1
|
Ding A, Tang F, Alsberg E. 4D Printing: A Comprehensive Review of Technologies, Materials, Stimuli, Design, and Emerging Applications. Chem Rev 2025; 125:3663-3771. [PMID: 40106790 DOI: 10.1021/acs.chemrev.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
4D printing is a groundbreaking technology that seamlessly integrates additive manufacturing with smart materials, enabling the creation of multiscale objects capable of changing shapes and/or functions in a controlled and programmed manner in response to applied energy inputs. Printing technologies, mathematical modeling, responsive materials, stimuli, and structural design constitute the blueprint of 4D printing, all of which have seen rapid advancement in the past decade. These advancements have opened up numerous possibilities for dynamic and adaptive structures, finding potential use in healthcare, textiles, construction, aerospace, robotics, photonics, and electronics. However, current 4D printing primarily focuses on proof-of-concept demonstrations. Further development is necessary to expand the range of accessible materials and address fabrication complexities for widespread adoption. In this paper, we aim to deliver a comprehensive review of the state-of-the-art in 4D printing, probing into shape programming, exploring key aspects of resulting constructs including printing technologies, materials, structural design, morphing mechanisms, and stimuli-responsiveness, and elaborating on prominent applications across various fields. Finally, we discuss perspectives on limitations, challenges, and future developments in the realm of 4D printing. While the potential of this technology is undoubtedly vast, continued research and innovation are essential to unlocking its full capabilities and maximizing its real-world impact.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, Illinois 60612, United States
| |
Collapse
|
2
|
Ding A, Tang F, Alsberg E. Reprogrammable 4D Tissue Engineering Hydrogel Scaffold via Reversible Ion Printing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.11.637741. [PMID: 39990422 PMCID: PMC11844475 DOI: 10.1101/2025.02.11.637741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Shape changeable hydrogel scaffolds recapitulating morphological dynamism of native tissues have emerged as an elegant tool for future tissue engineering (TE) applications, due to their capability to create morphodynamical tissues with complex architectures. Hydrogel scaffolds capable of preprogrammable, reprogrammable and/or reversible shape transformations would widely expand the scope of possible temporal shape changes. Current morphable hydrogels are mostly based on multimaterial, multilayered structures, which involve complicated and time-consuming fabrication protocols, and are often limited to single unidirectional deformation. This work reports on the development of a transformable hydrogel system using a fast, simple, and robust fabrication approach for manipulating the shapes of soft tissues at defined maturation states. Simply by using an ion-transfer printing (ITP) technology (i.e., transferring Ca2+ from an ion reservoir with filter paper and subsequent covering on a preformed alginate-derived hydrogel), a tunable Ca2+ crosslinking density gradient across the hydrogel thickness has been incorporated, which enables preprogrammable deformations upon further swelling in cell culture media. Combining with a surface patterning technology, cell-laden constructs (bioconstructs) capable of morphing in multiple directions are deformed into sophisticated configurations. Not only can the deformed bioconstructs recover their original shapes by chemical treatment, but at user-defined times they can also be incorporated with new, different spatially controlled gradient crosslinking via the ITP process, conferring 3D bioconstruct shape reprogrammability. In this manner, unique "3D-to-3D" shape conversions have been realized. Finally, we demonstrated effective shape manipulation in engineered cartilage-like tissue constructs using this strategy. These morphable scaffolds may advance 4D TE by enabling more sophisticated spatiotemporal control over construct shape evolution.
Collapse
Affiliation(s)
- Aixiang Ding
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, IL, 60612, USA
| | - Fang Tang
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, IL, 60612, USA
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, 60612, USA
| |
Collapse
|
3
|
Ma J, Wu C, Xu J. The Development of Lung Tissue Engineering: From Biomaterials to Multicellular Systems. Adv Healthc Mater 2024; 13:e2401025. [PMID: 39206615 DOI: 10.1002/adhm.202401025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
The challenge of the treatment of end-stage lung disease poses an urgent clinical demand for lung tissue engineering. Over the past few years, various lung tissue-engineered constructs are developed for lung tissue regeneration and respiratory pathology study. In this review, an overview of recent achievements in the field of lung tissue engineering is proposed. The introduction of lung structure and lung injury are stated briefly at first. After that, the lung tissue-engineered constructs are categorized into three types: acellular, monocellular, and multicellular systems. The different bioengineered constructs included in each system that can be applied to the reconstruction of the trachea, airway epithelium, alveoli, and even whole lung are described in detail, followed by the highlight of relevant representative research. Finally, the challenges and future directions of biomaterials, manufacturing technologies, and cells involved in lung tissue engineering are discussed. Overall, this review can provide referable ideas for the realization of functional lung regeneration and permanent lung substitution.
Collapse
Affiliation(s)
- Jingge Ma
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinfu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
- Institute of Respiratory Medicine, School of Medicine, Tongji University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Wang P, Gao E, Wang T, Feng Y, Xu Y, Su L, Gao W, Ci Z, Younis MR, Chang J, Yang C, Duan L. Copper hydrogen phosphate nanosheets functionalized hydrogel with tissue adhesive, antibacterial, and angiogenic capabilities for tracheal mucosal regeneration. J Nanobiotechnology 2024; 22:652. [PMID: 39443926 PMCID: PMC11515660 DOI: 10.1186/s12951-024-02920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
Timely and effective interventions after tracheal mucosal injury are lack in clinical practices, which elevate the risks of airway infection, tracheal cartilage deterioration, and even asphyxiated death. Herein, we proposed a biomaterial-based strategy for the repair of injured tracheal mucosal based on a copper hydrogen phosphate nanosheets (CuHP NSs) functionalized commercial hydrogel (polyethylene glycol disuccinimidyl succinate-human serum albumin, PH). Such CuHP/PH hydrogel achieved favorable injectability, stable gelation, and excellent adhesiveness within the tracheal lumen. Moreover, CuHP NSs within the CuHP/PH hydrogel effectively stimulate the proliferation and migration of endothelial/epithelial cells, enhancing angiogenesis and demonstrating excellent tissue regenerative potential. Additionally, it exhibited significant inhibitory effects on both bacteria and bacterial biofilms. More importantly, when injected injured site of tracheal mucosa under fiberoptic bronchoscopy guidance, our results demonstrated CuHP/PH hydrogel adhered tightly to the tracheal mucosa. The therapeutic effects of the CuHP/PH hydrogel were further confirmed, which significantly improved survival rates, vascular and mucosal regeneration, reduced occurrences of intraluminal infections, tracheal stenosis, and cartilage damage complications. This research presents an initial proposition outlining a strategy employing biomaterials to mitigate tracheal mucosal injury, offering novel perspectives on the treatment of mucosal injuries and other tracheal diseases.
Collapse
Affiliation(s)
- Pengli Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Erji Gao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Tao Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Yanping Feng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Lefeng Su
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Gao
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zheng Ci
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Key Laboratory of Tissue Engineering, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Jiang Chang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Chen Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China.
| | - Liang Duan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| |
Collapse
|
5
|
Song X, Zhang P, Luo B, Li K, Liu Y, Wang S, Wang Q, Huang J, Qin X, Zhang Y, Zhou G, Lei D. Multi-Tissue Integrated Tissue-Engineered Trachea Regeneration Based on 3D Printed Bioelastomer Scaffolds. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405420. [PMID: 39159156 PMCID: PMC11497002 DOI: 10.1002/advs.202405420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/21/2024]
Abstract
Functional segmental trachea reconstruction is a critical concern in thoracic surgery, and tissue-engineered trachea (TET) holds promise as a potential solution. However, current TET falls short in fully restoring physiological function due to the lack of the intricate multi-tissue structure found in natural trachea. In this research, a multi-tissue integrated tissue-engineered trachea (MI-TET) is successfully developed by orderly assembling various cells (chondrocytes, fibroblasts and epithelial cells) on 3D-printed PGS bioelastomer scaffolds. The MI-TET closely resembles the complex structures of natural trachea and achieves the integrated regeneration of four essential tracheal components: C-shaped cartilage ring, O-shaped vascularized fiber ring, axial fiber bundle, and airway epithelium. Overall, the MI-TET demonstrates highly similar multi-tissue structures and physiological functions to natural trachea, showing promise for future clinical advancements in functional TETs.
Collapse
Affiliation(s)
- Xingqi Song
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Peiling Zhang
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Bin Luo
- College of TextilesState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620P. R. China
| | - Ke Li
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Yu Liu
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Sinan Wang
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Qianyi Wang
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Jinyi Huang
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Xiaohong Qin
- College of TextilesState Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsDonghua UniversityShanghai201620P. R. China
| | - Yixin Zhang
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Dong Lei
- Department of Plastic and Reconstructive SurgeryDepartment of CardiologyShanghai Key Lab of Tissue EngineeringShanghai 9th People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| |
Collapse
|
6
|
Uchida F, Matsumoto K, Nishimuta M, Matsumoto T, Oishi K, Hara R, Machino R, Taniguchi D, Oyama S, Moriyama M, Tomoshige K, Doi R, Obata T, Miyazaki T, Nonaka T, Nakayama K, Nagayasu T. Fabrication of a three-dimensional scaffold-free trachea with horseshoe-shaped hyaline cartilage. Eur J Cardiothorac Surg 2024; 66:ezae336. [PMID: 39298442 DOI: 10.1093/ejcts/ezae336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/19/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024] Open
Abstract
OBJECTIVES Tracheal regeneration is challenging owing to its unique anatomy and low blood supply. Most tracheal regeneration applications require scaffolds. Herein, we developed bio-three-dimensional-printed scaffold-free artificial tracheas. METHODS We fabricated bio-three-dimensional-printed artificial tracheas. Their anterior surface comprised hyaline cartilage differentiated from mesenchymal stem cells, and their posterior surface comprised smooth muscle. Human bone marrow-derived mesenchymal stem cells were cultured and differentiated into chondrocytes using fibroblast growth factor-2 and transforming growth factor-beta-3. Initially, horseshoe-shaped spheroids were printed to cover the anterior surface of the artificial trachea, followed by the application of human bronchial smooth muscle cells for the posterior surface. After a 3-week maturing process, the artificial trachea was subjected to histological and immunohistochemical analyses. RESULTS The anterior surface of the artificial trachea comprised well-differentiated hyaline cartilage from human bone marrow-derived mesenchymal stem cells. Immunohistochemistry revealed that the smooth muscle expressed α-smooth muscle actin and smooth muscle myosin heavy chain 11. CONCLUSIONS A bio-three-dimensional-printed scaffold-free artificial trachea comprising different tissues at the front and back was successfully fabricated.
Collapse
Affiliation(s)
- Fumitake Uchida
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Keitaro Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Masato Nishimuta
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takamune Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Kaido Oishi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryosuke Hara
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryusuke Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Daisuke Taniguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Shosaburo Oyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Masaaki Moriyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Koichi Tomoshige
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Ryoichiro Doi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Tomohiro Obata
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takuro Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| | - Takashi Nonaka
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, Saga, Japan
| | - Takeshi Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical-Engineering Hybrid Professional Development Program, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
7
|
Figueroa-Milla AE, DeMaria W, Wells D, Jeon O, Alsberg E, Rolle MW. Vascular tissues bioprinted with smooth muscle cell-only bioinks in support baths mimic features of native coronary arteries. Biofabrication 2024; 16:045033. [PMID: 39121893 DOI: 10.1088/1758-5090/ad6d8f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
This study explores the bioprinting of a smooth muscle cell-only bioink into ionically crosslinked oxidized methacrylated alginate (OMA) microgel baths to create self-supporting vascular tissues. The impact of OMA microgel support bath methacrylation degree and cell-only bioink dispensing parameters on tissue formation, remodeling, structure and strength was investigated. We hypothesized that reducing dispensing tip diameter from 27 G (210μm) to 30 G (159μm) for cell-only bioink dispensing would reduce tissue wall thickness and improve the consistency of tissue dimensions while maintaining cell viability. Printing with 30 G tips resulted in decreased mean wall thickness (318.6μm) without compromising mean cell viability (94.8%). Histological analysis of cell-only smooth muscle tissues cultured for 14 d in OMA support baths exhibited decreased wall thickness using 30 G dispensing tips, which correlated with increased collagen deposition and alignment. In addition, a TUNEL assay indicated a decrease in cell death in tissues printed with thinner (30 G) dispensing tips. Mechanical testing demonstrated that tissues printed with a 30 G dispensing tip exhibit an increase in ultimate tensile strength compared to those printed with a 27 G dispensing tip. Overall, these findings highlight the importance of precise control over bioprinting parameters to generate mechanically robust tissues when using cell-only bioinks dispensed and cultured within hydrogel support baths. The ability to control print dimensions using cell-only bioinks may enable bioprinting of more complex soft tissue geometries to generatein vitrotissue models.
Collapse
Affiliation(s)
- Andre E Figueroa-Milla
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - William DeMaria
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Derrick Wells
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Oju Jeon
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Eben Alsberg
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States of America
- Departments of Mechanical & Industrial Engineering, Orthopaedic Surgery, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
- Jesse Brown Veterans Affairs Medical Center (JBVAMC), Chicago, IL, United States of America
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States of America
- The Roux Institute at Northeastern University, Portland, ME, United States of America
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States of America
| |
Collapse
|
8
|
Mammana M, Bonis A, Verzeletti V, Dell’Amore A, Rea F. Tracheal Tissue Engineering: Principles and State of the Art. Bioengineering (Basel) 2024; 11:198. [PMID: 38391684 PMCID: PMC10886658 DOI: 10.3390/bioengineering11020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Patients affected by long-segment tracheal defects or stenoses represent an unsolved surgical issue, since they cannot be treated with the conventional surgery of tracheal resection and consequent anastomosis. Hence, different strategies for tracheal replacement have been proposed (synthetic materials, aortic allografts, transplantation, autologous tissue composites, and tissue engineering), each with advantages and drawbacks. Tracheal tissue engineering, on the other hand, aims at recreating a fully functional tracheal substitute, without the need for the patient to receive lifelong immunosuppression or endotracheal stents. Tissue engineering approaches involve the use of a scaffold, stem cells, and humoral signals. This paper reviews the main aspects of tracheal TE, starting from the choice of the scaffold to the type of stem cells that can be used to seed the scaffold, the methods for their culture and expansion, the issue of graft revascularization at the moment of in vivo implantation, and experimental models of tracheal research. Moreover, a critical insight on the state of the art of tracheal tissue engineering is also presented.
Collapse
Affiliation(s)
- Marco Mammana
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, 35128 Padua, Italy; (A.B.); (V.V.)
| | | | | | | | | |
Collapse
|
9
|
Taniguchi D, Kamata S, Rostami S, Tuin S, Marin-Araujo A, Guthrie K, Petersen T, Waddell TK, Karoubi G, Keshavjee S, Haykal S. Evaluation of a decellularized bronchial patch transplant in a porcine model. Sci Rep 2023; 13:21773. [PMID: 38066170 PMCID: PMC10709302 DOI: 10.1038/s41598-023-48643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biological scaffolds for airway reconstruction are an important clinical need and have been extensively investigated experimentally and clinically, but without uniform success. In this study, we evaluated the use of a decellularized bronchus graft for airway reconstruction. Decellularized left bronchi were procured from decellularized porcine lungs and utilized as grafts for airway patch transplantation. A tracheal window was created and the decellularized bronchus was transplanted into the defect in a porcine model. Animals were euthanized at 7 days, 1 month, and 2 months post-operatively. Histological analysis, immunohistochemistry, scanning electron microscopy, and strength tests were conducted in order to evaluate epithelialization, inflammation, and physical strength of the graft. All pigs recovered from general anesthesia and survived without airway obstruction until the planned euthanasia timepoint. Histological and electron microscopy analyses revealed that the decellularized bronchus graft was well integrated with native tissue and covered by an epithelial layer at 1 month. Immunostaining of the decellularized bronchus graft was positive for CD31 and no difference was observed with immune markers (CD3, CD11b, myeloperoxidase) at two months. Although not significant, tensile strength was decreased after one month, but recovered by two months. Decellularized bronchial grafts show promising results for airway patch reconstruction in a porcine model. Revascularization and re-epithelialization were observed and the immunological reaction was comparable with the autografts. This approach is clinically relevant and could potentially be utilized for future applications for tracheal replacement.
Collapse
Affiliation(s)
- Daisuke Taniguchi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Satoshi Kamata
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Sara Rostami
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Stephen Tuin
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Alba Marin-Araujo
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
| | - Kelly Guthrie
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Thomas Petersen
- United Therapeutics Corp, Research Triangle Park, NC, 27709, USA
| | - Thomas K Waddell
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Golnaz Karoubi
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Shaf Keshavjee
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Siba Haykal
- Latner Thoracic Research Laboratories, Division of Thoracic Surgery, Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street suite 8N-869, Toronto, ON, M5G2C4, Canada.
- Division of Plastic & Reconstructive Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Grosha J, Cho JH, Pasley S, Kilbride P, Zylberberg C, Rolle MW. Engineered Test Tissues: A Model for Quantifying the Effects of Cryopreservation Parameters. ACS Biomater Sci Eng 2023; 9:6198-6207. [PMID: 37802599 DOI: 10.1021/acsbiomaterials.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Engineered tissues are showing promise as implants to repair or replace damaged tissues in vivo or as in vitro tools to discover new therapies. A major challenge of the tissue engineering field is the sample preservation and storage until their transport and desired use. To successfully cryopreserve tissue, its viability, structure, and function must be retained post-thaw. The outcome of cryopreservation is impacted by several parameters, including the cryopreserving agent (CPA) utilized, the cooling rate, and the storage temperature. Although a number of CPAs are commercially available for cell cryopreservation, there are few CPAs designed specifically for tissue cryostorage and recovery. In this study, we present a flexible, relatively high-throughput method that utilizes engineered tissue rings as test tissues for screening the commercially available CPAs and cryopreservation parameters. Engineered test tissues can be fabricated with low batch-to-batch variability and characteristic morphology due to their endogenous extracellular matrix, and they have mechanical properties and a ring format suitable for testing with standard methods. The tissues were grown for 7 days in standard 48-well plates and cryopreserved in standard cryovials. The method allowed for the quantification of metabolic recovery, tissue apoptosis/necrosis, morphology, and mechanical properties. In addition to establishing the method, we tested different CPA formulations, freezing rates, and freezing points. Our proposed method enables timely preliminary screening of CPA formulations and cryopreservation parameters that may improve the storage of engineered tissues.
Collapse
Affiliation(s)
- Jonian Grosha
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Jun-Hung Cho
- Akron Biotech, Boca Raton, Florida 33487, United States
| | | | | | | | - Marsha W Rolle
- Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
- The Roux Institute, Northeastern University, Portland, Maine 04101, United States
| |
Collapse
|
11
|
Gomes MC, Pinho AR, Custódio C, Mano JF. Self-Assembly of Platelet Lysates Proteins into Microparticles by Unnatural Disulfide Bonds for Bottom-Up Tissue Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304659. [PMID: 37354139 DOI: 10.1002/adma.202304659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Indexed: 06/26/2023]
Abstract
There is a demand to design microparticles holding surface topography while presenting inherent bioactive cues for applications in the biomedical and biotechnological fields. Using the pool of proteins present in human-derived platelet lysates (PLs), the production of protein-based microparticles via a simple and cost-effective method is reported, exploring the prone redox behavior of cysteine (Cy-SH) amino acid residues. The forced formation of new intermolecular disulfide bonds results in the precipitation of the proteins as spherical, pompom-like microparticles with adjustable sizes (15-50 µm in diameter) and surface topography consisting of grooves and ridges. These PL microparticles exhibit extraordinary cytocompatibility, allowing cell-guided microaggregates to form, while also working as injectable systems for cell support. Early studies also suggest that the surface topography provided by these PL microparticles can support osteogenic behavior. Consequently, these PL microparticles may find use to create live tissues via bottom-up procedures or injectable tissue-defect fillers, particularly for bone regeneration, with the prospect of working under xeno-free conditions.
Collapse
Affiliation(s)
- Maria C Gomes
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Ana Rita Pinho
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Catarina Custódio
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - João F Mano
- Department of Chemistry CICECO-Aveiro Institute of Materials University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| |
Collapse
|
12
|
Liu Y, Zheng K, Meng Z, Wang L, Liu X, Guo B, He J, Tang X, Liu M, Ma N, Li X, Zhao J. A cell-free tissue-engineered tracheal substitute with sequential cytokine release maintained airway opening in a rabbit tracheal full circumferential defect model. Biomaterials 2023; 300:122208. [PMID: 37352607 DOI: 10.1016/j.biomaterials.2023.122208] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 05/21/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
In this study, a cell-free tissue-engineered tracheal substitute was developed, which is based on a 3D-printed polycaprolactone scaffold coated with a gelatin-methacryloyl (GelMA) hydrogel, with transforming growth factor-β1 (TGF-β) and stromal cell-derived factor-1α (SDF-1) sequentially embedded, to facilitate cell recruitment and differentiation toward chondrocyte-phenotype. TGF-β was loaded onto polydopamine particles, and then encapsulated into the GelMA together with SDF-1, and called G/S/P@T, which was used to coat 3D-printed PCL scaffold to form the tracheal substitute. A rapid release of SDF-1 was observed during the first week, followed by a slow and sustained release of TGF-β for approximately four weeks. The tracheal substitute significantly promoted the recruitment of mesenchymal stromal cells (MSCs) or human bronchial epithelial cells in vitro, and enhanced the ability of MSCs to differentiate towards chondrocyte phenotype. Implantation of the tissue-engineered tracheal substitute with a rabbit tracheal anterior defect model improved regeneration of airway epithelium, recruitment of endogenous MSCs and expression of markers of chondrocytes at the tracheal defect site. Moreover, the tracheal substitute maintained airway opening for 4 weeks in a tracheal full circumferential defect model with airway epithelium coverage at the defect sites without granulation tissue accumulation in the tracheal lumen or underneath. The promising results suggest that this simple, cell-free tissue-engineered tracheal substitute can be used directly after tracheal defect removal and should be further developed towards clinical application.
Collapse
Affiliation(s)
- Yujian Liu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China; Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, Hubei, 430070, China
| | - Kaifu Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China; Department of General Surgery, The 991st Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Xiangyang, Hubei, 441000, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Lei Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Xi Liu
- Department of Cardiothoracic Surgery, The 980th Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Shijiazhuang, Hebei, 052460, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, And Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiyang Tang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China
| | - Mingyao Liu
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nan Ma
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, 710038, China.
| |
Collapse
|
13
|
Mekhileri NV, Major G, Lim K, Mutreja I, Chitcholtan K, Phillips E, Hooper G, Woodfield T. Biofabrication of Modular Spheroids as Tumor-Scale Microenvironments for Drug Screening. Adv Healthc Mater 2023; 12:e2201581. [PMID: 36495232 PMCID: PMC11468982 DOI: 10.1002/adhm.202201581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/13/2022] [Indexed: 12/14/2022]
Abstract
To streamline the drug discovery pipeline, there is a pressing need for preclinical models which replicate the complexity and scale of native tumors. While there have been advancements in the formation of microscale tumor units, these models are cell-line dependent, time-consuming and have not improved clinical trial success rates. In this study, two methods for generating 3D tumor microenvironments are compared, rapidly fabricated hydrogel microspheres and traditional cell-dense spheroids. These modules are then bioassembled into 3D printed thermoplastic scaffolds, using an automated biofabrication process, to form tumor-scale models. Modules are formed with SKOV3 and HFF cells as monocultures and cocultures, and the fabrication efficiency, cell architecture, and drug response profiles are characterized, both as single modules and as multimodular constructs. Cell-encapsulated Gel-MA microspheres are fabricated with high-reproducibility and dimensions necessary for automated tumor-scale bioassembly regardless of cell type, however, only cocultured spheroids form compact modules suitable for bioassembly. Chemosensitivity assays demonstrate the reduced potency of doxorubicin in coculture bioassembled constructs and a ≈five-fold increase in drug resistance of cocultured cells in 3D modules compared with 2D monolayers. This bioassembly system is efficient and tailorable so that a variety of relevant-sized tumor constructs could be developed to study tumorigenesis and modernize drug discovery.
Collapse
Affiliation(s)
- Naveen Vijayan Mekhileri
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Gretel Major
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Khoon Lim
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Isha Mutreja
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and GynaecologyGynaecological Cancer Research GroupUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research GroupDepartment of Pathology and Biomedical ScienceUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Gary Hooper
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| | - Tim Woodfield
- Department of Orthopaedic Surgery and Musculoskeletal MedicineCentre for Bioengineering & NanomedicineUniversity of OtagoChristchurchCanterbury8011New Zealand
| |
Collapse
|
14
|
Kamperman T, Willemen NGA, Kelder C, Koerselman M, Becker M, Lins L, Johnbosco C, Karperien M, Leijten J. Steering Stem Cell Fate within 3D Living Composite Tissues Using Stimuli-Responsive Cell-Adhesive Micromaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205487. [PMID: 36599686 PMCID: PMC10074101 DOI: 10.1002/advs.202205487] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/28/2022] [Indexed: 06/12/2023]
Abstract
Engineered living microtissues such as cellular spheroids and organoids have enormous potential for the study and regeneration of tissues and organs. Microtissues are typically engineered via self-assembly of adherent cells into cellular spheroids, which are characterized by little to no cell-material interactions. Consequently, 3D microtissue models currently lack structural biomechanical and biochemical control over their internal microenvironment resulting in suboptimal functional performance such as limited stem cell differentiation potential. Here, this work report on stimuli-responsive cell-adhesive micromaterials (SCMs) that can self-assemble with cells into 3D living composite microtissues through integrin binding, even under serum-free conditions. It is demonstrated that SCMs homogeneously distribute within engineered microtissues and act as biomechanically and biochemically tunable designer materials that can alter the composite tissue microenvironment on demand. Specifically, cell behavior is controlled based on the size, stiffness, number ratio, and biofunctionalization of SCMs in a temporal manner via orthogonal secondary crosslinking strategies. Photo-based mechanical tuning of SCMs reveals early onset stiffness-controlled lineage commitment of differentiating stem cell spheroids. In contrast to conventional encapsulation of stem cell spheroids within bulk hydrogel, incorporating cell-sized SCMs within stem cell spheroids uniquely provides biomechanical cues throughout the composite microtissues' volume, which is demonstrated to be essential for osteogenic differentiation.
Collapse
Affiliation(s)
- Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Niels G. A. Willemen
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Cindy Kelder
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Michelle Koerselman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Malin Becker
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Luanda Lins
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Castro Johnbosco
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Marcel Karperien
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteDrienerlolaan 5Enschede7522NBThe Netherlands
| |
Collapse
|
15
|
Ding A, Lee SJ, Tang R, Gasvoda KL, He F, Alsberg E. 4D Cell-Condensate Bioprinting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202196. [PMID: 35973946 PMCID: PMC9463124 DOI: 10.1002/smll.202202196] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Indexed: 05/31/2023]
Abstract
4D bioprinting techniques that facilitate formation of shape-changing scaffold-free cell condensates with prescribed geometries have yet been demonstrated. Here, a simple 4D bioprinting approach is presented that enables formation of a shape-morphing cell condensate-laden bilayer system. The strategy produces scaffold-free cell condensates which morph over time into predefined complex shapes. Cell condensate-laden bilayers with specific geometries are readily fabricated by bioprinting technologies. The bilayers have tunable deformability and microgel (MG) degradation, enabling controllable morphological transformations and on-demand liberation of deformed cell condensates. With this system, large cell condensate-laden constructs with various complex shapes are obtained. As a proof-of-concept study, the formation of the letter "C"- and helix-shaped robust cartilage-like tissues differentiated from human mesenchymal stem cells (hMSCs) is demonstrated. This system brings about a versatile 4D bioprinting platform idea that is anticipated to broaden and facilitate the applications of cell condensation-based 4D bioprinting.
Collapse
Affiliation(s)
- Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, United States
| | - Sang Jin Lee
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, United States
| | - Rui Tang
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, United States
| | - Kaelyn L Gasvoda
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, United States
| | - Felicia He
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, United States
| | - Eben Alsberg
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, 909 S Wolcott Ave, Chicago, IL, 60612, United States
- Departments of Mechanical & Industrial Engineering, Orthopaedics, and Pharmacology and Regenerative Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL, 60612, USA
| |
Collapse
|
16
|
Hong IS. Enhancing Stem Cell-Based Therapeutic Potential by Combining Various Bioengineering Technologies. Front Cell Dev Biol 2022; 10:901661. [PMID: 35865629 PMCID: PMC9294278 DOI: 10.3389/fcell.2022.901661] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Stem cell-based therapeutics have gained tremendous attention in recent years due to their wide range of applications in various degenerative diseases, injuries, and other health-related conditions. Therapeutically effective bone marrow stem cells, cord blood- or adipose tissue-derived mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and more recently, induced pluripotent stem cells (iPSCs) have been widely reported in many preclinical and clinical studies with some promising results. However, these stem cell-only transplantation strategies are hindered by the harsh microenvironment, limited cell viability, and poor retention of transplanted cells at the sites of injury. In fact, a number of studies have reported that less than 5% of the transplanted cells are retained at the site of injury on the first day after transplantation, suggesting extremely low (<1%) viability of transplanted cells. In this context, 3D porous or fibrous national polymers (collagen, fibrin, hyaluronic acid, and chitosan)-based scaffold with appropriate mechanical features and biocompatibility can be used to overcome various limitations of stem cell-only transplantation by supporting their adhesion, survival, proliferation, and differentiation as well as providing elegant 3-dimensional (3D) tissue microenvironment. Therefore, stem cell-based tissue engineering using natural or synthetic biomimetics provides novel clinical and therapeutic opportunities for a number of degenerative diseases or tissue injury. Here, we summarized recent studies involving various types of stem cell-based tissue-engineering strategies for different degenerative diseases. We also reviewed recent studies for preclinical and clinical use of stem cell-based scaffolds and various optimization strategies.
Collapse
Affiliation(s)
- In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Seongnam, South Korea
- Department of Molecular Medicine, School of Medicine, Gachon University, Seongnam, South Korea
- *Correspondence: In-Sun Hong,
| |
Collapse
|
17
|
Tsao CK, Liao KH, Hsiao HY, Liu YH, Wu CT, Cheng MH, Zhong WB. Tracheal reconstruction with pedicled tandem grafts engineered by a radial stretch bioreactor. J Biomater Appl 2022; 37:118-131. [PMID: 35412872 DOI: 10.1177/08853282221082357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The engineering of tracheal substitutes is pivotal in improving tracheal reconstruction. In this study, we aimed to investigate the effects of biomechanical stimulation on tissue engineering tracheal cartilage by mimicking the trachea motion through a novel radial stretching bioreactor, which enables to dynamically change the diameter of the hollow cylindrical implants. Applying our bioreactor, we demonstrated that chondrocytes seeded on the surface of Poly (ε-caprolactone) scaffold respond to mechanical stimulation by improvement of infiltration into implants and upregulation of cartilage-specific genes. Further, the mechanical stimulation enhanced the accumulation of cartilage neo-tissues and cartilage-specific extracellular macromolecules in the muscle flap-remodeled implants and reconstructed trachea. Nevertheless, the invasion of fibrous tissues in the reconstructed trachea was suppressed upon mechanical loading.
Collapse
Affiliation(s)
- Chung-Kan Tsao
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Kuan-Hao Liao
- Division of Reconstructive Microsurgery, Department of Plastic and Reconstructive Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Hui-Yi Hsiao
- Center for Tissue Engineering, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Yun-Hen Liu
- Division of Thoracic Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Chieh-Tsai Wu
- Division of Pediatric Neurosurgery, Chang Gung Children's Hospital, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Ming-Huei Cheng
- Center of Lymphedema Microsurgery, Department of Plastic and Reconstructive Surgery, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan
| | - Wen-Bin Zhong
- Center for Tissue Engineering, 38014Chang Gung Memorial Hospital Linkou Main Branch, Taoyuan, Taiwan.,Center for Biomedical Engineering, College of Engineering, 38014Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
18
|
Samat AA, Hamid ZAA, Yahaya BH. Tissue Engineering for Tracheal Replacement: Strategies and Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022:137-163. [PMID: 35389199 DOI: 10.1007/5584_2022_707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The critical feature in trachea replacement is to provide a hollow cylindrical framework that is laterally stable and longitudinally flexible, facilitating cartilage and epithelial tissue formation. Despite advanced techniques and sources of materials used, most inherent challenges are related to the complexity of its anatomy. Limited blood supply leads to insufficient regenerative capacity for cartilage and epithelium. Natural and synthetic scaffolds, different types of cells, and growth factors are part of tissue engineering approaches with varying outcomes. Pre-vascularization remains one of the crucial factors to expedite the regenerative process in tracheal reconstruction. This review discusses the challenges and strategies used in tracheal tissue engineering, focusing on scaffold implantation in clinical and preclinical studies conducted in recent decades.
Collapse
Affiliation(s)
- Asmak Abdul Samat
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
- Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Zuratul Ain Abdul Hamid
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
19
|
Zhang L, Tang H, Xiahou Z, Zhang J, She Y, Zhang K, Hu X, Yin J, Chen C. Solid multifunctional granular bioink for constructing chondroid basing on stem cell spheroids and chondrocytes. Biofabrication 2022; 14. [PMID: 35378518 DOI: 10.1088/1758-5090/ac63ee] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/04/2022] [Indexed: 11/11/2022]
Abstract
Stem cell spheroids are advanced building blocks to produce chondroid. However, the multi-step operations including spheroids preparation, collection and transfer, the following 3D printing and shaping limit their application in 3D printing. The present study fabricates an "ALL-IN-ONE" bioink based on granular hydrogel to not only produce adipose derived stem cell (ASC) spheroids, but also realize the further combination of chondrocytes and the subsequent 3D printing. Microgels (6-10 μm) grafted with β-cyclodextrin (β-CD) (MGβ-CD) were assembled and crosslinked by in-situ polymerized poly (N-isopropylacrylamide) (PNIPAm) to form bulk granular hydrogel. The host-guest action between β-CD of microgels and PNIPAm endows the hydrogel with stable, shear-thinning and self-healing properties. After creating caves, ASCs aggregate spontaneously to form numerous spheroids with diameter of 100-200 μm inside the hydrogel. The thermosensitive porous granular hydrogel exhibits volume change under different temperature, realizing further adsorbing chondrocytes. Then, the granular hydrogel carrying ASC spheroids and chondrocytes is extruded by 3D printer at room temperature to form a tube, which can shrink at cell culture tempreature to enhance the resolution. The subsequent ASC spheroids/chondrocytes co-culture forms cartilage-like tissue at 21 d in vitro, which further matures subcutaneously in vivo, indicating the application potential of the fully synthetic granular hydrogel ink towards organoid culture.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Hai Tang
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Zijie Xiahou
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Jiahui Zhang
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Yunlang She
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Kunxi Zhang
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Xuefei Hu
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| | - Jingbo Yin
- Department of Polymer Materials, Shanghai University School of Materials Science and Engineering, 99 Shangda Road, Baoshan District, Shanghai, 200072, CHINA
| | - Chang Chen
- Department of Thoracic Surgery, Tongji University Affiliated Shanghai Pulmonary Hospital, 507 Zhengmin Road, Yangpu District, Shanghai, 200433, CHINA
| |
Collapse
|
20
|
Guedes F, Branquinho MV, Sousa AC, Alvites RD, Bugalho A, Maurício AC. Central airway obstruction: is it time to move forward? BMC Pulm Med 2022; 22:68. [PMID: 35183132 PMCID: PMC8858525 DOI: 10.1186/s12890-022-01862-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Central airway obstruction (CAO) represents a pathological condition that can lead to airflow limitation of the trachea, main stem bronchi, bronchus intermedius or lobar bronchus. MAIN BODY It is a common clinical situation consensually considered under-diagnosed. Management of patients with CAO can be difficult and deciding on the best treatment approach represents a medical challenge. This work intends to review CAO classifications, causes, treatments and its therapeutic limitations, approaching benign and malign presentations. Three illustrative cases are further presented, supporting the clinical problem under review. CONCLUSION Management of CAO still remains a challenge. The available options are not always effective nor free from complications. A new generation of costume-tailored airway stents, associated with stem cell-based therapy, could be an option in specific clinical situations.
Collapse
Affiliation(s)
- Fernando Guedes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
- Pulmonology Department, Bronchology Unit, Centre Hospitalier du Luxembourg, Luxembourg, Luxembourg
| | - Mariana V Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | - Ana C Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | - Rui D Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal
| | - António Bugalho
- CUF Tejo Hospital e CUF Descobertas Hospital, Lisbon, Portugal
- Centro de Estudos de Doenças Crónicas (CEDOC), NOVA Medical School, Lisbon, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401, Porto, Portugal.
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313, Porto, Portugal.
| |
Collapse
|
21
|
Xu Y, Dai J, Zhu X, Cao R, Song N, Liu M, Liu X, Zhu J, Pan F, Qin L, Jiang G, Wang H, Yang Y. Biomimetic Trachea Engineering via a Modular Ring Strategy Based on Bone-Marrow Stem Cells and Atelocollagen for Use in Extensive Tracheal Reconstruction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106755. [PMID: 34741771 DOI: 10.1002/adma.202106755] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Indexed: 06/13/2023]
Abstract
The fabrication of biomimetic tracheas with a architecture of cartilaginous rings alternately interspersed between vascularized fibrous tissue (CRVFT) has the potential to perfectly recapitulate the normal tracheal structure and function. Herein, the development of a customized chondroitin-sulfate-incorporating type-II atelocollagen (COL II/CS) scaffold with excellent chondrogenic capacity and a type-I atelocollagen (COL I) scaffold to facilitate the formation of vascularized fibrous tissue is described. An efficient modular ring strategy is then adopted to develop a CRVFT-based biomimetic trachea. The in vitro engineering of cartilaginous rings is achieved via the recellularization of ring-shaped COL II/CS scaffolds using bone marrow stem cells as a mimetic for native cartilaginous ring tissue. A CRVFT-based trachea with biomimetic mechanical properties, composed of bionic biochemical components, is additionally successfully generated in vivo via the alternating stacking of cartilaginous rings and ring-shaped COL I scaffolds on a silicone pipe. The resultant biomimetic trachea with pedicled muscular flaps is used for extensive tracheal reconstruction and exhibits satisfactory therapeutic outcomes with structural and functional properties similar to those of native trachea. This is the first study to utilize stem cells for long-segmental tracheal cartilaginous regeneration and this represents a promising method for extensive tracheal reconstruction.
Collapse
Affiliation(s)
- Yong Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Jie Dai
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xinsheng Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Runfeng Cao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Nan Song
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Ming Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Xiaogang Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Feng Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Linlin Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Gening Jiang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Haifeng Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| |
Collapse
|
22
|
do Nascimento L, Nicoletti NF, Peletti-Figueiró M, Marinowic D, Falavigna A. Hyaluronic Acid In Vitro Response: Viability and Proliferation Profile of Human Chondrocytes in 3D-Based Culture. Cartilage 2021; 13:1077S-1087S. [PMID: 34775798 PMCID: PMC8804839 DOI: 10.1177/19476035211057244] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES This study aimed to evaluate the efficacy of hyaluronic acid in the viability and proliferation profile of human femoral-tibial joint cartilage affected by osteoarthritis using in vitro models of chondrocytes in a 2-dimensional (2D)- and 3-dimensional (3D)-based culture model by spheroids. DESIGN In vitro study of knee cartilage affected by osteoarthritis that required surgical treatment. Samples were cultured and exposed to hyaluronic acid (100 and 500 μM; intervention group) or vehicle solution. In monolayer or 2D culture, proliferation and cell viability were measured, and nuclear morphometry was analyzed by 4',6'-diamino-2-fenil-indol (DAPI) staining. The 3D-based culture established from the culture of articular cartilage of patients submitted to total knee arthroplasty evaluated the diameter, viability, and fusion ability of the chondrospheres created. RESULTS Samples from 3 patients resulted in viable cultures, with chondrocyte cells exhibiting a potential for cell proliferation and viability to establish a culture. Hyaluronic acid (100 and 500 μM) improved chondrocyte viability and proliferation up to 72 hours in contact when compared with the control group, and no nuclear irregularities in morphology cell characteristics were observed by DAPI. In the 3D evaluation, hyaluronic acid (500 μM) improved the cellular feedback mechanisms, increasing the survival and maintenance of the chondrospheres after 7 days of analysis, showing the intrinsic capacity of chondrospheres grouped in the attempt to rearrange and reestablish new articular tissue. CONCLUSIONS The 2D- and 3D-based culture models with hyaluronic acid improved chondrocyte viability and proliferation and demonstrated the ability of freshly formed chondrospheres to undergo fusion when placed together in the presence of hyaluronic acid.
Collapse
Affiliation(s)
| | | | | | - Daniel Marinowic
- Brain Institute of Rio Grande do Sul,
Graduate Program in Medicine and Health Sciences and School of Medicine, Pontifical
Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Asdrubal Falavigna
- Health Sciences Graduate Program,
Universidade de Caxias do Sul, Caxias do Sul, Brazil,Cell Therapy Laboratory, Universidade
de Caxias do Sul, Caxias do Sul, Brazil,Laboratory of Basic Studies on Spinal
Cord Pathologies, Department of Neurosurgery, University of Caxias of Sul,
Brazil,Asdrubal Falavigna, Laboratory of Basic
Studies on Spinal Cord Pathologies, Department of Neurosurgery, University of
Caxias of Sul, Caxias do Sul 95070-560, Rio Grande do Sul, Brazil.
| |
Collapse
|
23
|
Gan M, Zhou Q, Ge J, Zhao J, Wang Y, Yan Q, Wu C, Yu H, Xiao Q, Wang W, Yang H, Zou J. Precise in-situ release of microRNA from an injectable hydrogel induces bone regeneration. Acta Biomater 2021; 135:289-303. [PMID: 34474179 DOI: 10.1016/j.actbio.2021.08.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/21/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Critical bone defects are a common yet challenging orthopedic problem. Tissue engineering is an emerging and promising strategy for bone regeneration in large-scale bone defects. The precise on-demand release of osteogenic factors is critical for controlling the osteogenic differentiation of seed cells with the support of appropriate three dimensional scaffolds. However, most of the effective osteogenic factors are biomacromolecules with release behaviors that are difficult to control. Here, the cholesterol-modified non-coding microRNA Chol-miR-26a was used to promote the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Chol-miR-26a was conjugated to an injectable poly(ethylene glycol) (PEG) hydrogel through an ultraviolet (UV)-cleavable ester bond. The injectable PEG hydrogel was formed by a copper-free click reaction between the terminal azide groups of 8-armed PEG and dibenzocyclooctyne-biofunctionalized PEG, into which UV-cleavable Chol-miR-26a was simultaneously conjugated via a Michael addition reaction. Upon UV irradiation, Gel-c-miR-26a (MLCaged) released Chol-c-miR-26a selectively and exhibited significantly improved efficacy in bone regeneration compared to the hydrogel without UV irradiation and UV-uncleavable MLControl. MLCaged significantly enhanced alkaline phosphatase activity and promoted calcium nodule deposition in vitro and repaired critical skull defects in a rat animal model, demonstrating that injectable implantation with the precise release of osteogenic factors has the potential to repair large-scale bone defects in clinical practice. STATEMENT OF SIGNIFICANCE: Provide a novel and practical strategy via hydrogel for efficient delivery and precisely controlled release of miRNAs into bone defect sites. The hydrogel is formed by polyethylene glycol (PEG), which is crosslinked by 'click' reaction. Cholesterol-modified miR-26a loading on the hydrogel is covalently patterned onto the fibers of hydrogel through a UV light-cleavable linker, which prevents undesired release of miRNA. This hydrogel could realize the controlled release of miRNA under light regulation both in vitro and in vivo, thus realize bone regeneration.
Collapse
|
24
|
Zhou D, Feng H, Yang Y, Huang T, Qiu P, Zhang C, Olsen T, Zhang J, Chen YE, Mizrak D, Yang B. hiPSC Modeling of Lineage-Specific Smooth Muscle Cell Defects Caused by TGFBR1A230T Variant, and its Therapeutic Implications for Loeys-Dietz Syndrome. Circulation 2021; 144:1145-1159. [PMID: 34346740 DOI: 10.1161/circulationaha.121.054744] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Loeys-Dietz Syndrome (LDS) is an inherited disorder predisposing individuals to thoracic aortic aneurysm and dissection (TAAD). Currently, there are no medical treatments except surgical resection. Although the genetic basis of LDS is well-understood, molecular mechanisms underlying the disease remain elusive impeding the development of a therapeutic strategy. In addition, aortic smooth muscle cells (SMC) have heterogenous embryonic origins depending on their spatial location, and lineage-specific effects of pathogenic variants on SMC function, likely causing regionally constrained LDS manifestations, have been unexplored. Methods: We identified an LDS family with a dominant pathogenic variant in TGFBR1 gene (TGFBR1A230T) causing aortic root aneurysm and dissection. To accurately model the molecular defects caused by this mutation, we used human-induced pluripotent stem cells (hiPSC) from subject with normal aorta to generate hiPSC carrying TGFBR1A230T, and corrected the mutation in patient-derived hiPSC using CRISPR-Cas9 gene editing. Following their lineage-specific SMC differentiation through cardiovascular progenitor cell (CPC) and neural crest stem cell (NCSC) lineages, we employed conventional molecular techniques and single-cell RNA-sequencing (scRNA-seq) to characterize the molecular defects. The resulting data led to subsequent molecular and functional rescue experiments employing Activin A and rapamycin. Results: Our results indicate the TGFBR1A230T mutation impairs contractile transcript and protein levels, and function in CPC-SMC, but not in NCSC-SMC. ScRNA-seq results implicate defective differentiation even in TGFBR1A230T/+ CPC-SMC including disruption of SMC contraction, and extracellular matrix formation. Comparison of patient-derived and mutation-corrected cells supported the contractile phenotype observed in the mutant CPC-SMC. TGFBR1A230T selectively disrupted SMAD3 and AKT activation in CPC-SMC, and led to increased cell proliferation. Consistently, scRNA-seq revealed molecular similarities between a loss-of-function SMAD3 mutation (SMAD3c.652delA/+) and TGFBR1A230T/+. Lastly, combination treatment with Activin A and rapamycin during or after SMC differentiation significantly improved the mutant CPC-SMC contractile gene expression, and function; and rescued the mechanical properties of mutant CPC-SMC tissue constructs. Conclusions: This study reveals that a pathogenic TGFBR1 variant causes lineage-specific SMC defects informing the etiology of LDS-associated aortic root aneurysm. As a potential pharmacological strategy, our results highlight a combination treatment with Activin A and rapamycin that can rescue the SMC defects caused by the variant.
Collapse
Affiliation(s)
- Dong Zhou
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Xiangya School of Medicine, Central South University, Changsha, PRC
| | - Hao Feng
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Xiangya School of Medicine, Central South University, Changsha, PRC
| | - Ying Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Tingting Huang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Xiangya School of Medicine, Central South University, Changsha, PRC
| | - Ping Qiu
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI
| | - Timothy Olsen
- Department of Systems Biology, Columbia University, New York, NY
| | - Jifeng Zhang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Y Eugene Chen
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI; Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Dogukan Mizrak
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| | - Bo Yang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI
| |
Collapse
|
25
|
Current Strategies for Tracheal Replacement: A Review. Life (Basel) 2021; 11:life11070618. [PMID: 34202398 PMCID: PMC8306535 DOI: 10.3390/life11070618] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 01/30/2023] Open
Abstract
Airway cancers have been increasing in recent years. Tracheal resection is commonly performed during surgery and is burdened from post-operative complications severely affecting quality of life. Tracheal resection is usually carried out in primary tracheal tumors or other neoplasms of the neck region. Regenerative medicine for tracheal replacement using bio-prosthesis is under current research. In recent years, attempts were made to replace and transplant human cadaver trachea. An effective vascular supply is fundamental for a successful tracheal transplantation. The use of biological scaffolds derived from decellularized tissues has the advantage of a three-dimensional structure based on the native extracellular matrix promoting the perfusion, vascularization, and differentiation of the seeded cell typologies. By appropriately modulating some experimental parameters, it is possible to change the characteristics of the surface. The obtained membranes could theoretically be affixed to a decellularized tissue, but, in practice, it needs to ensure adhesion to the biological substrate and/or glue adhesion with biocompatible glues. It is also known that many of the biocompatible glues can be toxic or poorly tolerated and induce inflammatory phenomena or rejection. In tissue and organ transplants, decellularized tissues must not produce adverse immunological reactions and lead to rejection phenomena; at the same time, the transplant tissue must retain the mechanical properties of the original tissue. This review describes the attempts so far developed and the current lines of research in the field of tracheal replacement.
Collapse
|
26
|
Sun F, Lu Y, Wang Z, Shi H. Vascularization strategies for tissue engineering for tracheal reconstruction. Regen Med 2021; 16:549-566. [PMID: 34114475 DOI: 10.2217/rme-2020-0091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tissue engineering technology provides effective alternative treatments for tracheal reconstruction. The formation of a functional microvascular network is essential to support cell metabolism and ensure the long-term survival of grafts. Although several tracheal replacement therapy strategies have been developed in the past, the critical significance of the formation of microvascular networks in 3D scaffolds has not attracted sufficient attention. Here, we review key technologies and related factors of microvascular network construction in tissue-engineered trachea and explore optimized preparation processes of vascularized functional tissues for clinical applications.
Collapse
Affiliation(s)
- Fei Sun
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Yi Lu
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Zhihao Wang
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| | - Hongcan Shi
- Clinical Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese & Western Medicine for Prevention & Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China
| |
Collapse
|
27
|
McMillan A, Nguyen MK, Huynh CT, Sarett SM, Ge P, Chetverikova M, Nguyen K, Grosh D, Duvall CL, Alsberg E. Hydrogel microspheres for spatiotemporally controlled delivery of RNA and silencing gene expression within scaffold-free tissue engineered constructs. Acta Biomater 2021; 124:315-326. [PMID: 33465507 DOI: 10.1016/j.actbio.2021.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Delivery systems for controlled release of RNA interference (RNAi) molecules, including small interfering (siRNA) and microRNA (miRNA), have the potential to direct stem cell differentiation for regenerative musculoskeletal applications. To date, localized RNA delivery platforms in this area have focused predominantly on bulk scaffold-based approaches, which can interfere with cell-cell interactions important for recapitulating some native musculoskeletal developmental and healing processes in tissue regeneration strategies. In contrast, scaffold-free, high density human mesenchymal stem cell (hMSC) aggregates may provide an avenue for creating a more biomimetic microenvironment. Here, photocrosslinkable dextran microspheres (MS) encapsulating siRNA-micelles were prepared via an aqueous emulsion method and incorporated within hMSC aggregates for localized and sustained delivery of bioactive siRNA. siRNA-micelles released from MS in a sustained fashion over the course of 28 days, and the released siRNA retained its ability to transfect cells for gene silencing. Incorporation of fluorescently labeled siRNA (siGLO)-laden MS within hMSC aggregates exhibited tunable siGLO delivery and uptake by stem cells. Incorporation of MS loaded with siRNA targeting green fluorescent protein (siGFP) within GFP-hMSC aggregates provided sustained presentation of siGFP within the constructs and prolonged GFP silencing for up to 15 days. This platform system enables sustained gene silencing within stem cell aggregates and thus shows great potential in tissue regeneration applications. STATEMENT OF SIGNIFICANCE: This work presents a new strategy to deliver RNA-nanocomplexes from photocrosslinked dextran microspheres for tunable presentation of bioactive RNA. These microspheres were embedded within scaffold-free, human mesenchymal stem cell (hMSC) aggregates for sustained gene silencing within three-dimensional cell constructs while maintaining cell viability. Unlike exogenous delivery of RNA within culture medium that suffers from diffusion limitations and potential need for repeated transfections, this strategy provides local and sustained RNA presentation from the microspheres to cells in the constructs. This system has the potential to inhibit translation of hMSC differentiation antagonists and drive hMSC differentiation toward desired specific lineages, and is an important step in the engineering of high-density stem cell systems with incorporated instructive genetic cues for application in tissue regeneration.
Collapse
|
28
|
Cameron RB. Commentary: The search for a breakthrough in tracheal replacement surgery: The good, the bad, and the downright ugly. JTCVS OPEN 2021; 5:161-162. [PMID: 36003179 PMCID: PMC9390394 DOI: 10.1016/j.xjon.2020.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 11/27/2020] [Accepted: 12/15/2020] [Indexed: 06/15/2023]
Affiliation(s)
- Robert B. Cameron
- Address for reprints: Robert B. Cameron, MD, Division of Thoracic Surgery, Department of Surgery, David Geffen School of Medicine, Room 64-132, Box 957313, 10833 Le Conte Ave, Los Angeles, CA 90095-7313.
| |
Collapse
|
29
|
Hamada T, Nakamura A, Soyama A, Sakai Y, Miyoshi T, Yamaguchi S, Hidaka M, Hara T, Kugiyama T, Takatsuki M, Kamiya A, Nakayama K, Eguchi S. Bile duct reconstruction using scaffold-free tubular constructs created by Bio-3D printer. Regen Ther 2021; 16:81-89. [PMID: 33732817 PMCID: PMC7921183 DOI: 10.1016/j.reth.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/16/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction Biliary strictures after bile duct injury or duct-to-duct biliary reconstruction are serious complications that markedly reduce patients’ quality of life because their treatment involves periodic stent replacements. This study aimed to create a scaffold-free tubular construct as an interposition graft to treat biliary complications. Methods Scaffold-free tubular constructs of allogeneic pig fibroblasts, that is, fibroblast tubes, were created using a Bio-3D Printer and implanted into pigs as interposition grafts for duct-to-duct biliary reconstruction. Results Although the fibroblast tube was weaker than the native bile duct, it was sufficiently strong to enable suturing. The pigs' serum hepatobiliary enzyme levels remained stable during the experimental period. Micro-computed tomography showed no biliary strictures, no biliary leakages, and no intrahepatic bile duct dilations. The tubular structure was retained in all resected specimens, and the fibroblasts persisted at the graft sites. Immunohistochemical analyses revealed angiogenesis in the fibroblast tube and absence of extensions of the biliary epithelium into the fibroblast tube's lumen. Conclusions This study's findings demonstrated successful reconstruction of the extrahepatic bile duct with a scaffold-free tubular construct created from pig fibroblasts using a novel Bio-3D Printer. This construct could provide a novel regenerative treatment for patients with hepatobiliary diseases.
Collapse
Key Words
- ALP, alkaline phosphatase
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Artificial bile duct
- Bio-3D printer
- Cr, creatinine
- DMEM, Dulbecco's Modified Eagle's Medium
- EDTA, trypsin-ethylenediaminetetraacetic acid
- FBS, fetal bovine serum
- IBDI, iatrogenic bile duct injury
- KCL, potassium chloride
- LDLT, living donor liver transplantation
- PBS, phosphate-buffered saline
- QOL, quality of life
- Reconstruction
- Scaffold-free tubular construct
- T-Bil, total bilirubin
- γ-GTP, γ-glutamyl transpeptidase
Collapse
Affiliation(s)
- Takashi Hamada
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Anna Nakamura
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Yusuke Sakai
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan.,Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, Japan
| | - Takayuki Miyoshi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Shun Yamaguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Tota Kugiyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Mitsuhisa Takatsuki
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Japan
| |
Collapse
|
30
|
Scaffold-free human mesenchymal stem cell construct geometry regulates long bone regeneration. Commun Biol 2021; 4:89. [PMID: 33469154 PMCID: PMC7815708 DOI: 10.1038/s42003-020-01576-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Biomimetic bone tissue engineering strategies partially recapitulate development. We recently showed functional restoration of femoral defects using scaffold-free human mesenchymal stem cell (hMSC) condensates featuring localized morphogen presentation with delayed in vivo mechanical loading. Possible effects of construct geometry on healing outcome remain unclear. Here, we hypothesized that localized presentation of transforming growth factor (TGF)-β1 and bone morphogenetic protein (BMP)-2 to engineered hMSC tubes mimicking femoral diaphyses induces endochondral ossification, and that TGF-β1 + BMP-2-presenting hMSC tubes enhance defect healing with delayed in vivo loading vs. loosely packed hMSC sheets. Localized morphogen presentation stimulated chondrogenic priming/endochondral differentiation in vitro. Subcutaneously, hMSC tubes formed cartilage templates that underwent bony remodeling. Orthotopically, hMSC tubes stimulated more robust endochondral defect healing vs. hMSC sheets. Tissue resembling normal growth plate was observed with negligible ectopic bone. This study demonstrates interactions between hMSC condensation geometry, morphogen bioavailability, and mechanical cues to recapitulate development for biomimetic bone tissue engineering. Herberg et al. previously showed functional healing of femoral defects using scaffold-free human mesenchymal stem cell (hMSC) condensates with localized morphogen presentation. In this study, they report the importance of the tubular geometry of MSC condensates in long bone regeneration. Unlike loosely packed hMSC sheets, only hMSC tubes induced regenerate tissue partially resembling normal growth plate.
Collapse
|
31
|
Ando M, Ikeguchi R, Aoyama T, Tanaka M, Noguchi T, Miyazaki Y, Akieda S, Nakayama K, Matsuda S. Long-Term Outcome of Sciatic Nerve Regeneration Using Bio3D Conduit Fabricated from Human Fibroblasts in a Rat Sciatic Nerve Model. Cell Transplant 2021; 30:9636897211021357. [PMID: 34105391 PMCID: PMC8193652 DOI: 10.1177/09636897211021357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
Previously, we developed a Bio3D conduit fabricated from human fibroblasts and reported a significantly better outcome compared with artificial nerve conduit in the treatment of rat sciatic nerve defect. The purpose of this study is to investigate the long-term safety and nerve regeneration of Bio3D conduit compared with treatments using artificial nerve conduit and autologous nerve transplantation.We used 15 immunodeficient rats and randomly divided them into three groups treated with Bio3D (n = 5) conduit, silicon tube (n = 5), and autologous nerve transplantation (n = 5). We developed Bio3D conduits composed of human fibroblasts and bridged the 5 mm nerve gap created in the rat sciatic nerve. The same procedures were performed to bridge the 5 mm gap with a silicon tube. In the autologous nerve group, we removed the 5 mm sciatic nerve segment and transplanted it. We evaluated the nerve regeneration 24 weeks after surgery.Toe dragging was significantly better in the Bio3D group (0.20 ± 0.28) than in the silicon group (0.6 ± 0.24). The wet muscle weight ratios of the tibial anterior muscle of the Bio3D group (79.85% ± 5.47%) and the autologous nerve group (81.74% ± 2.83%) were significantly higher than that of the silicon group (66.99% ± 3.51%). The number of myelinated axons and mean myelinated axon diameter was significantly higher in the Bio3D group (14708 ± 302 and 5.52 ± 0.44 μm) and the autologous nerve group (14927 ± 5089 and 6.04 ± 0.85 μm) than the silicon group (7429 ± 1465 and 4.36 ± 0.21 μm). No tumors were observed in any of the rats in the Bio3D group at 24 weeks after surgery.The Bio3D group showed significantly better nerve regeneration and there was no significant difference between the Bio3D group and the nerve autograft group in all endpoints.
Collapse
Affiliation(s)
| | - Ryosuke Ikeguchi
- Ryosuke Ikeguchi, Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Townsend JM, Weatherly RA, Johnson JK, Detamore MS. Standardization of Microcomputed Tomography for Tracheal Tissue Engineering Analysis. Tissue Eng Part C Methods 2020; 26:590-595. [PMID: 33138726 DOI: 10.1089/ten.tec.2020.0211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tracheal tissue engineering has become an active area of interest among clinical and scientific communities; however, methods to evaluate success of in vivo tissue-engineered solutions remain primarily qualitative. These evaluation methods have generally relied on the use of photographs to qualitatively demonstrate tracheal patency, endoscopy to image healing over time, and histology to determine the quality of the regenerated extracellular matrix. Although those generally qualitative methods are valuable, they alone may be insufficient. Therefore, to quantitatively assess tracheal regeneration, we recommend the inclusion of microcomputed tomography (μCT) to quantify tracheal patency as a standard outcome analysis. To establish a standard of practice for quantitative μCT assessment for tracheal tissue engineering, we recommend selecting a constant length to quantify airway volume. Dividing airway volumes by a constant length provides an average cross-sectional area for comparing groups. We caution against selecting a length that is unjustifiably large, which may result in artificially inflating the average cross-sectional area and thereby diminishing the ability to detect actual differences between a test group and a healthy control. Therefore, we recommend selecting a length for μCT assessment that corresponds to the length of the defect region. We further recommend quantifying the minimum cross-sectional area, which does not depend on the length, but has functional implications for breathing. We present empirical data to elucidate the rationale for these recommendations. These empirical data may at first glance appear as expected and unsurprising. However, these standard methods for performing μCT and presentation of results do not yet exist in the literature, and are necessary to improve reporting within the field. Quantitative analyses will better enable comparisons between future publications within the tracheal tissue engineering community and empower a more rigorous assessment of results. Impact statement The current study argues for the standardization of microcomputed tomography (μCT) as a quantitative method for evaluating tracheal tissue-engineered solutions in vivo or ex vivo. The field of tracheal tissue engineering has generally relied on the use of qualitative methods for determining tracheal patency. A standardized quantitative evaluation method currently does not exist. The standardization of μCT for evaluation of in vivo studies would enable a more robust characterization and allow comparisons between groups within the field. The impact of standardized methods within the tracheal tissue engineering field as presented in the current study would greatly improve the quality of published work.
Collapse
Affiliation(s)
- Jakob M Townsend
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, USA
| | - Robert A Weatherly
- Section of Otolaryngology, Department of Surgery, Children's Mercy Hospital, Kansas City, Missouri, USA
| | | | - Michael S Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
33
|
Tang R, Umemori K, Rabin J, Alsberg E. Bi-functional nanoparticle-stabilized hydrogel colloidosomes as both extracellular matrix and bioactive factor delivery vehicle. ADVANCED THERAPEUTICS 2020; 3:2000156. [PMID: 34327284 PMCID: PMC8315228 DOI: 10.1002/adtp.202000156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 12/22/2022]
Abstract
Maintaining both cell-cell and cell-extracellular matrix (ECM) interactions is often a critical component of three-dimensional (3D) tissue regeneration. In high-density cell condensation systems, lack of appropriate cell-ECM interactions can result in limited and/or slow cell differentiation and tissue formation. To address these problems, a colloidosome microsphere system that is composed of a gelatin hydrogel core and a porous nanoparticle shell is developed. The colloidosome microsphere functions as an ECM and morphogen carrier for the induction of cartilage formation of high-density human mesenchymal stem cell (hMSC) in 3D cultures. With the protection of the nanoparticle shell, the colloidosome microspheres can be readily suspended in aqueous solution without clumping, thus incorporated homogeneously within high-density cell condensations. The gelatin-based colloidosome microspheres stimulate chondrogenesis of hMSCs and degrade rapidly to facilitate ECM remodeling for new tissue formation. When loaded with human transforming growth factor-β1, a potent chondrogenic morphogen, the colloidosomes serve as a bioactive factor delivery vehicle as well. The dual functionality of the colloidosomes as an ECM and a growth factor carrier effectively supports the chondrogenic differentiation of high-density hMSC condensations. These capabilities render the colloidosomes a promising platform system amenable to large-scale production of high-density 3D tissue culture constructs.
Collapse
Affiliation(s)
- Rui Tang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Kentaro Umemori
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Jacob Rabin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Yang J, Zhou M, Li W, Lin F, Shan G. Preparation and Evaluation of Sustained Release Platelet-Rich Plasma-Loaded Gelatin Microspheres Using an Emulsion Method. ACS OMEGA 2020; 5:27113-27118. [PMID: 33134671 PMCID: PMC7593996 DOI: 10.1021/acsomega.0c02543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/30/2020] [Indexed: 05/12/2023]
Abstract
The management and treatment of chronic wounds or acute wounds remain a major challenge in modern medicine. The application of autologous platelet-rich plasma (PRP) has become a promising adjuvant therapy to promote wound healing. PRP is derived from centrifuged whole blood to extract concentrated platelets, and a large amount of cytokines and growth factors are released upon activation. These bioactive molecules can enhance angiogenesis and tissue regeneration. Herein, PRP-loaded gelatin microspheres were prepared by the emulsion cross-linking method. Scanning electron microscopy results showed that the prepared microspheres are completely spherical, with an average particle size of 15.95 ± 3.79 μm and having a uniform particle size. Among them, the surface of a single microsphere is smooth and has a microporous structure, which may be the main channel for drug diffusion. Results of drug release measurements show that the prepared microspheres can slowly release the vascular endothelial growth factor for more than 7 days. In vitro cell experiments show that the prepared microspheres can promote proliferation and migration of L929 mouse fibroblast cells. In summary, the prepared PRP-loaded gelatin microspheres with high and long-term activity can provide experimental and theoretical knowledge for the development of the clinical long-acting injectable formulations.
Collapse
Affiliation(s)
- Jing Yang
- Department
of Clinical Laboratory, Guanghua School of Stomatology, Hospital of
Stomatology, Sun Yat-sen University, Guangdong
Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Mou Zhou
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Wendan Li
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Fang Lin
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Guiqiu Shan
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| |
Collapse
|
35
|
Xiahou Z, She Y, Zhang J, Qin Y, Li G, Zhang L, Fang H, Zhang K, Chen C, Yin J. Designer Hydrogel with Intelligently Switchable Stem-Cell Contact for Incubating Cartilaginous Microtissues. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40163-40175. [PMID: 32799444 DOI: 10.1021/acsami.0c13426] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stem-cell-derived organoid can resemble in vivo tissue counterpart and mimic at least one function of tissue or organ, possessing great potential for biomedical application. The present study develops a hydrogel with cell-responsive switch to guide spontaneous and sequential proliferation and aggregation of adipose-derived stem cells (ASCs) without inputting artificial stimulus for in vitro constructing cartilaginous microtissues with enhanced retention of cell-matrix and cell-cell interactions. Polylactic acid (PLA) rods are surface-aminolyzed by cystamine, followed by being involved in the amidation of poly(( l-glutamic acid) and adipic acid dihydrazide (ADH) to form a hydrogel. Along with tubular pore formation in hydrogel after dissolution of PLA rods, aminolyzed PLA molecules with disulfide bonds on rod surfaces are covalently transferred to the tubular pore surfaces of poly(l-glutamic acid)/ADH hydrogel. Because PLA attaches cells, while poly(l-glutamic acid)/ADH hydrogel repels cells, ASCs are found to adhere and proliferate on the tubular pore surfaces of hydrogel first and then cleave disulfide bonds by secreting molecules containing thiol, thus inducing desorption of PLA molecules and leading to their spontaneous detachment and aggregation. Associated with chondrogenic induction by TGF-β1 and IGF-1 in vitro for 28 days, the hydrogel as an all-in-one incubator produces well-engineered columnar cartilage microtissues from ASCs, with the glycosaminoglycans (GAGs) and collagen type II (COL II) deposition achieving 64 and 69% of those in chondrocytes pellet, respectively. The cartilage microtissues further matured in vivo for 8 weeks to exhibit extremely similar histological features and biomechanical performance to native hyaline cartilage. The GAGs and COL II content, as well as compressive modulus of the matured tissue show no significant difference with native cartilage. The designer hydrogel may hold a promise for long-term culture of other types of stem cells and organoids.
Collapse
Affiliation(s)
- Zijie Xiahou
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P. R. China
| | - Jiahui Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yechi Qin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Guifei Li
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Lili Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Kunxi Zhang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
- Central Laboratory, Shanghai Putuo Peoples Hospital, Tongji University School of Medicine, Shanghai 200060, P. R. China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P. R. China
| | - Jingbo Yin
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
36
|
Murata D, Arai K, Nakayama K. Scaffold-Free Bio-3D Printing Using Spheroids as "Bio-Inks" for Tissue (Re-)Construction and Drug Response Tests. Adv Healthc Mater 2020; 9:e1901831. [PMID: 32378363 DOI: 10.1002/adhm.201901831] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, scaffold-free bio-3D printing using cell aggregates (spheroids) as "bio-inks" has attracted increasing attention as a method for 3D cell construction. Bio-3D printing uses a technique called the Kenzan method, wherein spheroids are placed one-by-one in a microneedle array (the "Kenzan") using a bio-3D printer. The bio-3D printer is a machine that was developed to perform bio-3D printing automatically. Recently, it has been reported that cell constructs can be produced by a bio-3D printer using spheroids composed of many types of cells and that this can contribute to tissue (re-)construction. This progress report summarizes the production and effectiveness of various cell constructs prepared using bio-3D printers. It also considers the future issues and prospects of various cell constructs obtained by using this method for further development of scaffold-free 3D cell constructions.
Collapse
Affiliation(s)
- Daiki Murata
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Kenichi Arai
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| | - Koichi Nakayama
- Center for Regenerative Medicine ResearchFaculty of MedicineSaga University Honjo‐machi Saga 840‐8502 Japan
| |
Collapse
|
37
|
Niermeyer WL, Rodman C, Li MM, Chiang T. Tissue engineering applications in otolaryngology-The state of translation. Laryngoscope Investig Otolaryngol 2020; 5:630-648. [PMID: 32864434 PMCID: PMC7444782 DOI: 10.1002/lio2.416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022] Open
Abstract
While tissue engineering holds significant potential to address current limitations in reconstructive surgery of the head and neck, few constructs have made their way into routine clinical use. In this review, we aim to appraise the state of head and neck tissue engineering over the past five years, with a specific focus on otologic, nasal, craniofacial bone, and laryngotracheal applications. A comprehensive scoping search of the PubMed database was performed and over 2000 article hits were returned with 290 articles included in the final review. These publications have addressed the hallmark characteristics of tissue engineering (cellular source, scaffold, and growth signaling) for head and neck anatomical sites. While there have been promising reports of effective tissue engineered interventions in small groups of human patients, the majority of research remains constrained to in vitro and in vivo studies aimed at furthering the understanding of the biological processes involved in tissue engineering. Further, differences in functional and cosmetic properties of the ear, nose, airway, and craniofacial bone affect the emphasis of investigation at each site. While otolaryngologists currently play a role in tissue engineering translational research, continued multidisciplinary efforts will likely be required to push the state of translation towards tissue-engineered constructs available for routine clinical use. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
| | - Cole Rodman
- The Ohio State University College of MedicineColumbusOhioUSA
| | - Michael M. Li
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Tendy Chiang
- Department of OtolaryngologyNationwide Children's HospitalColumbusOhioUSA
- Department of Otolaryngology—Head and Neck SurgeryThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
38
|
Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration "Tracheal tissue engineering: an overview". J Tissue Eng Regen Med 2020; 14:653-672. [PMID: 32064791 DOI: 10.1002/term.3019] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Airway system is a vital part of the living being body. Trachea is the upper respiratory portion that connects nostril and lungs and has multiple functions such as breathing and entrapment of dust/pathogen particles. Tracheal reconstruction by artificial prosthesis, stents, and grafts are performed clinically for the repairing of damaged tissue. Although these (above-mentioned) methods repair the damaged parts, they have limited applicability like small area wounds and lack of functional tissue regeneration. Tissue engineering helps to overcome the above-mentioned problems by modifying the traditional used stents and grafts, not only repair but also regenerate the damaged area to functional tissue. Bioengineered tracheal replacements are biocompatible, nontoxic, porous, and having 3D biomimetic ultrastructure with good mechanical strength, which results in faster and better tissue regeneration. Till date, the bioengineered tracheal replacements studies have been going on preclinical and clinical levels. Besides that, still many researchers are working at advance level to make extracellular matrix-based acellular, 3D printed, cell-seeded grafts including living cells to overcome the demand of tissue or organ and making the ready to use tracheal reconstructs for clinical application. Thus, in this review, we summarized the tracheal tissue engineering aspects and their outcomes.
Collapse
Affiliation(s)
- Archna Dhasmana
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Atul Singh
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| | - Sagar Rawal
- Department of Biotechnology, School of Applied and Life Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
39
|
Kronemberger GS, Matsui RAM, Miranda GDASDCE, Granjeiro JM, Baptista LS. Cartilage and bone tissue engineering using adipose stromal/stem cells spheroids as building blocks. World J Stem Cells 2020; 12:110-122. [PMID: 32184936 PMCID: PMC7062040 DOI: 10.4252/wjsc.v12.i2.110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 10/19/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Scaffold-free techniques in the developmental tissue engineering area are designed to mimic in vivo embryonic processes with the aim of biofabricating, in vitro, tissues with more authentic properties. Cell clusters called spheroids are the basis for scaffold-free tissue engineering. In this review, we explore the use of spheroids from adult mesenchymal stem/stromal cells as a model in the developmental engineering area in order to mimic the developmental stages of cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells lineages recapitulate crucial events in bone and cartilage formation during embryogenesis, and are capable of spontaneously fusing to other spheroids, making them ideal building blocks for bone and cartilage tissue engineering. Here, we discuss data from ours and other labs on the use of adipose stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall, recent studies support the notion that spheroids are ideal "building blocks" for tissue engineering by “bottom-up” approaches, which are based on tissue assembly by advanced techniques such as three-dimensional bioprinting. Further studies on the cellular and molecular mechanisms that orchestrate spheroid fusion are now crucial to support continued development of bottom-up tissue engineering approaches such as three-dimensional bioprinting.
Collapse
Affiliation(s)
- Gabriela S Kronemberger
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
| | - Renata Akemi Morais Matsui
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
| | - Guilherme de Almeida Santos de Castro e Miranda
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Federal University of Rio de Janeiro (UFRJ), Campus Duque de Caxias, Duque de Caxias, RJ 25250-020, Brazil
| | - José Mauro Granjeiro
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Laboratory of Clinical Research in Odontology, Fluminense Federal University (UFF), Niterói 25255-030 Brazil
| | - Leandra Santos Baptista
- Laboratory of Tissue Bioengineering, Directory of Metrology Applied to Life Sciences, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Translational Biomedicine (Biotrans), Unigranrio, Campus I, Duque de Caxias, RJ 25250-020, Brazil
- Post-graduate Program in Biotechnology, National Institute of Metrology, Quality and Technology (INMETRO), Duque de Caxias, RJ 25250-020, Brazil
- Multidisciplinary Center for Biological Research (Numpex-Bio), Federal University of Rio de Janeiro (UFRJ) Campus Duque de Caxias, Duque de Caxias, RJ 25245-390, Brazil
| |
Collapse
|
40
|
Townsend JM, Hukill ME, Fung KM, Ohst DG, Johnson JK, Weatherly RA, Detamore MS. Biodegradable electrospun patch containing cell adhesion or antimicrobial compounds for trachea repair in vivo. Biomed Mater 2020; 15:025003. [PMID: 31791031 PMCID: PMC7065275 DOI: 10.1088/1748-605x/ab5e1b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Difficulty breathing due to tracheal stenosis (i.e. narrowed airway) diminishes the quality of life and can potentially be life-threatening. Tracheal stenosis can be caused by congenital anomalies, external trauma, infection, intubation-related injury, and tumors. Common treatment methods for tracheal stenosis requiring surgical intervention include end-to-end anastomosis, slide tracheoplasty and/or laryngotracheal reconstruction. Although the current methods have demonstrated promise for treatment of tracheal stenosis, a clear need exists for the development of new biomaterials that can hold the trachea open after the stenosed region has been surgically opened, and that can support healing without the need to harvest autologous tissue from the patient. The current study therefore evaluated the use of electrospun nanofiber scaffolds encapsulating 3D-printed PCL rings to patch induced defects in rabbit tracheas. The nanofibers were a blend of polycaprolactone (PCL) and polylactide-co-caprolactone (PLCL), and encapsulated either the cell adhesion peptide, RGD, or antimicrobial compound, ceragenin-131 (CSA). Blank PCL/PLCL and PCL were employed as control groups. Electrospun patches were evaluated in a rabbit tracheal defect model for 12 weeks, which demonstrated re-epithelialization of the luminal side of the defect. No significant difference in lumen volume was observed for the PCL/PLCL patches compared to the uninjured positive control. Only the RGD group did not lead to a significant decrease in the minimum cross-sectional area compared to the uninjured positive control. CSA reduced bacteria growth in vitro, but did not add clear value in vivo. Adequate tissue in-growth into the patches and minimal tissue overgrowth was observed inside the patch material. Areas of future investigation include tuning the material degradation time to balance cell adhesion and structural integrity.
Collapse
Affiliation(s)
- Jakob M. Townsend
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Makenna E. Hukill
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| | - Kar-Ming Fung
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | | | | | - Robert A. Weatherly
- Section of Otolaryngology, Department of Surgery, Children’s Mercy Hospital, Kansas City, MO, 64108
| | - Michael S. Detamore
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019
| |
Collapse
|
41
|
Taniguchi D, Matsumoto K, Machino R, Takeoka Y, Elgalad A, Taura Y, Oyama S, Tetsuo T, Moriyama M, Takagi K, Kunizaki M, Tsuchiya T, Miyazaki T, Hatachi G, Matsuo N, Nakayama K, Nagayasu T. Human lung microvascular endothelial cells as potential alternatives to human umbilical vein endothelial cells in bio-3D-printed trachea-like structures. Tissue Cell 2019; 63:101321. [PMID: 32223949 DOI: 10.1016/j.tice.2019.101321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND We have been trying to produce scaffold-free structures for airway regeneration using a bio-3D-printer with spheroids, to avoid scaffold-associated risks such as infection. Previous studies have shown that human umbilical vein endothelial cells (HUVECs) play an important role in such structures, but HUVECs cannot be isolated from adult humans. The aim of this study was to identify alternatives to HUVECs for use in scaffold-free structures. METHODS Three types of structure were compared, made of chondrocytes and mesenchymal stem cells with HUVECs, human lung microvascular endothelial cells (HMVEC-Ls), and induced pluripotent stem cell (iPSC)-derived endothelial cells. RESULTS No significant difference in tensile strength was observed between the three groups. Histologically, some small capillary-like tube formations comprising CD31-positive cells were observed in all groups. The number and diameters of such formations were significantly lower in the iPSC-derived endothelial cell group than in other groups. Glycosaminoglycan content was significantly lower in the iPSC-derived endothelial cell group than in the HUVEC group, while no significant difference was observed between the HUVEC and HMVEC-L groups. CONCLUSIONS HMVEC-Ls can replace HUVECs as a cell source for scaffold-free trachea-like structures. However, some limitations were associated with iPSC-derived endothelial cells.
Collapse
Affiliation(s)
- D Taniguchi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Matsumoto
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - R Machino
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Y Takeoka
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - A Elgalad
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Y Taura
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - S Oyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Tetsuo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - M Moriyama
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Takagi
- Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - M Kunizaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Tsuchiya
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - T Miyazaki
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - G Hatachi
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - N Matsuo
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - K Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of Medicine, Saga University, 1 Honjocho, Saga, 840-8502, Japan
| | - T Nagayasu
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan; Medical-engineering Hybrid Professional Development Program, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
42
|
Nycz CJ, Strobel HA, Suqui K, Grosha J, Fischer GS, Rolle MW. A Method for High-Throughput Robotic Assembly of Three-Dimensional Vascular Tissue. Tissue Eng Part A 2019; 25:1251-1260. [PMID: 30638142 DOI: 10.1089/ten.tea.2018.0288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
IMPACT STATEMENT Self-assembled tissues have potential to serve both as implantable grafts and as tools for disease modeling and drug screening. For these applications, tissue production must ultimately be scaled-up and automated. Limited technologies exist for precisely manipulating self-assembled tissues, which are fragile early in culture. Here, we presented a method for automatically stacking self-assembled smooth muscle cell rings onto mandrels, using a custom-designed well plate and robotic punch system. Rings then fuse into tissue-engineered blood vessels (TEBVs). This is a critical step toward automating TEBV production that may be applied to other tubular tissues as well.
Collapse
Affiliation(s)
- Christopher J Nycz
- Robotics Engineering Program, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Hannah A Strobel
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Kathy Suqui
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Jonian Grosha
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Gregory S Fischer
- Robotics Engineering Program, Worcester Polytechnic Institute, Worcester, Massachusetts.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts.,Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| |
Collapse
|
43
|
Qasim M, Arunkumar P, Powell HM, Khan M. Current research trends and challenges in tissue engineering for mending broken hearts. Life Sci 2019; 229:233-250. [PMID: 31103607 PMCID: PMC6799998 DOI: 10.1016/j.lfs.2019.05.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is among the leading causes of mortality worldwide. The shortage of donor hearts to treat end-stage heart failure patients is a critical problem. An average of 3500 heart transplant surgeries are performed globally, half of these transplants are performed in the US alone. Stem cell therapy is growing rapidly as an alternative strategy to repair or replace the damaged heart tissue after a myocardial infarction (MI). Nevertheless, the relatively poor survival of the stem cells in the ischemic heart is a major challenge to the therapeutic efficacy of stem-cell transplantation. Recent advancements in tissue engineering offer novel biomaterials and innovative technologies to improve upon the survival of stem cells as well as to repair the damaged heart tissue following a myocardial infarction (MI). However, there are several limitations in tissue engineering technologies to develop a fully functional, beating cardiac tissue. Therefore, the main goal of this review article is to address the current advancements and barriers in cardiac tissue engineering to augment the survival and retention of stem cells in the ischemic heart.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Pala Arunkumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States; Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
44
|
Sun T, Shi Q, Yao Y, Sun J, Wang H, Huang Q, Fukuda T. Engineered tissue micro-rings fabricated from aggregated fibroblasts and microfibres for a bottom-up tissue engineering approach. Biofabrication 2019; 11:035029. [PMID: 31048570 DOI: 10.1088/1758-5090/ab1ee5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tissue rings with incorporated microscaffolds have been engineered as promising building blocks for constructing biological tubes from the bottom up. However, the microscaffolds available for incorporation are very limited at present. In this paper we provide an efficient strategy to first incorporate microfluidic spun Ca-alginate microfibres encapsulating magnetic nanoparticles into self-assembled fibroblast micro-rings. Based on the surface modification, microfibres with a size of ∼40 μm allowed fibroblasts to spread and proliferate along the long axis. The optimal cell seeding density was obtained by evaluating the degree of coverage of fibroblasts on microfibres after 3 days of culture. Then we designed a magnetically guided culture apparatus with multiple annular micro-wells to facilitate cell-driven assembly of microfibres. A manipulation strategy dependent on surface tension was used to pattern microfibres along the micro-wells prior to cell seeding, and magnetic attraction further kept the patterned microfibres from being deposited in the micro-wells during cultivation. Within 3 days of culture, microfibre-incorporated tissue micro-rings were formed in the micro-wells. Quantitative analysis of the formation process revealed liquid-like aggregating behaviours, and incorporated microfibres showed the potential to promote the directed organization of cells in tissue micro-rings. Furthermore, magnetically driven manipulation was used robotically to assemble the micro-rings on a micropillar inserted into the centre of the culture apparatus. After 5 days of culture to allow cell fusion, a biological tubular microstructure was achieved. Microfluidic spinning can generate fibres with a variety of shapes, geometries, and compositions; therefore, our proposed method greatly enriches the variety of microscaffolds available for incorporation into tissue rings to engineer complex artificial organs for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tao Sun
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, People's Republic of China. Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
45
|
Boyd R, Parisi F, Kalfa D. State of the Art: Tissue Engineering in Congenital Heart Surgery. Semin Thorac Cardiovasc Surg 2019; 31:807-817. [PMID: 31176798 DOI: 10.1053/j.semtcvs.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
Abstract
Congenital heart disease is the leading cause of death secondary to congenital abnormalities in the United States and the incidence has increased significantly over the last 50 years. For those defects requiring surgical repair, bioprosthetic xenografts, allografts, and synthetic materials have traditionally been used. However, none of these modalities offer the potential for growth and accommodation within the pediatric population. Tissue engineering has been an area of great interest in a variety of cardiac applications as an innovative solution to create a product that can grow and regenerate within the body over time. Over the last 30 years, the original tissue engineering paradigm of a scaffold seeded with cells and cultured in a bioreactor has been expanded upon to include innovative methods of decellularization and production of "off-the-shelf" tissue-engineered products capable of in situ host cell repopulation. Despite progress in conceptual design and promising clinical results, widespread use of tissue-engineered products remains limited due to both regulatory and ongoing scientific challenges. Here, we describe the current state of the art with regards to in vitro, in vivo, and in situ tissue engineering as applicable within the field of congenital heart surgery and provide a brief overview of challenges and future directions.
Collapse
Affiliation(s)
- Rebekah Boyd
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - Frank Parisi
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York
| | - David Kalfa
- Division of Cardiac, Thoracic and Vascular Surgery, Section of Pediatric and Congenital Cardiac Surgery, New-York Presbyterian Morgan Stanley Children's Hospital, Columbia University Medical Center, New York, New York.
| |
Collapse
|
46
|
Kudva AK, Dikina AD, Luyten FP, Alsberg E, Patterson J. Gelatin microspheres releasing transforming growth factor drive in vitro chondrogenesis of human periosteum derived cells in micromass culture. Acta Biomater 2019; 90:287-299. [PMID: 30905864 PMCID: PMC6597958 DOI: 10.1016/j.actbio.2019.03.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 11/29/2022]
Abstract
For cartilage tissue engineering, several in vitro culture methodologies have displayed potential for the chondrogenic differentiation of mesenchymal stem cells (MSCs). Micromasses, cell aggregates or pellets, and cell sheets are all structures with high cell density that provides for abundant cell-cell interactions, which have been demonstrated to be important for chondrogenesis. Recently, these culture systems have been improved via the incorporation of growth factor releasing components such as degradable microspheres within the structures, further enhancing chondrogenesis. Herein, we incorporated different amounts of gelatin microspheres releasing transforming growth factor β1 (TGF-β1) into micromasses composed of human periosteum derived cells (hPDCs), an MSC-like cell population. The aim of this research was to investigate chondrogenic stimulation by TGF-β1 delivery from these degradable microspheres in comparison to exogenous supplementation with TGF-β1 in the culture medium. Microscopy showed that the gelatin microspheres could be successfully incorporated within hPDC micromasses without interfering with the formation of the structure, while biochemical analysis and histology demonstrated increasing DNA content at week 2 and accumulation of glycosaminoglycan and collagen at weeks 2 and 4. Importantly, similar chondrogenesis was achieved when TGF-β1 was delivered from the microspheres compared to controls with TGF-β1 in the medium. Increasing the amount of growth factor within the micromasses by increasing the amount of microspheres added did not further improve chondrogenesis of the hPDCs. These findings demonstrate the potential of using cytokine releasing, gelatin microspheres to enhance the chondrogenic capabilities of hPDC micromasses as an alternative to supplementation of the culture medium with growth factors. STATEMENT OF SIGNIFICANCE: Gelatin microspheres are utilized for growth factor delivery to enhance chondrogenesis of mesenchymal stem cells (MSCs) in high cell density culture systems. Herein, we employ a new combination of these microspheres with micromasses of human periosteum-derived cells, which possess ease of isolation, excellent expansion potential, and MSC-like differentiation capabilities. The resulting localized delivery of transforming growth factor β1 increases glycosaminoglycan and collagen production within the micromasses without exogenous stimulation in the medium. This unique combination is able to drive chondrogenesis up to similar levels as seen in micromasses that do receive exogenous stimulation. The addition of growth factor releasing microspheres to high cell density micromasses has the potential to reduce costs associated with this strategy for cartilage tissue engineering.
Collapse
Affiliation(s)
- Abhijith K Kudva
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, box 2450, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium.
| | - Anna D Dikina
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium; Skeletal Biology and Engineering Research Center, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium.
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Jennifer Patterson
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, box 2450, 3001 Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Herestraat 49, box 813, 3000 Leuven, Belgium; Department of Imaging & Pathology, KU Leuven, Kapucijnenvoer 7 block a, box 7001, 3000 Leuven, Belgium.
| |
Collapse
|
47
|
Non-invasive functional molecular phenotyping of human smooth muscle cells utilized in cardiovascular tissue engineering. Acta Biomater 2019; 89:193-205. [PMID: 30878445 DOI: 10.1016/j.actbio.2019.03.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/08/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
Abstract
Smooth muscle cell (SMC) diversity and plasticity are limiting factors in their characterization and application in cardiovascular tissue engineering. This work aimed to evaluate the potential of Raman microspectroscopy and Raman imaging to distinguish SMCs of different tissue origins and phenotypes. Cultured human SMCs isolated from different vascular and non-vascular tissues as well as fixed human SMC-containing tissues were analyzed. In addition, Raman spectra and images of tissue-engineered SMC constructs were acquired. Routine techniques such as qPCR, histochemistry, histological and immunocytological staining were performed for comparative gene and protein expression analysis. We identified that SMCs of different tissue origins exhibited unique spectral information that allowed a separation of all groups of origin by multivariate data analysis (MVA). We were further able to non-invasively monitor phenotypic switching in cultured SMCs and assess the impact of different culture conditions on extracellular matrix remodeling in the tissue-engineered ring constructs. Interestingly, we identified that the Raman signature of the human SMC-based ring constructs was similar to the one obtained from native aortic tissue. We conclude that Raman microspectroscopic methods are promising tools to characterize cells and define cellular and extracellular matrix components on a molecular level. In this study, in situ measurements were marker-independent, fast, and identified cellular differences that were not detectable by established routine techniques. Perspectively, Raman microspectroscopy and MVA in combination with artificial intelligence can be suitable for automated quality monitoring of (stem) cell and cell-based tissue engineering products. STATEMENT OF SIGNIFICANCE: The accessibility of autologous blood vessels for surgery is limited. Tissue engineering (TE) aims to develop functional vascular replacements; however, no commercially available TE vascular graft (TEVG) exists to date. One limiting factor is the availability of a well-characterized and safe cell source. Smooth muscle cells (SMCs) are generally used for TEVGs. To engineer a TEVG, proliferating SMCs of the synthesizing phenotype are essential, whereas functional, sustainable TEVGs require SMCs of the contractile phenotype. SMC diversity and plasticity are therefore limiting factors, also for their quality monitoring and application in TE. In this study, Raman microspectroscopy and imaging combined with machine learning tools allowed the non-destructive, marker-independent characterization of SMCs, smooth muscle tissues and TE SMC-constructs. The spectral information was specific enough to distinguish for the first time the phenotypic switching in SMCs in real-time, and monitor the impact of culture conditions on ECM remodeling in the TE SMC-constructs.
Collapse
|
48
|
Zhong Y, Yang W, Yin Pan Z, Pan S, Zhang SQ, Hao Wang Z, Gu S, Shi H. In vivo transplantation of stem cells with a genipin linked scaffold for tracheal construction. J Biomater Appl 2019; 34:47-60. [DOI: 10.1177/0885328219839193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yi Zhong
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Wenlong Yang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zi Yin Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Shu Pan
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Si Quan Zhang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Zhi Hao Wang
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| | - Sijia Gu
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Clinical medical college of Yangzhou University, Yangzhou, China
- Medical College of Yangzhou University, 11 Huaihai Road, Yangzhou, Jiangsu Province, China
- Key Laboratory of Integrative Medicine in Geriatrics Control of Jiangsu Province, Yangzhou University, Yangzhou, China
- Center of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
49
|
Machino R, Matsumoto K, Taniguchi D, Tsuchiya T, Takeoka Y, Taura Y, Moriyama M, Tetsuo T, Oyama S, Takagi K, Miyazaki T, Hatachi G, Doi R, Shimoyama K, Matsuo N, Yamasaki N, Nakayama K, Nagayasu T. Replacement of Rat Tracheas by Layered, Trachea-Like, Scaffold-Free Structures of Human Cells Using a Bio-3D Printing System. Adv Healthc Mater 2019; 8:e1800983. [PMID: 30632706 DOI: 10.1002/adhm.201800983] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 10/17/2018] [Indexed: 01/23/2023]
Abstract
Current scaffold-based tissue engineering approaches are subject to several limitations, such as design inflexibility, poor cytocompatibility, toxicity, and post-transplant degradation. Thus, scaffold-free tissue-engineered structures can be a promising solution to overcome the issues associated with classical scaffold-based materials in clinical transplantation. The present study seeks to optimize the culture conditions and cell combinations used to generate scaffold-free structures using a Bio-3D printing system. Human cartilage cells, human fibroblasts, human umbilical vein endothelial cells, and human mesenchymal stem cells from bone marrow are aggregated into spheroids and placed into a Bio-3D printing system with dedicated needles positioned according to 3D configuration data, to develop scaffold-free trachea-like tubes. Culturing the Bio-3D-printed structures with proper flow of specific medium in a bioreactor facilitates the rearrangement and self-organization of cells, improving physical strength and tissue function. The Bio-3D-printed tissue forms small-diameter trachea-like tubes that are implanted into rats with the support of catheters. It is confirmed that the tubes are viable in vivo and that the tracheal epithelium and capillaries proliferate. This tissue-engineered, scaffold-free, tubular structure can represent a significant step toward clinical application of bioengineered organs.
Collapse
Affiliation(s)
- Ryusuke Machino
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Keitaro Matsumoto
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Daisuke Taniguchi
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Tomoshi Tsuchiya
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Yosuke Takeoka
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Yasuaki Taura
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Masaaki Moriyama
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Tomoyuki Tetsuo
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Shosaburo Oyama
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Katsunori Takagi
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Takuro Miyazaki
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Go Hatachi
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Ryoichiro Doi
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Koichiro Shimoyama
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Naoto Matsuo
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Naoya Yamasaki
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering Faculty of MedicineSaga University Saga 840‐8502 Japan
| | - Takeshi Nagayasu
- Department of Surgical OncologyNagasaki University Graduate School of Biomedical Sciences Nagasaki 852‐8501 Japan
- Medical‐Engineering Hybrid Professional Development CenterNagasaki University Graduate School of Biomedical Sciences Nagasaki 8528501 Japan
| |
Collapse
|
50
|
Serum-Free Manufacturing of Mesenchymal Stem Cell Tissue Rings Using Human-Induced Pluripotent Stem Cells. Stem Cells Int 2019; 2019:5654324. [PMID: 30766604 PMCID: PMC6350554 DOI: 10.1155/2019/5654324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/04/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Combination of stem cell technology and 3D biofabrication approaches provides physiological similarity to in vivo tissues and the capability of repairing and regenerating damaged human tissues. Mesenchymal stem cells (MSCs) have been widely used for regenerative medicine applications because of their immunosuppressive properties and multipotent potentials. To obtain large amount of high-quality MSCs without patient donation and invasive procedures, we differentiated MSCs from human-induced pluripotent stem cells (hiPSC-MSCs) using serum-free E6 media supplemented with only one growth factor (bFGF) and two small molecules (SB431542 and CHIR99021). The differentiated cells showed a high expression of common MSC-specific surface markers (CD90, CD73, CD105, CD106, CD146, and CD166) and a high potency for osteogenic and chondrogenic differentiation. With these cells, we have been able to manufacture MSC tissue rings with high consistency and robustness in pluronic-coated reusable PDMS devices. The MSC tissue rings were characterized based on inner diameter and outer ring diameter and observed cell-type-dependent tissue contraction induced by cell-matrix interaction. Our approach of simplified hiPSC-MSC differentiation, modular fabrication procedure, and serum-free culture conditions has a great potential for scalable manufacturing of MSC tissue rings for different regenerative medicine applications.
Collapse
|