1
|
Zhu L, Zhou S, Huang L, Wang X, Huang Y, Yu J, Wang Z. Paternal bisphenol A exposure alters craniofacial cartilage development in rare minnow (Gobiocypris rarus) descendants. J Environ Sci (China) 2025; 154:691-702. [PMID: 40049908 DOI: 10.1016/j.jes.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 05/13/2025]
Abstract
Bisphenol A (BPA) is a recognized estrogenic endocrine disruptor that poses a threat to the reproductive health of fish. However, it remains unclear whether and how paternal BPA exposure can lead to developmental toxicity in offspring. To explore the potential paternal BPA exposure impacts on craniofacial cartilage growth in offspring, male rare minnows were subjected to BPA and subsequently mated with normal females to produce progeny. Our results demonstrated that paternal BPA exposure resulted in increased malformation and delayed craniofacial cartilage development in the F1 offspring. Furthermore, BPA exposure led to differential expression of 28 miRNAs in paternal sperm in F0 generation (13 upregulated and 15 downregulated), among which 7 miRNAs were involved in the regulation of bone development. BPA also downregulated the expression of bmp2a and Runx1 during F1 embryonic development. The inhibited bmp2a expression might derive from BPA's stimulation of one miRNA, aca-miR-16a-5P, due to bmp2a being one of its target genes. Notably, paternal BPA exposure did not affect craniofacial cartilage development or gonadal development in the F2 generation. Overall, our study sheds light on the molecular mechanisms underlying the impact of paternal BPA exposure on facial chondrogenesis in offspring and provides theoretical support for the ecological protection of fish populations.
Collapse
Affiliation(s)
- Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Shangjie Zhou
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Li Huang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaotian Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yutong Huang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jiachen Yu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Shinde PP, Chitkara D, Mittal A. Downregulation of microRNA-29b in cancer and fibrosis: molecular insights and clinical implications. Drug Discov Today 2024; 29:104190. [PMID: 39322175 DOI: 10.1016/j.drudis.2024.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
MicroRNA-29b (miR-29b) is known for its therapeutic potential as an antifibrotic and anticancer agent. In fibrotic conditions, miR-29b inhibits fibrogenesis by downregulating crucial regulators such as collagens, extracellular matrix proteins and the transforming growth factor-β pathway. Similarly, in cancer, it acts as a tumor suppressor by downregulating various oncogenes and signaling pathways involved in cancer progression, such as Wnt-β-catenin, p38-mitogen-activated protein kinase and nuclear factor-κB. However, the upregulation of these pathways suppresses miR-29b, contributing to fibrosis and cancer development. Preclinical research and clinical trials have shown that delivering exogenous miR-29b mimics can restore its expression, attenuating tumorigenesis and fibrogenesis. This review discusses miR-29b's potential and its possible therapeutic development for cancer and fibrotic disorders.
Collapse
Affiliation(s)
- Pratik Pramod Shinde
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333 031, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333 031, India
| | - Anupama Mittal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS PILANI), Pilani, Rajasthan 333 031, India.
| |
Collapse
|
3
|
Wang M, Xie Z, Yan K, Qiao C, Yan S, Wu G. Identification of the miRNA-mRNA regulatory network in a mouse model of early fracture. Front Genet 2024; 15:1408404. [PMID: 38919952 PMCID: PMC11196604 DOI: 10.3389/fgene.2024.1408404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/13/2024] [Indexed: 06/27/2024] Open
Abstract
Fracture healing is a complex process that involves multiple molecular events, and the regulation mechanism is not fully understood. We acquired miRNA and mRNA transcriptomes of mouse fractures from the Gene Expression Omnibus database (GSE76197 and GSE192542) and integrated the miRNAs and genes that were differentially expressed in the control and fracture groups to construct regulatory networks. There were 130 differentially expressed miRNAs and 4,819 differentially expressed genes, including 72 upregulated and 58 downregulated miRNAs, along with 2,855 upregulated and 1964 downregulated genes during early fracture healing. Gene ontology analysis revealed that most of the differentially expressed genes were enriched in the extracellular matrix (ECM) structure and the ECM organization. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment suggested cell cycle, DNA replication, and mismatch repair were involved in the progression of fracture healing. Furthermore, we constructed a molecular network of miRNAs and mRNAs with inverse expression patterns to elucidate the molecular basis of miRNA-mRNA regulation in fractures. The regulatory network highlighted the potential targets, which may help to provide a mechanistic basis for therapies to improve fracture patient outcomes.
Collapse
Affiliation(s)
- Maochun Wang
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | - Guoping Wu
- Department of Plastic Surgery, The Affiliated Friendship Plastic Surgery Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Ghafouri-Fard S, Shoorei H, Noferesti L, Hussen BM, Moghadam MHB, Taheri M, Rashnoo F. Nanoparticle-mediated delivery of microRNAs-based therapies for treatment of disorders. Pathol Res Pract 2023; 248:154667. [PMID: 37422972 DOI: 10.1016/j.prp.2023.154667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/11/2023]
Abstract
miRNAs represent appropriate candidates for treatment of several disorders. However, safe and efficient delivery of these small-sized transcripts has been challenging. Nanoparticle-based delivery of miRNAs has been used for treatment of a variety of disorders, particularly cancers as well as ischemic stroke and pulmonary fibrosis. The wide range application of this type of therapy is based on the important roles of miRNAs in the regulation of cell behavior in physiological and pathological conditions. Besides, the ability of miRNAs to inhibit or increase expression of several genes gives them the superiority over mRNA or siRNA-based therapies. Preparation of nanoparticles for miRNA delivery is mainly achieved through using protocols originally developed for drugs or other types of biomolecules. In brief, nanoparticle-based delivery of miRNAs is regarded as a solution for overcoming all challenges in the therapeutic application of miRNAs. Herein, we provide an overview of studies which used nanoparticles as delivery systems for facilitation of miRNAs entry into target cells for the therapeutic purposes. However, our knowledge about miRNA-loaded nanoparticles is limited, and it is expected that numerous therapeutic possibilities will be revealed for miRNA-loaded nanoparticles in future.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Noferesti
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| | | | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariborz Rashnoo
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Liao J, Chen B, Zhu Z, Du C, Gao S, Zhao G, Zhao P, Wang Y, Wang A, Schwartz Z, Song L, Hong J, Wagstaff W, Haydon RC, Luu HH, Fan J, Reid RR, He TC, Shi L, Hu N, Huang W. Long noncoding RNA (lncRNA) H19: An essential developmental regulator with expanding roles in cancer, stem cell differentiation, and metabolic diseases. Genes Dis 2023; 10:1351-1366. [PMID: 37397543 PMCID: PMC10311118 DOI: 10.1016/j.gendis.2023.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/07/2023] [Accepted: 02/08/2023] [Indexed: 07/04/2023] Open
Abstract
Recent advances in deep sequencing technologies have revealed that, while less than 2% of the human genome is transcribed into mRNA for protein synthesis, over 80% of the genome is transcribed, leading to the production of large amounts of noncoding RNAs (ncRNAs). It has been shown that ncRNAs, especially long non-coding RNAs (lncRNAs), may play crucial regulatory roles in gene expression. As one of the first isolated and reported lncRNAs, H19 has gained much attention due to its essential roles in regulating many physiological and/or pathological processes including embryogenesis, development, tumorigenesis, osteogenesis, and metabolism. Mechanistically, H19 mediates diverse regulatory functions by serving as competing endogenous RNAs (CeRNAs), Igf2/H19 imprinted tandem gene, modular scaffold, cooperating with H19 antisense, and acting directly with other mRNAs or lncRNAs. Here, we summarized the current understanding of H19 in embryogenesis and development, cancer development and progression, mesenchymal stem cell lineage-specific differentiation, and metabolic diseases. We discussed the potential regulatory mechanisms underlying H19's functions in those processes although more in-depth studies are warranted to delineate the exact molecular, cellular, epigenetic, and genomic regulatory mechanisms underlying the physiological and pathological roles of H19. Ultimately, these lines of investigation may lead to the development of novel therapeutics for human diseases by exploiting H19 functions.
Collapse
Affiliation(s)
- Junyi Liao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Bowen Chen
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhenglin Zhu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Shengqiang Gao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- The Medical Scientist Training Program, The University of Chicago Pritzker School of Medicine, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Ning Hu
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Wei Huang
- Departments of Orthopedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Orthopedic Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
6
|
Huang J, Li Y, Zhu S, Wang L, Pei H, Wang X, Bao T, Jiang Z, Yang L, He C. Pulsed Electromagnetic Field Promotes Bone Anabolism in Postmenopausal Osteoporosis through the miR-6976/BMP/Smad4 Axis. J Tissue Eng Regen Med 2023; 2023:8857436. [PMID: 40226399 PMCID: PMC11919207 DOI: 10.1155/2023/8857436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 05/09/2023] [Indexed: 04/15/2025]
Abstract
Background Insufficient bone formation is the key reason for the imbalance of bone metabolism and one of the main mechanisms for the occurrence and deterioration of postmenopausal osteoporosis (PMOP). Accumulating evidence has demonstrated that pulsed electromagnetic field (PEMF), as a physiotherapy, can treat osteoporosis by promoting osteogenic differentiation in osteoblasts. However, little is known about its mechanisms. Methods In vivo, ovariectomized mice were administered PEMF for 4 weeks, and skeletal analysis was conducted. In vitro, hydrogen peroxide-treated mouse osteoblast precursor cells with or without PEMF intervention were subjected to osteogenic differentiation testing and miRNA microarrays. The potential target miRNAs were validated, followed by gene expression assays to further clarify their regulatory relationships with target pathways. Results We found that PEMF reduced bone loss in ovariectomized mice and promoted osteogenic differentiation of hydrogen peroxide-treated osteoblast precursor cells via downregulation of miR-6976-5p. Mechanistically, reduced miR-6976-5p enhanced the nuclear transport of phosphorylated Smad1/5/9 by upregulating Smad4, thereby activating the BMP/Smad pathway. Additionally, the administration of miR-6976-5p inhibitors successfully promoted osteogenic differentiation in vitro, and its antagomirs protected bone mass in vivo. miR-6976-5p mimics and agomirs acted in the opposite way. Conclusion These results provide evidence that PEMF alleviates estrogen deficiency-induced bone loss by activating osteoblastic progenitor cells and maintaining their osteogenic differentiation and shed light on the mechanisms involved, which may provide a potential option for the clinical application of PEMF in PMOP.
Collapse
Affiliation(s)
- Jinming Huang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Li
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siyi Zhu
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Liqiong Wang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongliang Pei
- Human Engineering Laboratory, The School of Mechanical Engineering, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiangxiu Wang
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianjie Bao
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lin Yang
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chengqi He
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
7
|
Lopes KG, Rodrigues EL, da Silva Lopes MR, do Nascimento VA, Pott A, Guimarães RDCA, Pegolo GE, Freitas KDC. Adiposity Metabolic Consequences for Adolescent Bone Health. Nutrients 2022; 14:3260. [PMID: 36014768 PMCID: PMC9414751 DOI: 10.3390/nu14163260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 12/20/2022] Open
Abstract
Infancy and adolescence are crucial periods for bone health, since they are characterized by intense physical growth and bone development. The unsatisfactory acquisition of bone mass in this phase has consequences in adult life and increases the risk of developing bone diseases at more advanced ages. Nutrient deficiencies, especially calcium and vitamin D, associated with a sedentary lifestyle; lack of sun exposure; and epigenetic aspects represent some of the main risk factors for poor bone quality. In addition, recent studies relate childhood obesity to impaired bone health; however, studies on the adiposity effects on bone health are scarce and inconclusive. Another gap concerns the implications of obesity on child sexual maturity, which can jeopardize their genetic potential bone mass and increase fracture risk. Therefore, we reviewed the analyzed factors related to bone health and their association with obesity and metabolic syndrome in adolescents. We concluded that obesity (specifically, accumulated visceral fat) harms bones in the infant-juvenile phase, thereby increasing osteopenia/osteoporosis in adults and the elderly. Thus, it becomes evident that forming and maintaining healthy eating habits is necessary during infancy and adolescence to reduce the risk of fractures caused by bone-metabolic diseases in adulthood and to promote healthy ageing.
Collapse
Affiliation(s)
- Kátia Gianlupi Lopes
- Post-Graduate Program in Health and Development in the Mid-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Elisana Lima Rodrigues
- Post-Graduate Program in Health and Development in the Mid-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Mariana Rodrigues da Silva Lopes
- Post-Graduate Program in Health and Development in the Mid-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Valter Aragão do Nascimento
- Post-Graduate Program in Health and Development in the Mid-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Arnildo Pott
- Institute of Biosciences, Federal University of Mato Grosso do Sul-UFMS, Campo Grande 79079-900, Brazil
| | - Rita de Cássia Avellaneda Guimarães
- Post-Graduate Program in Health and Development in the Mid-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Giovana Eliza Pegolo
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Karine de Cássia Freitas
- Post-Graduate Program in Health and Development in the Mid-West Region, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil
| |
Collapse
|
8
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Shams A, Shabani R, Asgari H, Karimi M, Najafi M, Asghari-Jafarabadi M, Razavi SM, Miri SR, Abbasi M, Mohammadi A, Koruji M. In vitro elimination of EL4 cancer cells from spermatogonia stem cells by miRNA-143- and 206-loaded folic acid conjugated PLGA nanoparticles. Nanomedicine (Lond) 2022; 17:531-545. [PMID: 35264013 DOI: 10.2217/nnm-2021-0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: MiRNA's-143 and -206 are powerful apoptotic regulators in cancer cells. This study aimed to use miRNA-143- and 206-loaded poly(lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with folic acid to induce apoptosis in the EL4 cancer cells. Materials & methods: The therapy was conducted in six groups: Treatment with both miRNAs simultaneously (mixed miRNAs), miRNA-206 treatment, miRNA-143 treatment, blank PLGA, blank polyethylenimine (PEI) and complex PEI-miRNAs. Results: In terms of viability, in mixed miRNAs, no synergistic effect was observed on EL4 cell elimination. However, in the single miRNA-206 group, a stronger apoptotic effect was observed than the mixed miRNAs group and single miRNA-143 group alone. Conclusion: MiRNAs' apoptotic induction effects in cancer cells were found to be remarkable.
Collapse
Affiliation(s)
- Azar Shams
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Asgari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Asghari-Jafarabadi
- Department of Statistics & Epidemiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Mohsen Razavi
- Clinic of Hematology & Oncology, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Rouhollah Miri
- Department of Surgical Oncology, Cancer Institute,Tehran University of Medical Science, Tehran, Iran
| | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohammadi
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Koruji
- Stem cell & Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
CRLF1 and CLCF1 in Development, Health and Disease. Int J Mol Sci 2022; 23:ijms23020992. [PMID: 35055176 PMCID: PMC8780587 DOI: 10.3390/ijms23020992] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cytokines and their receptors have a vital function in regulating various processes such as immune function, inflammation, haematopoiesis, cell growth and differentiation. The interaction between a cytokine and its specific receptor triggers intracellular signalling cascades that lead to altered gene expression in the target cell and consequent changes in its proliferation, differentiation, or activation. In this review, we highlight the role of the soluble type I cytokine receptor CRLF1 (cytokine receptor-like factor-1) and the Interleukin (IL)-6 cytokine CLCF1 (cardiotrophin-like cytokine factor 1) during development in physiological and pathological conditions with particular emphasis on Crisponi/cold-induced sweating syndrome (CS/CISS) and discuss new insights, challenges and possibilities arising from recent studies.
Collapse
|
11
|
Yang Q, Guo J, Ren Z, Li B, Huang H, Yang Z. LncRNA NONHSAT030515 promotes the chondrogenic differentiation of human adipose-derived stem cells via regulating the miR-490-5p/BMPR2 axis. J Orthop Surg Res 2021; 16:658. [PMID: 34742321 PMCID: PMC8571896 DOI: 10.1186/s13018-021-02757-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Chondrogenic differentiation of human adipose-derived stem cells (hADSCs) is important for cartilage generation and degradation. LncRNAs play an essential role in stem cell differentiation. However, the role and mechanism of lncRNA in hADSCs remain unclear. Our previous study showed that miR-490-5p was downregulated during chondrogenic differentiation of hADSCs. In this study, we investigated the effect and mechanism of lncRNA NONHSAT030515 interacting with miR-490-5p on chondrogenic differentiation of hADSCs. METHODS Alcian blue staining was used to assess the deposition of chondromatrix proteins following chondrogenic differentiation of human adipose stem cells. Immunohistochemistry was used to evaluate the expression of collagenII. TargetScan, miRTarBase and miRDB database analyses were applied to find the miRNA and target genes of lncRNA NONHSAT030515. A dual luciferase experiment was conducted to identify the direct target of NONHSAT030515. pcDNA3.1- NONHSAT030515 transfection and sh- NONHSAT030515 treatment were conducted to verify the role of lncRNA NONHSAT030515 in chondrogenic differentiation. The levels of Aggrecan, SOX9 and COL2A1 were analyzed by qRT-PCR and Western blot assay. RESULTS Alcian blue staining, immunocytochemical, qRT-PCR, and Western blot have determined that lncRNA NONHSAT030515 can promote the chondrogenic differentiation of hADSCs. MiR-490- 5p was the direct target of NONHSAT030515, while BMPR2 was the target gene. This result was confirmed by luciferase reporter assay. Up-regulation of NONHSAT030515 promoted BMPR2 protein expression and promoted chondrogenic differentiation, whereas down-regulation of NONHSAT030515 caused completely opposite results. CONCLUSION LncRNA NONHSAT030515 promotes the chondrogenic differentiation of hADSCs through increasing BMPR2 expression by regulating miR-490- 5p.
Collapse
Affiliation(s)
- Qinqin Yang
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Jiajia Guo
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Zhijing Ren
- Medical College of Guizhou University, Guiyang, 550025, Guizhou, China
| | - Bo Li
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Haifeng Huang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China
| | - Zhen Yang
- Department of Orthopedics, Guizhou Provincial People's Hospital, Guiyang, 550002, Guizhou, China.
| |
Collapse
|
12
|
Wang C, Liu S, Li J, Cheng Y, Wang Z, Feng T, Lu G, Wang S, Song J, Xia P, Hao L. Biological Functions of Let-7e-5p in Promoting the Differentiation of MC3T3-E1 Cells. Front Cell Dev Biol 2021; 9:671170. [PMID: 34568312 PMCID: PMC8455882 DOI: 10.3389/fcell.2021.671170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs let-7c and let-7f, two members of the let-7 family, were involved in regulating osteoblast differentiation and have an important role in bone formation. Let-7e-5p, which also belonged to the let-7 family, presented in the differentiation of adipose-derived stem cells and mouse embryonic stem cells. However, the role of let-7e-5p in osteoblast differentiation was unclear. Thus, this study aimed to elucidate the function of let-7e-5p in osteoblast differentiation and its mechanism. Firstly, we found that the let-7e-5p mimic promoted osteoblast differentiation but not the proliferation of MC3T3-E1 cells by positively regulating the expression levels of osteogenic-associated genes (RUNX2, OCN, OPN, and OSX), the activity of ALP, and formation of mineralized nodules. Moreover, we ascertained that the let-7e-5p mimic downregulated the post-transcriptional expression of SOCS1 by specifically binding to the 3′ untranslated region of SOCS1 mRNA. Also, let-7e-5p-induced SOCS1 downregulation increased the protein levels of p-STAT5 and IGF-1, which were both modulated by SOCS1 molecules. Furthermore, let-7e-5p abrogated the inhibition of osteogenic differentiation mediated by SOCS1 overexpression. Therefore, these results suggested that let-7e-5p regulated the differentiation of MC3T3-E1 cells through the JAK2/STAT5 pathway to upregulate IGF-1 gene expression by inhibiting SOCS1. These findings may provide a new insight into the regulatory role of let-7e-5p in osteogenic differentiation and imply the existence of a novel mechanism underlying let-7e-5p-mediated osteogenic differentiation.
Collapse
Affiliation(s)
- Chunli Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Songcai Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Jiaxin Li
- College of Animal Science, Jilin University, Changchun, China
| | - Yunyun Cheng
- College of Public Health, Jilin University, Changchun, China
| | - Zhaoguo Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Tianqi Feng
- College of Animal Science, Jilin University, Changchun, China
| | - Guanhong Lu
- College of Animal Science, Jilin University, Changchun, China
| | - Siyao Wang
- College of Animal Science, Jilin University, Changchun, China
| | - Jie Song
- College of Animal Science, Jilin University, Changchun, China
| | - Peijun Xia
- College of Animal Science, Jilin University, Changchun, China
| | - Linlin Hao
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
13
|
Xu H, Ding C, Guo C, Xiang S, Wang Y, Luo B, Xiang H. Suppression of CRLF1 promotes the chondrogenic differentiation of bone marrow-derived mesenchymal stem and protects cartilage tissue from damage in osteoarthritis via activation of miR-320. Mol Med 2021; 27:116. [PMID: 34551709 PMCID: PMC8456664 DOI: 10.1186/s10020-021-00369-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/31/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent chronic joint disease, and is hard to be cured at present. Cytokine receptor-like factor 1 (CRLF1) has been identified as an upregulated gene in OA cartilage. However, the precise identities and functions of CRLF1 in OA progression have remained to be fully elucidated. METHODS We used a murine model of injury-induced OA (destabilization of medial meniscus, DMM) and BMSCs to investigate the specific biological functions and mechanisms of CRLF1. RESULTS We found that CRLF1 was significantly increased in the DMM surgery-induced OA model and was down-regulated during chondrogenic differentiation of BMSCs. Luciferase reporter assays showed that CRLF1 was a direct target of miR-320 in BMSCs. miR-320 can reverse the effect of CRLF1 on cell proliferation, apoptosis and chondrogenic differentiation of BMSCs. Furthermore, knockdown of CRLF1 or over-expression of miR-320 can inhibit the apoptosis of primary chondrocytes. CONCLUSION Suppression of CRLF1 promotes the chondrogenic differentiation of BMSCs and protects cartilage tissue from damage in osteoarthritis via activation of miR-320.
Collapse
Affiliation(s)
- Hao Xu
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Changrong Ding
- Department of ECG Diagnosis, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Cuicui Guo
- Department of Sports Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shuai Xiang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Yingzhen Wang
- Department of Joint Surgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266000, China.
| | - Hongfei Xiang
- Department of Orthopedics, School of Basic Medicine, Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
14
|
Niu S, Xiang F, Jia H. Downregulation of lncRNA XIST promotes proliferation and differentiation, limits apoptosis of osteoblasts through regulating miR-203-3p/ZFPM2 axis. Connect Tissue Res 2021; 62:381-392. [PMID: 32326773 DOI: 10.1080/03008207.2020.1752200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Bone fracture is a common medical condition. Evidence suggested that long noncoding RNAs (lncRNAs) could regulate the bio-function in osteoblast. In this study, we explored the role and mechanism of lncRNA X-inactive specific transcript (XIST) on the proliferation, apoptosis, and differentiation of osteoblasts using MC3T3-E1 cells. Methods: Expression of XIST, microRNA-203-3p (miR-203-3p), and zinc finger protein multitype 2 (ZFPM2) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis of MC3T3-E1 cells were measured using the Cell Counting Kit-8 (CCK-8) and the flow cytometry. Western blot was used to measure the expression of cell cycle-related proteins, apoptosis-related proteins, and ZFPM2. Levels of differentiation-related factors were measured by qRT-PCR, western blot, and alkaline phosphatase (ALP) kit. Target interaction between miR-203-3p and XIST or ZFPM2 was predicted through bioinformatics analysis and verified by dual-luciferase reporter, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. Results: The expression of XIST and ZFPM2 was increased while miR-203-3p was decreased in plasmas and MC3T3-E1 cells. Knockdown of XIST promoted the proliferation, differentiation, but limited apoptosis in MC3T3-E1 cells. . Mechanically, overexpression of XIST could reverse the bio-function of miR-203-3p transfection. Additionally, miR-203-3p inverted a series of bio-functional effects of ZFPM2. Furthermore, anti-miR-203-3p rescued si-XIST-induced downregulation of ZFPM2. Conclusion: Downregulation of lncRNA XIST promoted osteoblast proliferation and differentiation, but limited apoptosis by miR-203-3p/ZFPM2 axis.
Collapse
Affiliation(s)
- Shizhen Niu
- General Teaching and Research Office, Jining Medical University, Jining, Shandong, China
| | - Feng Xiang
- Department of Orthopaedics and Traumatology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| | - Huaihai Jia
- Department of Orthopaedics and Traumatology, Zaozhuang Hospital of Traditional Chinese Medicine, Zaozhuang, Shandong, China
| |
Collapse
|
15
|
Zhang Y, Zhuang Z, Wei Q, Li P, Li J, Fan Y, Zhang L, Hong Z, He W, Wang H, Liu Y, Li W. Inhibition of miR-93-5p promotes osteogenic differentiation in a rabbit model of trauma-induced osteonecrosis of the femoral head. FEBS Open Bio 2021. [PMID: 34092046 PMCID: PMC8329948 DOI: 10.1002/2211-5463.13218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 05/12/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023] Open
Abstract
Trauma‐induced osteonecrosis of the femoral head (TIONFH) is characterized by femoral head collapse accompanied by degenerative changes of the hip. We previously reported that miR‐93‐5p expression is abnormally high in patients with TIONFH, but the role of miR‐93‐5p in the TIONFH process remains unclear. Herein, we investigated the role of miR‐93‐5p in TIONFH in a rabbit model. Bone marrow mesenchymal stem cells (BMSCs) were used for both in vivo and in vitro experiments. A rabbit model of TIONFH was injected with BMSCs transfected with miR‐93‐5p inhibitor. In addition, both an miR‐93‐5p mimic and negative control were transfected into BMSCs. Expression of miR‐93‐5p was significantly increased in the model group compared with control samples. An miR‐93‐5p inhibitor induced the expression of bone morphogenetic protein 2 (BMP‐2) and alkaline phosphatase. Furthermore, expression of osteogenesis‐related markers (BMP‐2, secreted phosphoprotein 1, RUNX family transcription factor 2 and Osterix) was higher in the miR‐93‐5p inhibitor group, as revealed by quantitative PCR and western blotting. In addition, in vitro experimentation revealed that an miR‐93‐5p mimic decreased BMP‐2 and TNF receptor superfamily member 11b expression, but increased receptor activator of nuclear factor‐kappaB ligand expression. In summary, the miR‐93‐5p inhibitor could promote osteogenic differentiation by increasing BMP‐2 expression during the development of TIONFH. Thus, miR‐93‐5p may have potential as a therapeutic target for TIONF treatment.
Collapse
Affiliation(s)
- Ying Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), China.,Guangzhou University of Chinese Medicine, China
| | | | - Qiushi Wei
- Institute of Orthopaedics of Guangzhou University of Chinese Medicine, China.,The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Peifeng Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), China
| | - Jitian Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), China
| | - Yanan Fan
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), China
| | - Leilei Zhang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), China
| | - Zhinan Hong
- Institute of Orthopaedics of Guangzhou University of Chinese Medicine, China.,The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Wei He
- Institute of Orthopaedics of Guangzhou University of Chinese Medicine, China.,The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, China
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, China
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), China
| | - Wuyin Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital (Orthopedics Hospital of Henan Province), China
| |
Collapse
|
16
|
Yang M, Yan X, Yuan FZ, Ye J, Du MZ, Mao ZM, Xu BB, Chen YR, Song YF, Fan BS, Yu JK. MicroRNA-210-3p Promotes Chondrogenic Differentiation and Inhibits Adipogenic Differentiation Correlated with HIF-3 α Signalling in Bone Marrow Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6699910. [PMID: 33937412 PMCID: PMC8055413 DOI: 10.1155/2021/6699910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 01/21/2023]
Abstract
Cartilage injury of the knee joint is very common. Due to the limited self-healing ability of articular cartilage, osteoarthritis is very likely to occur if left untreated. Bone marrow mesenchymal stem cells (BMMSCs) are widely used in the study of cartilage injury due to their low immunity and good amplification ability, but they still have disadvantages, such as heterogeneous undifferentiated cells. MicroRNAs can regulate the chondrogenic differentiation ability of MSCs by inhibiting or promoting mRNA translation and degradation. In this research, we primarily investigated the effect of microRNA-210-3p (miR-210-3p) on chondrogenic and adipogenic differentiation of BMMSCs in vitro. Our results demonstrate that miR-210-3p promoted chondrogenic differentiation and inhibited adipogenic differentiation of rat BMMSCs, which was related to the HIF-3α signalling pathway. Additionally, miR-210-3p promotes mRNA and protein levels of the chondrogenic expression genes COLII and SOX9 and inhibits mRNA and protein levels of the adipogenic expression genes PPARγ and LPL. Thus, miR-210-3p combined with BMMSCs is a candidate for future clinical applications in cartilage regeneration and could represent a promising new therapeutic target for OA.
Collapse
Affiliation(s)
- Meng Yang
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin Yan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Fu-Zhen Yuan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Jing Ye
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Ming-Ze Du
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Zi-Mu Mao
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Bing-Bing Xu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - You-Rong Chen
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yi-Fan Song
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
| | - Bao-Shi Fan
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Jia-Kuo Yu
- Sports Medicine Department, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Institute of Sports Medicine of Peking University, Beijing, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Ataei A, Poorebrahim M, Rajabpour A, Rizvanov A, Shahriar Arab S. Topological Analysis of Regulatory Networks Reveals Functionally Key Genes and miRNAs Involved in the Differentiation of Mesenchymal Stem Cells. IRANIAN JOURNAL OF BIOTECHNOLOGY 2021; 19:e2565. [PMID: 34179189 PMCID: PMC8217530 DOI: 10.30498/ijb.2021.2565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background The details of molecular mechanisms underlying the differentiation of Mesenchymal Stem Cells (MSCs) into specific lineages are not well understood. Objectives We aimed to construct the interactome network and topology analysis of bone marrow mesenchymal stem cell of CAGE data. Applying the enrichment results, we wanted to introduce the common genes and hub-microRNA and hub-genes of these giant network. Materials and Methods In this study, we constructed gene regulatory networks for each non-mesenchymal cell lineage according to their gene expression profiles obtained from FANTOM5 database. The putative interactions of TF-gene and protein-protein were determined using TRED, STRING, HPRD and GeneMANIA servers. In parallel, a regulatory network including corresponding miRNAs and total differentially expressed genes (DEGs) was constructed for each cell lineage. Results The results indicated that analysis of networks' topology can significantly distinguish the hub regulatory genes and miRNAs involved in the differentiation of MSCs. The functional annotation of identified hub genes and miRNAs revealed that several signal transduction pathways i.e. AKT, WNT and TGFβ and cell proliferation related pathways play a pivotal role in the regulation of MSCs differentiation. We also classified cell lineages into two groups based on their predicted miRNA profiles. Conclusions In conclusion, we found a number of hub genes and miRNAs which seem to have key regulatory functions during differentiation of MSCs. Our results also introduce a number of new regulatory genes and miRNAs which can be considered as the new candidates for genetic manipulation of MSCs in vitro.
Collapse
Affiliation(s)
- Atousa Ataei
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Equal contribution
| | - Mansour Poorebrahim
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, University of Medical Sciences, Tehran, Iran.,Equal contribution
| | - Azam Rajabpour
- Cellular and Molecular Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
18
|
Pishavar E, Copus JS, Atala A, Lee SJ. Comparison Study of Stem Cell-Derived Extracellular Vesicles for Enhanced Osteogenic Differentiation. Tissue Eng Part A 2020; 27:1044-1054. [PMID: 33045930 DOI: 10.1089/ten.tea.2020.0194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cell-derived extracellular vesicles (EVs) have shown great promise in the field of regenerative medicine and tissue engineering. Recently, human bone marrow-derived mesenchymal stem cell (BMSC)-derived EVs have been considered for bone tissue engineering applications. In this study, we evaluated the osteogenic capability of placental stem cell (PSC)-derived EVs and compared them to the well-characterized BMSC-derived EVs. EVs were extracted from three designated time points (0, 7, and 21 days) after osteogenic differentiation. The results showed that the PSC-derived EVs had much higher protein and lipid concentrations than EVs derived from BMSCs. The extracted EVs were characterized by observing their morphology and size distribution before utilizing next-generation sequencing to determine their microRNA (miRNA) profiles. A total of 306 miRNAs within the EVs were identified, of which 64 were significantly expressed in PSC-derived EVs that related to osteogenic differentiation. In vitro osteogenic differentiation study indicated the late-stage (21-day extracted)-derived EVs higher osteogenic enhancing capability when compared with the early stage-derived EVs. We demonstrated that EVs derived from PSCs could be a new source of EVs for bone tissue engineering applications.
Collapse
Affiliation(s)
- Elham Pishavar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joshua S Copus
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
- School of Biomedical Engineering and Sciences, Wake Forest University-Virginia Tech, Winston-Salem, North Carolina, USA
| |
Collapse
|
19
|
de Barros e Lima Bueno R, Ponce KJ, Dias AP, Guadarrama Bello D, Brunski JB, Nanci A. Influence of Nanotopography on Early Bone Healing during Controlled Implant Loading. NANOMATERIALS 2020; 10:nano10112191. [PMID: 33153132 PMCID: PMC7693286 DOI: 10.3390/nano10112191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Nanoscale surface modifications influence peri-implant cell fate decisions and implant loading generates local tissue deformation, both of which will invariably impact bone healing. The objective of this study is to determine how loading affects healing around implants with nanotopography. Implants with a nanoporous surface were placed in over-sized osteotomies in rat tibiae and held stable by a system that permits controlled loading. Three regimens were applied: (a) no loading, (b) one daily loading session with a force of 1.5N, and (c) two such daily sessions. At 7 days post implantation, animals were sacrificed for histomorphometric and DNA microarray analyses. Implants subjected to no loading or only one daily loading session achieved high bone-implant contact (BIC), bone-implant distance (BID) and bone formation area near the implant (BFAt) values, while those subjected to two daily loading sessions showed less BFAt and BIC and more BID. Gene expression profiles differed between all groups mainly in unidentified genes, and no modulation of genes associated with inflammatory pathways was detected. These results indicate that implants with nanotopography can achieve a high level of bone formation even under micromotion and limit the inflammatory response to the implant surface.
Collapse
Affiliation(s)
- Renan de Barros e Lima Bueno
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC H3C3J7, Canada; (R.d.B.e.L.B.); (K.J.P.); (A.P.D.); (D.G.B.)
| | - Katia J. Ponce
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC H3C3J7, Canada; (R.d.B.e.L.B.); (K.J.P.); (A.P.D.); (D.G.B.)
| | - Ana Paula Dias
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC H3C3J7, Canada; (R.d.B.e.L.B.); (K.J.P.); (A.P.D.); (D.G.B.)
| | - Dainelys Guadarrama Bello
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC H3C3J7, Canada; (R.d.B.e.L.B.); (K.J.P.); (A.P.D.); (D.G.B.)
| | - John B. Brunski
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Antonio Nanci
- Laboratory for the Study of Calcified Tissues and Biomaterials, Department of Stomatology, Faculty of Dental Medicine, Université de Montréal, Montréal, QC H3C3J7, Canada; (R.d.B.e.L.B.); (K.J.P.); (A.P.D.); (D.G.B.)
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C3J7, Canada
- Correspondence: ; Tel.: +1514-343-5846
| |
Collapse
|
20
|
Chen N, Wu D, Li H, Liu Y, Yang H. MiR-17-3p inhibits osteoblast differentiation by downregulating Sox6 expression. FEBS Open Bio 2020; 10:2499-2506. [PMID: 32946669 PMCID: PMC7609786 DOI: 10.1002/2211-5463.12979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/15/2020] [Accepted: 09/10/2020] [Indexed: 11/18/2022] Open
Abstract
Osteoporosis and osteoarthritis are orthopedic disorders that affect millions of elderly people worldwide; stimulation of bone formation is a potential therapeutic strategy for the treatment of these conditions. As the only bone‐forming cells, osteoblasts play a key role in bone reconstruction. The microRNA miR‐17‐3p is downregulated during osteogenic differentiation of human bone marrow mesenchymal stem cells, but its precise role in this process is unknown. Here, we investigated the role of miR‐17‐3p in osteoblast differentiation. An in vitro model of osteogenesis was established by treating MC3T3‐E1 murine preosteoblast cells with bone morphogenetic protein 2 (BMP2). The expression of miR‐17‐3p in BMP2‐induced MC3T3‐E1 cells was detected by reverse transcription‐quantitative PCR, and its effects on cells transfected with miR‐17‐3p mimic or inhibitor were evaluated by Alizarin Red staining, alkaline phosphatase (ALP) activity assay, and by detection of osteoblast markers including the ALP, collagen type I α1 chain, and osteopontin genes. Bioinformatics analysis was carried out to identify putative target genes of miR‐17‐3p, and the luciferase reporter assay was used for functional validation. Rescue experiments were performed to determine whether SRY‐box transcription factor 6 (Sox6) plays a role in the regulation of osteoblast differentiation by miR‐17‐3p. We report that miR‐17‐3p was downregulated upon BMP2‐induced osteoblast differentiation in MC3T3‐E1 cells, and this was accompanied by decreased differentiation and mineralization, ALP activity, and expression of osteogenesis‐related genes. Sox6 was confirmed to be a target gene of miR‐17‐3p in osteoblasts, and the inhibitory effect of miR‐17‐3p on osteoblast differentiation was observed to occur via Sox6. These results suggest the existence of a novel mechanism underlying miRNA‐mediated regulation of osteogenesis, which has potential implications for the treatment of orthopedic disorders.
Collapse
Affiliation(s)
- Nan Chen
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Di Wu
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hua Li
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi Liu
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hao Yang
- Department of Orthopedics, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
21
|
miR-23a-3p regulated by LncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5. Cell Tissue Res 2020; 383:723-733. [PMID: 32960357 DOI: 10.1007/s00441-020-03289-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023]
Abstract
Cartilage generation and degradation are controlled by miRNAs. Our previous study showed miR-23a-3p was downregulated during chondrogenic differentiation in chondrogenic human adipose-derived mesenchymal stem cells (hADSCs). In the present study, we explored the function of miR-23a-3p in chondrogenesis differentiation. The role of miR-23a-3p in chondrogenic differentiation potential of hADSCs was assessed by Alcian blue staining, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. We show that miR-23a-3p suppressed the chondrogenic differentiation of hADSCs. LncRNA SNHG5 interacted with miR-23a-3p, and suppression or overexpression of SNHG5 correlates with inhibition and promotion of hADSC chondrogenic differentiation, respectively. We have determined that SNHG5 can sponge miR-23a-3p to regulate the expression of SOX6/SOX5, transcription factors that play essential roles in chondrocyte differentiation. Furthermore, the overexpression of SNHG5 activates the JNK/MAPK/ERK pathway. In conclusion, miR-23a-3p regulated by lncRNA SNHG5 suppresses the chondrogenic differentiation of human adipose-derived stem cells via targeting SOX6/SOX5.
Collapse
|
22
|
Abazari MF, Zare Karizi S, Kohandani M, Nasiri N, Nejati F, Saburi E, Nikpoor AR, Enderami SE, Soleimanifar F, Mansouri V. MicroRNA
‐2861 and nanofibrous scaffold synergistically promote human induced pluripotent stem cells osteogenic differentiation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mohammad Foad Abazari
- Research Center for Clinical VirologyTehran University of Medical Sciences Tehran Iran
| | - Shohreh Zare Karizi
- Department of BiologyVaramin Pishva Branch, Islamic Azad University Pishva, Varamin Iran
| | - Mina Kohandani
- Department of Biology, Faculty of Biological SciencesIslamic Azad University, East Tehran Branch Tehran Iran
| | - Navid Nasiri
- Department of Biology, Central Tehran BranchIslamic Azad University Tehran Iran
| | - Fatemeh Nejati
- Department of Biology, Central Tehran BranchIslamic Azad University Tehran Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of MedicineMashhad University of Medical Sciences Mashhad Iran
| | - Amin Reza Nikpoor
- Molecular Medicine Research CenterHormozgan Health Institute, Hormozgan University of Medical Sciences Bandar Abbas Iran
| | - Seyed Ehsan Enderami
- Diabetes Research Center, Department of Medical BiotechnologySchool of Advanced Technologies in Medicine, Mazandaran university of Medical Sciences Sari Iran
| | - Fatemeh Soleimanifar
- Department of Medical biotechnology, School of MedicineAlborz University of Medical Sciences Karaj Iran
| | - Vahid Mansouri
- Proteomics Research Center, Department of AnatomySchool of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
23
|
Papathanasiou I, Mourmoura E, Balis C, Tsezou A. Impact of miR-SNP rs2910164 on miR-146a expression in osteoarthritic chondrocytes. Adv Med Sci 2020; 65:78-85. [PMID: 31918067 DOI: 10.1016/j.advms.2019.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/04/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE MiR-146a acts as a negative inflammatory mediator in different diseases and has been implicated in osteoarthritis (OA) pathogenesis. In our study, we investigated the association between miR-SNP rs2910164 and OA susceptibility and its role on the expression of miR-146a, inflammatory and catabolic mediators in osteoarthritic chondrocytes. MATERIALS AND METHODS Genetic association analysis was performed in 1688 knee OA patients and healthy individuals of Greek origin. Genomic DNA was extracted from blood and genotyped for rs2910164 (G > C) using Restriction-Fragment Length Polymorphism (RFLP). Total RNA was extracted from chondrocytes of 18 OA patients and miR-146a, IL-1 Receptor-Associated Kinase 1 (IRAK-1), TNF Receptor-Associated Factor 6 (TRAF-6), A Disintegrin and Metalloproteinase with Thrombospondin Motifs 5 (ADAMTS-5), Matrix Metalloproteinase-13 (MMP-13), Interleukin-6 (IL-6), Interleukin-1 Beta (IL-1β) and Tumor Necrosis Factor-Alpha (TNF-α) expression was evaluated using quantitative Real-Time PCR (qRT-PCR). RESULTS OA patients carrying rs2910164-GC and CC genotypes did not have an increased risk for OA development compared to GG genotype carriers. MiR-146a expression in OA chondrocytes was significantly lower in patients with rs2910164-GC genotype than in the GG carriers. OA patients carrying the rs2910164-GC genotype in their chondrocytes exhibited increased IRAK-1, TRAF-6, MMP-13, IL-1β and IL-6 expression levels compared with rs2910164-GG carriers. CONCLUSION We demonstrate, for the first time, that miR-SNP rs2910164 in miR-146a gene is associated with reduced miR-146a and increased inflammatory and catabolic mediators' expression in OA chondrocytes. Our data imply that genetic variations in miRNAs linked to OA pathogenesis may regulate their expression levels, suggesting new therapeutic strategies for patients with cartilage diseases.
Collapse
|
24
|
Hu Z, Zhang L, Wang H, Wang Y, Tan Y, Dang L, Wang K, Sun Z, Li G, Cao X, Zhang S, Shi F, Zhang G. Targeted silencing of miRNA-132-3p expression rescues disuse osteopenia by promoting mesenchymal stem cell osteogenic differentiation and osteogenesis in mice. Stem Cell Res Ther 2020; 11:58. [PMID: 32054528 PMCID: PMC7020585 DOI: 10.1186/s13287-020-1581-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 01/03/2023] Open
Abstract
Background Skeletal unloading can induce severe disuse osteopenia that often occurs in spaceflight astronauts or in patients subjected to prolonged bed-rest or immobility. Previously, we revealed a mechano-sensitive factor, miRNA-132-3p, that is closely related to the osteoblast function. The aim of this study was to investigate whether miRNA-132-3p could be an effective target for treating disuse osteopenia. Methods The 2D-clinostat device and the hindlimb-unloaded (HU) model were used to copy the mechanical unloading condition at the cellular and animal levels, respectively. Mimics or inhibitors of miRNA-132-3p were used to interfere with the expression of miRNA-132-3p in bone marrow-derived mesenchymal stem cells (BMSCs) in vitro for analyzing the effects on osteogenic differentiation. The special in vivo antagonists of miRNA-132-3p was delivered to the bone formation regions of HU mice for treating disuse osteopenia by a bone-targeted (AspSerSer)6-cationic liposome system. The bone mass, microstructure, and strength of the hindlimb bone tissue were analyzed for evaluating the therapeutic effect in vivo. Results miRNA-132-3p expression was declined under normal conditions and increased under gravitational mechanical unloading conditions during osteogenic differentiation of BMSCs in vitro. The upregulation of miRNA-132-3p expression resulted in the inhibition of osteogenic differentiation, whereas the downregulation of miRNA-132-3p expression enhanced osteogenic differentiation. The inhibition of miRNA-132-3p expression was able to attenuate the negative effects of mechanical unloading on BMSC osteogenic differentiation. Most importantly, the targeted silencing of miRNA-132-3p expression in the bone tissues could effectively preserve bone mass, microstructure, and strength by promoting osteogenic differentiation and osteogenesis in HU mice. Conclusion The overexpression of miRNA-132-3p induced by mechanical unloading is disadvantageous for BMSC osteogenic differentiation and osteogenesis. Targeted silencing of miRNA-132-3p expression presents a potential therapeutic target for the prevention and treatment of disuse osteoporosis.
Collapse
Affiliation(s)
- Zebing Hu
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Lijun Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Han Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.,Department of Orthopedics, Affiliated Hospital of Air Force Aviation Medicine Research Institute, Air Force Medical University, Beijing, 100089, China
| | - Yixuan Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Lei Dang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ke Wang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Zhongyang Sun
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.,Department of Orthopedics, No. 454 Hospital of PLA, Nanjing, 210002, China
| | - Gaozhi Li
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Xinsheng Cao
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Shu Zhang
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Fei Shi
- The Key Laboratory of Aerospace Medicine, Ministry of Education, Air Force Medical University, Xi'an, 710032, Shaanxi, China.
| | - Ge Zhang
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
25
|
Tangredi BP, Lawler DF. Osteoarthritis from evolutionary and mechanistic perspectives. Anat Rec (Hoboken) 2019; 303:2967-2976. [PMID: 31854144 DOI: 10.1002/ar.24339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Developmental osteogenesis and the pathologies associated with tissues that normally are mineralized are active areas of research. All of the basic cell types of skeletal tissue evolved in early aquatic vertebrates. Their characteristics, transcription factors, and signaling pathways have been conserved, even as they adapted to the challenge imposed by gravity in the transition to terrestrial existence. The response to excess mechanical stress (among other factors) can be expressed in the pathologic phenotype described as osteoarthritis (OA). OA is mediated by epigenetic modification of the same conserved developmental gene networks, rather than by gene mutations or new chemical signaling pathways. Thus, these responses have their evolutionary roots in morphogenesis. Epigenetic channeling and heterochrony, orchestrated primarily by microRNAs, maintain the sequence of these responses, while allowing variation in their timing that depends at least partly on the life history of the individual.
Collapse
Affiliation(s)
- Basil P Tangredi
- Vermont Institute of Natural Sciences, Quechee, Vermont
- Sustainable Agriculture Program, Green Mountain College, Poultney, Vermont
| | - Dennis F Lawler
- Center for American Archaeology, Kampsville, Illinois
- Illinois State Museum, Springfield, Illinois
- Pacific Marine Mammal Center, Laguna Beach, California
| |
Collapse
|
26
|
Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C, Chiono V. MicroRNA delivery through nanoparticles. J Control Release 2019; 313:80-95. [PMID: 31622695 PMCID: PMC6900258 DOI: 10.1016/j.jconrel.2019.10.007] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore(3); Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3)
| | - Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan(3)
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3); Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
27
|
Levingstone TJ, Herbaj S, Dunne NJ. Calcium Phosphate Nanoparticles for Therapeutic Applications in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1570. [PMID: 31698700 PMCID: PMC6915504 DOI: 10.3390/nano9111570] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
Abstract
Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients' quality of life and the costs on the health systems. This impended need has led the research community's efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors' loading and release, and their application in bone tissue engineering.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
28
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
29
|
Yuan X, Guo Y, Chen D, Luo Y, Chen D, Miao J, Chen Y. Long non-coding RNA MALAT1 functions as miR-1 sponge to regulate Connexin 43-mediated ossification of the posterior longitudinal ligament. Bone 2019; 127:305-314. [PMID: 31280017 DOI: 10.1016/j.bone.2019.06.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/03/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is the major cause for several deteriorate bone and joint diseases. Its development is a highly organized dynamic process as modulated by various physiological and pathophysiological factors. Both long non-coding RNAs (lncRNAs) and small non-coding RNAs (miRNAs) have been postulated to involve into almost all the biological conditions. Here, we applied high through-put transcriptome screening to unveil lncRNAs highly regulated under OPLL condition. siRNA assay in combination with western blot and quantitative PCR deciphered the lncRNA and miRNA functions in OPLL and their underlying mechanism. Here we identified an lncRNA, named Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT1) engaged into the development of OPLL by indirectly targeting Connexin 43 (Cx43) gene. As previously reported, Cx43 is one of the main proteins contributing to OPLL partially through enhancing inflammatory signaling. On top of that, we provided another regulatory layer that MALAT1 served as the upstream effector governing the transcription of Cx43 gene. Perturbation of MALAT1 significantly inhibited Cx43 expression, inflammation, and osteogenesis. Mechanistically, in silico analysis and experimental validation both confirmed that microRNA-1 (miR-1) was the mediator connecting MALAT1-Cx43 axis: overexpression of miR-1 diminished Cx43 expression and OPLL process; meanwhile, MALAT1 acted as miR-1 sponge to inhibit its suppressive transcription effect on downstream ossification related genes. Knock-down of MALAT1 released sequestered miR-1, which repressed Cx43 expression and associated OPLL. Likewise, induced OPLL caused by overexpression of MALAT1 can be ameliorated by enhanced miR-1 function, knock-down of Cx43 or inhibition of inflammation. More importantly, further validation using patient ligament samples from non-OPLL and OPLL individuals identified MALAT1-miR-1-Cx43 regulatory axis. Collectively, we found a novel mechanism through lncRNA-miRNA interaction that provides more insights into understanding the development of OPLL.
Collapse
Affiliation(s)
- Xiaoqiu Yuan
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yongfei Guo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Dechun Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yibin Luo
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Deyu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Jinhao Miao
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China
| | - Yu Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, China.
| |
Collapse
|
30
|
Chen X, Zhang R, Zhang Q, Xu Z, Xu F, Li D, Li Y. Chondrocyte sheet in vivo cartilage regeneration technique using miR-193b-3p to target MMP16. Aging (Albany NY) 2019; 11:7070-7082. [PMID: 31492826 PMCID: PMC6756905 DOI: 10.18632/aging.102237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/22/2019] [Indexed: 04/12/2023]
Abstract
Stable cartilage regeneration has always been a challenge in both tissue engineering research and clinical practice. This study explored the feasibility of using a chondrocyte sheet technique stimulated by microRNAs to regenerate cartilage. We tested the involvement of hsa-miR-193b-3p in the microtia patient remnant auricular chondrocyte extracellular matrix (ECM). We observed in vitro chondrocyte proliferation, ECM synthesis, as well as the increase in the expression of type II collagen (COL2A1) and decrease in the expression of matrix metalloproteinase 16 (MMP16) of the chondrocyte sheets. COL2A1 deposition and MMP16 degradation of regenerative cartilage tissue were examined in vivo. A dual-luciferase reporter showed that the MMP16 gene was the direct target of miR-193b-3p. These results suggested that miR-193b-3p promotes chondrocyte sheet ECM synthesis by inhibiting MMP16. Since the evidence suggests that MMP16 is a critical regulator of chondrocyte ECM, this finding points the way towards a method that both strengthens the ECM and inhibits MMPs.
Collapse
Affiliation(s)
- Xia Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ruhong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qun Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhicheng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Feng Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Datao Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiyuan Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
31
|
Hosseinpour S, He Y, Nanda A, Ye Q. MicroRNAs Involved in the Regulation of Angiogenesis in Bone Regeneration. Calcif Tissue Int 2019; 105:223-238. [PMID: 31175386 DOI: 10.1007/s00223-019-00571-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/01/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) as a newly founded and thriving non-coding endogenous class of molecules which regulate many cellular pathways after transcription have been extensively investigated in regenerative medicine. In this systematic review, we sought to analyze miRNAs-mediated therapeutic approaches for influencing angiogenesis in bone tissue/bone regeneration. An electronic search in MEDLINE, Scopus, EMBASE, Cochrane library, web of science, and google scholar with no time limit were done on English publications. All types of original articles which a miRNA for angiogenesis in bone regeneration were included in our review. In the process of reviewing, we used PRISMA guideline and, SYRCLE's and science in risk assessment and policy tools for analyzing risk of bias. Among 751 initial retrieved records, 16 studies met the inclusion criteria and were fully assessed in this review. 275 miRNAs, one miRNA 195~497 cluster, and one Cysteine-rich 61 short hairpin RNA were differentially expressed during bone regeneration with 24 predicted targets reported in these studies. Among these miRNAs, miRNA-7b, -9, -21, -26a, -27a, -210, -378, -195~497 cluster, -378 and -675 positively promoted both angiogenesis and osteogenesis, whereas miRNA-10a, -222 and -494 inhibited both processes. The most common target was vasculoendothelial growth factor-signaling pathway. Recent evidence has demonstrated that miRNAs actively participated in angio-osteogenic coupling that can improve their therapeutic potentials for the treatment of bone-related diseases and bone regeneration. However, there is still need for further research to unravel the exact mechanisms.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Yan He
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Ashwin Nanda
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia
| | - Qingsong Ye
- School of Dentistry, The University of Queensland, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
32
|
Narayanan A, Srinaath N, Rohini M, Selvamurugan N. Regulation of Runx2 by MicroRNAs in osteoblast differentiation. Life Sci 2019; 232:116676. [PMID: 31340165 DOI: 10.1016/j.lfs.2019.116676] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022]
Abstract
Bone is one of the most dynamic organs in the body that continuously undergoes remodeling through bone formation and resorption. A cascade of molecules and pathways results in the osteoblast differentiation that is attributed to osteogenesis, or bone formation. The process of osteogenesis is achieved through participation of the Wnt pathway, FGFs, BMPs/TGF-β, and transcription factors such as Runx2 and Osx. The activity and function of the master transcription factor, Runx2, is of utmost significance as it can induce the function of osteoblast differentiation markers. A number of microRNAs [miRNAs] have been recently identified in the regulation of Runx2 expression/activity, thus affecting the process of osteogenesis. miRNAs that target Runx2 corepressors favor osteogenesis, while miRNAs that target Runx2 coactivators inhibit osteogenesis. In this review, we focus on the regulation of Runx2 by miRNAs in osteoblast differentiation and their potential for treating bone and bone-related diseases.
Collapse
Affiliation(s)
- Akshaya Narayanan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
33
|
Prakash R, John AA, Singh D. miR‐409‐5p negatively regulates Wnt/Beta catenin signaling pathway by targeting Lrp‐8. J Cell Physiol 2019; 234:23507-23517. [DOI: 10.1002/jcp.28919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Ravi Prakash
- Division of Endocrinology, Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR‐Central Drug Research Institute Lucknow India
| | - Aijaz A John
- Division of Endocrinology, Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR‐Central Drug Research Institute Lucknow India
| | - Divya Singh
- Division of Endocrinology, Centre for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI) CSIR‐Central Drug Research Institute Lucknow India
| |
Collapse
|
34
|
Zhao C, Miao Y, Cao Z, Shi J, Li J, Kang F, Dou C, Xie Z, Xiang Q, Dong S. MicroRNA-29b regulates hypertrophy of murine mesenchymal stem cells induced toward chondrogenesis. J Cell Biochem 2019; 120:8742-8753. [PMID: 30652339 DOI: 10.1002/jcb.28161] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/08/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Chondrocyte hypertrophy, a terminal stage of chondrocyte differentiation, is essential to the endochondral bone formation and is one of the major pathological factors in osteoarthritis. This study investigated the role of microRNA-29b (miR-29b), which is involved in chondrogenesis, in the regulation of hypertrophy in chondrocytes. METHODS miR-29b expression was assessed during murine mesenchymal stem cells (mMSCs) chondrogenesis. To detect whether miR-29b affects chondrocyte hypertrophy, the mMSCs induced toward chondrogenesis were transfected with miR-29b or its antisense inhibitor (antagomiR-29b). Finally, the differential effects of antagomiR-29b on chondrocytes at different differentiation stages were evaluated by loss-of-function experiments. RESULTS miR-29b expression was low-level during the early chondrogenic differentiation, however, it was changed to high level during hypertrophy. Subsequently, the gain-of-function and loss-of-function experiments had confirmed that miR-29b promoted hypertrophy in mMSC-derived chondrocytes. In addition, we confirmed that on day 7, when cells were treated with antagomiR-29b, was the optimal intervention time for preventing hypertrophic phenotype of mMSCs in vitro. CONCLUSION miR-29b regulated chondrogenesis homeostasis and enhance hypertrophic phenotype. These data suggest that miR-29b is a key regulator of the chondrocyte phenotype derived from mMSCs and it might be a potential target for articular cartilage repair.
Collapse
Affiliation(s)
- Chunrong Zhao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Ying Miao
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhen Cao
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Jian Shi
- Department of Orthopedics, Kunming General Hospital of Chengdu Military Region, Kunming, China
| | - Jianmei Li
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Fei Kang
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China
| | - Zhao Xie
- Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University, Chongqing, China.,State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, China
| |
Collapse
|
35
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|
36
|
miR-134 inhibits chondrogenic differentiation of bone marrow mesenchymal stem cells by targetting SMAD6. Biosci Rep 2019; 39:BSR20180921. [PMID: 30135141 PMCID: PMC6356013 DOI: 10.1042/bsr20180921] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023] Open
Abstract
Various miRNAs have been reported to regulate the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs); however, whether miR-134 plays a role in this biological process remains undetermined. In the present study, we first evaluated the chondrogenic differentiation of BMSCs by Alcian blue staining, and examined the miR-134 expression by quantitative real-time PCR (qRT-PCR) during this process. And miR-134 inhibitor was used to investigate the functions of miR-134 in chondrogenic differentiation of BMSCs by Alcian blue staining, qRT-PCR, and Western blot. Subsequently, the correlation between miR-134 and SMAD6 was assessed via bioinformatics analysis and dual-luciferase reporter assay. Finally, the role of SMAD6 in chondrogenic differentiation of BMSCs was also determined through Alcian blue staining, qRT-PCR, and Western blot. As results showed that miR-134 expression was significantly down-regulated during chondrogenic differentiation, and inhibition of miR-134 obviously promoted chondrogenic differentiation. Dual-luciferase reporter assay indicated that miR-134 could directly target the 3′-UTRs of SMAD6, inhibit miR-134 expression in BMSCs, and up-regulate SMAD6 expression. Moreover, we found that overexpression of SMAD6 significantly promoted chondrogenic differentiation, and that SMAD6-induced promotion of chondrogenic differentiation could be reversed by miR-134 mimics. In conclusion, our findings suggest that miR-134 may act as a negative regulator during chondrogenic differentiation of BMSCs by interacting with SMAD6.
Collapse
|
37
|
MicroRNA-218 promotes early chondrogenesis of mesenchymal stem cells and inhibits later chondrocyte maturation. BMC Biotechnol 2019; 19:6. [PMID: 30646874 PMCID: PMC6334453 DOI: 10.1186/s12896-018-0496-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) reportedly participate in the mesenchymal stem cell (MSC) chondrogenic differentiation regulation. We objected to examine how miR-218 regulate chondrogenic differentiation of synovium-derived MSCs (SDSCs) and the maturation of RCJ3.1C5.1 chondrocytes. SDSCs were sourced from the knee joint synovium of New Zealand white rabbits, and their multilineage differentiation potentials were examined. The level of miR-218 was measured during SDSC chondrogenic differentiation, together with determination of SDSCs chondrogenic markers and RCJ3.1C5.1 chondrocytes maturation markers expression level after transfection of miR-218 mimics/inhibitor. Results miR-218 expression was notably upregulated in early chondrogenesis but mostly ceased during the maturation phases of chondrogenic differentiation in SDSCs. The transfection of miR-218 mimics notably enhanced SDSCs chondrocytes differentiation, as evidenced by augmented expressions of chondrogenic markers (SOX9, COL2A1, ACAN, GAG, and COMP) in terms of mRNA and protein level, and the inhibition of miR-218 yielded opposite resutls. Additionally, miR-218 overexpression substantially suppressed the expression of osteogenic markers (ALP, BSP, COL1A1, OCN and OPN) during the early stage of chondrogenesis while increasing that of chondrogenic markers (SOX9, COL2A1, ACAN, GAG and COMP). However, miR-218 mimics notably suppressed maturation markers (CMP, COL10A1, MMP-13 and VEGF) expression in RCJ3.1C5.18 chondrocytes, and the miR-218 inhibitor promoted the expression of these maturation markers. We proposed miR-218 plays a regulatory role on 15-hydroxyprostaglandin dehydrogenase (HPGD), which plays a key role in chondrogenic differentiation, and this finding indicates that miR-218 directly regulates HPGD expression in SDSCs. Conclusion Our study suggests that miR-218 contributes to early chondrogenesis while suppressing later chondrocyte maturation. The miR-218-HPGD pathway offers us a perspective into how SDSCs differentiate into chondrogenic cells.
Collapse
|
38
|
Zheng X, Dai J, Zhang H, Ge Z. MicroRNA-221 promotes cell proliferation, migration, and differentiation by regulation of ZFPM2 in osteoblasts. ACTA ACUST UNITED AC 2018; 51:e7574. [PMID: 30365725 PMCID: PMC6207289 DOI: 10.1590/1414-431x20187574] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Abstract
Bone fracture is a common medical condition, which may occur due to traumatic injury or disease-related conditions. Evidence suggests that microRNAs (miRNAs) can regulate osteoblast differentiation and function. In this study, we explored the effects and mechanism of miR-221 on the growth and migration of osteoblasts using MC3T3-E1 cells. The expression levels of miR-221 in the different groups were measured by qRT-PCR. Then, miR-221 mimic and inhibitor were transfected into MC3T3-E1 cells, and cell viability and migration were measured using the CCK-8 assay and the Transwell migration assay. Additionally, the expression levels of differentiation-related factors (Runx2 and Ocn) and ZFPM2 were measured by qRT-PCR. Western blot was used to measure the expression of cell cycle-related proteins, epithelial-mesenchymal transition (EMT)-related proteins, ZFPM2, and Wnt/Notch, and Smad signaling pathway proteins. miR-221 was significantly up-regulated in the patients with lumbar compression fracture (LCM) and trochanteric fracture (TF). miR-221 promoted ALP, Runx2, and OPN expressions in MC3T3-E1 cells. miR-221 overexpression significantly increased cell proliferation, migration, differentiation, and matrix mineralization, whereas suppression of miR-221 reversed these effects. Additionally, the results displayed that ZFPM2 was a direct target gene of miR-221, and overexpression of ZFPM2 reversed the promoting effects of miR-221 overexpression on osteoblasts. Mechanistic study revealed that overexpression of miR-221 inactivated the Wnt/Notch and Smad signaling pathways by regulating ZFPM2 expression. We drew the conclusions that miR-221 overexpression promoted osteoblast proliferation, migration, and differentiation by regulation of ZFPM2 expression and deactivating the Wnt/Notch and Smad signaling pathways.
Collapse
Affiliation(s)
- Xingguo Zheng
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| | - Jinhua Dai
- Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Haijun Zhang
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| | - Zhibin Ge
- Department of Orthopaedics, Ningbo No. 2 Hospital, Ningbo, China
| |
Collapse
|
39
|
A novel miR17/protein tyrosine phosphatase-oc/EphA4 regulatory axis of osteoclast activity. Arch Biochem Biophys 2018; 650:30-38. [PMID: 29763590 PMCID: PMC5985224 DOI: 10.1016/j.abb.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 12/17/2022]
Abstract
Information about the molecular mechanisms leading to the activation of the osteoclast is relatively limited. While there is compelling evidence that the signaling mechanisms of Src and integrin β3 are essential for osteoclast activation, the regulation of these two signaling mechanisms is not fully understood. In this review, evidence supporting a novel regulatory axis of osteoclast activation that plays an upstream regulatory role in both the Src and integrin β3 signaling during osteoclast activation is discussed. This regulatory axis contains three unique components: a structurally unique transmembrane protein-tyrosine phosphatase, PTP-oc, EphA4, and miR17. In the first component, PTP-oc activates the Src signaling through dephosphorylation of the inhibitory tyr-527 of Src. This in turn activates the integrin β3 signaling, enhances the JNK2/NFκB signaling, promotes the ITAM/Syk signaling, and suppresses the ITIM/Shp1 signaling; the consequence of which is activation of the osteoclast. In the second component, EphA4 inhibits osteoclast activity by suppressing the integrin β3 signaling. PTP-oc relieves the suppressive actions of EphA4 by directly dephosphorylating EphA4. In the third component, PTP-oc expression is negatively regulated by miR17. Accordingly, suppression of miR17 during osteoclast activation upregulates the PTP-oc signaling and suppresses the EphA4 signaling, resulting in the activation of the osteoclast. This regulatory axis is unique, in that each of the three components acts to exert suppressive action on their respective immediate downstream inhibitory step. Because the final downstream event is the EphA4-mediated inhibition of osteoclast activation, the overall effect of this mechanism is the stimulation of osteoclast activity.
Collapse
|
40
|
Huang Z, Cheng C, Wang J, Liu X, Wei H, Han Y, Yang S, Wang X. Icariin regulates the osteoblast differentiation and cell proliferation of MC3T3-E1 cells through microRNA-153 by targeting Runt-related transcription factor 2. Exp Ther Med 2018; 15:5159-5166. [PMID: 29904399 PMCID: PMC5996701 DOI: 10.3892/etm.2018.6127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/03/2018] [Indexed: 12/02/2022] Open
Abstract
Osteoporosis has become one of the most serious public health problems. Icariin, miR-153 and Runt-related transcription factor 2 (Runx2) have been demonstrated to regulate cell proliferation and differentiation in multiple cells. The aim of the present experiments was to investigate the potential mechanism underlying osteoblast differentiation and cell proliferation of MC3T3-E1 cells treated with icariin. Cell Counting kit-8, alkaline phosphatase (ALP) activity and alizarin red S assays, as well as reverse transcription-quantitative polymerase chain reaction and western blot analysis, were performed to examine whether icariin promoted osteoblast differentiation and cell proliferation in MC3T3-E1 cells. Subsequently, miR-153 target and pathway prediction, and functional analysis were assessed. The results demonstrated that icariin promoted proliferation, mineral content and ALP activity in MC3T3-E1 cells. In addition, miR-153 and Runx2 expression levels were increased following treatment with icariin. Luciferase assay revealed that miR-153 significantly upregulate the luciferase activity of wild-type (Wt) Runx2 3′-untranslated region. Furthermore, the group treated with a combination of miR-153 mimics and icariin exhibited a significantly higher expression of Runx2 in comparison with the miR-153 mimic-treated alone group. Finally, icariin reversed the potential effect of miR-153 inhibitor in MC3T3-E1 cells. In conclusion, icariin exerted a strong osteoblast differentiation effect in MC3T3-E1 cells through the miR-153/Runx2 pathway. The current study provided evidence suggesting that icariin should be considered as an effective candidate for the management of osteoporosis.
Collapse
Affiliation(s)
- Zengfa Huang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| | - Cheng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jing Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xianzhe Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Wei
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yu Han
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiang Wang
- Department of Radiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, P.R. China
| |
Collapse
|
41
|
Zhang W, Wu Y, Shiozaki Y, Sugimoto Y, Takigawa T, Tanaka M, Matsukawa A, Ozaki T. miRNA-133a-5p Inhibits the Expression of Osteoblast Differentiation-Associated Markers by Targeting the 3' UTR of RUNX2. DNA Cell Biol 2018; 37:199-209. [PMID: 29359964 DOI: 10.1089/dna.2017.3936] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have recognized the involvement of microRNAs (miRNAs) in the development of osteoporosis, which regulate the balance between osteogenesis and osteoclasis. In this study, we investigated the regulation by miRNA-133a-5p on the osteoblast differentiation-associated markers in the mouse osteoblast-like MC3T3-E1 cells by RUNX2. First, we manipulated the miRNA-133a level in the MC3T3-E1 cells with 20 or 40 nM miR-133a-5p mimics, miR-133a-5p inhibitor, or scramble miRNA. Then, we quantified with real-time polymerase chain reaction (qRT-PCR) the expression of Collagen I, osteocalcin (OCN), and osteopontin (OPN) in the miR-133a-5p-manipulated MC3T3-E1 cells. And the confocal microscopy was also utilized to confirm the regulation by miR-133a-5p on the expression of the three molecules. We also investigated the extracellular matrix (ECM) mineralization and the alkaline phosphatase (ALP) activity in the miR-133a-5p-manipulated MC3T3-E1 cells. In addition, we explored the possible targeting by miR-133a-5p on RUNX2, which was a well-recognized promoter to osteoblast differentiation, with luciferase reporter, qRT-PCR, and Western blotting assay. Results demonstrated that the miRNA-133a-5p mimics markedly reduced, whereas the miRNA-133a-5p inhibitor significantly promoted the expression of Collagen I, OCN, and OPN, the ECM mineralization, and the ALP activity in MC3T3-E1 cells. The alignment analysis demonstrated a high homology between miRNA-133a-5p and the 3' UTR of RUNX2. Moreover, the luciferase reporter assay demonstrated that miRNA-133a-5p targeted the 3' UTR of RUNX2, and inhibited the expression of RUNX2 in both mRNA and protein levels. In conclusion, we identified the inhibition by miRNA-133a-5p to the expression of osteoblast differentiation markers, to the ECM mineralization, and to the ALP activity in MC3T3-E1 cells, by targeting the 3' UTR of RUNX2. Our study suggests that miRNA-133a-5p might be an important target to inhibit osteoblast differentiation in osteoporosis.
Collapse
Affiliation(s)
- Wei Zhang
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan .,2 Department of Orthopaedic Surgery, Bayannaoer City Hospital , Inner Mongolia, China
| | - Yonggang Wu
- 2 Department of Orthopaedic Surgery, Bayannaoer City Hospital , Inner Mongolia, China
| | - Yasuyuki Shiozaki
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihisa Sugimoto
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoyuki Takigawa
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masato Tanaka
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- 3 Department of Pathology & Experimental Medicine, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshifumi Ozaki
- 1 Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine , Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
42
|
Yu C, Wang Y. MicroRNA-19a promotes cell viability and migration of chondrocytes via up-regulating SOX9 through NF-κB pathway. Biomed Pharmacother 2018; 98:746-753. [PMID: 29306212 DOI: 10.1016/j.biopha.2017.11.132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 11/10/2017] [Accepted: 11/27/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), as a degenerative disease, is a major problem in ageing populations. To better understand the underlying mechanisms in the pathogenesis of OA, this study was undertaken to investigate the role of microRNA (miR)-19a in chondrocytes. METHODS Expression of the members of miR-17-92 cluster in synovium from OA patients and non-OA patients were measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). miR-19a was abnormal expressed in human chondrocyte line (CHON-001 and T-C/28 cells) and primary human chondrocytes by transient transfection. Cell viability, migration and apoptosis were determined by CCK-8 assay, wound healing assay, and flow cytometry, respectively. Expression of apoptosis related factors was measured by western blot. Transcription factor SOX9 expression and activity of NF-κB pathway were also assessed by western blot. RESULTS Levels of miR-19a and other five members of miR-17-92 cluster were down-regulated in OA patients' synovium compare with non-OA. miR-19a overexpression promoted cell viability and migration of chondrocytes, while miR-19a suppression promoted cell apoptosis, and inhibited cell viability and migration. miR-19a direct up-regulated expression of SOX9, and thus affecting cell viability and migration. miR-19a promoted activation of NF-κB signaling pathway to up-regulate SOX9 expression. CONCLUSION miR-19a was down-regulated in synovium form OA patients. miR-19a could promote cell viability and migration of chondrocyte via positively regulating SOX9 expression through NF-κB signaling pathway. This study might provide the novel strategy for clinical treatment of OA caused by chondrocyte function degradation.
Collapse
Affiliation(s)
- Chuandong Yu
- Department of Orthopedics, Heze Municipal Hospital, Heze 274031, Shandong, China
| | - Yongkun Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun 130033, Jilin, China.
| |
Collapse
|
43
|
Li QS, Meng FY, Zhao YH, Jin CL, Tian J, Yi XJ. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017; 6:464-471. [PMID: 28784704 PMCID: PMC5579316 DOI: 10.1302/2046-3758.68.bjr-2016-0208.r2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 03/23/2017] [Indexed: 12/18/2022] Open
Abstract
Objectives This study aimed to investigate the functional effects of microRNA (miR)-214-5p on osteoblastic cells, which might provide a potential role of miR-214-5p in bone fracture healing. Methods Blood samples were obtained from patients with hand fracture or intra-articular calcaneal fracture and from healthy controls (HCs). Expression of miR-214-5p was monitored by qRT-PCR at day 7, 14 and 21 post-surgery. Mouse osteoblastic MC3T3-E1 cells were transfected with antisense oligonucleotides (ASO)-miR-214-5p, collagen type IV alpha 1 (COL4A1) vector or their controls; thereafter, cell viability, apoptotic rate, and the expression of collagen type I alpha 1 (COL1A1), type II collagen (COL-II), and type X collagen (COL-X) were determined. Luciferase reporter assay, qRT-PCR, and Western blot were performed to ascertain whether COL4A1 was a target of miR-214-5p. Results Plasma miR-214-5p was highly expressed in patients with bone fracture compared with HCs after fracture (p < 0.05 or p < 0.01). Inhibition of miR-214-5p increased the viability of MC3T3-E1 cells and the expressions of COL1A1 and COL-X, but decreased the apoptotic rate and COL-II expression (p < 0.05 or p < 0.01). COL4A1 was a target of miR-214-5p, and was negatively regulated by miR-214-5p (p < 0.05 or p < 0.01). Overexpression of COL4A1 showed a similar impact on cell viability, apoptotic rate, and COL1A1, COL-II, and COL-X expressions inhibiting miR-214-5p (p < 0.01). Conclusion Inhibition of miR-214-5p promotes cell survival and extracellular matrix (ECM) formation of osteoblastic MC3T3-E1 cells by targeting COL4A1. Cite this article: Q. S. Li, F. Y. Meng, Y. H. Zhao, C. L. Jin, J. Tian, X. J. Yi. Inhibition of microRNA-214-5p promotes cell survival and extracellular matrix formation by targeting collagen type IV alpha 1 in osteoblastic MC3T3-E1 cells. Bone Joint Res 2017;6:464–471. DOI: 10.1302/2046-3758.68.BJR-2016-0208.R2
Collapse
Affiliation(s)
- Q S Li
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - F Y Meng
- Department of Traumatology, Lanling People's Hospital, Linyi, China
| | - Y H Zhao
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - C L Jin
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, Linyi, China
| | - J Tian
- Operating Room, Linyi Cancer Hospital, Linyi, China
| | - X J Yi
- Department of Traumatology, Eastern Medical District of Linyi People's Hospital, No.233, Fenghuang Street, Linyi 276000, China
| |
Collapse
|
44
|
Epigenetic aspects of rheumatoid arthritis: contribution of non-coding RNAs. Semin Arthritis Rheum 2017; 46:724-731. [DOI: 10.1016/j.semarthrit.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/20/2016] [Accepted: 01/13/2017] [Indexed: 01/07/2023]
|
45
|
Elsafadi M, Manikandan M, Alajez NM, Hamam R, Dawud RA, Aldahmash A, Iqbal Z, Alfayez M, Kassem M, Mahmood A. MicroRNA-4739 regulates osteogenic and adipocytic differentiation of immortalized human bone marrow stromal cells via targeting LRP3. Stem Cell Res 2017; 20:94-104. [PMID: 28340487 DOI: 10.1016/j.scr.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 02/25/2017] [Accepted: 03/01/2017] [Indexed: 12/16/2022] Open
Abstract
Understanding the regulatory networks underlying lineage differentiation and fate determination of human bone marrow stromal cells (hBMSC) is a prerequisite for their therapeutic use. The goal of the current study was to unravel the novel role of the low-density lipoprotein receptor-related protein 3 (LRP3) in regulating the osteogenic and adipogenic differentiation of immortalized hBMSCs. Gene expression profiling revealed significantly higher LRP3 levels in the highly osteogenic hBMSC clone imCL1 than in the less osteogenic clone imCL2, as well as a significant upregulation of LRP3 during the osteogenic induction of the imCL1 clone. Data from functional and gene expression assays demonstrated the role of LRP3 as a molecular switch promoting hBMSC lineage differentiation into osteoblasts and inhibiting differentiation into adipocytes. Interestingly, microRNA (miRNA) expression profiling identified miR-4739 as the most under-represented miRNA (-36.11 fold) in imCL1 compared to imCL2. The TargetScan prediction algorithm, combined with functional and biochemical assays, identified LRP3 mRNA as a novel target of miR-4739, with a single potential binding site for miR-4739 located in the LRP3 3' UTR. Regulation of LRP3 expression by miR-4739 was subsequently confirmed by qRT-PCR, western blotting, and luciferase assays. Over-expression of miR-4739 mimicked the effects of LRP3 knockdown on promoting adipogenic and suppressing osteogenic differentiation of hBMSCs. Hence, we report for the first time a novel biological role for the LRP3/hsa-miR-4739 axis in balancing osteogenic and adipocytic differentiation of hBMSCs. Our data support the potential utilization of miRNA-based therapies in regenerative medicine.
Collapse
Affiliation(s)
- Mona Elsafadi
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia; KMEB, Department of Endocrinology, University Hospital of Odense, University of Southern Denmark, Winslowsparken 25.1, DK-5000 Odense C, Denmark.
| | - Muthurangan Manikandan
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia
| | - Nehad M Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia.
| | - Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia
| | - Raed Abu Dawud
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh 12713, Saudi Arabia
| | - Abdullah Aldahmash
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia; Prince Naif Health Research Center, King Saud University, Riyadh 11461, Saudi Arabia.
| | - Zafar Iqbal
- Department of Basic Sciences, College of applied medical sciences, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), National Guard Health Affairs, Al Ahsa, Saudi Arabia
| | - Musaad Alfayez
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia.
| | - Moustapha Kassem
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia; KMEB, Department of Endocrinology, University Hospital of Odense, University of Southern Denmark, Winslowsparken 25.1, DK-5000 Odense C, Denmark.
| | - Amer Mahmood
- Stem Cell Unit, Department of Anatomy, College of Medicine,King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
46
|
Ge FX, Li H, Yin X. Upregulation of microRNA-125b-5p is involved in the pathogenesis of osteoarthritis by downregulating SYVN1. Oncol Rep 2017; 37:2490-2496. [PMID: 28260078 DOI: 10.3892/or.2017.5475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/31/2016] [Indexed: 11/05/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative disease characterized by deterioration of articular cartilage. The aim of this study was to identify and characterize the expression of microRNA-125b-5p (miR-125b-5p) in normal and OA synovial cells, and to determine its role in OA pathogenesis. First, the levels of miR-125b-5p and synoviolin 1 (SYVN1) were detected among normal, mild OA and severe OA groups with the use of quantitative PCR. Computational analysis was used to search for the target of the miR-125b-5p, and luciferase reporter assay system was used to validate SYVN1 as the target gene of miR-125b-5p. Then the SYVN1 expression level of cells transfected with miR-125b-5p mimics or inhibitors was estimated using quantitative PCR and western blotting. Finally, MTT assay was employed to estimate the effect of miR-125b-5p on apoptosis. We enrolled 36 participants consisting of 12 normal control, 12 mild OA and 12 severe OA, furthermore, we performed quantitative PCR to detect the levels of miR-125b-5p and SYVN1 among those groups, and found that miR-125b-5p was expressed at highest level in severe OA compared with normal control and mild OA groups, while SYVN1 was expressed at the lowest level in severe OA. Additionally, we identified that SYVN1 is a target of miR-125b-5p by using computational analysis and luciferase assay. Transfection with miR-125b-5p mimic or inhibitor was employed to investigate the effect of miR-125b-5p on expression of SYVN1 in synovial cells, and synovial cell viability and apoptosis, and the results showed that miR-125b-5p mimics significant decreased the expression of SYVN1, a substantially promoted apoptosis of synovial cells, while miR-125b-5p inhibitors remarkably increased the level of SYVN1, and substantially suppressed apoptosis of synovial cells. The data suggested that miR-125b-5p promoted apoptosis of synovial cells through targeting SYVN1 gene, with important implication for validating miR-125b-5p as a potential target for OA therapy.
Collapse
Affiliation(s)
- Feng-Xiao Ge
- Department of Orthopedics, The People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Haitao Li
- Department of Orthopedics, The People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| | - Xin Yin
- Department of Orthopedics, The People's Hospital of Linyi, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
47
|
Strassburg S, Nabar N, Lampert F, Goerke SM, Pfeifer D, Finkenzeller G, Stark GB, Simunovic F. Calmodulin Regulated Spectrin Associated Protein 1 mRNA is Directly Regulated by miR-126 in Primary Human Osteoblasts. J Cell Biochem 2017; 118:1756-1763. [DOI: 10.1002/jcb.25838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Sandra Strassburg
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Nikita Nabar
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Florian Lampert
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Sebastian M. Goerke
- Department of Radiology; Ortenau Klinikum Offenburg-Gengenbach; Offenburg Germany
| | - Dietmar Pfeifer
- Department of Hematology and Oncology; Freiburg University Medical Center; Freiburg 79106 Germany
| | - Günter Finkenzeller
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Gerhard B. Stark
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| | - Filip Simunovic
- Departments of Plastic and Hand Surgery; University of Freiburg Medical Center; Freiburg 79106 Germany
| |
Collapse
|
48
|
Wang GD, Zhao XW, Zhang YG, Kong Y, Niu SS, Ma LF, Zhang YM. Effects of miR-145 on the inhibition of chondrocyte proliferation and fibrosis by targeting TNFRSF11B in human osteoarthritis. Mol Med Rep 2016; 15:75-80. [PMID: 27922673 DOI: 10.3892/mmr.2016.5981] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/03/2016] [Indexed: 01/17/2023] Open
Abstract
Osteoarthritis (OA) is a common cause of functional deterioration in older adults, and altered chondrogenesis is the most common pathophysiological process involved in the development of OA. MicroRNA‑145 (miR‑145) has been shown to regulate chondrocyte homeostasis. However, the function of miR‑145 in OA remains to be elucidated. In the present study, the expression levels of miR‑145 were examined in cartilage specimens from 25 patients with knee OA using reverse transcription‑quantitative polymerase chain reaction analysis. The effects of miR‑145 on the proliferation and fibrosis of the C‑20/A4 and CH8 cell lines were also investigated using 3-(4,5-dimethylth-iazol-2-yl)-2,5-diphenyltetrazolium bromide and western blot assays in vitro. The results revealed that the expression of miR-145 was decreased in the OA cartilage tissues, compared with normal cartilage tissues. The overexpression of miR‑145 by transfection of cells with miR‑145 mimics significantly inhibited C‑20/A4 and CH8 cell proliferation and fibrosis. Furthermore, tumor necrosis factor receptor superfamily, member 11b (TNFRSF11B) was identified as a direct target of miR‑145 in chondrocytes, which was confirmed using a dual‑luciferase reporter assay. The expression level of TNFRSF11B was markedly upregulated in the patients with OA, and the ectopic expression of miR‑145 was capable of suppressing the expression of TNFRSF11B. In addition, the knock down of TNFRSF11B using specific small interfering RNA also inhibited the proliferation and fibrosis of C‑20/A4 and CH8 cells in vitro. These data provide the first evidence, to the best of our knowledge, to suggest the critical function of miR‑145 in regulating the expression of TNFRSF11B, which may have important implications on the regulation of chondrocyte proliferation and fibrosis in OA.
Collapse
Affiliation(s)
- Guo-Dong Wang
- Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Xiao-Wei Zhao
- Department of Orthopaedics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yu-Ge Zhang
- Department of Orthopaedics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Ying Kong
- Department of Orthopaedics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Shuai-Shuai Niu
- Department of Orthopaedics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Long-Fei Ma
- Department of Orthopaedics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| | - Yuan-Min Zhang
- Department of Orthopaedics, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272029, P.R. China
| |
Collapse
|
49
|
Malcolm DW, Sorrells JE, Van Twisk D, Thakar J, Benoit DSW. Evaluating side effects of nanoparticle-mediated siRNA delivery to mesenchymal stem cells using next generation sequencing and enrichment analysis. Bioeng Transl Med 2016; 1:193-206. [PMID: 27981244 PMCID: PMC5125403 DOI: 10.1002/btm2.10035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022] Open
Abstract
RNA interference has immense potential to modulate cell functions. However, effective delivery of small interfering RNA (siRNA) while avoiding deleterious side effects has proven challenging. This study investigates both intended and unintended effects of diblock copolymer nanoparticle (NP) delivery of siRNA delivery to human mesenchymal stem cells (hMSC). Specifically, siRNA delivery was investigated at a range of NP‐siRNA:hMSC ratios with a focus on the effects of NP‐siRNA treatment on hMSC functions. Additionally, next generation RNA sequencing (RNAseq) was used with enrichment analysis to observe side effects in hMSC gene expression. Results show NP‐siRNA delivery is negatively correlated with hMSC density. However, higher NP‐siRNA:hMSC ratios increased cytotoxicity and decreased metabolic activity. hMSC proliferation was largely unaffected by NP‐siRNA treatment, except for a threefold reduction in hMSCs seeded at 4,000 cells/cm2. Flow cytometry reveals that apoptosis is a function of NP‐siRNA treatment time and seeding density; ∼14% of the treated hMSCs seeded at 8,000 cells/cm2 were annexin V+‐siRNA+ 24 hr after treatment, while 11% of the treated population was annexin V+‐siRNA−. RNAseq shows that NP‐siRNA treatment results in transcriptomic changes in hMSCs, while pathway analysis shows upregulation of apoptosis signaling and downregulation of metabolism, cell cycle, and DNA replication pathways, as corroborated by apoptosis, metabolism, and proliferation assays. Additionally, multiple innate immune signaling pathways such as toll‐like receptor, RIG‐I‐like receptor, and nuclear factor‐κB signaling pathways are upregulated. Furthermore, and consistent with traditional siRNA immune activation, cytokine–cytokine receptor signaling was also upregulated. Overall, this study provides insight into NP‐siRNA:hMSC ratios that are favorable for siRNA delivery. Moreover, NP‐siRNA delivery results in side effects across the hMSC transcriptome that suggest activation of the innate immunity that could alter MSC functions associated with their therapeutic potential.
Collapse
Affiliation(s)
- Dominic W Malcolm
- Dept. of Biomedical Engineering University of Rochester Rochester NY 14627; Center for Musculoskeletal Research, University of Rochester Rochester NY14642
| | - Janet E Sorrells
- Dept. of Biomedical Engineering University of Rochester Rochester NY 14627
| | - Daniel Van Twisk
- Dept. of Microbiology and Immunology University of Rochester Rochester NY 14627
| | - Juilee Thakar
- Dept. of Microbiology and Immunology University of Rochester Rochester NY 14627; Dept. of Biostatistics and Computational Biology University of Rochester Rochester NY 14642
| | - Danielle S W Benoit
- Dept. of Biomedical Engineering University of Rochester Rochester NY 14627; Center for Musculoskeletal Research, University of Rochester Rochester NY 14642; Dept. of Chemical Engineering University of Rochester Rochester NY 14627
| |
Collapse
|
50
|
Bioinformatics and Microarray Analysis of miRNAs in Aged Female Mice Model Implied New Molecular Mechanisms for Impaired Fracture Healing. Int J Mol Sci 2016; 17:ijms17081260. [PMID: 27527150 PMCID: PMC5000658 DOI: 10.3390/ijms17081260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/24/2016] [Accepted: 07/29/2016] [Indexed: 12/31/2022] Open
Abstract
Impaired fracture healing in aged females is still a challenge in clinics. MicroRNAs (miRNAs) play important roles in fracture healing. This study aims to identify the miRNAs that potentially contribute to the impaired fracture healing in aged females. Transverse femoral shaft fractures were created in adult and aged female mice. At post-fracture 0-, 2- and 4-week, the fracture sites were scanned by micro computed tomography to confirm that the fracture healing was impaired in aged female mice and the fracture calluses were collected for miRNA microarray analysis. A total of 53 significantly differentially expressed miRNAs and 5438 miRNA-target gene interactions involved in bone fracture healing were identified. A novel scoring system was designed to analyze the miRNA contribution to impaired fracture healing (RCIFH). Using this method, 11 novel miRNAs were identified to impair fracture healing at 2- or 4-week post-fracture. Thereafter, function analysis of target genes was performed for miRNAs with high RCIFH values. The results showed that high RCIFH miRNAs in aged female mice might impair fracture healing not only by down-regulating angiogenesis-, chondrogenesis-, and osteogenesis-related pathways, but also by up-regulating osteoclastogenesis-related pathway, which implied the essential roles of these high RCIFH miRNAs in impaired fracture healing in aged females, and might promote the discovery of novel therapeutic strategies.
Collapse
|