1
|
Wang Y, Ren C, Bi F, Li P, Tian K. The hydroxyapatite modified 3D printed poly L-lactic acid porous screw in reconstruction of anterior cruciate ligament of rabbit knee joint: a histological and biomechanical study. BMC Musculoskelet Disord 2023; 24:151. [PMID: 36849968 PMCID: PMC9969685 DOI: 10.1186/s12891-023-06245-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND 3D printing technology has become a research hotspot in the field of scientific research because of its personalized customization, maneuverability and the ability to achieve multiple material fabrications. The focus of this study is to use 3D printing technology to customize personalized poly L-lactic acid (PLLA) porous screws in orthopedic plants and to explore its effect on tendon-bone healing after anterior cruciate ligament (ACL) reconstruction. METHODS Preparation of PLLA porous screws with good orthogonal pore structure by 3D printer. The hydroxyapatite (HA) was adsorbed on porous screws by electrostatic layer-by-layer self-assembly (ELSA) technology, and PLLA-HA porous screws were prepared. The surface and spatial morphology of the modified screws were observed by scanning electron microscopy (SEM). The porosity of porous screw was measured by liquid displacement method. Thirty New Zealand male white rabbits were divided into two groups according to simple randomization. Autologous tendon was used for right ACL reconstruction, and porous screws were inserted into the femoral tunnel to fix the transplanted tendon. PLLA group was fixed with porous screws, PLLA-HA group was fixed with HA modified porous screws. At 6 weeks and 12 weeks after surgery, 5 animals in each group were sacrificed randomly for histological examination. The remaining 5 animals in each group underwent Micro-CT and biomechanical tests. RESULTS The pores of PLLA porous screws prepared by 3D printer were uniformly distributed and connected with each other, which meet the experimental requirements. HA was evenly distributed in the porous screw by ELSA technique. Histology showed that compared with PLLA group, mature bone trabeculae were integrated with grafted tendons in PLLA-HA group. Micro-CT showed that the bone formation index of PLLA-HA group was better than that of PLLA group. The new bone was uniformly distributed in the bone tunnel along the screw channel. Biomechanical experiments showed that the failure load and stiffness of PLLA-HA group were significantly higher than those of PLLA group. CONCLUSIONS The 3D printed PLLA porous screw modified by HA can not only fix the grafted tendons, but also increase the inductivity of bone, promote bone growth in the bone tunnel and promote bone integration at the tendon-bone interface. The PLLA-HA porous screw is likely to be used in clinic in the future.
Collapse
Affiliation(s)
- Yafei Wang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, China
| | - Chengzhen Ren
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, China
| | - Fanggang Bi
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, China
| | - Pengju Li
- Department of Orthopedic Surgery, the Honghui Hospital of Xi'an, No. 76 Nanguo road, Nan Xiaomen, Xi'an, 710054, China
| | - Ke Tian
- Department of Orthopedic Surgery, the First Affiliated Hospital of Zhengzhou University, NO.1 Jianshe East Road, Zhengzhou, China.
| |
Collapse
|
2
|
Wei B, Ji M, Lin Y, Geng R, Wang Q, Lu J. Investigation of the medium-term effect of osteoprotegerin/bone morphogenetic protein 2 combining with collagen sponges on tendon-bone healing in a rabbit. J Orthop Surg (Hong Kong) 2023; 31:10225536231163467. [PMID: 36893748 DOI: 10.1177/10225536231163467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Osteoprotegerin (OPG) and bone morphogenetic protein-2 (BMP-2) could be administered sequentially to promote tendon-bone healing. There remain several unresolved issues in our previously published study: a) the release kinetics of OPG/BMP-2 from the OPG/BMP-2/collagen sponge (CS) combination in vitro remained unclear; b) the medium-term effect of the OPG/BMP-2/CS combination was not analyzed. Hence, we design this study to address the issues mentioned above. METHODS 30 rabbits undergoing anterior cruciate ligament reconstruction (ACLR) with an Achilles tendon autograft randomly received one of the 3 delivery at the femoral and tibial tunnels: OPG/BMP-2, OPG/BMP-2/CS combination, and nothing (blank control). At 8 and 24 weeks post-surgery, the biomechanical tests and histologic analysis were used to evaluate the tendon-bone healing. RESULTS In mechanical tests, the OPG/BMP-2/CS group showed a higher final failure load and stiffness than the other groups at 8 and 24 weeks. Additionally, the maximum stretching distance showed a decreasing trend. The mechanical failure pattern of samples shifted from a tunnel pull-away to a graft midsubstance rupture after OPG/BMP-2/CS-treated. From histological analysis, the OPG/BMP-2/CS treatment increased the amount of collagen fibers (collagen I and II) and promoted fibrocartilage attachment. CONCLUSION CS as a carrier promotes the medium-term effect of OPG and BMP-2 on tendon-bone healing at the tendon-bone interface in a rabbit ACLR model. OPG, BMP-2 and CS were already applied in several clinical practice, but a further study of clinic use of OPG/BMP-2/CS is still needed.
Collapse
Affiliation(s)
- Bing Wei
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Mingliang Ji
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Yucheng Lin
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Rui Geng
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| | - Qing Wang
- Department of Orthopaedic Surgery, The First People's Hospital of Yongkang Affiliated to Hangzhou Medical College, Jinhua, China
| | - Jun Lu
- School of Medicine, 66334Southeast University, Nanjing, China.,Department of Orthopaedic Surgery/Joint and Sports Medicine Center, Zhongda Hospital, School of Medicine, 162752Southeast University, Nanjing, China
| |
Collapse
|
3
|
Lalehzarian SP, Agarwalla A, Liu JN. Management of proximal biceps tendon pathology. World J Orthop 2022; 13:36-57. [PMID: 35096535 PMCID: PMC8771414 DOI: 10.5312/wjo.v13.i1.36] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/10/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
The long head of the biceps tendon is widely recognized as an important pain generator, especially in anterior shoulder pain and dysfunction with athletes and working individuals. The purpose of this review is to provide a current understanding of the long head of the biceps tendon anatomy and its surrounding structures, function, and relevant clinical information such as evaluation, treatment options, and complications in hopes of helping orthopaedic surgeons counsel their patients. An understanding of the long head of the biceps tendon anatomy and its surrounding structures is helpful to determine normal function as well as pathologic injuries that stem proximally. The biceps-labral complex has been identified and broken down into different regions that can further enhance a physician's knowledge of common anterior shoulder pain etiologies. Although various physical examination maneuvers exist meant to localize the anterior shoulder pain, the lack of specificity requires orthopaedic surgeons to rely on patient history, advanced imaging, and diagnostic injections in order to determine the patient's next steps. Nonsurgical treatment options such as anti-inflammatory medications, physical therapy, and ultrasound-guided corticosteroid injections should be utilized before entertaining surgical treatment options. If surgery is needed, the three options include biceps tenotomy, biceps tenodesis, or superior labrum anterior to posterior repair. Specifically for biceps tenodesis, recent studies have analyzed open vs arthroscopic techniques, the ideal location of tenodesis with intra-articular, suprapectoral, subpectoral, extra-articular top of groove, and extra-articular bottom of groove approaches, and the best method of fixation using interference screws, suture anchors, or cortical buttons. Orthopaedic surgeons should be aware of the complications of each procedure and respond accordingly for each patient. Once treated, patients often have good to excellent clinical outcomes and low rates of complications.
Collapse
Affiliation(s)
- Simon P Lalehzarian
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States
| | - Avinesh Agarwalla
- Department of Orthopedic Surgery, Westchester Medical Center, Valhalla, NY 10595, United States
| | - Joseph N Liu
- USC Epstein Family Center for Sports Medicine, Keck Medicine of USC, Los Angeles, CA 90033, United States
| |
Collapse
|
4
|
Rodríguez-Merchán EC. Anterior Cruciate Ligament Reconstruction: Is Biological Augmentation Beneficial? Int J Mol Sci 2021; 22:12566. [PMID: 34830448 PMCID: PMC8625610 DOI: 10.3390/ijms222212566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/28/2022] Open
Abstract
Surgical reconstruction in anterior cruciate ligament (ACL) ruptures has proven to be a highly effective technique that usually provides satisfactory results. However, despite the majority of patients recovering their function after this procedure, ACL reconstruction (ACLR) is still imperfect. To improve these results, various biological augmentation (BA) techniques have been employed mostly in animal models. They include: (1) growth factors (bone morphogenetic protein, epidermal growth factor, granulocyte colony-stimulating factor, basic fibroblast growth factor, transforming growth factor-β, hepatocyte growth factor, vascular endothelial growth factor, and platelet concentrates such as platelet-rich plasma, fibrin clot, and autologous conditioned serum), (2) mesenchymal stem cells, (3) autologous tissue, (4) various pharmaceuticals (matrix metalloproteinase-inhibitor alpha-2-macroglobulin bisphosphonates), (5) biophysical/environmental methods (hyperbaric oxygen, low-intensity pulsed ultrasound, extracorporeal shockwave therapy), (6) biomaterials (fixation methods, biological coatings, biosynthetic bone substitutes, osteoconductive materials), and (7) gene therapy. All of them have shown good results in experimental studies; however, the clinical studies on BA published so far are highly heterogeneous and have a low degree of evidence. The most widely used technique to date is platelet-rich plasma. My position is that orthopedic surgeons must be very cautious when considering using PRP or other BA methods in ACLR.
Collapse
Affiliation(s)
- Emerito Carlos Rodríguez-Merchán
- Department of Orthopedic Surgery, La Paz University Hospital—IdiPaz, 28046 Madrid, Spain;
- Osteoarticular Surgery Research, Hospital La Paz Institute for Health Research—IdiPAZ (La Paz University Hospital—Autonomous University of Madrid), 28046 Madrid, Spain
| |
Collapse
|
5
|
Tie K, Cai J, Qin J, Xiao H, Shangguan Y, Wang H, Chen L. Nanog/NFATc1/Osterix signaling pathway-mediated promotion of bone formation at the tendon-bone interface after ACL reconstruction with De-BMSCs transplantation. Stem Cell Res Ther 2021; 12:576. [PMID: 34775995 PMCID: PMC8591902 DOI: 10.1186/s13287-021-02643-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Bone formation plays an important role in early tendon–bone healing after anterior cruciate ligament reconstruction (ACLR). Dedifferentiated osteogenic bone marrow mesenchymal stem cells (De-BMSCs) have enhanced osteogenic potential. This study aimed to investigate the effect of De-BMSCs transplantation on the promotion of bone formation at the tendon–bone interface after ACLR and to further explore the molecular mechanism of the enhanced osteogenic potential of De-BMSCs. Methods BMSCs from the femurs and tibias of New Zealand white rabbits were subjected to osteogenic induction and then cultured in medium without osteogenic factors; the obtained cell population was termed De-BMSCs. De-BMSCs were induced to undergo osteo-, chondro- and adipo-differentiation in vitro to examine the characteristics of primitive stem cells. An ACLR model with a semitendinosus tendon was established in rabbits, and the animals were divided into a control group, BMSCs group, and De-BMSCs group. At 12 weeks after surgery, the rabbits in each group were sacrificed to evaluate tendon–bone healing by histologic staining, micro-computed tomography (micro-CT) examination, and biomechanical testing. During osteogenic differentiation of De-BMSCs, an siRNA targeting nuclear factor of activated T-cells 1 (NFATc1) was used to verify the molecular mechanism of the enhanced osteogenic potential of De-BMSCs. Results De-BMSCs exhibited some properties similar to BMSCs, including multiple differentiation potential and cell surface markers. Bone formation at the tendon–bone interface in the De-BMSCs group was significantly increased, and biomechanical strength was significantly improved. During the osteogenic differentiation of De-BMSCs, the expression of Nanog and NFATc1 was synergistically increased, which promoted the interaction of NFATc1 and Osterix, resulting in increased expression of osteoblast marker genes such as COL1A, OCN, and OPN. Conclusions De-BMSCs transplantation could promote bone formation at the tendon–bone interface after ACLR and improve the biomechanical strength of the reconstruction. The Nanog/NFATc1/Osterix signaling pathway mediated the enhanced osteogenic differentiation efficiency of De-BMSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02643-9.
Collapse
Affiliation(s)
- Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinghang Cai
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yangfan Shangguan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
6
|
He S, Qin T. [Research progress of interfacial tissue engineering in rotator cuff repair]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:1341-1351. [PMID: 34651491 DOI: 10.7507/1002-1892.202104064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To summarize the research progress of interfacial tissue engineering in rotator cuff repair. Methods The recent literature at home and abroad concerning interfacial tissue engineering in rotator cuff repair was analysed and summarized. Results Interfacial tissue engineering is to reconstruct complex and hierarchical interfacial tissues through a variety of methods to repair or regenerate damaged joints of different tissues. Interfacial tissue engineering in rotator cuff repair mainly includes seed cells, growth factors, biomaterials, oxygen concentration, and mechanical stimulation. Conclusion The best strategy for rotator cuff healing and regeneration requires not only the use of biomaterials with gradient changes, but also the combination of seed cells, growth factors, and specific culture conditions (such as oxygen concentration and mechanical stimulation). However, the clinical transformation of the relevant treatment is still a very slow process.
Collapse
Affiliation(s)
- Shukun He
- Laboratory of Stem Cells and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Tingwu Qin
- Laboratory of Stem Cells and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
7
|
Moon SW, Park S, Oh M, Wang JH. Outcomes of human umbilical cord blood-derived mesenchymal stem cells in enhancing tendon-graft healing in anterior cruciate ligament reconstruction: an exploratory study. Knee Surg Relat Res 2021; 33:32. [PMID: 34530924 PMCID: PMC8447562 DOI: 10.1186/s43019-021-00104-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/03/2021] [Indexed: 11/30/2022] Open
Abstract
Background The study investigated whether allogeneic human umbilical cord blood-derived MSCs (hUCB-MSCs) could be safely used without treatment-related adverse events, reducing tunnel enlargement, and improve clinical results in human anterior cruciate ligament (ACL) reconstruction. Methods Thirty patients were enrolled consecutively. They were divided into three groups by randomization. In the negative control group, ACL reconstruction surgery without additional treatment was performed. In the experimental group, a hUCB-MSC and hyaluronic acid mixture was applied to the tendon-bone interface of the femoral tunnels during ACL reconstruction surgery. In the positive control group, only hyaluronic acid was applied. Finally, 27 patients were analyzed after the exclusion of three patients. The incidence of treatment-related adverse events, clinical outcomes, including second-look arthroscopic findings, and the amount of tunnel enlargement, were evaluated. Results There were no treatment-related adverse events in the treatment groups. Tunnel enlargement in the experimental group (579.74 ± 389.85 mm3) was not significantly different from those in the negative (641.97 ± 455.84 mm3) and positive control (421.96 ± 274.83 mm3) groups (p = 0.6468). There were no significant differences between the groups in clinical outcomes such as KT-2000 measurement (p = 0.793), pivot shift test (p = 0.9245), International Knee Documentation Committee subjective score (p = 0.9195), Tegner activity level (p = 0.9927), and second-look arthroscopic findings (synovial coverage of the graft, p = 0.7984; condition of the graft, p = 0.8402). Conclusions Allogeneic hUCB-MSCs were used safely for ACL reconstruction without treatment-related adverse event in a 2-year follow-up. However, our study did not suggest any evidence to show clinical advantage such as the prevention of tunnel enlargement postoperatively and a decrease in knee laxity or improvement of clinical outcomes. Trial registration CRIS, Registration Number: KCT0000917. Registered on 12 November 2013; https://cris.nih.go.kr/cris/index.jsp
Collapse
Affiliation(s)
- Sang Won Moon
- Department of Orthopaedic Surgery, Inje University Haeundae Paik Hospital, Busan, Korea
| | - Sinhyung Park
- Department of Orthopaedic Surgery, Soonchunhyang University Hospital Bucheon, Gyeonggi-do, Korea
| | - Minkyung Oh
- Clinical Trial Center, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Joon Ho Wang
- Department of Orthopaedic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea. .,Department of Health Sciences and Technology and Department of Medical Device Management and Research, SAIHST, Sungkyunkwan University, Seoul, 06351, Korea.
| |
Collapse
|
8
|
Application of Stem Cell Therapy for ACL Graft Regeneration. Stem Cells Int 2021; 2021:6641818. [PMID: 34381504 PMCID: PMC8352687 DOI: 10.1155/2021/6641818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/19/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Graft regeneration after anterior cruciate ligament (ACL) reconstruction surgery is a complex three-stage process, which usually takes a long duration and often results in fibrous scar tissue formation that exerts a detrimental impact on the patients' prognosis. Hence, as a regeneration technique, stem cell transplantation has attracted increasing attention. Several different stem cell types have been utilized in animal experiments, and almost all of these have shown good capacity in improving tendon-bone regeneration. Various differentiation inducers have been widely applied together with stem cells to enhance specific lineage differentiation, such as recombinant gene transfection, growth factors, and biomaterials. Among the various different types of stem cells, bone marrow-derived mesenchymal stem cells (BMSCs) have been investigated the most, while ligament stem progenitor cells (LDSCs) have demonstrated the best potential in generating tendon/ligament lineage cells. In the clinic, 4 relevant completed trials have been reported, but only one trial with BMSCs showed improved outcomes, while 5 relevant trials are still in progress. This review describes the process of ACL graft regeneration after implantation and summarizes the current application of stem cells from bench to bedside, as well as discusses future perspectives in this field.
Collapse
|
9
|
Xu Y, Zhang WX, Wang LN, Ming YQ, Li YL, Ni GX. Stem cell therapies in tendon-bone healing. World J Stem Cells 2021; 13:753-775. [PMID: 34367476 PMCID: PMC8316867 DOI: 10.4252/wjsc.v13.i7.753] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/08/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.
Collapse
Affiliation(s)
- Yue Xu
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Wan-Xia Zhang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Li-Na Wang
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yue-Qing Ming
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Yu-Lin Li
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Guo-Xin Ni
- School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.
| |
Collapse
|
10
|
Wang W, Qin S, He P, Mao W, Chen L, Hua X, Zhang J, Xiong X, Liu Z, Wang P, Meng Q, Dong F, Li A, Chen H, Xu J. Type II Collagen Sponges Facilitate Tendon Stem/Progenitor Cells to Adopt More Chondrogenic Phenotypes and Promote the Regeneration of Fibrocartilage-Like Tissues in a Rabbit Partial Patellectomy Model. Front Cell Dev Biol 2021; 9:682719. [PMID: 34336835 PMCID: PMC8322758 DOI: 10.3389/fcell.2021.682719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Objective Fibrocartilage transition zone (FC) is difficult to regenerate after surgical re-attachment of tendon to bone. Here, we investigated whether type II collagen-sponges (CII-sponges) facilitated tendon stem/progenitor cells (TSPCs) to adopt chondrogenic phenotypes and further observed if this material could increase the FC areas in bone-tendon junction (BTJ) injury model. Methods CII-sponges were made as we previously described. The appearance and pore structure of CII-sponges were photographed by camera and microscopies. The viability, proliferation, and differentiation of TSPCs were examined by LIVE/DEAD assay, alamarBlue, and PKH67 in vitro tracking. Subsequently, TSPCs were seeded in CII-sponges, Matrigel or monolayer, and induced under chondrogenic medium for 7 or 14 days before being harvested for qPCR or being transplanted into nude mice to examine the chondrogenesis of TSPCs. Lastly, partial patellectomy (PP) was applied to establish the BTJ injury model. CII-sponges were interposed between the patellar fragment and tendon, and histological examination was used to assess the FC regeneration at BTJ after surgery at 8 weeks. Results CII-sponges were like sponges with interconnected pores. TSPCs could adhere, proliferate, and differentiate in this CII-sponge up to 14 days at least. Both qPCR and immunostaining data showed that compared with TSPCs cultured in monolayer or Matrigel, cells in CII-sponges group adopted more chondrogenic phenotypes with an overall increase of chondrocyte-related genes and proteins. Furthermore, in PP injured model, much more new formed cartilage-like tissues could be observed in CII-sponges group, evidenced by a large amount of positive proteoglycan expression and typical oval or round chondrocytes in this area. Conclusion Our study showed that CII-sponges facilitated the TSPCs to differentiate toward chondrocytes and increased the area of FCs, which suggests that CII-sponges are meaningful for the reconstruction of FC at bone tendon junction. However, the link between the two phenomena requires further research and validation.
Collapse
Affiliation(s)
- Wen Wang
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Shengnan Qin
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Peiliang He
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Wei Mao
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Liang Chen
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Xing Hua
- Department of Pathology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Jinli Zhang
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Xifeng Xiong
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Zhihe Liu
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Pengzhen Wang
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Qingqi Meng
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Fei Dong
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Aiguo Li
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China.,Department of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Honghui Chen
- Department of Orthopedics, Guangzhou Institute of Traumatic Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
11
|
Chona D, Eriksson K, Young SW, Denti M, Sancheti PK, Safran M, Sherman S. Return to sport following anterior cruciate ligament reconstruction: the argument for a multimodal approach to optimise decision-making: current concepts. J ISAKOS 2021; 6:344-348. [PMID: 34088854 DOI: 10.1136/jisakos-2020-000597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/03/2022]
Abstract
Existing literature is varied in the methods used to make this determination in the treatment of athletes who have undergone recent anterior cruciate ligament (ACL) reconstruction. Some authors report using primarily time-based criteria, while others advocate for physical measures and kinematic testing to inform decision-making. The goal of this paper is to elucidate the most current medical evidence regarding identification of the earliest point at which a patient may safely return to sport. The present review therefore seeks to examine the evidence from a critical perspective-breaking down the biology of graft maturation, effect of graft choice, potential for image-guided monitoring of progression and results associated with time-based versus functional criteria-based return to play-to justify a multifactorial approach to effectively advance athletes to return to sport. The findings of the present study reaffirm that time is a prerequisite for the biological progression that must occur for a reconstructed ligament to withstand loads demanded by athletes during sport. Modifications of surgical techniques and graft selection may positively impact the rate of graft maturation, and evidence suggests that imaging studies may offer informative data to enhance monitoring of this process. Aspects of both functional and cognitive testing have also demonstrated utility in prior studies and consequently have been factored into modern proposed methods of determining the athlete's readiness for sport. Further work is needed to definitively determine the optimal method of clearing an athlete to return to sport after ACL reconstruction. Evidence to date strongly suggests a role of a multimodal algorithmic approach that factors in time, graft biology and functional testing in return-to-play decision-making after ACL reconstruction.Level of evidence: level V.
Collapse
Affiliation(s)
- Deepak Chona
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California, USA
| | - Karl Eriksson
- Orthopedic Surgery, Stockholm South Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Simon W Young
- North Shore Hospital, University of Auckland, Auckland, New Zealand
| | - Matteo Denti
- Institute for Hospitalization and Care Scientific Galeazzi Orthopaedic Institute, Milano, Italy
| | - Parag K Sancheti
- Sancheti Institute for Orthopaedics and Rehabilitation, Pune, Maharashtra, India
| | - Marc Safran
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California, USA
| | - Seth Sherman
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California, USA
| |
Collapse
|
12
|
Bone Mesenchymal Stem Cells Contribute to Ligament Regeneration and Graft-Bone Healing after Anterior Cruciate Ligament Reconstruction with Silk-Collagen Scaffold. Stem Cells Int 2021; 2021:6697969. [PMID: 33981343 PMCID: PMC8088362 DOI: 10.1155/2021/6697969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/25/2021] [Accepted: 04/15/2021] [Indexed: 11/29/2022] Open
Abstract
Anterior cruciate ligament (ACL) reconstruction was realized using a combination of bone mesenchymal stem cells (BMSCs) and silk–collagen scaffold, and an in vivo evaluation of this combination was performed. By combining type I collagen and degummed silk fibroin mesh, silk–collagen scaffolds were prepared to simulate ligament components. BMSCs isolated from bone marrow of rabbits were cultured for a homogenous population and seeded on the silk–collagen scaffold. In the scaffold and BMSC (S/C) group, scaffolds were seeded with BMSCs for 72 h and then rolled and used to replace the ACL in 20 rabbits. In the scaffold (S) group, scaffolds immersed only in culture medium for 72 h were used for ACL reconstruction. Specimens were collected at 4 and 16 weeks postoperatively to assess ligament regeneration and bone integration. HE and immunohistochemical staining (IHC) were performed to assess ligament regeneration in the knee cavity. To assess bone integration at the graft–bone interface, HE, Russell–Movat staining, micro-CT, and biomechanical tests were performed. After 4 weeks, vigorous cell proliferation was observed in the core part of the scaffold in the S/C group, and a quantity of fibroblast-like cells and extracellular matrix (ECM) was observed in the center part of the graft at 16 weeks after surgery. At 4 and 16 weeks postoperatively, the tenascin-C expression in the S/C group was considerably higher than that in the S group (4 w, p < 0.01; 16 w, p < 0.01). Furthermore, bone integration was better in the S/C group than in the S group, with histological observation of trabecular bone growth into the graft and more mineralized tissue formation detected by micro-CT (4 w, bone volume fraction (BV/TV), p = 0.0169, bone mineral density (BMD), p = 0.0001; 16 w, BV/TV, p = 0.1233, BMD, p = 0.0494). These results indicate that BMSCs promote ligament regeneration in the knee cavity and bone integration at the graft–bone interface. Silk–collagen scaffolds and BMSCs will likely be combined for clinical practice in the future.
Collapse
|
13
|
Mocchi M, Dotti S, Del Bue M, Villa R, Bari E, Perteghella S, Torre ML, Grolli S. Veterinary Regenerative Medicine for Musculoskeletal Disorders: Can Mesenchymal Stem/Stromal Cells and Their Secretome Be the New Frontier? Cells 2020; 9:E1453. [PMID: 32545382 PMCID: PMC7349187 DOI: 10.3390/cells9061453] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine aims to restore the normal function of diseased or damaged cells, tissues, and organs using a set of different approaches, including cell-based therapies. In the veterinary field, regenerative medicine is strongly related to the use of mesenchymal stromal cells (MSCs), which belong to the body repair system and are defined as multipotent progenitor cells, able to self-replicate and to differentiate into different cell types. This review aims to take stock of what is known about the MSCs and their use in the veterinary medicine focusing on clinical reports on dogs and horses in musculoskeletal diseases, a research field extensively reported in the literature data. Finally, a perspective regarding the use of the secretome and/or extracellular vesicles (EVs) in the veterinary field to replace parental MSCs is provided. The pharmaceuticalization of EVs is wished due to the realization of a Good Manufacturing Practice (GMP product suitable for clinical trials.
Collapse
Affiliation(s)
- Michela Mocchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (S.D.); (R.V.)
| | | | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 25124 Brescia, Italy; (S.D.); (R.V.)
| | - Elia Bari
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
| | - Sara Perteghella
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy
| | - Maria Luisa Torre
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (M.M.); (E.B.); (S.P.)
- PharmaExceed S.r.l., 27100 Pavia, Italy
| | - Stefano Grolli
- Department of Veterinary Medical Science, University of Parma, 43121 Parma, Italy;
| |
Collapse
|
14
|
Apostolakos JM, Lin KM, Carr JB, Bedi A, Camp CL, Dines JS. The Role of Biologic Agents in the Non-operative Management of Elbow Ulnar Collateral Ligament Injuries. Curr Rev Musculoskelet Med 2020; 13:442-448. [PMID: 32388723 DOI: 10.1007/s12178-020-09637-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW Injuries to the elbow ulnar collateral ligament (UCL) are especially common in the overhead throwing athlete. Despite preventative measures, these injuries are occurring at increasing rates in athletes of all levels. UCL reconstruction techniques generally require a prolonged recovery period and introduce the potential for intraoperative complications prompting investigations into more conservative treatment measures based on specific patient and injury characteristics. The purpose of this review is to describe the current literature regarding the use of biologic augmentation in the management of UCL injuries. Specifically, this review will focus on the basic science background and clinical investigations pertaining to biologic augmentation utilizing platelet-rich plasma (PRP) and autologous stem cells. RECENT FINDINGS Despite some evidence supporting the use of PRP therapy in patients with partial UCL tears, there is no current consensus regarding its true efficacy. Similarly, due to a lack of clinical investigations, no consensus exists regarding the utilization of autologous stem cell treatments in the management of UCL injuries. Management of UCL injuries ranges from non-operative treatment with focused physical therapy protocols to operative reconstruction. The use of biologic augmentation in these injuries continues to be investigated in the orthopedic community. Currently, no consensus exists regarding the efficacy of either PRP or autologous stem cells and further research is needed to further define the appropriate role of these treatments in the management of UCL injuries.
Collapse
Affiliation(s)
- John M Apostolakos
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA.
| | - Kenneth M Lin
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | - James B Carr
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| | | | | | - Joshua S Dines
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
15
|
Ryu K, Saito M, Kurosaka D, Kitasato S, Omori T, Hayashi H, Kayama T, Marumo K. Enhancement of tendon-bone interface healing and graft maturation with cylindrical titanium-web (TW) in a miniature swine anterior cruciate ligament reconstruction model: histological and collagen-based analysis. BMC Musculoskelet Disord 2020; 21:198. [PMID: 32234036 PMCID: PMC7110724 DOI: 10.1186/s12891-020-03199-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Background Tendon-bone interface healing and ligamentization of the graft in anterior cruciate ligament (ACL) reconstruction with autografts are important factors affecting treatment outcome. This study aimed to investigate the effectiveness of a cylindrical titanium-web (TW) in tendon-bone interface healing and graft maturation in ACL reconstruction. Methods Fourteen mature female CLAWN miniature swine underwent bilateral ACL reconstructions with patellar tendon (PT) autografts. In one limb, the TW/tendon complex was placed into the proximal side of the tibial tunnel. Only the graft was transplanted into the tunnel in the control limb. The proximal side of the graft was sutured into the stump of the native ACL and the distal end was stapled to the tibia. The animals were euthanized at 4 and 15 weeks postoperatively, for histological and biochemical analyses. Results Microscopic images in TW limbs showed that ingrowth of tendon-like tissue and mineralized bone tissue into the TW connected the bone and the tendon directly. In contrast, fibrous tissue intervened between the bone and tendon in the control limbs. The total amount of collagen cross-links (which defines the strength of collagen fibers) and the maturation of collagen cross-links in TW tendons were significantly higher (p < 0.05) than those of control limbs. There was no significant difference in the ratio of dihydroxy-lysinonorleucine to hydroxy-lysinonorleucine (an indicator of tissue specific collagen maturation) between TW tendons and that of the native PT. Conclusions TW promoted the maturation and formation of collagen cross-links in the grafted tendon while maintaining the cross-links pattern of native tendon collagen, and enabled direct binding of tendon to bone.
Collapse
Affiliation(s)
- Keisho Ryu
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan.
| | - Mitsuru Saito
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan
| | - Daisaburo Kurosaka
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan
| | - Seiichiro Kitasato
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan
| | - Toshiyuki Omori
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan
| | - Hiroteru Hayashi
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan
| | - Tomohiro Kayama
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan
| | - Keishi Marumo
- Department of Orthopaedic Surgery, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Tokyo, Minato-ku, 105-8461, Japan
| |
Collapse
|
16
|
Matsumoto T, Takayama K, Hayashi S, Niikura T, Matsushita T, Kuroda R. Therapeutic potential of vascular stem cells for anterior cruciate ligament reconstruction. ANNALS OF TRANSLATIONAL MEDICINE 2020; 7:S286. [PMID: 32016005 DOI: 10.21037/atm.2019.11.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koji Takayama
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Niikura
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Mengsteab PY, Conroy P, Badon M, Otsuka T, Kan HM, Vella AT, Nair LS, Laurencin CT. Evaluation of a bioengineered ACL matrix's osteointegration with BMP-2 supplementation. PLoS One 2020; 15:e0227181. [PMID: 31910231 PMCID: PMC6946545 DOI: 10.1371/journal.pone.0227181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/13/2019] [Indexed: 01/05/2023] Open
Abstract
A poly (l-lactic) acid bioengineered anterior cruciate ligament (ACL) matrix has previously demonstrated the ability to support tissue regeneration in a rabbit ACL reconstruction model. The matrix was designed for optimal bone and ligament regeneration by developing a matrix with differential pore sizes in its bone and ligament compartments. Building upon past success, we designed a new bioengineered ACL matrix that is easier to install and can be used with endobutton fixation during ACL reconstruction. To achieve this, a new braiding procedure was developed to allow the matrix to be folded in half, making two-limbs, while maintaining its bone and ligament compartments. The osteointegration of the matrix with and without bone morphogenetic protein 2 (BMP-2) supplementation was evaluated in a rabbit ACL reconstruction model. Two doses of BMP-2 were evaluated, 1 and 10 μg, and delivered by saline injection into the bone tunnel at the end of surgery. A fibrous matrix-to-bone interface with occasional Sharpey’s fibers was the primary mode of osteointegration observed. The matrix was also found to support a fibrocartilage matrix-to-bone interface. In some cases, the presence of chondrocyte-like cells was observed at the aperture of the bone tunnel and the center of the matrix within the bone tunnel. Treatment with BMP-2 was associated with a trend towards smaller bone tunnel cross-sectional areas, and 1 μg of BMP-2 was found to significantly enhance osteoid seam width in comparison with no BMP-2 or 10 μg of BMP-2 treatment. Regenerated tissue was well organized within the bioengineered ACL matrix and aligned with the poly (l-lactic) acid fibers. Disorganized tissue was found between the two-limbs of the bioengineered ACL matrix and hypothesized to be due to a lack of structural scaffolding. This study suggests that the bioengineered ACL matrix can undergo similar modes of osteointegration as current autografts and allografts, and that BMP-2 treatment may enhance osteoblastic activity within the bone tunnels.
Collapse
Affiliation(s)
- Paulos Y. Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, United States of America
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Patrick Conroy
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Mary Badon
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT, United States of America
| | - Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, United States of America
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, United States of America
| | - Anthony T. Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States of America
| | - Lakshmi S. Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, United States of America
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
| | - Cato T. Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT, United States of America
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT, United States of America
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, United States of America
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, United States of America
- * E-mail:
| |
Collapse
|
18
|
van Gogh AM, Li X, Youn GM, Alvarez A, Yin S, Chakrabarti MO, McGahan PJ, Chen JL. Arthroscopic Harvesting of Autologous Bone Graft for Use as a Mesenchymal Stem Cell Carrier in Anterior Cruciate Ligament Reconstruction. Arthrosc Tech 2019; 9:e45-e50. [PMID: 32021773 PMCID: PMC6993187 DOI: 10.1016/j.eats.2019.08.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/27/2019] [Indexed: 02/03/2023] Open
Abstract
Anterior cruciate ligament (ACL) tears are detrimental to knee stability and normal function. Although the standard of treatment is an ACL reconstruction, technical improvements are sought to enhance clinical outcomes due to the appreciable failure rate. The use of autologous biologic substances as carriers of stem cells are desirable because of their multipotent properties. Traditionally, the collection of autologous bone grafts is through an open incision of the iliac crest, which causes substantial morbidity to the patient. This Technical Note describes an arthroscopic, minimally invasive collection method of autologous tibial and femoral bone graft to use in backfilling the tunnels during an ACL reconstruction to improve graft incorporation and clinical outcomes.
Collapse
Affiliation(s)
- Angelica Marie van Gogh
- Address correspondence to Angelica Marie van Gogh, B.S., Advanced Orthopaedics and Sports Medicine, 450 Sutter St., Suite 400, San Francisco, CA 94108.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Leite CBG, Demange MK. BIOLOGICAL ENHANCEMENTS FOR ANTERIOR CRUCIATE LIGAMENT RECONSTRUCTION. ACTA ORTOPEDICA BRASILEIRA 2019; 27:325-330. [PMID: 31798325 PMCID: PMC6870547 DOI: 10.1590/1413-785220192706226481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023]
Abstract
The anterior cruciate ligament (ACL) is mostly responsible for providing knee stability. ACL injury has a marked effect on daily activities, causing pain, dysfunction, and elevated healthcare costs. ACL reconstruction (ACLR) is the standard treatment for this injury. However, despite good results, ACLR is associated with a significant rate of failure. In this context, the mechanical and biological causes must be considered. From a biological perspective, the ACLR depends on the osseointegration of the graft in the adjacent bone and the process of intra-articular ligamentization for good results. Here, we discuss the mechanisms underlying the normal graft healing process after ACLR and its biological modulation, thus, presenting novel strategies for biological enhancements of the ACL graft. Level of evidence III, Systematic review of level III studies.
Collapse
Affiliation(s)
- Chilan Bou Ghosson Leite
- Universidade de São Paulo, Hospital das Clínicas, HCFMUSP, Faculdade de Medicina, Instituto de Ortopedia e Traumatologia, São Paulo, SP, Brazil
| | - Marco Kawamura Demange
- Universidade de São Paulo, Hospital das Clínicas, HCFMUSP, Faculdade de Medicina, Instituto de Ortopedia e Traumatologia, São Paulo, SP, Brazil
| |
Collapse
|
20
|
Hevesi M, LaPrade M, Saris DBF, Krych AJ. Stem Cell Treatment for Ligament Repair and Reconstruction. Curr Rev Musculoskelet Med 2019; 12:446-450. [PMID: 31625113 DOI: 10.1007/s12178-019-09580-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW With the rapid and ongoing evolution of regenerative and sports medicine, the use of stem/stromal cells in ligament repair and reconstruction continues to be investigated and grow. The purpose of this review was to assess available methods and formulations for stem/stromal cell augmentation as well as review early pre-clinical and clinical outcomes for these recently emerging techniques. RECENT FINDINGS Recent literature demonstrates promising outcomes of stem/stromal cell augmentation for ligament repair and reconstruction. Multiple groups have published animal models suggesting improved healing for partially transected ligaments as well as histologic re-approximation of native bone-tendon interfaces with the use of mesenchymal stem/stromal cells in reconstructive models. Human studies also suggest improved outcomes spanning from higher patient-reported outcome scores to magnetic resonance imaging evidence of ligament healing in the setting of anterior cruciate ligament tears. However, clinical studies are only recently available, relatively few in number, and not necessarily accompanied by standard-of-care controls. There is increasing availability and growing animal and clinical evidence demonstrating potential benefit of stem/stromal cell augmentation for tendon healing. However, to date, there is a relative paucity of high-level human evidence for the routine use of stem/stromal cells for ligament repair and reconstruction in the clinical practice. This field contains substantial promise and merits further, ongoing investigation.
Collapse
Affiliation(s)
- Mario Hevesi
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Matthew LaPrade
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Daniel B F Saris
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aaron J Krych
- Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
21
|
Ruan D, Zhu T, Huang J, Le H, Hu Y, Zheng Z, Tang C, Chen Y, Ran J, Chen X, Yin Z, Qian S, Pioletti D, Heng BC, Chen W, Shen W, Ouyang HW. Knitted Silk-Collagen Scaffold Incorporated with Ligament Stem/Progenitor Cells Sheet for Anterior Cruciate Ligament Reconstruction and Osteoarthritis Prevention. ACS Biomater Sci Eng 2019; 5:5412-5421. [PMID: 33464061 DOI: 10.1021/acsbiomaterials.9b01041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Current surgical management of anterior cruciate ligament (ACL) rupture still remains an intractable challenge in ACL regeneration due to the weak self-healing capability of ACL. Inadequate cell numbers and vascularization within the articular cavity contribute mainly to the poor prognosis. This time, we fabricated a new tissue engineering scaffold by adding ligament stem/progenitor cell (LSPC) sheets to our previous knitted silk-collagen sponge scaffold, which overcame these limitations by providing sufficient numbers of seed cells and a natural extracellular matrix to facilitate regeneration. LSPCs display excellent proliferation and multilineage differentiation capacity. Upon ectopic implantation, the knitted silk-collagen sponge scaffold incorporated with an LSPC sheet exhibited less immune cells but more fibroblast-like cells, deposited ECM and neovascularization, and better tissue ingrowth. In a rabbit model, we excised the ACL and performed a reconstructive surgery with our scaffold. Increased expression of ligament-specific genes and better collagen fibril formation could be observed after orthotopic transplantation. After 6 months, the LSPC sheet group showed better results on ligament regeneration and ligament-bone healing. Furthermore, no obvious cartilage and meniscus degeneration were observed at 6 months postoperation. In conclusion, these results indicated that the new tissue engineering scaffold can promote ACL regeneration and slow down the progression of osteoarthritis, thus suggesting its high clinical potential as an ideal graft in ACL reconstruction.
Collapse
Affiliation(s)
- Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Ting Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Cardiothoracic Surgery, Shaoxing People's Hospital, Shaoxin Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, People's Republic of China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Huihui Le
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Yejun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Zefeng Zheng
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Department of Orthopedic Surgery, Children's Hospital, Zhejiang University School of Medicine, Zhejiang, 310052, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Xiao Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China
| | - Shengjun Qian
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | | | | | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Department of Orthopedics, Research Institute of Zhejiang University, Zhejiang, 310027, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,Laboratory of Biomechanical Orthopedics, EPFL, Lausanne, Switzerland.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Hong-Wei Ouyang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Zhejiang, 310009, China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| |
Collapse
|
22
|
Egawa T, Inagaki Y, Akahane M, Furukawa A, Inoue K, Ogawa M, Tanaka Y. Silicate-substituted strontium apatite nano coating improves osteogenesis around artificial ligament. BMC Musculoskelet Disord 2019; 20:396. [PMID: 31472679 PMCID: PMC6717638 DOI: 10.1186/s12891-019-2777-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Treatment of anterior cruciate ligament injuries commonly involves the use of polyethylene terephthalate (PET) artificial ligaments for reconstruction. However, the currently available methods require long fixation periods, thereby necessitating the development of alternative methods to accelerate the healing process between tendons and bones. Thus, we developed and evaluated a novel technique that utilizes silicate-substituted strontium (SrSiP). Methods PET films, nano-coated with SrSiP, were prepared. Bone marrow mesenchymal cells (BMSCs) from femurs of male rats were cultured and seeded at a density of 1.0 × 104/cm2 onto the SrSiP-coated and non-coated PET film, and subsequently placed in an osteogenic medium. The osteocalcin concentration secreted into the medium was compared in each case. Next, PET artificial ligament, nano-coated with SrSiP, were prepared. BMSCs were seeded at a density of 4.5 × 105/cm2 onto the SrSiP-coated, and non-coated artificial ligament, and then placed in osteogenic medium. The osteocalcin and calcium concentrations in the culture medium were measured on the 8th, 10th, 12th, and 14th day of culture. Furthermore, mRNA expression of osteocalcin, alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP2), and runt-related transcription factor 2 (Runx2) was evaluated by qPCR. We transplanted the SrSiP-coated and non-coated artificial ligament to the tibiae of mature New Zealand white rabbits. Two months later, we sacrificed them and histologically evaluated them. Results The secretory osteocalcin concentration in the medium on the film was significantly higher for the SrSiP group than for the non-coated group. Secretory osteocalcin concentration in the medium on the artificial ligament was also significantly higher in the SrSiP group than in the non-coated group on the 14th day. Calcium concentration on the artificial ligament was significantly lower in the SrSiP group than in the non-coated group on the 8th, 10th, 12th, and 14th day. In qPCR as well, OC, ALP, BMP2, and Runx2 mRNA expression were significantly higher in the SrSiP group than in the non-coated group. Newly formed bone was histologically found around the artificial ligament in the SrSiP group. Conclusions Our findings demonstrate that artificial ligaments using SrSiP display high osteogenic potential and thus may be efficiently used in future clinical applications.
Collapse
Affiliation(s)
- Takuya Egawa
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan.
| | - Yusuke Inagaki
- Department of Artificial Joint and Regenerative Medicine for Bone and Cartilage, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Manabu Akahane
- Department of Public Health, Health Management and Policy, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Akira Furukawa
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Kazuya Inoue
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Munehiro Ogawa
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| | - Yasuhito Tanaka
- Department of Orthopedic Surgery, Nara Medical University, Shijocho 840, Kashihara, Nara, 634-8522, Japan
| |
Collapse
|
23
|
Hur CI, Ahn HW, Seon JK, Song EK, Kim GE. Mesenchymal Stem Cells Decrease Tunnel Widening of Anterior Cruciate Ligament Reconstruction in Rabbit Model. Int J Stem Cells 2019; 12:162-169. [PMID: 30595005 PMCID: PMC6457700 DOI: 10.15283/ijsc18022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 03/23/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023] Open
Abstract
Background and Objectives The study investigated the effect of mesenchymal stem cells (MSCs) or fibrin glue on tunnel widening after anterior cruciate ligament (ACL) reconstruction compared with biologic free control without any biologic agents in the rabbit model. Methods and Results ACL reconstructions were performed in 18 New Zealand white rabbits. All animals were divided into 3 groups according to the following reconstruction conditions and euthanized 12 weeks postoperatively for radiologic and histologic analyses. Thirty-two knees (control group=10; fibrin group=11; MSCs group=11) were finally evaluated. On micro-CT scan, mean femoral tunnel widening on oblique-sagittal image was 0.7±0.4 mm in the control group, 0.22±0.1 mm in the fibrin group and 0.25±0.1 mm in the MSCs group (p=0.001). Fibrin group and MSCs group showed significant differences compared with control group (p=0.002, 0.002). Mean tibial tunnel widening on oblique-sagittal image was 0.76±0.5 mm, 0.27±0.1 mm and 0.29±0.2 mm in the control, fibrin and MSCs group. Fibrin and MSCs group showed significant differences compared with control group (p=0.017, 0.014). Hounsfield Units (HU) were not significantly different between 3 groups (p>0.05). Histological analysis revealed that the architecture of graft in the MSCs group featured hypercellularity and compact collagen deposit. Conclusion ACL reconstruction using MSCs seemed decrease tunnel widening in rabbit model. Further study with large animals is required to confirm efficacy on decreasing tunnel widening.
Collapse
Affiliation(s)
- Chang-Ich Hur
- Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyeon-Wook Ahn
- Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jong-Keun Seon
- Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Eun-Kyoo Song
- Center for Joint Disease, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Ga-Eon Kim
- Department of Pathology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
24
|
Mahapatra P, Horriat S, Anand BS. Anterior cruciate ligament repair - past, present and future. J Exp Orthop 2018; 5:20. [PMID: 29904897 PMCID: PMC6002325 DOI: 10.1186/s40634-018-0136-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022] Open
Abstract
Background This article provides a detailed narrative review on the history and current concepts surrounding ligamentous repair techniques in athletic patients. In particular, we will focus on the anterior cruciate ligament (ACL) as a case study in ligament injury and ligamentous repair techniques. PubMed (MEDLINE), EMBASE and Cochrane Library databases for papers relating to primary anterior cruciate ligament reconstruction were searched by all participating authors. All relevant historical papers were included for analysis. Additional searches of the same databases were made for papers relating to biological enhancement of ligament healing. Current standard The poor capacity of the ACL to heal is one of the main reasons why the current gold standard surgical treatment for an ACL injury in an athletic patient is ACL reconstruction with autograft from either the hamstrings or patella tendon. It is hypothesised that by preserving and repairing native tissues and negating the need for autograft that primary ACL repair may represent a key step change in the treatment of ACL injuries. History of primary ACL repair The history of primary ACL repair will be discussed and the circumstances that led to the near-abandonment of primary ACL repair techniques will be reviewed. New primary repair techniques There has been a recent resurgence in interest with regards to primary ACL repair. Improvements in imaging now allow for identification of tear location, with femoral-sided injuries, being more suitable for repair. We will discuss in details strategies for improving the mechanical and biological environment in order to allow primary healing to occur. In particular, we will explain mechanical supplementation such as Internal Brace Ligament Augmentation and Dynamic Intraligamentary Stabilisation techniques. These are novel techniques that aim to protect the primary repair by providing a stabilising construct that connects the femur and the tibia, thus bridging the repair. Bio enhanced repair In addition, biological supplementation is being investigated as an adjunct and we will review the current literature with regards to bio-enhancement in the form platelet rich plasma, bio-scaffolds and stem cells. On the basis of current evidence, there appears to be a role for bio-enhancement, however, this is not yet translated into clinical practice. Conclusions Several promising avenues of further research now exist in the form of mechanical and biological augmentation techniques. Further work is clearly needed but there is renewed interest and focus for primary ACL repair that may yet prove the new frontier in ligament repair.
Collapse
Affiliation(s)
- Piyush Mahapatra
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK.
| | - Saman Horriat
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK
| | - Bobby S Anand
- Trauma and Orthopaedic Department, Croydon University Hospital, 530 London Road, London, CR7 7YE, UK
| |
Collapse
|
25
|
Tan H, Wang D, Lebaschi AH, Hutchinson ID, Ying L, Deng XH, Rodeo SA, Warren RF. Comparison of Bone Tunnel and Cortical Surface Tendon-to-Bone Healing in a Rabbit Model of Biceps Tenodesis. J Bone Joint Surg Am 2018; 100:479-486. [PMID: 29557864 PMCID: PMC6221377 DOI: 10.2106/jbjs.17.00797] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Many orthopaedic surgical procedures involve reattachment of a single tendon to bone. Whether tendon-to-bone healing is better facilitated by tendon fixation within a bone tunnel or on a cortical surface is unknown. The purpose of this study was to evaluate tendon-healing within a bone tunnel compared with that on the cortical surface in a rabbit model of biceps tenodesis. METHODS Thirty-two rabbits (24 weeks of age) underwent unilateral proximal biceps tenodesis with tendon fixation within a bone tunnel (BT group) or on the cortical surface (SA [surface attachment] group). Postoperatively, rabbits were allowed free-cage activity without immobilization. All rabbits were killed 8 weeks after surgery. Healing was assessed by biomechanical testing, microcomputed tomography (micro-CT), and histomorphometric analysis. RESULTS Biomechanical testing demonstrated no significant difference between the groups in mean failure loads (BT: 56.8 ± 28.8 N, SA: 55.8 ± 14.9 N; p = 0.92) or stiffness (BT: 26.3 ± 16.6 N/mm, SA: 32.3 ± 9.6 N/mm; p = 0.34). Micro-CT analysis demonstrated no significant difference between the groups in mean volume of newly formed bone (BT: 69.3 ± 13.9 mm, SA: 65.5 ± 21.9 mm; p = 0.70) or tissue mineral density of newly formed bone (BT: 721.4 ± 10.9 mg/cm, SA: 698.6 ± 26.2 mg/cm; p = 0.07). On average, newly formed bone within the tunnel represented only 5% of the total new bone formed in the BT specimens. Histological analysis demonstrated tendon-bone interdigitation and early fibrocartilaginous zone formation on the outer cortical surface in both groups. In contrast, minimal tendon-bone bonding was observed within the tunnel in the BT specimens. CONCLUSIONS Tendon fixation in a bone tunnel and on the cortical surface resulted in similar healing profiles. For tendons placed within a bone tunnel, intratunnel healing was minimal compared with the healing outside the tunnel on the cortical surface. CLINICAL RELEVANCE The creation of large bone tunnels, which can lead to stress risers and increase the risk of fracture, may not be necessary for biceps tenodesis procedures.
Collapse
Affiliation(s)
- Hongbo Tan
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| | - Dean Wang
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| | - Amir H. Lebaschi
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| | - Ian D. Hutchinson
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| | - Liang Ying
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| | - Xiang-Hua Deng
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| | - Scott A. Rodeo
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| | - Russell F. Warren
- Laboratory for Joint Tissue Repair and Regeneration, Orthopaedic Soft Tissue Research Program (H.T., D.W., A.H.L., I.D.H., L.Y., X.-H.D., S.A.R., and R.F.W.) and Sports Medicine and Shoulder Service (D.W., S.A.R., and R.F.W.), Hospital for Special Surgery, New York, NY
| |
Collapse
|
26
|
Zou G, Song E, Wei B. Effects of tendon-bone healing of anterior cruciate ligament reconstruction by osteoprotegerin combined with deproteinized bovine bone. Muscles Ligaments Tendons J 2017; 7:256-262. [PMID: 29264336 DOI: 10.11138/mltj/2017.7.2.256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background The healing of a tendon graft in a bone tunnel depends on bone ingrowth into the interface between tendon and bone, or that can enhance tendon-bone healing, which is important to reduce the failure rate after ACL reconstruction. Methods Sixty skeletally mature, New Zealand white rabbits underwent left ACL reconstruction. OPG/DBB compound (concentration ratio of 30%, 60%, 100%) was delivered to the tendon-bone interface with use of a DBB carrier, and nothing as control group. Twenty animals were killed at 4, 8 and 12 weeks after surgery. I-IV levels of semi-quantitative and Sharpey fibers at the healing tendon-bone interface were evaluated, and the biomechanical properties were tested. Results A significantly greater amount of Sharpey fibers at the healing tendon-bone interface in the concentration ratio of 100% OPG/DBB-treated group was found compared with the others at all time-points (P<0.05), and it is the same to the Grade Scores at 12 weeks (P<0.05). The femur-ACL-tibia complex of the concentration ratio of 100% OPG/DBB-treated group has significantly increased stiffness compared with the others at 12 weeks (P<0.05). Conclusion The concentration ratio of 100% OPG/DBB compound significantly improve bone formation around the grafted tendon and improve the stiffness at the healing tendon-bone junction in a rabbit model.
Collapse
Affiliation(s)
- Guoyao Zou
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Enhong Song
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Bing Wei
- Department of Spinal and Joint Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
27
|
Setiawati R, Utomo DN, Rantam FA, Ifran NN, Budhiparama NC. Early Graft Tunnel Healing After Anterior Cruciate Ligament Reconstruction With Intratunnel Injection of Bone Marrow Mesenchymal Stem Cells and Vascular Endothelial Growth Factor. Orthop J Sports Med 2017; 5:2325967117708548. [PMID: 28680888 PMCID: PMC5482354 DOI: 10.1177/2325967117708548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: Bone marrow mesenchymal stem cells (BM-MSCs) are multipotent adult stem cells and have become an important source of cells for engineering tissue repair and cell therapy. Vascular endothelial growth factor (VEGF) promotes angiogenesis and contributes fibrous integration between tendon and bone during the early postoperative stage. Both MSCs and VEGF can stimulate cell proliferation, differentiation, and matrix deposition by enhancing angiogenesis and osteogenesis of the graft in the tunnel. Hypothesis: Injection of intratunnel BM-MSCs and VEGF enhances the early healing process of a tendon graft. Study Design: Controlled laboratory study. Methods: In this controlled animal laboratory study, each of 4 groups of rabbits underwent unilateral anterior cruciate ligament (ACL) reconstruction with use of the ipsilateral semitendinosus tendon. The rabbits received intratunnel injection of BM-MSCs and VEGF with a fibrin glue seal covering the distal tunnel at the articular site. Evaluation using magnetic resonance imaging (MRI), collagen type III expression, and biomechanical analyses were performed at 3- and 6-week intervals. Results: All parameters using MRI, collagen type III expression, and biomechanical analysis of pullout strength of the graft showed that application of intratunnel BM-MSCs and VEGF enhanced tendon-to-bone healing after ACL reconstruction. Conclusion: Intratunnel injections of BM-MSCs and VEGF after ACL reconstruction enhanced graft tunnel healing. Overall, the femoral tunnel that received BM-MSCs and VEGF had better advanced healing with increased collagen type III fibers and better outcomes on MRI and biomechanical analysis. MRI is the most reliable tool for clinical use in evaluating stages of ACL healing after reconstruction, since biopsy is an invasive procedure.
Collapse
Affiliation(s)
- Rosy Setiawati
- Musculoskeletal Division, Department of Radiology, School of Medicine, Airlangga University, Dr Soetomo Hospital, Airlangga University Hospital, Surabaya, Indonesia.,Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia
| | - Dwikora Novembri Utomo
- Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Department of Orthopedics, School of Medicine, Airlangga University, Dr Soetomo Hospital, Surabaya, Indonesia.,Regenerative Medicine, School of Medicine, Airlangga University, Dr Soetomo Hospital, Surabaya, Indonesia
| | - Fedik Abdul Rantam
- Stem Cell Laboratory, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.,Virology and Immunology Laboratory, Department of Microbiology, School of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Nadia Nastassia Ifran
- Nicolaas Institute of Constructive Orthopedic Research and Education Foundation, Jakarta, Indonesia
| | - Nicolaas C Budhiparama
- Nicolaas Institute of Constructive Orthopedic Research and Education Foundation, Jakarta, Indonesia
| |
Collapse
|
28
|
Song F, Jiang D, Wang T, Wang Y, Chen F, Xu G, Kang Y, Zhang Y. Mechanical Loading Improves Tendon-Bone Healing in a Rabbit Anterior Cruciate Ligament Reconstruction Model by Promoting Proliferation and Matrix Formation of Mesenchymal Stem Cells and Tendon Cells. Cell Physiol Biochem 2017; 41:875-889. [DOI: 10.1159/000460005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background/Aims: This study investigated the effect of mechanical stress on tendon-bone healing in a rabbit anterior cruciate ligament (ACL) reconstruction model as well as cell proliferation and matrix formation in co-culture of bone-marrow mesenchymal stem cells (BMSCs) and tendon cells (TCs). Methods: The effect of continuous passive motion (CPM) therapy on tendon-bone healing in a rabbit ACL reconstruction model was evaluated by histological analysis, biomechanical testing and gene expressions at the tendon-bone interface. Furthermore, the effect of mechanical stretch on cell proliferation and matrix synthesis in BMSC/TC co-culture was also examined. Results: Postoperative CPM therapy significantly enhanced tendon-bone healing, as evidenced by increased amount of fibrocartilage, elevated ultimate load to failure levels, and up-regulated gene expressions of Collagen I, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin at the tendon-bone junction. In addition, BMSC/TC co-culture treated with mechanical stretch showed a higher rate of cell proliferation and enhanced expressions of Collagen I, Collagen III, alkaline phosphatase, osteopontin, Tenascin C and tenomodulin than that of controls. Conclusion: These results demonstrated that proliferation and differentiation of local precursor cells could be enhanced by mechanical stimulation, which results in enhanced regenerative potential of BMSCs and TCs in tendon-bone healing.
Collapse
|
29
|
Saccomanno MF, Capasso L, Fresta L, Milano G. Biological enhancement of graft-tunnel healing in anterior cruciate ligament reconstruction. JOINTS 2016; 4:174-182. [PMID: 27900311 DOI: 10.11138/jts/2016.4.3.174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sites where graft healing occurs within the bone tunnel and where the intra-articular ligamentization process takes place are the two most important sites of biological incorporation after anterior cruciate ligament (ACL) reconstruction, since they help to determine the mechanical behavior of the femur-ACL graft-tibia complex. Graft-tunnel healing is a complex process influenced by several factors, such as type of graft, preservation of remnants, bone quality, tunnel length and placement, fixation techniques and mechanical stress. In recent years, numerous experimental and clinical studies have been carried out to evaluate potential strategies designed to enhance and optimize the biological environment of the graft-tunnel interface. Modulation of inflammation, tissue engineering and gene transfer techniques have been applied in order to obtain a direct-type fibrocartilaginous insertion of the ACL graft, similar to that of native ligament, and to accelerate the healing process of tendon grafts within the bone tunnel. Although animal studies have given encouraging results, clinical studies are lacking and their results do not really support the use of the various strategies in clinical practice. Further investigations are therefore needed to optimize delivery techniques, therapeutic concentrations, maintenance of therapeutic effects over time, and to reduce the risk of undesirable effects in clinical practice.
Collapse
Affiliation(s)
- Maristella F Saccomanno
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| | - Luigi Capasso
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| | - Luca Fresta
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| | - Giuseppe Milano
- Department of Orthopaedics, Catholic University, "A. Gemelli" University Hospital, Rome, Italy
| |
Collapse
|
30
|
Wang INE, Bogdanowicz DR, Mitroo S, Shan J, Kala S, Lu HH. Cellular interactions regulate stem cell differentiation in tri-culture. Connect Tissue Res 2016; 57:476-487. [PMID: 27599920 PMCID: PMC5388351 DOI: 10.1080/03008207.2016.1230106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Currently, the mechanism governing the regeneration of the soft tissue-to-bone interface, such as the transition between the anterior cruciate ligament (ACL) and bone, is not known. Focusing on the ACL-to-bone insertion, this study tests the novel hypothesis that interactions between cells from the ligament (fibroblasts) and bone (osteoblasts) initiate interface regeneration. Specifically, these heterotypic cell interactions direct the fibrochondrogenic differentiation of interface-relevant cell populations, defined here as ligament fibroblasts and bone marrow stromal cells (BMSC). The objective of this study is to examine the effects of heterotypic cellular interactions on BMSC or fibroblast growth and biosynthesis, as well as expression of fibrocartilage-relevant markers in tri-culture. The effects of cell-cell physical contact and paracrine interactions between fibroblasts and osteoblasts were also determined. It was found that, in tri-culture with fibroblasts and osteoblasts, BMSC exhibited greater fibrochondrogenic potential than ligament fibroblasts. The growth of BMSC decreased while proteoglycan production and TGF-β3 expression increased. Moreover, tri-culture regulated BMSC response via paracrine factors, and interestingly, fibroblast-osteoblast contact further promoted proteoglycan and TGF-β1 synthesis as well as induced SOX9 expression in BMSC. Collectively, the findings of this study suggest that fibroblast-osteoblast interactions play an important role in regulating the stem cell niche for fibrocartilage regeneration, and the mechanisms of these interactions are directed by paracrine factors and augmented with direct cell-cell contact.
Collapse
Affiliation(s)
- I-Ning E. Wang
- Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering Columbia University New York, NY 10027
| | - Danielle R. Bogdanowicz
- Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering Columbia University New York, NY 10027
| | - Siddarth Mitroo
- Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering Columbia University New York, NY 10027
| | - Jing Shan
- Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering Columbia University New York, NY 10027
| | - Sonam Kala
- Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering Columbia University New York, NY 10027
| | - Helen H. Lu
- Biomaterials and Interface Tissue Engineering Laboratory Department of Biomedical Engineering Columbia University New York, NY 10027
| |
Collapse
|
31
|
Patel S, Gualtieri AP, Lu HH, Levine WN. Advances in biologic augmentation for rotator cuff repair. Ann N Y Acad Sci 2016; 1383:97-114. [PMID: 27750374 DOI: 10.1111/nyas.13267] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/30/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
Abstract
Rotator cuff tear is a very common shoulder injury that often necessitates surgical intervention for repair. Despite advances in surgical techniques for rotator cuff repair, there is a high incidence of failure after surgery because of poor healing capacity attributed to many factors. The complexity of tendon-to-bone integration inherently presents a challenge for repair because of a large biomechanical mismatch between the tendon and bone and insufficient regeneration of native tissue, leading to the formation of fibrovascular scar tissue. Therefore, various biological augmentation approaches have been investigated to improve rotator cuff repair healing. This review highlights recent advances in three fundamental approaches for biological augmentation for functional and integrative tendon-bone repair. First, the exploration, application, and delivery of growth factors to improve regeneration of native tissue are discussed. Second, applications of stem cell and other cell-based therapies to replenish damaged tissue for better healing are covered. Finally, this review will highlight the development and applications of compatible biomaterials to both better recapitulate the tendon-bone interface and improve delivery of biological factors for enhanced integrative repair.
Collapse
Affiliation(s)
- Sahishnu Patel
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Anthony P Gualtieri
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - William N Levine
- Department of Orthopedic Surgery, New York Presbyterian/Columbia University Medical Center, New York, New York
| |
Collapse
|
32
|
Histomorphometric and ultrastructural analysis of the tendon-bone interface after rotator cuff repair in a rat model. Sci Rep 2016; 6:33800. [PMID: 27647121 PMCID: PMC5028779 DOI: 10.1038/srep33800] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022] Open
Abstract
Successful rotator cuff repair requires biological anchoring of the repaired tendon to the bone. However, the histological structure of the repaired tendon-bone interface differs from that of a normal tendon insertion. We analysed differences between the normal tendon insertion and the repaired tendon-bone interface after surgery in the mechanical properties, histomorphometric analysis, and 3-dimensional ultrastructure of the cells using a rat rotator cuff repair model. Twenty-four adult Sprague-Dawley (SD) rats underwent complete cuff tear and subsequent repair of the supraspinatus tendon. The repaired tendon-bone interface was evaluated at 4, 8, and 12 weeks after surgery. At each time point, shoulders underwent micro-computed tomography scanning and biomechanical testing (N = 6), conventional histology and histomorphometric analysis (N = 6), and ultrastructural analysis with focused ion beam/scanning electron microscope (FIB/SEM) tomography (N = 4). We demonstrated that the cellular distribution between the repaired tendon and bone at 12 weeks after surgery bore similarities to the normal tendon insertion. However, the ultrastructure of the cells at any time point had a different morphology than those of the normal tendon insertion. These morphological differences affect the healing process, partly contributing to re-tearing at the repair site. These results may facilitate future studies of the regeneration of a normal tendon insertion.
Collapse
|
33
|
Chen B, Li B, Qi YJ, Ni QB, Pan ZQ, Wang H, Chen LB. Enhancement of tendon-to-bone healing after anterior cruciate ligament reconstruction using bone marrow-derived mesenchymal stem cells genetically modified with bFGF/BMP2. Sci Rep 2016; 6:25940. [PMID: 27173013 PMCID: PMC4865959 DOI: 10.1038/srep25940] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/25/2016] [Indexed: 11/10/2022] Open
Abstract
Many strategies, including various growth factors and gene transfer, have been used to augment healing after anterior cruciate ligament (ACL) reconstruction. The biological environment regulated by the growth factors during the stage of tendon-bone healing was considered important in controlling the integrating process. The purpose of this study was to evaluate the effects of bone marrow-derived mesenchymal stem cells (BMSCs) genetically modified with bone morphogenetic protein 2 (BMP2) and basic fibroblast growth factor (bFGF) on healing after ACL reconstruction. BMSCs were infected with an adenoviral vector encoding BMP2 (AdBMP2) or bFGF (AdbFGF). Then, the infected BMSCs were surgically implanted into the tendon-bone interface. At 12 weeks postoperatively, the formation of abundant cartilage-like cells, smaller tibial bone tunnel and significantly higher ultimate load and stiffness levels, through histological analysis, micro-computed tomography and biomechanical testing, were observed. In addition, the AdBMP2-plus-AdbFGF group had the smallest bone tunnel and the best mechanical properties among all the groups. The addition of BMP2 or bFGF by gene transfer resulted in better cellularity, new bone formation and higher mechanical property, which contributed to the healing process after ACL reconstruction. Furthermore, the co-application of these two genes was more powerful and efficient than either single gene therapy.
Collapse
Affiliation(s)
- Biao Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Bin Li
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Yong-Jian Qi
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Qu-Bo Ni
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Zheng-Qi Pan
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liao-Bin Chen
- Department of Orthopaedic Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
34
|
Al-Bluwi MT, Azam MQ, Sadat-Ali M. The effect of bone growth factor in the tendon to bone healing in anterior cruciate ligament reconstruction: An experimental study in rabbits. Int J Appl Basic Med Res 2016; 6:23-7. [PMID: 26958518 PMCID: PMC4765269 DOI: 10.4103/2229-516x.174004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Reconstruction of the anterior cruciate ligament (ACL) involves use of semintendinosis and gracilis tendons graft that is transplanted into bone tunnels at the femoral and tibial insertion sites and the sites and the bone tendon interface is a weak link in the early healing period due to slow rate of healing. We hypothesized that an addition of bone growth factor like Sadat-Habdan mesenchymal stimulating peptide (SHMSP) could enhance bone tendon healing rate so that re-rupture of the tendon does not take place. METHODOLOGY Twenty skeletally mature rabbits underwent ACL reconstruction of the right knee. In 10 of the rabbits at the site of the tendon-graft 5 mg/kg body weight of SHMSP was put in the bone tunnel. In 10 other animals, nothing was added. At eight and 12 weeks 5 animals from each group were sacrificed. The tendon-graft site was harvested and sent for histopathological examination to assess the healing at the tendon-bone graft to the tibial tunnel. RESULTS There were no deaths in both the groups. One rabbit of the control group developed an infection. In all the animals of the study group from 4 weeks onward showed bone formation, wherein the control group only granulation tissue was observed. By 8 weeks in the study group, the canal was totally obliterated with the new bone formation which extended onto the periosteal area. In the control, there was minimal change in the formation of the new bone formation. CONCLUSION Addition of a growth factor like SHMSP would enhance the osteo-integration of the tendon-graft in the bony tunnel after ACL reconstruction in vivo.
Collapse
Affiliation(s)
- Mohammed T Al-Bluwi
- Department of Orthopedic Surgery, College of Medicine, University of Dammam, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Md Q Azam
- Department of Orthopedic Surgery, College of Medicine, University of Dammam, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| | - Mir Sadat-Ali
- Department of Orthopedic Surgery, College of Medicine, University of Dammam, King Fahd Hospital of the University, Al Khobar, Saudi Arabia
| |
Collapse
|
35
|
Hao ZC, Wang SZ, Zhang XJ, Lu J. Stem cell therapy: a promising biological strategy for tendon-bone healing after anterior cruciate ligament reconstruction. Cell Prolif 2016; 49:154-62. [PMID: 26929145 DOI: 10.1111/cpr.12242] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Tendon-bone healing after anterior cruciate ligament (ACL) reconstruction is a complex process, impacting significantly on patients' prognosis. Natural tendon-bone healing usually results in fibrous scar tissue, which is of inferior quality compared to native attachment. In addition, the early formed fibrous attachment after surgery is often not reliable to support functional rehabilitation, which may lead to graft failure or unsatisfied function of the knee joint. Thus, strategies to promote tendon-bone healing are crucial for prompt and satisfactory functional recovery. Recently, a variety of biological approaches, including active substances, gene transfer, tissue engineering and stem cells, have been proposed and applied to enhance tendon-bone healing. Among these, stem cell therapy has been shown to have promising prospects and draws increasing attention. From commonly investigated bone marrow-derived mesenchymal stem cells (bMSCs) to emerging ACL-derived CD34+ stem cells, multiple stem cell types have been proven to be effective in accelerating tendon-bone healing. This review describes the current understanding of tendon-bone healing and summarizes the current status of related stem cell therapy. Future limitations and perspectives are also discussed.
Collapse
Affiliation(s)
- Zi-Chen Hao
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Shan-Zheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Xue-Jun Zhang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China.,Surgical Research Center, Medical School of Southeast University, Nanjing, 210009, China
| |
Collapse
|
36
|
Ji X, Chen Q, Thoreson AR, Qu J, An KN, Amadio PC, Steinmann SP, Zhao C. Rotator cuff repair with a tendon-fibrocartilage-bone composite bridging patch. Clin Biomech (Bristol, Avon) 2015; 30:976-980. [PMID: 26190097 PMCID: PMC4631669 DOI: 10.1016/j.clinbiomech.2015.06.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. METHODS Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/s. FINDINGS The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). INTERPRETATION The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch-greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate.
Collapse
Affiliation(s)
- Xiaoxi Ji
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA; Trauma Center, Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Qingshan Chen
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew R Thoreson
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Jin Qu
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Kai-Nan An
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter C Amadio
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott P Steinmann
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Chunfeng Zhao
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
37
|
Ji X, Bao N, An KN, Amadio PC, Steinmann SP, Zhao C. A Canine Non-Weight-Bearing Model with Radial Neurectomy for Rotator Cuff Repair. PLoS One 2015; 10:e0130576. [PMID: 26107616 PMCID: PMC4479444 DOI: 10.1371/journal.pone.0130576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
Background The major concern of using a large animal model to study rotator cuff repair is the high rate of repair retears. The purpose of this study was to test a non-weight-bearing (NWB) canine model for rotator cuff repair research. Methods First, in the in vitro study, 18 shoulders were randomized to 3 groups. 1) Full-width transections repaired with modified Mason-Allen sutures using 3-0 polyglactin suture, 2) Group 1 repaired using number 2 (#2) polyester braid and long-chain polyethylene suture, and 3) Partial-width transections leaving the superior 2 mm infraspinatus tendon intact without repair. In the in vivo study of 6 dogs, the infraspinatus tendon was partially transected as the same as the in vitro group 3. A radial neurectomy was performed to prevent weight bearing. The operated limb was slung in a custom-made jacket for 6 weeks. Results In the in vitro study, mean ultimate tensile load and stiffness in Group 2 were significantly higher than Group 1 and 3 (p<0.05). In the in vivo study, gross inspection and histology showed that the preserved superior 2-mm portion of the infraspinatus tendon remained intact with normal structure. Conclusions Based on the biomechanical and histological findings, this canine NWB model may be an appropriate and useful model for studies of rotator cuff repair.
Collapse
Affiliation(s)
- Xiaoxi Ji
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905, United States of America
- Trauma Center, Shanghai First People’s Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Nirong Bao
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Kai-Nan An
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Peter C. Amadio
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Scott P. Steinmann
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905, United States of America
| | - Chunfeng Zhao
- Biomechanics Laboratory, Division of Orthopedic Research, Mayo Clinic, Rochester, MN, 55905, United States of America
- * E-mail:
| |
Collapse
|
38
|
Valencia Mora M, Ruiz Ibán MA, Díaz Heredia J, Barco Laakso R, Cuéllar R, García Arranz M. Stem cell therapy in the management of shoulder rotator cuff disorders. World J Stem Cells 2015; 7:691-9. [PMID: 26029341 PMCID: PMC4444610 DOI: 10.4252/wjsc.v7.i4.691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/26/2015] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
Rotator cuff tears are frequent shoulder problems that are usually dealt with surgical repair. Despite improved surgical techniques, the tendon-to-bone healing rate is unsatisfactory due to difficulties in restoring the delicate transitional tissue between bone and tendon. It is essential to understand the molecular mechanisms that determine this failure. The study of the molecular environment during embryogenesis and during normal healing after injury is key in devising strategies to get a successful repair. Mesenchymal stem cells (MSC) can differentiate into different mesodermal tissues and have a strong paracrine, anti-inflammatory, immunoregulatory and angiogenic potential. Stem cell therapy is thus a potentially effective therapy to enhance rotator cuff healing. Promising results have been reported with the use of autologous MSC of different origins in animal studies: they have shown to have better healing properties, increasing the amount of fibrocartilage formation and improving the orientation of fibrocartilage fibers with less immunologic response and reduced lymphocyte infiltration. All these changes lead to an increase in biomechanical strength. However, animal research is still inconclusive and more experimental studies are needed before human application. Future directions include expanded stem cell therapy in combination with growth factors or different scaffolds as well as new stem cell types and gene therapy.
Collapse
Affiliation(s)
- Maria Valencia Mora
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Miguel A Ruiz Ibán
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Jorge Díaz Heredia
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Raul Barco Laakso
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Ricardo Cuéllar
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Mariano García Arranz
- Maria Valencia Mora, Miguel A Ruiz Ibán, Jorge Díaz Heredia, Unidad de Hombro y Codo, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| |
Collapse
|
39
|
Bi F, Shi Z, Liu A, Guo P, Yan S. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft. PLoS One 2015; 10:e0125900. [PMID: 25938408 PMCID: PMC4418759 DOI: 10.1371/journal.pone.0125900] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/23/2015] [Indexed: 01/09/2023] Open
Abstract
The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL) reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application.
Collapse
Affiliation(s)
- Fanggang Bi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhongli Shi
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Liu
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Guo
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shigui Yan
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
40
|
Saether EE, Chamberlain CS, Leiferman EM, Kondratko-Mittnacht JR, Li WJ, Brickson SL, Vanderby R. Enhanced medial collateral ligament healing using mesenchymal stem cells: dosage effects on cellular response and cytokine profile. Stem Cell Rev Rep 2015; 10:86-96. [PMID: 24174129 DOI: 10.1007/s12015-013-9479-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesenchymal stem cells (MSCs) have potential therapeutic applications for musculoskeletal injuries due to their ability to differentiate into several tissue cell types and modulate immune and inflammatory responses. These immune-modulatory properties were examined in vivo during early stage rat medial collateral ligament healing. Two different cell doses (low dose 1 × 10(6) or high dose 4 × 10(6) MSCs) were administered at the time of injury and compared with normal ligament healing at days 5 and 14 post-injury. At both times, the high dose MSC group demonstrated a significant decrease in M2 macrophages compared to controls. At day 14, fewer M1 macrophages were detected in the low dose group compared to the high dose group. These results, along with significant changes in procollagen I, proliferating cells, and endothelialization suggest that MSCs can alter the cellular response during healing in a dose-dependent manner. The higher dose ligaments also had increased expression of several pro-inflammatory cytokines at day 5 (IL-1β, IFNγ, IL-2) and increased expression of IL-12 at day 14. Mechanical testing at day 14 revealed increased failure strength and stiffness in low dose ligaments compared to controls. Based on these improved mechanical properties, MSCs enhanced functional healing when applied at a lower dose. Different doses of MSCs uniquely affected the cellular response and cytokine expression in healing ligaments. Interestingly, the lower dose of cells proved to be most effective in improving functional properties.
Collapse
Affiliation(s)
- Erin E Saether
- Department of Orthopedics and Rehabilitation, University of Wisconsin, 1111 Highland Ave., 5th Floor WIMR, Madison, WI, 53705, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Chik TK, Chooi WH, Li YY, Ho FC, Cheng HW, Choy TH, Sze KY, Luk KKD, Cheung KMC, Chan BP. Bioengineering a multicomponent spinal motion segment construct--a 3D model for complex tissue engineering. Adv Healthc Mater 2015; 4:99-112. [PMID: 24846571 DOI: 10.1002/adhm.201400192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 01/28/2023]
Abstract
Intervertebral disc degeneration is an important clinical problem but existing treatments have significant drawbacks. The ability to bioengineer the entire spinal motion segment (SMS) offers hope for better motion preservation strategies but is extremely challenging. Here, fabrication of a multicomponent SMS construct with complex hierarchical organization from mesenchymal stem cells and collagen-based biomaterials, using a module-based integrative approach, is reported. The construct consists of two osteochondral subunits, a nucleus pulposus (NP-)-like core and a multi-lamellae annulus fibrosus (AF-)-like component. Chondrogenic medium is crucial for stabilizing the osteochondral subunits, which are shown to allow passive nutrient diffusion, while cyclic compression is necessary for better fiber matrix organization. Cells adhere, survive, and interact with the NP-like core. Cyclic torsional loading stimulates cell alignment in the AF-like lamellae and the number of lamellae affects the mechanical properties of the construct. This work represents an important milestone in SMS tissue engineering and provides a 3D model for studying tissue maturation and functional remodeling.
Collapse
Affiliation(s)
- Tsz Kit Chik
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Wai Hon Chooi
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Yuk Yin Li
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Fu Chak Ho
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Hiu Wa Cheng
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Tsz Hang Choy
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Kam Yim Sze
- Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Keith Kei Dip Luk
- Department of Orthopaedics & Traumatology; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Kenneth Man Chi Cheung
- Department of Orthopaedics & Traumatology; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| | - Barbara Pui Chan
- Tissue Engineering Laboratory; Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong Special Administrative Region China
| |
Collapse
|
42
|
Use of adipose-derived stem cells in an experimental rotator cuff fracture animal model. Rev Esp Cir Ortop Traumatol (Engl Ed) 2015. [DOI: 10.1016/j.recote.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
43
|
The Potentially Positive Role of PRPs in Preventing Femoral Tunnel Widening in ACL Reconstruction Surgery Using Hamstrings: A Clinical Study in 51 Patients. JOURNAL OF SPORTS MEDICINE 2014; 2014:789317. [PMID: 26464895 PMCID: PMC4590903 DOI: 10.1155/2014/789317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/09/2014] [Accepted: 10/17/2014] [Indexed: 01/11/2023]
Abstract
Purpose. In this study, the early and midterm clinical and radiological results of the anterior cruciate ligament (ACL) reconstruction surgery with or without the use of platelet rich plasma (PRP) focusing on the tunnel-widening phenomenon are evaluated. Methods. This is a double blind, prospective randomized study. 51 patients have completed the assigned protocol. Recruited individuals were divided into two groups: a group with and a group without the use of PRPs. Patients were assessed on the basis of MRI scans, which were performed early postoperatively and repeated at least one-year postoperatively. The diameter was measured at the entrance, at the bottom, and at the mid distance of the femoral tunnel. Results. Our study confirmed the existence of tunnel widening as a phenomenon. The morphology of the dilated tunnels was conical in both groups. There was a statistical significant difference in the mid distance of the tunnels between the two groups. This finding may support the role of a biologic response secondary to mechanical triggers. Conclusions. The use of RPRs in ACL reconstruction surgery remains a safe option that could potentially eliminate the biologic triggers of tunnel enlargement. The role of mechanical factors, however, remains important.
Collapse
|
44
|
Intermittently administered parathyroid hormone [1-34] promotes tendon-bone healing in a rat model. Int J Mol Sci 2014; 15:17366-79. [PMID: 25268612 PMCID: PMC4227167 DOI: 10.3390/ijms151017366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/23/2014] [Accepted: 09/23/2014] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to investigate whether intermittent administration of parathyroid hormone [1–34] (PTH[1–34]) promotes tendon-bone healing after anterior cruciate ligament (ACL) reconstruction in vivo. A rat model of ACL reconstruction with autograft was established at the left hind leg. Every day, injections of 60 μg PTH[1–34]/kg subcutaneously were given to the PTH group rats (n = 10) for four weeks, and the controls (n = 10) received saline. The tendon-bone healing process was evaluated by micro-CT, biomechanical test, histological and immunohistochemical analyses. The effects of PTH[1–34] on serum chemistry, bone microarchitecture and expression of the PTH receptor (PTH1R) and osteocalcin were determined. Administration of PTH[1–34] significantly increased serum levels of calcium, alkaline phosphatase (AP), osteocalcin and tartrate-resistant acid phosphatase (TRAP). The expression of PTH1R on both osteocytes and chondrocyte-like cells at the tendon-bone interface was increased in the PTH group. PTH[1–34] also enhanced the thickness and microarchitecture of trabecular bone according to the micro-CT analysis. The results imply that systematically intermittent administration of PTH[1–34] promotes tendon-bone healing at an early stage via up-regulated PTH1R. This method may enable a new strategy for the promotion of tendon-bone healing after ACL reconstruction.
Collapse
|
45
|
[Use of adipose-derived stem cells in an experimental rotator cuff fracture animal model]. Rev Esp Cir Ortop Traumatol (Engl Ed) 2014; 59:3-8. [PMID: 25242729 DOI: 10.1016/j.recot.2014.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/12/2014] [Accepted: 07/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM Rotator cuff repairs have shown a high level of re-ruptures. We hypothesized that the use of adipose-derived stem cells (ASC) could improve the biomechanical and histological properties of the repair. MATERIAL AND METHODS Controlled experimental study conducted on 44 BDIX rats with section and repair of the supraspinatus tendon and randomization to one of three groups: group A, no intervention (control); group B, local applications of a fibrin sealant; and group C, application of the fibrin sealant with 2 x 10(6) ASC. At 4 and 8 weeks a biomechanical and histological analysis was performed. RESULTS There were no differences in load-to-failure at 4 and 8 weeks between groups. The load-to-failure did increase between week 4 and week 8. Histologically the tendon-to bone union showed a disorganized fibrovascular tissue. Group C showed a different inflammatory pattern, with less presence of neutrophils and more presence of plasma cells. CONCLUSION The use of ASC does not improve the biomechanical or histological properties of the repair site. More studies are needed to improve techniques that enhance the healing site of the repair.
Collapse
|
46
|
Rundle CH, Chen ST, Coen MJ, Wergedal JE, Stiffel V, Lau KHW. Direct lentiviral-cyclooxygenase 2 application to the tendon-bone interface promotes osteointegration and enhances return of the pull-out tensile strength of the tendon graft in a rat model of biceps tenodesis. PLoS One 2014; 9:e98004. [PMID: 24848992 PMCID: PMC4029780 DOI: 10.1371/journal.pone.0098004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/28/2014] [Indexed: 11/18/2022] Open
Abstract
This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries.
Collapse
Affiliation(s)
- Charles H. Rundle
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Shin-Tai Chen
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Michael J. Coen
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Orthopedic Surgery, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Jon E. Wergedal
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
| | - Virginia Stiffel
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
| | - Kin-Hing William Lau
- Musculoskeletal Disease Center, J. L. Pettis Memorial VA Medical Center, Loma Linda, California, United States of America
- Department of Medicine, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- Department of Biochemistry, Loma Linda University School of Medicine, Loma Linda, California, United State of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Tendon–bone junctions (TBJs) are frequently injured, especially in athletic settings. Healing of TBJ injuries is slow and is often repaired with scar tissue formation that compromises normal function. This study explored the feasibility of using kartogenin (KGN), a biocompound, to enhance the healing of injured TBJs. We first determined the effects of KGN on the proliferation and chondrogenic differentiation of rabbit bone marrow stromal cells (BMSCs) and patellar tendon stem/progenitor cells (PTSCs) in vitro. KGN enhanced cell proliferation in both cell types in a concentration-dependent manner and induced chondrogenic differentiation of stem cells, as demonstrated by high expression levels of chondrogenic markers aggrecan, collagen II and Sox-9. Besides, KGN induced the formation of cartilage-like tissues in cell cultures, as observed through the staining of abundant proteoglycans, collagen II and osteocalcin. When injected into intact rat patellar tendons in vivo, KGN induced cartilage-like tissue formation in the injected area. Similarly, when KGN was injected into experimentally injured rat Achilles TBJs, wound healing in the TBJs was enhanced, as evidenced by the formation of extensive cartilage-like tissues. These results suggest that KGN may be used as an effective cell-free clinical therapy to enhance the healing of injured TBJs.
Collapse
|
48
|
Reduction of tunnel enlargement with use of autologous ruptured tissue in anterior cruciate ligament reconstruction: a pilot clinical trial. Arthroscopy 2014; 30:468-74. [PMID: 24582053 DOI: 10.1016/j.arthro.2013.12.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 02/02/2023]
Abstract
PURPOSE To compare the tunnel enlargement of double-bundle (DB) anterior cruciate ligament reconstruction (ACLR) with and without suturing of autologous ruptured tissue to hamstring graft in patients with subacute anterior cruciate ligament injury. METHODS Ten patients with subacute (≤3 months after injury) anterior cruciate ligament rupture were randomly allocated to undergo DB ACLR with suturing of the ruptured tissue to hamstring graft (n = 5) or conventional DB ACLR (n = 5). When autologous ruptured tissue was used, remnant ruptured tissue was then harvested, divided into 4 pieces, placed between the loops at the distal and proximal portions of the graft, and secured with the suture. As the primary endpoint, tunnel volume assessment by 3-dimensional multi-detector row computed tomography (MDCT) was performed 1 year after ACLR. To assess the efficacy of these procedures, the Lysholm score, anterior tibial translation (measured with a KT-1000 arthrometer [MEDmetric, San Diego, CA]), and rotational instability (measured by the pivot-shift test) were evaluated after 2 years. RESULTS Tunnel volume enlargement between 3 weeks and 1 year after ACLR as assessed by 3-dimensional MDCT was significantly less for ACLR using ruptured tissue than for conventional ACLR, especially at the femoral site (P < .05). However, the postoperative Lysholm score, anterior stability of the knee measured with the KT-1000 arthrometer, and rate of negative manual pivot-shift test results did not differ significantly between the 2 groups. There was no correlation to the clinical outcomes in terms of tunnel size. CONCLUSIONS The Lysholm score, anterior laxity measured with the KT-1000 arthrometer, and rotational instability according to the pivot-shift test did not differ significantly between ACLR using ruptured tissue and the conventional technique. However, ACLR using ruptured tissue produced less femoral tunnel enlargement as assessed by MDCT, warranting further long-term follow-up to elucidate its effectiveness. LEVEL OF EVIDENCE Level II, prospective comparative study.
Collapse
|
49
|
Chow DHK, Suen PK, Huang L, Cheung WH, Leung KS, Ng C, Shi SQ, Wong MWN, Qin L. Extracorporeal shockwave enhanced regeneration of fibrocartilage in a delayed tendon-bone insertion repair model. J Orthop Res 2014; 32:507-14. [PMID: 24375544 DOI: 10.1002/jor.22566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/02/2013] [Indexed: 02/04/2023]
Abstract
Fibrous tissue is often formed in delayed healing of tendon bone insertion (TBI) instead of fibrocartilage. Extracorporeal shockwave (ESW) provides mechanical cues and upregulates expression of fibrocartilage-related makers and cytokines. We hypothesized that ESW would accelerate fibrocartilage regeneration at the healing interface in a delayed TBI healing model. Partial patellectomy with shielding at the TBI interface was performed on 32 female New Zealand White Rabbits for establishing this delayed TBI healing model. The rabbits were separated into the control and ESW group for evaluations at postoperative week 8 and 12. Shielding was removed at week 4 and a single ESW treatment was applied at week 6. Fibrocartilage regeneration was evaluated histomorphologically and immunohistochemically. Vickers hardness of the TBI matrix was measured by micro-indentation. ESW group showed higher fibrocartilage area, thickness, and proteoglycan deposition than the control in week 8 and 12. ESW increased expression of SOX9 and collagen II significantly in week 8 and 12, respectively. ESW group showed a gradual transition of hardness from bone to fibrocartilage to tendon, and had a higher Vickers hardness than the control group at week 12. In conclusion, ESW enhanced fibrocartilage regeneration at the healing interface in a delayed TBI healing model.
Collapse
Affiliation(s)
- Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hu J, Zhou Y, Huang L, Liu J, Lu H. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. BMC Musculoskelet Disord 2014; 15:114. [PMID: 24690170 PMCID: PMC3994218 DOI: 10.1186/1471-2474-15-114] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 03/05/2014] [Indexed: 12/14/2022] Open
Abstract
Background Porous biphasic calcium phosphate (BCP) ceramics exhibit good biocompatibility and bone conduction but are not inherently osteoinductive. To overcome this disadvantage, we coated conventional porous BCP ceramics with nano-hydroxyapatite (nHA). nHA was chosen as a coating material due to its high osteoinductive potential. Methods We used a hydrothermal deposition method to coat conventional porous BCP ceramics with nHA and assessed the effects of the coating on the physical and mechanical properties of the underlying BCP. Next, its effects on mesenchymal stem cell (MSC) attachment, proliferation, viability, and osteogenic differentiation were investigated. Results nHA formed a deposited layer on the BCP surface, and synthesized nHA had a rod-like shape with lengths ranging from ~50–200 nm and diameters from ~15–30 mm. The nHA coating did not significantly affect the density, porosity, flexural strength, or compressive strength of the underlying BCP (P > 0.1). Scanning electron microscopy showed MSC attachment to the scaffolds, with a healthy morphology and anchorage to nHA crystals via cytoplasmic processes. The densities of MSCs attached on BCP and nHA-coated BCP scaffolds were 62 ± 26 cells/mm2 and 63 ± 27 cells/mm2 (P > 0.1), respectively, after 1 day and 415 ± 62 cells/mm2 and 541 ± 35 cells/mm2 (P < 0.05) respectively, after 14 days. According to an MTT assay, MSC viability was higher on nHA-coated BCP scaffolds than on BCP scaffolds (P < 0.05). In addition, MSCs on nHA-coated BCP scaffolds produced more alkaline phosphatase, collagen type I, and osteocalcin than MSCs on BCP scaffolds (P < 0.05). Conclusions Our results demonstrate that BCP scaffolds coated with nHA were more conducive for MSC adhesion, proliferation, and osteogenic differentiation than conventional, uncoated BCP scaffolds, indicating that nHA coating can enhance the osteoinductive potential of BCP ceramics, making this material more suitable for applications in bone tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Hongbin Lu
- Department of Sports Medicine, Research Center of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|