iPSCs) in drug screening and cell replacement therapy has emerged as a method with revolutionary applications. With the advent of patient-specific iPSCs and the subsequent development of cells that exhibit disease phenotypes, the focus of medication research will now shift toward the pathology of human diseases. Regular iPSCs can also be utilized to generate cells that assess the negative impacts of medications. These cells provide a much more precise and cost-efficient approach compared to many animal models. In this review, we explore the utilization of small-molecule drugs to enhance the growth of iPSCs and gain insights into the process of reprogramming. We mainly focus on the functions of small molecules in modulating different signaling pathways, thereby modulating cell fate. Understanding the way small molecule drugs interact with iPSC technology has the potential to significantly enhance the understanding of physiological pathways in stem cells and practical applications of iPSC-based therapy and screening systems, revolutionizing the treatment of diseases.
Collapse
Affiliation(s)
- Bhagyesh Parmar
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gandhinagar 382355, India
| |
Collapse
|
46
|
Hu Y, Zou Y, Qiao L, Lin L. Integrative proteomic and metabolomic elucidation of cardiomyopathy with in vivo and in vitro models and clinical samples. Mol Ther 2024; 32:3288-3312. [PMID: 39233439 PMCID: PMC11489546 DOI: 10.1016/j.ymthe.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
Cardiomyopathy is a prevalent cardiovascular disease that affects individuals of all ages and can lead to life-threatening heart failure. Despite its variety in types, each with distinct characteristics and causes, our understanding of cardiomyopathy at a systematic biology level remains incomplete. Mass spectrometry-based techniques have emerged as powerful tools, providing a comprehensive view of the molecular landscape and aiding in the discovery of biomarkers and elucidation of mechanisms. This review highlights the significant potential of integrating proteomic and metabolomic approaches with specialized databases to identify biomarkers and therapeutic targets across different types of cardiomyopathies. In vivo and in vitro models, such as genetically modified mice, patient-derived or induced pluripotent stem cells, and organ chips, are invaluable in exploring the pathophysiological complexities of this disease. By integrating omics approaches with these sophisticated modeling systems, our comprehension of the molecular underpinnings of cardiomyopathy can be greatly enhanced, facilitating the development of diagnostic markers and therapeutic strategies. Among the promising therapeutic targets are those involved in extracellular matrix remodeling, sarcomere damage, and metabolic remodeling. These targets hold the potential to advance precision therapy in cardiomyopathy, offering hope for more effective treatments tailored to the specific molecular profiles of patients.
Collapse
Affiliation(s)
- Yiwei Hu
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China
| | - Yunzeng Zou
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Liang Qiao
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| | - Ling Lin
- Department of Chemistry, Zhongshan Hospital, and Minhang Hospital, Fudan University, Shanghai 200000, China.
| |
Collapse
|
47
|
Jun S, Song MH, Choi SC, Noh JM, Kim KS, Park JH, Yoon DE, Kim K, Kim M, Hwang SW, Lim DS. FGF4 and ascorbic acid enhance the maturation of induced cardiomyocytes by activating JAK2-STAT3 signaling. Exp Mol Med 2024; 56:2231-2245. [PMID: 39349833 PMCID: PMC11541553 DOI: 10.1038/s12276-024-01321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Direct cardiac reprogramming represents a novel therapeutic strategy to convert non-cardiac cells such as fibroblasts into cardiomyocytes (CMs). This process involves essential transcription factors, such as Mef2c, Gata4, Tbx5 (MGT), MESP1, and MYOCD (MGTMM). However, the small molecules responsible for inducing immature induced CMs (iCMs) and the signaling mechanisms driving their maturation remain elusive. Our study explored the effects of various small molecules on iCM induction and discovered that the combination of FGF4 and ascorbic acid (FA) enhances CM markers, exhibits organized sarcomere and T-tubule structures, and improves cardiac function. Transcriptome analysis emphasized the importance of ECM-integrin-focal adhesions and the upregulation of the JAK2-STAT3 and TGFB signaling pathways in FA-treated iCMs. Notably, JAK2-STAT3 knockdown affected TGFB signaling and the ECM and downregulated mature CM markers in FA-treated iCMs. Our findings underscore the critical role of the JAK2-STAT3 signaling pathway in activating TGFB signaling and ECM synthesis in directly reprogrammed CMs. Schematic showing FA enhances direct cardiac reprogramming and JAK-STAT3 signaling pathways underlying cardiomyocyte maturation.
Collapse
Affiliation(s)
- Seongmin Jun
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Myeong-Hwa Song
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Cheol Choi
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
- R&D Center for Companion Diagnostic, SOL Bio Corporation, Seoul, Republic of Korea
| | - Ji-Min Noh
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyung Seob Kim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Hyoung Park
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Da Eun Yoon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Kyoungmi Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Minseok Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Sun Wook Hwang
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, Republic of Korea
- Department of Physiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Do-Sun Lim
- Department of Cardiology, Cardiovascular Center, College of Medicine, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
48
|
Ambroise R, Takasugi P, Liu J, Qian L. Direct Cardiac Reprogramming in the Age of Computational Biology. J Cardiovasc Dev Dis 2024; 11:273. [PMID: 39330331 PMCID: PMC11432431 DOI: 10.3390/jcdd11090273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/28/2024] Open
Abstract
Heart disease continues to be one of the most fatal conditions worldwide. This is in part due to the maladaptive remodeling process by which ischemic cardiac tissue is replaced with a fibrotic scar. Direct cardiac reprogramming presents a unique solution for restoring injured cardiac tissue through the direct conversion of fibroblasts into induced cardiomyocytes, bypassing the transition through a pluripotent state. Since its inception in 2010, direct cardiac reprogramming using the transcription factors Gata4, Mef2c, and Tbx5 has revolutionized the field of cardiac regenerative medicine. Just over a decade later, the field has rapidly evolved through the expansion of identified molecular and genetic factors that can be used to optimize reprogramming efficiency. The integration of computational tools into the study of direct cardiac reprogramming has been critical to this progress. Advancements in transcriptomics, epigenetics, proteomics, genome editing, and machine learning have not only enhanced our understanding of the underlying mechanisms driving this cell fate transition, but have also driven innovations that push direct cardiac reprogramming closer to clinical application. This review article explores how these computational advancements have impacted and continue to shape the field of direct cardiac reprogramming.
Collapse
Affiliation(s)
- Rachelle Ambroise
- Department of Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Paige Takasugi
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
49
|
Wolfson DW, Kim NK, Lee KH, Beyersdorf JP, Langberg JJ, Fernandez N, Choi D, Zureick N, Kim TY, Bae S, Gu JM, Kirschman JL, Fan J, Sheng CY, Gottlieb Sen D, Mettler B, Sung JH, Yoon YS, Park SJ, Santangelo PJ, Cho HC. Transient pacing in pigs with complete heart block via myocardial injection of mRNA coding for the T-box transcription factor 18. Nat Biomed Eng 2024; 8:1124-1141. [PMID: 38698155 PMCID: PMC11410671 DOI: 10.1038/s41551-024-01211-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
The adenovirus-mediated somatic transfer of the embryonic T-box transcription factor 18 (TBX18) gene can convert chamber cardiomyocytes into induced pacemaker cells. However, the translation of therapeutic TBX18-induced cardiac pacing faces safety challenges. Here we show that the myocardial expression of synthetic TBX18 mRNA in animals generates de novo pacing and limits innate and inflammatory immune responses. In rats, intramyocardially injected mRNA remained localized, whereas direct myocardial injection of an adenovirus carrying a reporter gene resulted in diffuse expression and in substantial spillover to the liver, spleen and lungs. Transient expression of TBX18 mRNA in rats led to de novo automaticity and pacemaker properties and, compared with the injection of adenovirus, to substantial reductions in the expression of inflammatory genes and in activated macrophage populations. In rodent and clinically relevant porcine models of complete heart block, intramyocardially injected TBX18 mRNA provided rate-adaptive cardiac pacing for one month that strongly correlated with the animal's sinus rhythm and physical activity. TBX18 mRNA may aid the development of biological pacemakers.
Collapse
Affiliation(s)
- David W Wolfson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nam Kyun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ki Hong Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Chonnam National University Medical School, Gwangju, South Korea
| | - Jared P Beyersdorf
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jonathan J Langberg
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Natasha Fernandez
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Dahim Choi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nadine Zureick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Tae Yun Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Seongho Bae
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jin-Mo Gu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Jinqi Fan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Christina Y Sheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Danielle Gottlieb Sen
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bret Mettler
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jung Hoon Sung
- Department of Cardiology, CHA Bundang Medical Center, CHA University, Seongnam, South Korea
| | - Young-Sup Yoon
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Sung-Jin Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| | - Hee Cheol Cho
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Division of Pediatric Cardiac Surgery, Department of Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Blalock-Taussig-Thomas Pediatric and Congenital Heart Center, The Johns Hopkins Children's Center, Baltimore, MD, USA.
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA.
- Department of Anesthesia and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Cooke JP, Youker KA, Lai L. Myocardial Recovery versus Myocardial Regeneration: Mechanisms and Therapeutic Modulation. Methodist Debakey Cardiovasc J 2024; 20:31-41. [PMID: 39184159 PMCID: PMC11342844 DOI: 10.14797/mdcvj.1400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/12/2024] [Indexed: 08/27/2024] Open
Abstract
Myocardial recovery is characterized by a return toward normal structure and function of the heart after an injury. Mechanisms of myocardial recovery include restoration and/or adaptation of myocyte structure and function, mitochondrial activity and number, metabolic homeostasis, electrophysiological stability, extracellular matrix remodeling, and myocardial perfusion. Myocardial regeneration is an element of myocardial recovery that involves the generation of new myocardial tissue, a process which is limited in adult humans but may be therapeutically augmented. Understanding the mechanisms of myocardial recovery and myocardial regeneration will lead to novel therapies for heart failure.
Collapse
Affiliation(s)
- John P. Cooke
- Houston Methodist Academic Institute, Houston, Texas, US
| | | | - Li Lai
- Houston Methodist Academic Institute, Houston, Texas, US
| |
Collapse
|