1
|
Herbstein F, Sapochnik M, Attorresi A, Pollak C, Senin S, Gonilski‐Pacin D, Ciancio del Giudice N, Fiz M, Elguero B, Fuertes M, Müller L, Theodoropoulou M, Pontel LB, Arzt E. The SASP factor IL-6 sustains cell-autonomous senescent cells via a cGAS-STING-NFκB intracrine senescent noncanonical pathway. Aging Cell 2024; 23:e14258. [PMID: 39012326 PMCID: PMC11464112 DOI: 10.1111/acel.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024] Open
Abstract
Senescent cells produce a Senescence-Associated Secretory Phenotype (SASP) that involves factors with diverse and sometimes contradictory activities. One key SASP factor, interleukin-6 (IL-6), has the potential to amplify cellular senescence in the SASP-producing cells in an autocrine action, while simultaneously inducing proliferation in the neighboring cells. The underlying mechanisms for the contrasting actions remain unclear. We found that the senescence action does not involve IL-6 secretion nor the interaction with the receptor expressed in the membrane but is amplified through an intracrine mechanism. IL-6 sustains intracrine senescence interacting with the intracellular IL-6 receptor located in anterograde traffic specialized structures, with cytosolic DNA, cGAS-STING, and NFκB activation. This pathway triggered by intracellular IL-6 significantly contributes to cell-autonomous induction of senescence and impacts in tumor growth control. Inactivation of IL-6 in somatotrophic senescent cells transforms them into strongly tumorigenic in NOD/SCID mice, while re-expression of IL-6 restores senescence control of tumor growth. The intracrine senescent IL-6 pathway is further evidenced in three human cellular models of therapy-induced senescence. The compartmentalization of the intracellular signaling, in contrast to the paracrine tumorigenic action, provides a pathway for IL-6 to sustain cell-autonomous senescent cells, driving the SASP, and opens new avenues for clinical consideration to senescence-based therapies.
Collapse
Affiliation(s)
- Florencia Herbstein
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Alejandra Attorresi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Cora Pollak
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Sergio Senin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - David Gonilski‐Pacin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Nicolas Ciancio del Giudice
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Manuel Fiz
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Belén Elguero
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| | - Lara Müller
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Marily Theodoropoulou
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität (LMU) MünchenMunichGermany
| | - Lucas B. Pontel
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Present address:
Josep Carreras Leukaemia Research Institute (IJC)BadalonaSpain
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)—CONICET—Partner Institute of the Max Planck SocietyBuenos AiresArgentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
2
|
Oleksak P, Rysanek D, Vancurova M, Vasicova P, Urbancokova A, Novak J, Maurencova D, Kashmel P, Houserova J, Mikyskova R, Novotny O, Reinis M, Juda P, Hons M, Kroupova J, Sedlak D, Sulimenko T, Draber P, Chlubnova M, Nepovimova E, Kuca K, Lisa M, Andrys R, Kobrlova T, Soukup O, Janousek J, Prchal L, Bartek J, Musilek K, Hodny Z. Discovery of a 6-Aminobenzo[ b]thiophene 1,1-Dioxide Derivative (K2071) with a Signal Transducer and Activator of Transcription 3 Inhibitory, Antimitotic, and Senotherapeutic Activities. ACS Pharmacol Transl Sci 2024; 7:2755-2783. [PMID: 39296273 PMCID: PMC11406704 DOI: 10.1021/acsptsci.4c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/21/2024]
Abstract
6-Nitrobenzo[b]thiophene 1,1-dioxide (Stattic) is a potent signal transducer and activator of the transcription 3 (STAT3) inhibitor developed originally for anticancer therapy. However, Stattic harbors several STAT3 inhibition-independent biological effects. To improve the properties of Stattic, we prepared a series of analogues derived from 6-aminobenzo[b]thiophene 1,1-dioxide, a compound directly obtained from the reduction of Stattic, that includes a methoxybenzylamino derivative (K2071) with optimized physicochemical characteristics, including the ability to cross the blood-brain barrier. Besides inhibiting the interleukin-6-stimulated activity of STAT3 mediated by tyrosine 705 phosphorylation, K2071 also showed cytotoxicity against a set of human glioblastoma-derived cell lines. In contrast to the core compound, a part of K2071 cytotoxicity reflected a STAT3 inhibition-independent block of mitotic progression in the prophase, affecting mitotic spindle formation, indicating that K2071 also acts as a mitotic poison. Compared to Stattic, K2071 was significantly less thiol-reactive. In addition, K2071 affected cell migration, suppressed cell proliferation in tumor spheroids, exerted cytotoxicity for glioblastoma temozolomide-induced senescent cells, and inhibited the secretion of the proinflammatory cytokine monocyte chemoattractant protein 1 (MCP-1) in senescent cells. Importantly, K2071 was well tolerated in mice, lacking manifestations of acute toxicity. The structure-activity relationship analysis of the K2071 molecule revealed the necessity of the para-substituted methoxyphenyl motif for antimitotic but not overall cytotoxic activity of its derivatives. Altogether, these results indicate that compound K2071 is a novel Stattic-derived STAT3 inhibitor and a mitotic poison with anticancer and senotherapeutic properties that is effective on glioblastoma cells and may be further developed as an agent for glioblastoma therapy.
Collapse
Affiliation(s)
- Patrik Oleksak
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - David Rysanek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Vancurova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavla Vasicova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alexandra Urbancokova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Josef Novak
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Dominika Maurencova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Kashmel
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Houserova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Romana Mikyskova
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Ondrej Novotny
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Milan Reinis
- Laboratory of Immunological and Tumour Models, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Juda
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Miroslav Hons
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Jirina Kroupova
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - David Sedlak
- CZ-OPENSCREEN, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Tetyana Sulimenko
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Pavel Draber
- Laboratory of Biology of Cytoskeleton, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Marketa Chlubnova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Eugenie Nepovimova
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Kamil Kuca
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Miroslav Lisa
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Rudolf Andrys
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Janousek
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Lukas Prchal
- Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove 500 05, Czech Republic
| | - Jiri Bartek
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
- Danish Cancer Institute, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
- Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Kamil Musilek
- Faculty of Science, Department of Chemistry, University of Hradec Kralove, Rokitanskeho 62, Hradec Kralove 500 03, Czech Republic
| | - Zdenek Hodny
- Laboratory of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic
| |
Collapse
|
3
|
Pennel K, Dutton L, Melissourgou-Syka L, Roxburgh C, Birch J, Edwards J. Novel radiation and targeted therapy combinations for improving rectal cancer outcomes. Expert Rev Mol Med 2024; 26:e14. [PMID: 38623751 PMCID: PMC11140547 DOI: 10.1017/erm.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.
Collapse
Affiliation(s)
- Kathryn Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Louise Dutton
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Lydia Melissourgou-Syka
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- CRUK Scotland Institute, Glasgow, G611BD, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, University of Glasgow, Glasgow, G4 0SF, UK
| | - Joanna Birch
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
4
|
Luan Y, Zhu X, Jiao Y, Liu H, Huang Z, Pei J, Xu Y, Yang Y, Ren K. Cardiac cell senescence: molecular mechanisms, key proteins and therapeutic targets. Cell Death Discov 2024; 10:78. [PMID: 38355681 PMCID: PMC10866973 DOI: 10.1038/s41420-023-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 02/16/2024] Open
Abstract
Cardiac aging, particularly cardiac cell senescence, is a natural process that occurs as we age. Heart function gradually declines in old age, leading to continuous heart failure, even in people without a prior history of heart disease. To address this issue and improve cardiac cell function, it is crucial to investigate the molecular mechanisms underlying cardiac senescence. This review summarizes the main mechanisms and key proteins involved in cardiac cell senescence. This review further discusses the molecular modulators of cellular senescence in aging hearts. Furthermore, the discussion will encompass comprehensive descriptions of the key drugs, modes of action and potential targets for intervention in cardiac senescence. By offering a fresh perspective and comprehensive insights into the molecular mechanisms of cardiac senescence, this review seeks to provide a fresh perspective and important theoretical foundations for the development of drugs targeting this condition.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Xiaofan Zhu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuxue Jiao
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Zhen Huang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, P. R. China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People's Hospital, Zhengzhou, 450052, P. R. China
| | - Yawei Xu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Yang Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, 450052, P. R. China.
| |
Collapse
|
5
|
Li L, Hu X, Nkwocha J, Sharma K, Kmieciak M, Mann H, Zhou L, Grant S. Non-canonical role for the ataxia-telangiectasia-Rad3 pathway in STAT3 activation in human multiple myeloma cells. Cell Oncol (Dordr) 2023; 46:1369-1380. [PMID: 37126127 PMCID: PMC10618375 DOI: 10.1007/s13402-023-00817-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/02/2023] Open
Abstract
PURPOSE The goal of this study was to characterize the relationship between ATR and STAT3 interactions in human multiple myeloma (MM) cells. METHODS Various MM cell lines, including IL-6-dependent cells were exposed to ATR inhibitors and effects on STAT3 Tyr705 and Ser727 were monitored by WB analysis and ImageStream analysis. Parallel studies examined induction of cell death, STAT3 DNA binding activity, and expression of STAT3 downstream targets (BCL-XL, MCL-1, c-MYC). Validation was obtained in ATR shRNA knock-down cells, and in cells ectopically expressing BCL-XL, MCL-1, or c-MYC. Analogous studies were performed in primary MM cells and in a MM xenograft model. RESULTS Multiple pharmacologic ATR inhibitors inhibited STAT3 Tyr705 (but not Ser727) phosphorylation at low uM concentrations and down-regulated BCL-XL, MCL-1, c-MYC in association with cell death induction. Compatible results were observed in ATR shRNA knock-down cells. Cell death induced by ATR inhibitors was significantly attenuated in cells ectopically expressing constitutively active STAT3, BCL-XL, MCL-1, or c-MYC. Concordant results were observed in primary human MM cells and in an in vivo MM xenograft model. CONCLUSIONS Collectively, these findings argue for a non-canonical role for the ATR kinase in STAT3 activation in MM cells, and suggest that STAT3 inactivation contributes to the lethal actions of ATR inhibitors in MM.
Collapse
Affiliation(s)
- Lin Li
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Xiaoyan Hu
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Jewel Nkwocha
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Kanika Sharma
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Maciej Kmieciak
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Hashim Mann
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
| | - Liang Zhou
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA
- Department of Translational Medicine, Asklepios BioPharmaceutical, Inc., Durham, NC, USA
| | - Steven Grant
- Division of Hematology/Oncology, Department of Medicine, Virginia Commonwealth University, P.O. Box 980035, Richmond, VA, 23298, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
6
|
Wheeler OPG, Unterholzner L. DNA sensing in cancer: Pro-tumour and anti-tumour functions of cGAS-STING signalling. Essays Biochem 2023; 67:905-918. [PMID: 37534795 PMCID: PMC10539950 DOI: 10.1042/ebc20220241] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/11/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The DNA sensor cGAS (cyclic GMP-AMP synthase) and its adaptor protein STING (Stimulator of Interferon Genes) detect the presence of cytosolic DNA as a sign of infection or damage. In cancer cells, this pathway can be activated through persistent DNA damage and chromosomal instability, which results in the formation of micronuclei and the exposure of DNA fragments to the cytosol. DNA damage from radio- or chemotherapy can further activate DNA sensing responses, which may occur in the cancer cells themselves or in stromal and immune cells in the tumour microenvironment (TME). cGAS-STING signalling results in the production of type I interferons, which have been linked to immune cell infiltration in 'hot' tumours that are susceptible to immunosurveillance and immunotherapy approaches. However, recent research has highlighted the complex nature of STING signalling, with tumours having developed mechanisms to evade and hijack this signalling pathway for their own benefit. In this mini-review we will explore how cGAS-STING signalling in different cells in the TME can promote both anti-tumour and pro-tumour responses. This includes the role of type I interferons and the second messenger cGAMP in the TME, and the influence of STING signalling on local immune cell populations. We examine how alternative signalling cascades downstream of STING can promote chronic interferon signalling, the activation of the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of inflammatory cytokines, which can have pro-tumour functions. An in-depth understanding of DNA sensing in different cell contexts will be required to harness the anti-tumour functions of STING signalling.
Collapse
Affiliation(s)
- Otto P G Wheeler
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| | - Leonie Unterholzner
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, U.K
| |
Collapse
|
7
|
Liu J, Zheng R, Zhang Y, Jia S, He Y, Liu J. The Cross Talk between Cellular Senescence and Melanoma: From Molecular Pathogenesis to Target Therapies. Cancers (Basel) 2023; 15:cancers15092640. [PMID: 37174106 PMCID: PMC10177054 DOI: 10.3390/cancers15092640] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Melanoma is a malignant skin tumor that originates from melanocytes. The pathogenesis of melanoma involves a complex interaction that occurs between environmental factors, ultraviolet (UV)-light damage, and genetic alterations. UV light is the primary driver of the skin aging process and development of melanoma, which can induce reactive oxygen species (ROS) production and the presence of DNA damage in the cells, and results in cell senescence. As cellular senescence plays an important role in the relationship that exists between the skin aging process and the development of melanoma, the present study provides insight into the literature concerning the topic at present and discusses the relationship between skin aging and melanoma, including the mechanisms of cellular senescence that drive melanoma progression, the microenvironment in relation to skin aging and melanoma factors, and the therapeutics concerning melanoma. This review focuses on defining the role of cellular senescence in the process of melanoma carcinogenesis and discusses the targeting of senescent cells through therapeutic approaches, highlighting the areas that require more extensive research in the field.
Collapse
Affiliation(s)
- Jiahua Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Runzi Zheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yanghuan Zhang
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuting Jia
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| | - Yonghan He
- Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jing Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
8
|
Han D, Gong H, Wei Y, Xu Y, Zhou X, Wang Z, Feng F. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154680. [PMID: 36736168 DOI: 10.1016/j.phymed.2023.154680] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/19/2022] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and fatal lung disease with obscure pathogenesis. Increasing evidence suggests that cellular senescence is an important mechanism underlying in IPF. Clinical treatment with drugs, such as pirfenidone and nintedanib, reduces the risk of acute exacerbation and delays the decline of pulmonary function in patients with mild to moderate pulmonary fibrosis, and with adverse reactions. Hesperidin was previously shown to alleviate pulmonary fibrosis in rats by attenuating the inflammation response. Our previous research indicated that the Citrus alkaline extracts, hesperidin as the main active ingredient, could exert anti-pulmonary fibrosis effects by inhibiting the senescence of lung fibroblasts. However, whether hesperidin could ameliorate pulmonary fibrosis by inhibiting fibroblast senescence needed further study. PURPOSE This work aimed to investigate whether and how hesperidin can inhibit lung fibroblast senescence and thereby alleviate pulmonary fibrosis METHODS: Bleomycin was used to establish a mouse model of pulmonary fibrosis and doxorubicin was used to establish a model of cellular senescence in MRC-5 cells in vitro. The therapeutic effects of hesperidin on pulmonary fibrosis using haematoxylin-eosin staining, Masson staining, enzyme-linked immunosorbent assay, immunohistochemistry, western blotting and quantitative Real-Time PCR. The anti-senescent effect of hesperidin in vivo and in vitro was assessed by western blotting, quantitative Real-Time PCR and senescence-associated β-galactosidase RESULTS: We demonstrated that hesperidin could alleviate bleomycin-induced pulmonary fibrosis in mice. The expression level of senescence marker proteins p53, p21, and p16 was were downregulated, along with the myofibroblast marker α-SMA. The number of senescence-associated β-galactosidase-positive cells was significantly reduced by hesperidin intervention in vivo and in vitro. In addition, hesperidin could inhibit the IL6/STAT3 signaling pathway. Furthermore, suppression of the IL-6/STAT3 signaling pathway by pretreatment with the IL-6 inhibitor LMT-28 attenuating effect of hesperidin on fibroblast senescence in vitro. CONCLUSIONS These data illustrated that hesperidin may be potentially used in the treatment of IPF based on its ability to inhibit lung fibroblast senescence.
Collapse
Affiliation(s)
- Di Han
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Haiying Gong
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China
| | - Yun Wei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yong Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China; School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianmei Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Zhichao Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| | - Fanchao Feng
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital Of Chinese Medicine, Nanjing, China; Department of Respiratory and Critical Care Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Al-Asmari SS, Rajapakse A, Ullah TR, Pépin G, Croft LV, Gantier MP. Pharmacological Targeting of STING-Dependent IL-6 Production in Cancer Cells. Front Cell Dev Biol 2022; 9:709618. [PMID: 35087822 PMCID: PMC8787270 DOI: 10.3389/fcell.2021.709618] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/20/2021] [Indexed: 12/31/2022] Open
Abstract
Activation of the STING pathway upon genotoxic treatment of cancer cells has been shown to lead to anti-tumoral effects, mediated through the acute production of interferon (IFN)-β. Conversely, the pathway also correlates with the expression of NF-κB-driven pro-tumorigenic genes, but these associations are only poorly defined in the context of genotoxic treatment, and are thought to correlate with a chronic engagement of the pathway. We demonstrate here that half of the STING-expressing cancer cells from the NCI60 panel rapidly increased expression of pro-tumorigenic IL-6 upon genotoxic DNA damage, often independent of type-I IFN responses. While preferentially dependent on canonical STING, we demonstrate that genotoxic DNA damage induced by camptothecin (CPT) also drove IL-6 production through non-canonical STING signaling in selected cancer cells. Consequently, pharmacological inhibition of canonical STING failed to broadly inhibit IL-6 production induced by CPT, although this could be achieved through downstream ERK1/2 inhibition. Finally, prolonged inhibition of canonical STING signaling was associated with increased colony formation of MG-63 cells, highlighting the duality of STING signaling in also restraining the growth of selected cancer cells. Collectively, our findings demonstrate that genotoxic-induced DNA damage frequently leads to the rapid production of pro-tumorigenic IL-6 in cancer cells, independent of an IFN signature, through canonical and non-canonical STING activation; this underlines the complexity of STING engagement in human cancer cells, with frequent acute pro-tumorigenic activities induced by DNA damage. We propose that inhibition of ERK1/2 may help curb such pro-tumorigenic responses to DNA-damage, while preserving the anti-proliferative effects of the STING-interferon axis.
Collapse
Affiliation(s)
- Sumaiah S Al-Asmari
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Aleksandra Rajapakse
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at the Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Tomalika R Ullah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Geneviève Pépin
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Laura V Croft
- School of Biomedical Sciences, Centre for Genomics and Personalised Health, Cancer and Ageing Research Program at the Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Michael P Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
10
|
Ngo ATL, Le HM, Trinh NTH, Jun APG, Bach TQ, Bui HTH, Hoang VT, Bui AV, Nguyen LT, Hoang DM. Clinically relevant preservation conditions for mesenchymal stem/stromal cells derived from perinatal and adult tissue sources. J Cell Mol Med 2021; 25:10747-10760. [PMID: 34708529 PMCID: PMC8581317 DOI: 10.1111/jcmm.17016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
The interplay between mesenchymal stem/stromal cells (MSCs) and preservation conditions is critical to maintain the viability and functionality of these cells before administration. We observed that Ringer lactate (RL) maintained high viability of bone marrow–derived MSCs for up to 72 h at room temperature (18°C–22°C), whereas adipose‐derived and umbilical cord‐derived MSCs showed the highest viability for 72 h at a cold temperature (4°C–8°C). These cells maintained their adherence ability with an improved recovery rate and metabolic profiles (glycolysis and mitochondrial respiration) similar to those of freshly harvested cells. Growth factor and cytokine analyses revealed that the preserved cells released substantial amounts of leukaemia inhibitory factors (LIFs), hepatocyte growth factor (HGF) and vascular endothelial growth factor‐A (VEGF‐A), as well as multiple cytokines (eg IL‐4, IL‐6, IL‐8, MPC‐1 and TNF‐α). Our data provide the simplest clinically relevant preservation conditions that maintain the viability, stemness and functionality of MSCs from perinatal and adult tissue sources.
Collapse
Affiliation(s)
- Anh T L Ngo
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Hang M Le
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Nhung T H Trinh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Adriel Peng Guo Jun
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hue T H Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh V Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem T Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
11
|
Analysis of Acanthopanax giraldii Harms Polysaccharide II Composition and Its Immune-Protective Role in a Cyclophosphamide-Induced Immunosuppressive Mice Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3387396. [PMID: 34373697 PMCID: PMC8349253 DOI: 10.1155/2021/3387396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/30/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022]
Abstract
Acanthopanax giraldii Harms is commonly used in traditional Chinese medicine to treat rheumatism, improve joints, and strengthen muscles and bones. The polysaccharides present in A. giraldii Harms contain major bioactive substances, which have antioxidant, anticancer, and antiviral activities. In this study, the structural characterization of the homogeneous polysaccharide isolated from A. giraldii Harms, known as AHP-II, and its immunomodulatory effects in vivo will be studied. High-performance ion chromatography (HPIC) and high-performance gel permeation chromatography (HPGPC) based analyses revealed that AHP-II was composed of various monosaccharides, which included rhamnose, arabinose, galactose, glucose, mannose, galacturonic acid, and glucuronic acid in molar ratios of 29.5 : 24.6 : 23.8 : 4.4 : 5.7 : 8.8 : 3.1, respectively, and had a collective molecular weight of 80.21 × 103 Da. Fourier-transform infrared (FTIR) spectroscopy indicated the presence of a pyranose ring and β-type glycosidic linkages in AHP-II. In addition, immunomodulatory effect analyses of AHP-II that used a cyclophosphamide-induced immunosuppressive mouse model demonstrated that its treatment could significantly restore spleen and thymus indices, promote the proliferation of splenic lymphocytes, elevate CD4+ T lymphocyte percentage and CD4+ : CD8+ ratio in the spleen, promote macrophage phagocytosis, and restore cytokines (IL-6, TNF-α, IgM, and IgG) levels. These results suggested that AHP-II could potentially be used as natural immunomodulator and as an alternative treatment to reduce chemotherapy-induced immunosuppression.
Collapse
|
12
|
Nehme R, Hallal R, El Dor M, Kobeissy F, Gouilleux F, Mazurier F, Zibara K. Repurposing of Acriflavine to Target Chronic Myeloid Leukemia Treatment. Curr Med Chem 2021; 28:2218-2233. [PMID: 32900342 DOI: 10.2174/0929867327666200908114411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Drug repurposing has lately received increasing interest in several diseases especially in cancers, due to its advantages in facilitating the development of new therapeutic strategies, by adopting a cost-friendly approach and avoiding the strict Food and Drug Administration (FDA) regulations. Acriflavine (ACF) is an FDA approved molecule that has been extensively studied since 1912 with antiseptic, trypanocidal, anti-viral, anti-bacterial and anti-cancer effects. ACF has been shown to block the growth of solid and hematopoietic tumor cells. Indeed, ACF acts as an inhibitor of various proteins, including DNA-dependent protein kinases C (DNA-PKcs), topoisomerase I and II, hypoxia-inducible factor 1α (HIF-1α), in addition to its recent discovery as an inhibitor of the signal transducer and activator of transcription (STAT). Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder characterized by the expression of the constitutively active tyrosine kinase BCR-ABL. This protein allows the activation of several signaling pathways known for their role in cell proliferation and survival, such as the JAK/STAT pathway. CML therapy, based on tyrosine kinase inhibitors (TKIs), such as imatinib (IM), is highly effective. However, 15% of patients are refractory to IM, where in some cases, 20-30% of patients become resistant. Thus, we suggest the repurposing of ACF in CML after IM failure or in combination with IM to improve the anti-tumor effects of IM. In this review, we present the different pharmacological properties of ACF along with its anti-leukemic effects in the hope of its repurposing in CML therapy.
Collapse
Affiliation(s)
- Rawan Nehme
- Universite de Tours, EA7501 GICC, Tours, France
| | | | - Maya El Dor
- Universite de Tours, EA7501 GICC, Tours, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | | | | |
Collapse
|
13
|
Quantification of Cytokines in Lip Tissue from Infants Affected by Congenital Cleft Lip and Palate. CHILDREN-BASEL 2021; 8:children8020140. [PMID: 33673258 PMCID: PMC7918854 DOI: 10.3390/children8020140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Cleft lip and palate are amongst the most common congenital malformations worldwide presenting with variable manifestations. Previous research has been primarily focused on the genetical aspects of its complex and multifactorial etiology. In the present study, we investigated the role of cytokines as mediators of epithelial–mesenchymal crosstalk and local site inflammation in cleft affected infants. Lip material was obtained from 12 children aged before primary dentition who suffered from orofacial clefting. The quantification of 12 cytokines (Interleukin-2,4,5,6,10,12,13,17A, Tumor Necrosis Factor-α, Interferon-γ, Transforming Growth Factor beta-1 and Granulocyte-Colony Stimulating Factor) was done using ELISA. Nonparametric Spearman Rho was used to ascertain the correlation between the expression levels of different cytokines. A significantly strong positive correlation was found between IL-2 and IFN-γ coupled with an IL4/IFN-γ ratio favoring IFN-γ. These findings indicate a shift towards the preferential activation of the Th1 differentiation pathway. Further, a pathological reduction in TGFβ-1 levels was noted, which may contribute to mucosal damage. IL-6 was more highly correlated to IFN-γ and IL-12 indicating its potential proinflammatory role in cleft affected tissues. This preferential activation of Th1 cell differentiation and consistent expression of IL-2,6,13 and TNF-α in cleft patients may indicate certain underlying mechanisms for inflammation mediation at the site of clefting.
Collapse
|
14
|
Houssein M, Abi Saab W, Khalil M, Khalife H, Fatfat M. Cell Death by Gallotannin Is Associated with Inhibition of the JAK/STAT Pathway in Human Colon Cancer Cells. Curr Ther Res Clin Exp 2020; 92:100589. [PMID: 32714471 PMCID: PMC7378856 DOI: 10.1016/j.curtheres.2020.100589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023] Open
Abstract
Background Gallotannin (GT) is a polyphenol that possesses interesting anticancer properties. However, the mechanisms underlying its antitumor effects have not been well defined. Objective This study was designed to clarify the mechanisms underlying GT antitumor effects in colon cancer cell lines. Methods Three isogenic HCT116 cell lines (p53+/+, p53-/-, and p21-/-) were treated with GT for different time points then Western blot, flow cytometry, and senescence analysis were performed to examine the effect of GT on Mitogen-activated protein kinase (MAPK) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) effectors, STAT3 downstream apoptotic targets, Sub-G1 phase, and programmed cell death induction. Transfection using Invitrogen Lipofectamine 2000 Transfection Reagent (Thermo Fisher Scientific, Waltham, Massachusetts) were used to identify the role of p53 and p21 in the p53-/- and p21-/- cell lines. Results Both low and high GT concentrations caused MAPKs activation marked by upregulation of extracellular signal-regulated kinase (p-ERK). The preincubation with the antioxidant Tiron (Sigma-Aldrich, St Louis, Missouri) showed that GT's antitumor effects were not mediated by reactive oxygen species. We then examined the effect of GT on the JAK/STAT pathway, which is known to be activated in colorectal cancer. GT totally inhibited the JAK/STAT pathway effectors JAK2, STAT1, and STAT3 and their downstream apoptotic regulators B-cell lymphoma-extra large (Bcl-xL) and c-Myc in all 3 cell lines. HCT116 cancer cells exhibited differential sensitivity to GT with p21-/- cells being the most sensitive and p53+/+ cells that express p21 protein being the least sensitive. In p53+/+ cells, GT induced senescence, whereas in p53-/- and p21-/- cells, GT induced apoptosis in a caspase independent manner marked by Poly(ADP-Ribose) Polymerase (PARP) cleavage, Bcl-2 downregulation, and upregulation of the Bcl-2 associated X (Bax) to B-cell lymphoma 2 (Bcl-2) ratio. In addition, the sub-G1 phase exceeded 50% in p21-/- cells. Conclusions Considered together, our results indicate that GT is potent inhibitor of the JAK/STAT pathway in colon cancer irrespective of the p53 and p21 status, which provides insights into its mechanism of anticancer activities and future potential for clinical translation. (Curr Ther Res Clin Exp. 2020; 81:XXX-XXX).
Collapse
Affiliation(s)
- Marwa Houssein
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon.,Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| | - Widian Abi Saab
- Department of Biology, American University of Beirut, Lebanon.,Department of Biology College of Arts and Sciences, Albert Einstein College of Medicine United State, San Diego, California, United State
| | - Mahmoud Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Hala Khalife
- Rammal Laboratory (ATAC), Faculty of Sciences I, Lebanese University Hadath, Beirut, Lebanon
| | - Maamoun Fatfat
- Center for Drug Discovery, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
15
|
Hallal R, Nehme R, Brachet-Botineau M, Nehme A, Dakik H, Deynoux M, Dello Sbarba P, Levern Y, Zibara K, Gouilleux F, Mazurier F. Acriflavine targets oncogenic STAT5 signaling in myeloid leukemia cells. J Cell Mol Med 2020; 24:10052-10062. [PMID: 32667731 PMCID: PMC7520299 DOI: 10.1111/jcmm.15612] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Acriflavine (ACF) is an antiseptic with anticancer properties, blocking the growth of solid and haematopoietic tumour cells. Moreover, this compound has been also shown to overcome the resistance of cancer cells to chemotherapeutic agents. ACF has been shown to target hypoxia‐inducible factors (HIFs) activity, which are key effectors of hypoxia‐mediated chemoresistance. In this study, we showed that ACF inhibits the growth and survival of chronic myeloid leukaemia (CML) and acute myeloid leukaemia (AML) cell lines in normoxic conditions. We further demonstrated that ACF down‐regulates STAT5 expression in CML and AML cells but activates STAT3 in CML cells in a HIF‐independent manner. In addition, we demonstrated that ACF suppresses the resistance of CML cells to tyrosine kinase inhibitors, such as imatinib. Our data suggest that the dual effect of ACF might be exploited to eradicate de novo or acquired resistance of myeloid leukaemia cells to chemotherapy.
Collapse
Affiliation(s)
- Rawan Hallal
- Université de Tours, EA7501 GICC, Tours, France.,CNRS ERL7001 LNOx, Tours, France.,PRASE, Lebanese University, Beirut, Lebanon
| | - Rawan Nehme
- Université de Tours, EA7501 GICC, Tours, France.,CNRS ERL7001 LNOx, Tours, France.,PRASE, Lebanese University, Beirut, Lebanon
| | | | - Ali Nehme
- Université de Tours, EA7501 GICC, Tours, France.,CNRS ERL7001 LNOx, Tours, France
| | - Hassan Dakik
- Université de Tours, EA7501 GICC, Tours, France.,CNRS ERL7001 LNOx, Tours, France
| | - Margaux Deynoux
- Université de Tours, EA7501 GICC, Tours, France.,CNRS ERL7001 LNOx, Tours, France
| | - Persio Dello Sbarba
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Florence, Italy
| | - Yves Levern
- INRAE, Imagerie en Infectiologie, UMR Infectiologie et Santé Publique, Université de Tours, Nouzilly, France
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon.,Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Fabrice Gouilleux
- Université de Tours, EA7501 GICC, Tours, France.,CNRS ERL7001 LNOx, Tours, France
| | - Frédéric Mazurier
- Université de Tours, EA7501 GICC, Tours, France.,CNRS ERL7001 LNOx, Tours, France
| |
Collapse
|
16
|
Bharadwaj U, Kasembeli MM, Robinson P, Tweardy DJ. Targeting Janus Kinases and Signal Transducer and Activator of Transcription 3 to Treat Inflammation, Fibrosis, and Cancer: Rationale, Progress, and Caution. Pharmacol Rev 2020; 72:486-526. [PMID: 32198236 PMCID: PMC7300325 DOI: 10.1124/pr.119.018440] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Before it was molecularly cloned in 1994, acute-phase response factor or signal transducer and activator of transcription (STAT)3 was the focus of intense research into understanding the mammalian response to injury, particularly the acute-phase response. Although known to be essential for liver production of acute-phase reactant proteins, many of which augment innate immune responses, molecular cloning of acute-phase response factor or STAT3 and the research this enabled helped establish the central function of Janus kinase (JAK) family members in cytokine signaling and identified a multitude of cytokines and peptide hormones, beyond interleukin-6 and its family members, that activate JAKs and STAT3, as well as numerous new programs that their activation drives. Many, like the acute-phase response, are adaptive, whereas several are maladaptive and lead to chronic inflammation and adverse consequences, such as cachexia, fibrosis, organ dysfunction, and cancer. Molecular cloning of STAT3 also enabled the identification of other noncanonical roles for STAT3 in normal physiology, including its contribution to the function of the electron transport chain and oxidative phosphorylation, its basal and stress-related adaptive functions in mitochondria, its function as a scaffold in inflammation-enhanced platelet activation, and its contributions to endothelial permeability and calcium efflux from endoplasmic reticulum. In this review, we will summarize the molecular and cellular biology of JAK/STAT3 signaling and its functions under basal and stress conditions, which are adaptive, and then review maladaptive JAK/STAT3 signaling in animals and humans that lead to disease, as well as recent attempts to modulate them to treat these diseases. In addition, we will discuss how consideration of the noncanonical and stress-related functions of STAT3 cannot be ignored in efforts to target the canonical functions of STAT3, if the goal is to develop drugs that are not only effective but safe. SIGNIFICANCE STATEMENT: Key biological functions of Janus kinase (JAK)/signal transducer and activator of transcription (STAT)3 signaling can be delineated into two broad categories: those essential for normal cell and organ development and those activated in response to stress that are adaptive. Persistent or dysregulated JAK/STAT3 signaling, however, is maladaptive and contributes to many diseases, including diseases characterized by chronic inflammation and fibrosis, and cancer. A comprehensive understanding of JAK/STAT3 signaling in normal development, and in adaptive and maladaptive responses to stress, is essential for the continued development of safe and effective therapies that target this signaling pathway.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Moses M Kasembeli
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - David J Tweardy
- Department of Infectious Diseases, Infection Control & Employee Health, Division of Internal Medicine (U.B., M.M.K., P.R., D.J.T.), and Department of Molecular and Cellular Oncology (D.J.T.), University of Texas, MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
17
|
Khanna A, Thoms JAI, Stringer BW, Chung SA, Ensbey KS, Jue TR, Jahan Z, Subramanian S, Anande G, Shen H, Unnikrishnan A, McDonald KL, Day BW, Pimanda JE. Constitutive CHK1 Expression Drives a pSTAT3-CIP2A Circuit that Promotes Glioblastoma Cell Survival and Growth. Mol Cancer Res 2020; 18:709-722. [PMID: 32079743 DOI: 10.1158/1541-7786.mcr-19-0934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/14/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022]
Abstract
High-constitutive activity of the DNA damage response protein checkpoint kinase 1 (CHK1) has been shown in glioblastoma (GBM) cell lines and in tissue sections. However, whether constitutive activation and overexpression of CHK1 in GBM plays a functional role in tumorigenesis or has prognostic significance is not known. We interrogated multiple glioma patient cohorts for expression levels of CHK1 and the oncogene cancerous inhibitor of protein phosphatase 2A (CIP2A), a known target of high-CHK1 activity, and examined the relationship between these two proteins in GBM. Expression levels of CHK1 and CIP2A were independent predictors for reduced overall survival across multiple glioma patient cohorts. Using siRNA and pharmacologic inhibitors we evaluated the impact of their depletion using both in vitro and in vivo models and sought a mechanistic explanation for high CIP2A in the presence of high-CHK1 levels in GBM and show that; (i) CHK1 and pSTAT3 positively regulate CIP2A gene expression; (ii) pSTAT3 and CIP2A form a recursively wired transcriptional circuit; and (iii) perturbing CIP2A expression induces GBM cell senescence and retards tumor growth in vitro and in vivo. Taken together, we have identified an oncogenic transcriptional circuit in GBM that can be destabilized by targeting CIP2A. IMPLICATIONS: High expression of CIP2A in gliomas is maintained by a CHK1-dependent pSTAT3-CIP2A recursive loop; interrupting CIP2A induces cell senescence and slows GBM growth adding impetus to the development of CIP2A as an anticancer drug target.
Collapse
Affiliation(s)
- Anchit Khanna
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia. .,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Julie A I Thoms
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia
| | - Brett W Stringer
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sylvia A Chung
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Kathleen S Ensbey
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Toni Rose Jue
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Zeenat Jahan
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia
| | - Shruthi Subramanian
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Govardhan Anande
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Han Shen
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia.,Centre for Cancer Research, Westmead Institute for Medical Research, Westmead, Australia.,Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Camperdown, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Kerrie L McDonald
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John E Pimanda
- Adult Cancer Program, Lowy Cancer Research Centre, University of New South Wales Sydney, New South Wales, Australia. .,Prince of Wales Clinical School, University of New South Wales Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales Sydney, New South Wales, Australia.,Department of Haematology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| |
Collapse
|
18
|
Chen LM, Tseng HY, Chen YA, Al Haq AT, Hwang PA, Hsu HL. Oligo-Fucoidan Prevents M2 Macrophage Differentiation and HCT116 Tumor Progression. Cancers (Basel) 2020; 12:cancers12020421. [PMID: 32059469 PMCID: PMC7072369 DOI: 10.3390/cancers12020421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) produced during intracellular metabolism or triggered by extrinsic factors can promote neoplastic transformation and malignant microenvironment that mediate tumor development. Oligo-Fucoidan is a sulfated polysaccharide isolated from the brown seaweed. Using human THP-1 monocytes and murine Raw264.7 macrophages as well as human HCT116 colorectal cancer cells, primary C6P2-L1 colorectal cancer cells and human MDA-MB231 breast cancer cells, we investigated the effect of Oligo-Fucoidan on inhibiting M2 macrophage differentiation and its therapeutic potential as a supplement in chemotherapy and tumor prevention. We now demonstrate that Oligo-Fucoidan is an antioxidant that suppresses intracellular ROS and mitochondrial superoxide levels in monocytes/macrophages and in aggressive cancer cells. Comparable to ROS inhibitors (DPI and NAC), Oligo-Fucoidan directly induced monocyte polarization toward M1-like macrophages and repolarized M2 macrophages into M1 phenotypes. DPI and Oligo-Fucoidan also cooperatively prevented M2 macrophage invasiveness. Indirectly, M1 polarity was advanced particularly when DPI suppressed ROS generation and supplemented with Oligo-Fucoidan in the cancer cells. Moreover, cisplatin chemoagent polarized monocytes and M0 macrophages toward M2-like phenotypes and Oligo-Fucoidan supplementation reduced these side effects. Furthermore, Oligo-Fucoidan promoted cytotoxicity of cisplatin and antagonized cisplatin effect on cancer cells to prevent M2 macrophage differentiation. More importantly, Oligo-Fucoidan inhibited tumor progression and M2 macrophage infiltration in tumor microenvironment, thus increasing of anti-tumor immunity.
Collapse
Affiliation(s)
- Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Pai-An Hwang
- National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
- Correspondence: ; Tel.: +886-37-246-166 (ext. 35329); Fax: +886-37-586-459
| |
Collapse
|
19
|
Zhang S, Zhang H, Jin Z, Wang S, Wang Y, Zhu L, Sun W, Yan B. Fucoidan inhibits tooth movement by promoting restorative macrophage polarization through the STAT3 pathway. J Cell Physiol 2020; 235:5938-5950. [PMID: 31967324 DOI: 10.1002/jcp.29519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/09/2020] [Indexed: 12/25/2022]
Abstract
Retention after treatment and effective anchorage control are two essential factors in orthodontics. Our study aimed to explore the effects of fucoidan on orthodontic tooth movement (OTM) and the involvement of macrophages. We established a murine OTM model to test the effect of fucoidan administration. We found that mice injected with fucoidan had a deceleration in OTM and a higher bone mineral density. Moreover, fucoidan increased the proportion of F4/80+ CD206+ macrophages and promoted the messenger RNA expression of Arg-1, CD206, and IL-10 at both in vivo and in vitro levels. In addition, macrophages showed lower expression of TNF-α, IL-1β, and IL-6 and a decrease in F4/80+ CD11c+ cells. Mechanistically, the level of phosphorylated STAT3 was elevated in unpolarized and restorative macrophages after treatment with fucoidan. Taken together, our findings suggest that fucoidan treatment inhibits OTM and enhances the stability of teeth after movement by promoting restorative macrophages through the STAT3 pathway.
Collapse
Affiliation(s)
- Shuting Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhichun Jin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Siyu Wang
- Department of Stomatology, The Second Hospital of Nanjing, Nanjing, Jiangsu, China
| | - Yan Wang
- Department of Orthodontics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu, China
| | - Linlin Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bin Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Li W, Hu X, Wang S, Jiao Z, Sun T, Liu T, Song K. Characterization and anti-tumor bioactivity of astragalus polysaccharides by immunomodulation. Int J Biol Macromol 2019; 145:985-997. [PMID: 31669273 DOI: 10.1016/j.ijbiomac.2019.09.189] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/30/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023]
Abstract
Astragalus polysaccharide (APS) has attracted growing interests in the field of anti-cancer by direct killing effect and improving immune function. In this study, the structure and composition of APS was determined, following the evaluation of in vitro and in vivo anti-tumor activity of APS targeted macrophages and host immune system based on immunoregulated strategy. The results indicated that APS had no direct cytotoxicity against 4T1 cells, but APS mediated macrophages could significantly inhibit the growth of 4T1 cells by the induction of cell cycle arrest (G2 phase) and cell apoptosis. APS mediated macrophages promoted the apoptosis of 4T1 cells mainly through the mitochondrial apoptosis pathway. The in vivo findings demonstrated that APS could markedly improve the thymus index and spleen index, and restore the structure of the damaged thymus and spleen tissue. APS could significantly enhance the proliferation of spleen lymphocytes and increase phagocytosis of peritoneal macrophages in mice. Furthermore, APS was capable of up-regulating the expression of IL-2, TNF-α and IFN-γ in peripheral blood. APS combined with 5-FU could improve the anti-tumor effect accompanied by the immunosuppressive alleviation of 5-FU on immune system, which may be suitable as an immune adjuvant for chemotherapy.
Collapse
Affiliation(s)
- Wenfang Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xueyan Hu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuping Wang
- Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zeren Jiao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX, USA
| | - Tongyi Sun
- School of Biological Science and Technology, Weifang Medical University, Weifang 261053, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
21
|
Li X, Kong C, Fan Y, Liu J, Lu W, Meng C, Li A, Zhai A, Yan B, Song W, Han X. Demethylation of SOCS1 mediates its abnormally high expression in ovarian cancer. Oncol Lett 2019; 18:1330-1336. [PMID: 31423194 PMCID: PMC6607400 DOI: 10.3892/ol.2019.10451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/26/2019] [Indexed: 11/28/2022] Open
Abstract
The present study aimed to investigate the association between methylation and the high expression of the suppressor of cytokine signaling 1 (SOCS1) in ovarian cancer by detecting the methylation rate and the degree of expression. The present study investigated the expression of SOCS1 mRNA and SOCS1 protein in ovarian cancer and normal ovary tissues using reverse transcription-quantitative polymerase chain reaction (PCR) and immunohistochemistry, and the methylation status of the CpG islands of SOCS1 mRNA in ovarian cancer tissue were examined using a methylation-specific PCR. The expression levels of SOCS1 mRNA in ovarian cancer specimens were significantly increased compared with that in the normal ovary tissues (P=0.0215). Consistent with this, the expression levels of SOCS1 protein in ovarian cancer specimens were significantly increased, while the methylation rate of SOCS1 mRNA was significantly decreased compared with that in the normal ovary tissues. Therefore, it may be concluded that the low methylation rate of SOCS1 mRNA in ovarian cancer increased the expression of SOCS1 mRNA, which may serve a role in the development of ovarian cancer.
Collapse
Affiliation(s)
- Xuejiao Li
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Chuimiao Kong
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yuchun Fan
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jia Liu
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Weiyuan Lu
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Caiyun Meng
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Aimei Li
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Aixia Zhai
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Bingqing Yan
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Wuqi Song
- Department of Microbiology, Harbin Medical University, Wu Lien-Teh Institute, The Heilongjiang Key Laboratory of Immunity and Infection, The Key Laboratory of Pathogenic Biology, Heilongjiang Higher Education Institutions, Harbin, Heilongjiang 150081, P.R. China
| | - Xu Han
- Department of Gynecology Endoscopy Section, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
22
|
Prabaharan CB, Yang AB, Chidambaram D, Rajamanickam K, Napper S, Sakharkar MK. Ibrutinib as a potential therapeutic option for HER2 overexpressing breast cancer - the role of STAT3 and p21. Invest New Drugs 2019; 38:909-921. [PMID: 31375978 DOI: 10.1007/s10637-019-00837-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 07/11/2019] [Indexed: 10/26/2022]
Abstract
Treatment response rates to current anticancer therapies for HER2 overexpressing breast cancer are limited and are associated with severe adverse drug reactions. Tyrosine kinases perform crucial roles in cellular processes by mediating cell signalling cascades. Ibrutinib is a recently approved Tyrosine Kinase Inhibitor (TKI) that has been shown be an effective therapeutic option for HER2 overexpressing breast cancer. The molecular mechanisms, pathways, or genes that are modulated by ibrutinib and the mechanism of action of ibrutinib in HER2 overexpressing breast cancer remain obscure. In this study, we have performed a kinome array analysis of ibrutinib treatment in two HER2 overexpressing breast cancer cell lines. Our analysis shows that ibrutinib induces changes in nuclear morphology and causes apoptosis via caspase-dependent extrinsic apoptosis pathway with the activation of caspases-8, caspase-3, and cleavage of PARP1. We further show that phosphorylated STAT3Y705 is upregulated and phosphorylated p21T145 is downregulated upon ibrutinib treatment. We propose that STAT3 upregulation is a passive response as a result of induction of DNA damage and downregulation of phosphorylated p21 is promoting cell cycle arrest and apoptosis in the two HER2 overexpressing cell lines. These results suggest that inhibitors of STAT3 phosphorylation may be potential options for combination therapy to help increase the efficacy of ibrutinib against HER2-overexpressing tumors.
Collapse
Affiliation(s)
- Chandra Bose Prabaharan
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Allan Boyao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Divya Chidambaram
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Karthic Rajamanickam
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Scott Napper
- Vaccine and Infectious Disease Organization-International Vaccine Research Centre, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N 5E3, Canada.,Department of Biochemistry, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
23
|
Polderdijk MCE, Heron M, Kuipers S, Rijkers GT. Deciphering the genotype and phenotype of hairy cell leukemia: clues for diagnosis and treatment. Expert Rev Clin Immunol 2019; 15:857-867. [PMID: 31282776 DOI: 10.1080/1744666x.2019.1641405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Hairy cell leukemia (HCL) is a rare, indolent B-cell neoplasm. The classical variant of the disease is characterized by the BRAF V600E mutation, which is present in virtually all cases. How this mutation leads to the signs and symptoms of the disease is currently not known. Areas covered: This review explores the genetic background of HCL, especially the BRAF V600E driver mutation, but passenger mutations and their effects are also included. The clinical significance of BRAF mutations in other cancer types is discussed, as well as BRAF- induced senescence. An overview of the major forms of treatment of HCL (cytostatic drugs, specific BRAF inhibitors, B cell-specific antibodies) is given. Finally, possible mechanisms of the monocytopenia and hairy morphology so typical of this disease are discussed. Expert opinion: Although being a rare disease, HCL and its pathogenesis can yield important information about BRAF-related cancer metabolism. Many aspects of the disease are still unclear, but with the right resources, this could change. This can lead to a more efficient and specific treatment, thus leading to decreased morbidity.
Collapse
Affiliation(s)
- Margot C E Polderdijk
- a Department of Sciences, University College Roosevelt , Middelburg , The Netherlands.,b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands
| | - Michiel Heron
- b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands.,c Laboratory for Medical Microbiology and Immunology, St Elisabeth Hospital , Tilburg , The Netherlands
| | - Saskia Kuipers
- d Department of Hematology, Admiral de Ruyter Hospital , Goes , The Netherlands
| | - Ger T Rijkers
- a Department of Sciences, University College Roosevelt , Middelburg , The Netherlands.,b Laboratory for Medical Microbiology and Immunology, Admiral de Ruyter Hospital , Goes , The Netherlands.,c Laboratory for Medical Microbiology and Immunology, St Elisabeth Hospital , Tilburg , The Netherlands
| |
Collapse
|
24
|
Schimmack S, Yang Y, Felix K, Herbst M, Li Y, Schenk M, Bergmann F, Hackert T, Strobel O. C-reactive protein (CRP) promotes malignant properties in pancreatic neuroendocrine neoplasms. Endocr Connect 2019; 8:1007-1019. [PMID: 31234146 PMCID: PMC6652262 DOI: 10.1530/ec-19-0132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Elevated pre-operative C-reactive protein (CRP) serum values have been reported to be associated with poor overall survival for patients with pancreatic neuroendocrine neoplasms (pNEN). The aim of this study was to identify mechanisms linking CRP to poor prognosis in pNEN. METHODS The malignant properties of pNENs were investigated using the human pNEN cell-lines BON1 and QGP1 exposed to CRP or IL-6. Analyses were performed by ELISA, Western blot, flow cytometry and immunocytochemistry as well as invasion and proliferation assays. To compare cytokine profiles and CRP levels, 76 serum samples of pNEN patients were analyzed using Luminex technology. In parallel, the expression of CRP and growth signaling pathway proteins was assessed on cell lines and paraffin-embedded primary pNEN. RESULTS In BON1 and QGP1 cells, inflammation (exposure to IL-6) significantly upregulated CRP expression and secretion as well as migratory properties. CRP stimulation of BON1 cells increased IL-6 secretion and invasion. This was accompanied by activation/phosphorylation of the ERK, AKT and/or STAT3 pathways. Although known CRP receptors - CD16, CD32 and CD64 - were not detected on BON1 cells, CRP uptake of pNEN cells was shown after CRP exposure. In patients, increased pre-operative CRP levels (≥5 mg/L) were associated with significantly higher serum levels of IL-6 and G-CSF, as well as with an increased CRP expression and ERK/AKT/STAT3 phosphorylation in pNEN tissue. CONCLUSION The malignant properties of pNEN cells can be stimulated by CRP and IL-6 promoting ERK/AKT/STAT pathways activation as well as invasion, thus linking systemic inflammation and poor prognosis.
Collapse
Affiliation(s)
- Simon Schimmack
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Yongchao Yang
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Klaus Felix
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Herbst
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Yixiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Miriam Schenk
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Bergmann
- Institute of Pathology, Heidelberg University, Heidelberg, Germany
| | - Thilo Hackert
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Oliver Strobel
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
25
|
Zhong W, Zhu Z, Xu X, Zhang H, Xiong H, Li Q, Wei Y. Human bone marrow-derived mesenchymal stem cells promote the growth and drug-resistance of diffuse large B-cell lymphoma by secreting IL-6 and elevating IL-17A levels. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:73. [PMID: 30755239 PMCID: PMC6373150 DOI: 10.1186/s13046-019-1081-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 02/06/2019] [Indexed: 02/08/2023]
Abstract
Background The drug-resistance and relapse of diffuse large B-cell lymphoma (DLBCL), which are related to mesenchymal stem cells (MSCs), have become increasingly common. However, the underlying mechanisms remain elusive. Methods CCK 8 assay, colony formation assay, and xenograft mouse model were used to investigate the effects of hBMSCs on DLBCL growth. Immunohistochemistry, qRT-PCR, and ELISA were used to study the expressions of IL-6 and IL-17A. Flow cytometry was used to analyze Th17 cells and Treg cells expressions. Western blot analysis, microarray analysis, and bioinformatics analysis were used to analyze the pathways of IL-6 or IL-17A mediated DLBCL growth. Results HBMSCs promoted DLBCL growth by secreting IL-6 in vitro and in vivo and simultaneously upregulating IL-17A in vitro. IL-6 and IL-17A synergistically promoted the growth and drug-resistance of DLBCL cells by protecting them from spontaneous or drug-induced apoptosis in vitro. IL-6 or IL-17A activated the JAK2/STAT3 pathway or upregulated cyclin D2 via activation of PI3K/Akt signaling in vitro, respectively. Conclusions The present results indicated that hBMSCs might have a “dual effect” on promoting DLBCL progression and drug-resistance by secreting IL-6 and upregulating IL-17A. IL-6, IL-17A, p-STAT3, p-Akt or cyclin D2 may be potential molecular targets for overcoming drug-resistance in patients with relapsed or refractory DLBCL.
Collapse
Affiliation(s)
- Weijie Zhong
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Zhigang Zhu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Xin Xu
- Department of Geriatrics, Hematology & Oncology ward, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, Guangdong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jinan, 272067, Shandong, China
| | - Huabao Xiong
- Immunology Institute, Mount Sinai School of Medicine, NY10029, New York, 5674, USA
| | - Qingshan Li
- Department of Hematology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Rd No.1, Yuexiu District, Guangzhou, 510180, Guangdong, China.
| |
Collapse
|
26
|
Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma. Proc Natl Acad Sci U S A 2019; 116:2237-2242. [PMID: 30670657 PMCID: PMC6369811 DOI: 10.1073/pnas.1820459116] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) has a dismal prognosis, and survival benefits of recent multimodality treatments remain small. Cancer-associated fibroblasts (CAFs) are known to contribute to poor outcome by conferring therapy resistance to various cancer types, but this has not been explored in EAC. Importantly, a targeted strategy to circumvent CAF-induced resistance has yet to be identified. By using EAC patient-derived CAFs, organoid cultures, and xenograft models we identified IL-6 as the stromal driver of therapy resistance in EAC. IL-6 activated epithelial-to-mesenchymal transition in cancer cells, which was accompanied by enhanced treatment resistance, migratory capacity, and clonogenicity. Inhibition of IL-6 restored drug sensitivity in patient-derived organoid cultures and cell lines. Analysis of patient gene expression profiles identified ADAM12 as a noninflammation-related serum-borne marker for IL-6-producing CAFs, and serum levels of this marker predicted unfavorable responses to neoadjuvant chemoradiation in EAC patients. These results demonstrate a stromal contribution to therapy resistance in EAC. This signaling can be targeted to resensitize EAC to therapy, and its activity can be measured using serum-borne markers.
Collapse
|
27
|
Mao GH, Zhang ZH, Fei F, Ding YY, Zhang WJ, Chen H, Ali SS, Zhao T, Feng WW, Wu XY, Yang LQ. Effect of Grifola frondosa polysaccharide on anti-tumor activity in combination with 5-Fu in Heps-bearing mice. Int J Biol Macromol 2019; 121:930-935. [DOI: 10.1016/j.ijbiomac.2018.10.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/09/2018] [Accepted: 10/14/2018] [Indexed: 11/27/2022]
|
28
|
Yang L, Yu X, Yang Y. Autotaxin upregulated by STAT3 activation contributes to invasion in pancreatic neuroendocrine neoplasms. Endocr Connect 2018; 7:1299-1307. [PMID: 30352421 PMCID: PMC6240148 DOI: 10.1530/ec-18-0356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Although the upregulation of autotaxin (ATX) is associated with many solid tumours, its role in pancreatic neuroendocrine neoplasms (pNEN) has not been well elucidated. The expression of ATX in pNEN tissues and pNEN cell line BON1 was analysed by Western blot, PCR and immunocytochemistry upon exposure to interleukin-6 (IL-6). Additionally, pNEN cell line BON1 was transfected with siRNAs against ATX or signal transducer and activator of transcription 3 (STAT3) and assessed by in vitro invasion assays. The following results were obtained. The expression of ATX in pNEN tissues was significantly increased compared with that in normal pancreatic tissues. High ATX expression was strongly correlated with tumour grade, lymph node metastasis and tumour-node-metastasis stage. Furthermore, ATX downregulation notably inhibited the metastatic capacity of pNEN cells, whereas STAT3 knockdown was found to downregulate the expression of ATX. ATX expression was upregulated in BON1 cells upon stimulation with IL-6, and this was accompanied by activation/phosphorylation of STAT3. Western blot analysis of human pNEN tissue extracts confirmed increased ATX expression and STAT3 phosphorylation with elevated expression levels of IL-6. In conclusion, ATX is upregulated in pNEN and is correlated with the metastatic capacity of pNEN cells, potentially via interaction with STAT3 activation.
Collapse
Affiliation(s)
- Linfei Yang
- Center for Medical Experiments, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Yu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yongchao Yang
- Department of Burns and Plastic Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- European Pancreas Center, Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Correspondence should be addressed to Y Yang:
| |
Collapse
|
29
|
Zhang J, Dang F, Ren J, Wei W. Biochemical Aspects of PD-L1 Regulation in Cancer Immunotherapy. Trends Biochem Sci 2018; 43:1014-1032. [PMID: 30287140 DOI: 10.1016/j.tibs.2018.09.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
PD-L1, frequently expressed in human cancers, engages with PD-1 on immune cells and contributes to cancer immune evasion. As such, antibodies blocking the PD-1/PD-L1 interaction reactivate cytotoxic T cells to eradicate cancer cells. However, a majority of cancer patients fail to respond to PD-1/PD-L1 blockade with unclear underlying mechanism(s). Recent studies revealed that PD-L1 expression levels on tumor cells might affect the clinical response to anti-PD-1/PD-L1 therapies. Hence, understanding molecular mechanisms for controlling PD-L1 expression will be important to improve the clinical response rate and efficacy of PD-1/PD-L1 blockade. In this review, we primarily focus on summarizing PD-L1 regulation and its potential roles in regulating antitumor immune response, with purpose to optimize anti-PD-1/PD-L1 therapies, benefiting a wider cancer patient population.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Junming Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
30
|
Yang Y, Yang L, Li Y. Neuropilin-1 (NRP-1) upregulated by IL-6/STAT3 signaling contributes to invasion in pancreatic neuroendocrine neoplasms. Hum Pathol 2018; 81:192-200. [PMID: 30420046 DOI: 10.1016/j.humpath.2018.06.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
Although the upregulation of Neuropilin-1 (NRP-1) is associated with many solid tumors, its role in pancreatic neuroendocrine neoplasms (pNEN) has not been well elucidated. The aim of this study was to investigate the role of NRP-1 in improving treatment and determining the prognosis of pNEN. In this study, the expression of NRP-1 in pNEN tissue samples and pNEN cell line BON1 was analyzed by Western blot, polymerase chain reaction (PCR) and immunocytochemistry upon exposure to interleukin-6 (IL-6). Additionally, pNEN cell line BON1 was transfected with small interfering RNAs against NRP-1 or signal transducer and activator of transcription 3 (STAT3) and assessed by in vitro invasion assays. The expression of NRP-1 in pNEN tissues was markedly increased compared with adjacent normal pancreatic tissues. High NRP-1 expression was strongly correlated with tumor grades (P = .026), lymph node metastasis (P = .025), and tumor-node-metastasis stages (P = .012). Furthermore, NRP-1 downregulation notably inhibited the metastatic capacity of pNEN cells, and STAT3 knockdown was found to downregulate the expression of NRP-1. BON1 cells upregulated NRP-1 expression upon stimulation with IL-6. This was accompanied by activation/phosphorylation of the AKT and STAT3 signaling pathways. Western blot of extracts of human pNENs confirmed increased NRP-1 expression, as well as AKT/STAT3 phosphorylation in tissue of pNENs with elevated expression levels of IL-6. In conclusion, our findings suggest that NRP-1 is upregulated in pNEN and is correlated with the metastatic capacity of pNEN cells, potentially via interaction with the IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Yongchao Yang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Linfei Yang
- Center for Medical Experiments, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yixiong Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
31
|
Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, Schuliga M, Grainge CL, Knight DA. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L162-L172. [PMID: 29696986 DOI: 10.1152/ajplung.00037.2018] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.
Collapse
Affiliation(s)
- David W Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Prabuddha S Pathinayake
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands
| | - Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Cecilia M Prele
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| |
Collapse
|
32
|
Peng PJ, Li Y, Sun S. On the significance of Tim-3 expression in pancreatic cancer. Saudi J Biol Sci 2017; 24:1754-1757. [PMID: 29551917 PMCID: PMC5851935 DOI: 10.1016/j.sjbs.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/03/2017] [Accepted: 11/05/2017] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE We aim to explore the connection between Tim-3 expression in both cancerous pancreatic and pericarcinous tissues and the clinicopathological features of pancreatic cancer. We will also preliminarily assess the role and significance of Tim-3 in the diagnosis, treatment, and prognosis of pancreatic cancer. METHODS Cancerous pancreatic and pericarcinous tissues from 50 patients with pancreatic cancer and six healthy pancreatic tissues were collected from the pathological specimens of traumatic patients to distinguish Tim-3 expression using immunohistochemistry. Tim-3 expression was observed to be correlated with cell invasion, metastasis, and recurrence of pancreatic cancer. RESULTS 1. For the immunohistochemical method, Tim-3 expression in pancreatic cancer tissues was observed to be elevated and statistically significant (P < .01) compared to pericarcinous and normal pancreatic tissues. No statistically significant difference (P > .05) was observed between Tim-3 expression in pericarcinous and normal pancreatic tissues. 2. While Tim-3 expression was observed to be closely related to the history of smoking, fasting blood glucose, tumor size, TNM stage, it was not observed to be related to gender, age, tumor location, pathological type, and degree of tumor differentiation. CONCLUSION 1. Tim-3 expression in pancreatic cancer tissues was high. 2. The high Tim-3 expression in pancreatic cancer tissues may be closely related to cell invasion, metastasis, and the recurrence of pancreatic cancer.
Collapse
Affiliation(s)
- Pu-ji Peng
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | | | | |
Collapse
|
33
|
Immune-enhancing effects of polysaccharides extracted from Lilium lancifolium Thunb. Int Immunopharmacol 2017; 52:119-126. [DOI: 10.1016/j.intimp.2017.08.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 01/18/2023]
|
34
|
Chen LM, Liu PY, Chen YA, Tseng HY, Shen PC, Hwang PA, Hsu HL. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci Rep 2017; 7:11864. [PMID: 28928376 PMCID: PMC5605496 DOI: 10.1038/s41598-017-12111-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/05/2017] [Indexed: 01/07/2023] Open
Abstract
Low-molecular-weight Fucoidan (Oligo-Fucoidan) is a sulfated polysaccharide that has a variety of biological effects and has also been shown to have beneficial health effects. However, the molecular mechanisms underlying the therapeutic effects of Oligo-Fucoidan in patients with cancer remain unclear. Using human colorectal cancer HCT116 cells with (p53+/+) or without (p53−/−) normal p53 expression, we found that Oligo-Fucoidan treatment reduces the occurrence of spontaneous DNA lesions. Etoposide induces double strand DNA breaks. Subsequent administration of Oligo-Fucoidan to etoposide-treated cells promotes p53 accumulation, p21 expression and significant decreases in ataxia-telangiectasia-mutated (ATM), checkpoint kinase 1 (Chk1) and γ-H2AX phosphorylation in p53+/+ cells compared with p53−/− cells. Similarly, co-administration of Oligo-Fucoidan with etoposide inhibits ATM, Chk1 and γ-H2AX phosphorylation, particularly in the presence of p53. Furthermore, Oligo-Fucoidan supplementation increases cancer cell death and attenuates the adverse effects induced by etoposide that decreases production of the pro-inflammatory cytokine IL-6 and chemokine CCL2/MCP-1. Importantly, Oligo-Fucoidan decreases the tumor-promoting M2 macrophages in microenvironment as well as collaborates with p53 and works in combination with etoposide to prevent HCT116 tumorigenicity. Our results first demonstrate that p53 enables Oligo-Fucoidan to effectively inhibit tumor progression, and Oligo-Fucoidan minimizes the side effects of chemotherapy and alters tumor microenvironment.
Collapse
Affiliation(s)
- Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Yen Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Chun Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
35
|
Sapochnik M, Fuertes M, Arzt E. Programmed cell senescence: role of IL-6 in the pituitary. J Mol Endocrinol 2017; 58:R241-R253. [PMID: 28381401 DOI: 10.1530/jme-17-0026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 12/11/2022]
Abstract
IL-6 is a pleiotropic cytokine with multiple pathophysiological functions. As a key factor of the senescence secretome, it can not only promote tumorigenesis and cell proliferation but also exert tumor suppressive functions, depending on the cellular context. IL-6, as do other cytokines, plays important roles in the function, growth and neuroendocrine responses of the anterior pituitary gland. The multiple actions of IL-6 on normal and adenomatous pituitary function, cell proliferation, angiogenesis and extracellular matrix remodeling indicate its importance in the regulation of the anterior pituitary. Pituitary tumors are mostly benign adenomas with low mitotic index and rarely became malignant. Premature senescence occurs in slow-growing benign tumors, like pituitary adenomas. The dual role of IL-6 in senescence and tumorigenesis is well represented in pituitary tumor development, as it has been demonstrated that effects of paracrine IL-6 may allow initial pituitary cell growth, whereas autocrine IL-6 in the same tumor triggers senescence and restrains aggressive growth and malignant transformation. IL-6 is instrumental in promotion and maintenance of the senescence program in pituitary adenomas.
Collapse
Affiliation(s)
- Melanie Sapochnik
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Mariana Fuertes
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
| | - Eduardo Arzt
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)-CONICET-Partner Institute of the Max Planck SocietyBuenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y CelularFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
36
|
Myocyte-Derived Hsp90 Modulates Collagen Upregulation via Biphasic Activation of STAT-3 in Fibroblasts during Cardiac Hypertrophy. Mol Cell Biol 2017; 37:MCB.00611-16. [PMID: 28031326 DOI: 10.1128/mcb.00611-16] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 12/16/2016] [Indexed: 01/01/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT-3)-mediated signaling in relation to upregulated collagen expression in fibroblasts during cardiac hypertrophy is well defined. Our recent findings have identified heat shock protein 90 (Hsp90) to be a critical modulator of fibrotic signaling in cardiac fibroblasts in this disease milieu. The present study was therefore intended to analyze the role of Hsp90 in the STAT-3-mediated collagen upregulation process. Our data revealed a significant difference between in vivo and in vitro results, pointing to a possible involvement of myocyte-fibroblast cross talk in this process. Cardiomyocyte-targeted knockdown of Hsp90 in rats (Rattus norvegicus) in which the renal artery was ligated showed downregulated collagen synthesis. Furthermore, the results obtained with cardiac fibroblasts conditioned with Hsp90-inhibited hypertrophied myocyte supernatant pointed toward cardiomyocytes' role in the regulation of collagen expression in fibroblasts during hypertrophy. Our study also revealed a novel signaling mechanism where myocyte-derived Hsp90 orchestrates not only p65-mediated interleukin-6 (IL-6) synthesis but also its release in exosomal vesicles. Such myocyte-derived exosomes and myocyte-secreted IL-6 are responsible in unison for the biphasic activation of STAT-3 signaling in cardiac fibroblasts that culminates in excess collagen synthesis, leading to severely compromised cardiac function during cardiac hypertrophy.
Collapse
|
37
|
Ge Z, Feng Y, Ge L, Parry N, Muthupalani S, Fox JG. Helicobacter hepaticus cytolethal distending toxin promotes intestinal carcinogenesis in 129Rag2-deficient mice. Cell Microbiol 2017; 19. [PMID: 28111881 DOI: 10.1111/cmi.12728] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/29/2016] [Accepted: 01/18/2017] [Indexed: 12/15/2022]
Abstract
Multiple pathogenic Gram-negative bacteria produce the cytolethal distending toxin (CDT) with activity of DNase I; CDT can induce DNA double-strand breaks (DSBs), G2/M cell cycle arrest, and apoptosis in cultured mammalian cells. However, the link of CDT to in vivo tumorigenesis is not fully understood. In this study, 129/SvEv Rag2-/- mice were gavaged with wild-type Helicobacter hepatics 3B1(Hh) and its isogenic cdtB mutant HhcdtBm7, followed by infection for 10 and 20 weeks (WPI). HhCDT deficiency did not affect cecal colonization levels of HhcdtBm7, but attenuated severity of cecal pathology in HhcdtBm7-infected mice. Of importance, preneoplasic dysplasia was progressed to cancer from 10 to 20 WPI in the Hh-infected mice but not in the HhcdtBm7-infected mice. In addition, the loss of HhCDT significantly dampened transcriptional upregulation of cecal Tnfα and Il-6, but elevated Il-10 mRNA levels when compared to Hh at 10 WPI. Furthermore, the presence of HhCDT increased numbers of lower bowel intestinal γH2AX-positive epithelial cells (a marker of DSBs) at both 10 and 20 WPI and augmented phospho-Stat3 foci+ intestinal crypts (activation of Stat3) at 20 WPI. Our findings suggest that CDT promoted Hh carcinogenesis by enhancing DSBs and activation of the Tnfα/Il-6-Stat3 signaling pathway.
Collapse
Affiliation(s)
- Zhongming Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Yan Feng
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Lili Ge
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Nicola Parry
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - Sureshkumar Muthupalani
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| | - James G Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA02139, USA
| |
Collapse
|
38
|
Enhancement of Anti-Inflammatory and Osteogenic Abilities of Mesenchymal Stem Cells via Cell-to-Cell Adhesion to Periodontal Ligament-Derived Fibroblasts. Stem Cells Int 2017; 2017:3296498. [PMID: 28167967 PMCID: PMC5266859 DOI: 10.1155/2017/3296498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/14/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are involved in anti-inflammatory events and tissue repair; these functions are activated by their migration or homing to inflammatory tissues in response to various chemokines. However, the mechanism by which MSCs interact with other cell types in inflammatory tissue remains unclear. We investigated the role of periodontal ligament fibroblasts (PDL-Fs) in regulating the anti-inflammatory and osteogenic abilities of bone marrow-derived- (BM-) MSCs. The expression of monocyte chemotactic protein- (MCP-)1 was significantly enhanced by stimulation of PDL-Fs with inflammatory cytokines. MCP-1 induced the migratory ability of BM-MSCs but not PDL-Fs. Expression levels of anti-inflammatory and inflammatory cytokines were increased and decreased, respectively, by direct-contact coculture between MSCs and PDL-Fs. In addition, the direct-contact coculture enhanced the expression of MSC markers that play important roles in the self-renewal and maintenance of multipotency of MSCs, which in turn induced the osteogenic ability of the cells. These results suggest that MCP-1 induces the migration and homing of BM-MSCs into the PDL inflammatory tissue. The subsequent adherence of MSCs to PDL-Fs plays an immunomodulatory role to terminate inflammation during wound healing and upregulates the expression stem cell markers to enhance the stemness of MSCs, thereby facilitating bone formation in damaged PDL tissue.
Collapse
|
39
|
Yu M, Lu B, Liu Y, Me Y, Wang L, Zhang P. Tim-3 is upregulated in human colorectal carcinoma and associated with tumor progression. Mol Med Rep 2016; 15:689-695. [PMID: 28035413 PMCID: PMC5364832 DOI: 10.3892/mmr.2016.6065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/16/2016] [Indexed: 12/28/2022] Open
Abstract
T cell immunoglobulin mucin-3 (Tim-3) has previously been implicated in the immune response and tumor biology. Colorectal carcinoma (CRC) is a malignancy, which is closely associated with inflammation. However, the role of Tim-3 in the progression of CRC remains to be fully elucidated. The present study aimed to investigate the role of Tim-3 in the progressive activities of human CRC. A total of 30 clinical CRC tissues and their adjacent tissues were collected. Slides from another 112 cases that underwent CRC surgical resection were also obtained. The protein and mRNA levels of Tim-3 in the clinical tissues and in CRC cell lines were initially examined using western blot and reverse transcription-quantitative polymerase chain reaction analyses, respectively. Immunohistochemical staining was performed to detect Tim-3 in the CRC samples. Specific small interfering (si)RNA against Tim-3 (siTim-3) was synthesized to knock down the expression of Tim-3, and the subsequent effects of Tim-3 knockdown on cell proliferation, migration and invasion were assessed. The data obtained showed that Tim-3 was expressed at high levels in the CRC tissues, compared with the non-cancerous tissues. The expression of Tim-3 in the clinical tissues was significantly associated with tumor size (P=0.007), tumor-node-metastasis staging (P<0.0001) and distant metastasis (P<0.0001). Knockdown of Tim-3 significantly reduced the cell proliferative rate of HCT116 and HT-29 cells. Wound closure activity was also inhibited by knockdown of Tim-3 in these two cell lines, and the migration and invasive abilities of these two cell lines were consistently decreased following knockdown of Tim-3. Taken together, Tim-3 was found to be a critical mediator in the progression of CRC and may serve as a potential therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Muming Yu
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300071, P.R. China
| | - Bin Lu
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300071, P.R. China
| | - Yancun Liu
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300071, P.R. China
| | - Ying Me
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300071, P.R. China
| | - Lijun Wang
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin 300071, P.R. China
| | - Peng Zhang
- School of Basic Medical Sciences, Medical Institution of Peking University, Beijing 100191, P.R. China
| |
Collapse
|
40
|
DNA Damage and Pulmonary Hypertension. Int J Mol Sci 2016; 17:ijms17060990. [PMID: 27338373 PMCID: PMC4926518 DOI: 10.3390/ijms17060990] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/01/2016] [Accepted: 06/16/2016] [Indexed: 01/21/2023] Open
Abstract
Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis.
Collapse
|
41
|
Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol 2016; 37:11553-11572. [DOI: 10.1007/s13277-016-5098-7] [Citation(s) in RCA: 715] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
|
42
|
Role of Epithelial-Mesenchyme Transition in Chlamydia Pathogenesis. PLoS One 2015; 10:e0145198. [PMID: 26681200 PMCID: PMC4683008 DOI: 10.1371/journal.pone.0145198] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/01/2015] [Indexed: 12/15/2022] Open
Abstract
Chlamydia trachomatis genital infection in women causes serious adverse reproductive complications, and is a strong co-factor for human papilloma virus (HPV)-associated cervical epithelial carcinoma. We tested the hypothesis that Chlamydia induces epithelial-mesenchyme transition (EMT) involving T cell-derived TNF-alpha signaling, caspase activation, cleavage inactivation of dicer and dysregulation of micro-RNA (miRNA) in the reproductive epithelium; the pathologic process of EMT causes fibrosis and fertility-related epithelial dysfunction, and also provides the co-factor function for HPV-related cervical epithelial carcinoma. Using a combination of microarrays, immunohistochemistry and proteomics, we showed that chlamydia altered the expression of crucial miRNAs that control EMT, fibrosis and tumorigenesis; specifically, miR-15a, miR-29b, miR-382 and MiR-429 that maintain epithelial integrity were down-regulated, while miR-9, mi-R-19a, miR-22 and miR-205 that promote EMT, fibrosis and tumorigenesis were up-regulated. Chlamydia induced EMT in vitro and in vivo, marked by the suppression of normal epithelial cell markers especially E-cadherin but up-regulation of mesenchymal markers of pathological EMT, including T-cadherin, MMP9, and fibronectin. Also, Chlamydia upregulated pro-EMT regulators, including the zinc finger E-box binding homeobox protein, ZEB1, Snail1/2, and thrombospondin1 (Thbs1), but down-regulated anti-EMT and fertility promoting proteins (i.e., the major gap junction protein connexin 43 (Cx43), Mets1, Add1Scarb1 and MARCKSL1). T cell-derived TNF-alpha signaling was required for chlamydial-induced infertility and caspase inhibitors prevented both infertility and EMT. Thus, chlamydial-induced T cell-derived TNF-alpha activated caspases that inactivated dicer, causing alteration in the expression of reproductive epithelial miRNAs and induction of EMT. EMT causes epithelial malfunction, fibrosis, infertility, and the enhancement of tumorigenesis of HPV oncogene-transformed epithelial cells. These findings provide a novel understanding of the molecular pathogenesis of chlamydia-associated diseases, which may guide a rational prevention strategy.
Collapse
|
43
|
Ferguson LR, Chen H, Collins AR, Connell M, Damia G, Dasgupta S, Malhotra M, Meeker AK, Amedei A, Amin A, Ashraf SS, Aquilano K, Azmi AS, Bhakta D, Bilsland A, Boosani CS, Chen S, Ciriolo MR, Fujii H, Guha G, Halicka D, Helferich WG, Keith WN, Mohammed SI, Niccolai E, Yang X, Honoki K, Parslow VR, Prakash S, Rezazadeh S, Shackelford RE, Sidransky D, Tran PT, Yang ES, Maxwell CA. Genomic instability in human cancer: Molecular insights and opportunities for therapeutic attack and prevention through diet and nutrition. Semin Cancer Biol 2015; 35 Suppl:S5-S24. [PMID: 25869442 PMCID: PMC4600419 DOI: 10.1016/j.semcancer.2015.03.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 03/08/2015] [Accepted: 03/13/2015] [Indexed: 02/06/2023]
Abstract
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Collapse
Affiliation(s)
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Andrew R Collins
- Department of Nutrition, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada
| | - Giovanna Damia
- Department of Oncology, Instituti di Ricovero e Cura a Carattere Scientifico-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Santanu Dasgupta
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, United States
| | | | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Katia Aquilano
- Department of Biology, Università di Roma Tor Vergata, Rome, Italy
| | - Asfar S Azmi
- Department of Biology, University of Rochester, Rochester, United States
| | - Dipita Bhakta
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chandra S Boosani
- Department of BioMedical Sciences, Creighton University, Omaha, NE, United States
| | - Sophie Chen
- Department of Research & Development, Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | | | - Hiromasa Fujii
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Gunjan Guha
- School of Chemical and BioTechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | | | - Satya Prakash
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Sarallah Rezazadeh
- Department of Biology, University of Rochester, Rochester, United States
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Phuoc T Tran
- Departments of Radiation Oncology & Molecular Radiation Sciences, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eddy S Yang
- Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Michael Cuccione Childhood Cancer Research Program, Child and Family Research Institute, Vancouver, Canada.
| |
Collapse
|
44
|
Effect of siRNA on Wisp-1 gene expression, proliferation, migration and adhesion of mouse hepatocellular carcinoma cells. ASIAN PAC J TROP MED 2015; 8:821-8. [DOI: 10.1016/j.apjtm.2015.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 11/20/2022] Open
|
45
|
Becerril JLM, Benítez JGS, Juárez JJT, Bañales JMG, Zerón HM, Navarro MDH. Evaluation of the Effect of 1,3-Bis(4-Phenyl)-1H-1,2,3-Triazolyl-2-Propanolol on Gene Expression Levels of JAK2–STAT3, NF-κB, and SOCS3 in Cells Cultured from Biopsies of Mammary Lesions. Biochem Genet 2015; 53:291-300. [DOI: 10.1007/s10528-015-9691-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/19/2015] [Indexed: 02/02/2023]
|
46
|
Kyurkchiev D, Bochev I, Ivanova-Todorova E, Mourdjeva M, Oreshkova T, Belemezova K, Kyurkchiev S. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World J Stem Cells 2014; 6:552-570. [PMID: 25426252 PMCID: PMC4178255 DOI: 10.4252/wjsc.v6.i5.552] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/20/2014] [Accepted: 09/10/2014] [Indexed: 02/06/2023] Open
Abstract
According to the minimal criteria of the International Society of Cellular Therapy, mesenchymal stem cells (MSCs) are a population of undifferentiated cells defined by their ability to adhere to plastic surfaces when cultured under standard conditions, express a certain panel of phenotypic markers and can differentiate into osteogenic, chondrogenic and adipogenic lineages when cultured in specific inducing media. In parallel with their major role as undifferentiated cell reserves, MSCs have immunomodulatory functions which are exerted by direct cell-to-cell contacts, secretion of cytokines and/or by a combination of both mechanisms. There are no convincing data about a principal difference in the profile of cytokines secreted by MSCs isolated from different tissue sources, although some papers report some quantitative but not qualitative differences in cytokine secretion. The present review focuses on the basic cytokines secreted by MSCs as described in the literature by which the MSCs exert immunodulatory effects. It should be pointed out that MSCs themselves are objects of cytokine regulation. Hypothetical mechanisms by which the MSCs exert their immunoregulatory effects are also discussed in this review. These mechanisms may either influence the target immune cells directly or indirectly by affecting the activities of predominantly dendritic cells. Chemokines are also discussed as participants in this process by recruiting cells of the immune systems and thus making them targets of immunosuppression. This review aims to present and discuss the published data and the personal experience of the authors regarding cytokines secreted by MSCs and their effects on the cells of the immune system.
Collapse
|
47
|
BIS targeting induces cellular senescence through the regulation of 14-3-3 zeta/STAT3/SKP2/p27 in glioblastoma cells. Cell Death Dis 2014; 5:e1537. [PMID: 25412315 PMCID: PMC4260756 DOI: 10.1038/cddis.2014.501] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/17/2014] [Accepted: 10/20/2014] [Indexed: 01/17/2023]
Abstract
Cellular senescence is an important mechanism for preventing tumor progression. The elevated expression of Bcl-2-interacting cell death suppressor (BIS), an anti-apoptotic and anti-stress protein, often correlates with poor prognosis in several cancers including glioblastoma; however, the role of BIS in the regulation of senescence has not been well defined. Here, we describe for the first time that the depletion of BIS induces G1 arrest and cellular senescence through the accumulation of p27 that is independent of p53, p21 or p16. The increase in p27 expression in BIS-depleted cells was attributable to an impairment of the ubiquitin-mediated degradation of p27, which was caused by a decrease in S-phase kinase-associated protein 2 (SKP2) at the transcriptional level. As an underlying molecular mechanism, we demonstrate that the loss of activity of signal transducer and activator of transcription 3 (STAT3) was specifically linked to the suppression of SKP2 expression. Despite a reduction in phospho-STAT3 levels, total STAT3 levels were unexpectedly increased by BIS depletion, specifically in the insoluble fraction. Our results show that 14-3-3ζ expression is decreased by BIS knockdown and that 14-3-3ζ depletion per se significantly induced senescence phenotypes. In addition, the ectopic expression of 14-3-3ζ blocked senescence caused by BIS depletion, which was paralleled with a decrease in insoluble STAT3 in A172 glioblastoma cells. These findings indicate that the impairment of the protein quality control conferred by BIS and/or 14-3-3ζ is critical for BIS depletion-induced senescence. Moreover, BIS knockdown also induced senescence along with an accumulation of total STAT3 and p27 in several different cell types as well as embryonic fibroblasts derived from Bis-knock out mice with/without variations in 14-3-3ζ levels. Therefore, our findings suggest that a downregulation of BIS expression could serve as a potential strategy for restricting tumor progression via an induction of senescence through the regulation of STAT3/SKP2/p27 pathway.
Collapse
|
48
|
Hsu HW, de Necochea-Campion R, Williams V, Duerksen-Hughes PJ, Simental AA, Ferris RL, Chen CS, Mirshahidi S. Linifanib (ABT-869), enhances cytotoxicity with poly (ADP-ribose) polymerase inhibitor, veliparib (ABT-888), in head and neck carcinoma cells. Oral Oncol 2014; 50:662-9. [PMID: 24735547 DOI: 10.1016/j.oraloncology.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/19/2014] [Accepted: 03/22/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVES PARP inhibitors (PARPi) may provide an opportunity to gain selective killing of tumor cells which have deficiencies in cellular DNA repair systems. We previously demonstrated linifanib (ABT-869), a multi-receptor tyrosine kinase inhibitor of VEGF and PDGF receptor families, radiosensitized Head and Neck Squamous Cell Carcinoma cells (HNSCC) via inhibiting STAT3 activation. Given that STAT3 can modulate DNA damage response (DDR) pathway, in this study, we evaluate the effects of linifanib to enhance cytotoxicity with the PARPi, veliparib (ABT-888), in HNSCC. MATERIALS AND METHODS UMSCC-22A and UMSCC-22B cells were treated with linifanib (ABT-869) and veliparib (ABT-888). Cell viability, cytotoxicity, apoptosis induction, DNA single strand break (SSB) and double strand break (DSB) damages were examined by MTT assay, colony formation assay, flow cytometry and comet assay. In addition, the expression of DNA homologous recombination repair protein Rad51, γH2AX, a double strand break marker and cleaved PARP, an apoptotic cell death marker, were assessed using western immunoblotting. RESULTS Combination treatment resulted in more cell growth inhibition, induction of apoptosis, DNA damages and double strand breaks, lower expression of Rad51, increase γH2AX expression and PARP cleavage. CONCLUSION These data suggest the possibility of combining targeted therapeutic such as linifanib with veliparib to augment the inhibition of cell growth and apoptosis via synthetic lethality in HNSCC cells. Thus, it may provide a novel therapeutic strategy and improve efficacy and outcome in HNSCC.
Collapse
Affiliation(s)
- Heng-Wei Hsu
- Department of Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA; LLU Cancer Center Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA
| | - Rosalia de Necochea-Campion
- LLU Cancer Center Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA; Division of Oncology & Hematology, Loma Linda University, Loma Linda, CA, USA
| | - Vonetta Williams
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | | | - Alfred A Simental
- Department of Otolaryngology and Head/Neck Surgery, Loma Linda University, Loma Linda, CA, USA
| | - Robert L Ferris
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chien-Shing Chen
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA; LLU Cancer Center Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA; Division of Oncology & Hematology, Loma Linda University, Loma Linda, CA, USA
| | - Saied Mirshahidi
- Department of Medicine, Loma Linda University, Loma Linda, CA, USA; Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA; LLU Cancer Center Biospecimen Laboratory, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
49
|
Meng FY, Ning YL, Qi J, He Z, Jie J, Lin JJ, Huang YJ, Li FS, Li XH. Structure and antitumor and immunomodulatory activities of a water-soluble polysaccharide from Dimocarpus longan pulp. Int J Mol Sci 2014; 15:5140-62. [PMID: 24663085 PMCID: PMC3975445 DOI: 10.3390/ijms15035140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/30/2014] [Accepted: 02/10/2014] [Indexed: 11/16/2022] Open
Abstract
A new water-soluble polysaccharide (longan polysaccharide 1 (LP1)) was extracted and successfully purified from Dimocarpus longan pulp via diethylaminoethyl (DEAE)-cellulose anion-exchange and Sephacryl S-300 HR gel chromatography. The chemical structure was determined using Infrared (IR), gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. The results indicated that the molecular weight of the sample was 1.1 × 10(5) Da. Monosaccharide composition analysis revealed that LP1 was composed of Glc, GalA, Ara and Gal in a molar ratio of 5.39:1.04:0.74:0.21. Structural analysis indicated that LP1 consisted of a backbone of → 4)-α-D-Glcp-(1 → 4)-α-D-GALPA-(1 → 4)-α-D-Glcp-(1 → 4)-β-D-Glcp-(1 → units with poly saccharide side chains composed of → 2)-β-D-Fruf-(1 → 2)-L-sorbose-(1 → attached to the O-6 position of the α-D-Glcp residues. In vitro experiments indicated that LP1 had significantly high antitumor activity against SKOV3 and HO8910 tumor cells, with inhibition percentages of 40% and 50%, respectively. In addition, LP1 significantly stimulated the production of the cytokine interferon-γ (IFN-γ), increased the activity of murine macrophages and enhanced B- and T-lymphocyte proliferation. The results of this study demonstrate that LP1 has potential applications as a natural antitumor agent with immunomodulatory activity.
Collapse
Affiliation(s)
- Fa-Yan Meng
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Yuan-Ling Ning
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Jia Qi
- Department of Pharmacy, Heilongjiang Nursing College, No. 209 Xuefu Road, Harbin 150036, Heilongjiang, China.
| | - Zhou He
- Department of Acupuncture and Moxibustion, the People's Hospital of Guangxi Zhuang Autonomous Region, No. 6 Taoyuan Road, Nanning 530021, Guangxi, China.
| | - Jiang Jie
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Juan-Juan Lin
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Yan-Jun Huang
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Fu-Sen Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Xue-Hua Li
- School of Pharmaceutical Sciences, Guangxi Medical University, No. 22 Shuangyong Road, Nanning 530021, Guangxi, China.
| |
Collapse
|
50
|
Piao YR, Piao LZ, Zhu LH, Jin ZH, Dong XZ. Prognostic value of T cell immunoglobulin mucin-3 in prostate cancer. Asian Pac J Cancer Prev 2014; 14:3897-901. [PMID: 23886204 DOI: 10.7314/apjcp.2013.14.6.3897] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Optimal treatment for prostate cancer remains a challenge worldwide. Recently, T cell immunoglobulin mucin-3 (TIM-3) has been implicated in tumor biology but its contribution prostate cancer remains unclear. The aim of this study was to investigate the role of TIM-3 as a prognostic marker in patients with prostate cancer. METHODS TIM-3 protein expression was determined by immunohistochemistry and Western blotting in 137 prostate cancer tumor samples and paired adjacent benign tissue. We also performed cell proliferation assays using 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl- 2H tetrazolium bromide (MTT) and cell invasion assays. The effects of small interfering RNA (siRNA)-mediated knockdown of TIM-3 (TIM-3 siRNA) in two human prostate cancer cell lines were also evaluated. RESULTS TIM-3 expression was higher in prostate cancer tissue than in the adjacent benign tissue (P<0.001). High TIM-3 expression was an independent predictor of both recurrence-free survival and progression-free survival. TIM-3 protein was expressed in both prostate cancer cell lines and knockdown suppressed their proliferation and invasion capacity. CONCLUSIONS TIM-3 expression is associated with a poor prognosis in prostate cancer. Taken together, our results indicate that TIM-3 is a potential prognostic marker in prostate cancer.
Collapse
Affiliation(s)
- Yong-Rui Piao
- Department of Urology, Affiliated Hospital of YanBian University, YanJi, China
| | | | | | | | | |
Collapse
|