1
|
Gorodetsky R, Lazmi Hailu A, Volinsky E, Adani B, Pappo O, Israeli E. The Use of Potent Populations of Expanded Fetal Human Placental Stromal Cells for the Treatment of Dextran Sodium Sulfate-Induced Colitis in a Mouse Model. Int J Mol Sci 2025; 26:3222. [PMID: 40244025 PMCID: PMC11989926 DOI: 10.3390/ijms26073222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Inflammatory Bowel Disease (IBD) is a multifactorial gastrointestinal condition encompassing two major forms of intestinal inflammation: Crohn's disease (CD) and ulcerative colitis (UC). Both conditions are linked to auto-inflammatory reactions and genetic predispositions. Various drug therapies and biological treatments proposed to reduce IBD-associated inflammation. We induced IBD in a mouse model by stimulating bowel inflammation with an oral dextran sodium sulfate (DSS) beverage. Our novel cell therapy approach for IBD involves intramuscular (IM) and intraperitoneal (IP) delivery of non-matched, expanded, potent xenogeneic fetal human mesenchymal stromal cells (f-hPSCs) in 2 × 106 cell injections. This cell therapy has already been shown previously to induce pro-regenerative and anti-inflammatory effects in different systemic and local disorders, where the injected f-hPSCs were shown to respond to the stress of the host and secrete the adequate secretome in response to this stress. In the current study, the IP-injected f-hPSCs treatment of the DSS-induced IBD enhanced the regenerative processes of the damaged bowel and reduced the inflammatory process. This was associated with rapid regain of the mice's weight and a decrease in inflammation-associated parameters, such as colon edema, bowel shortening, and a threefold increase in bowel mass, as estimated by increased colon weight and reduced length. This ratio best emphasized the induced inflammatory response associated with the decrease in the inflamed colon length with an increase in its mass. Although IM f-hPSCs delivery was somehow effective by a few parameters, the IP delivery produced a superior response. The IP f-hPSCs treated mice lost only ~15% of their weight at the peak of the IBD effect, compared to ~25% in untreated mice. A reduction in the inflammatory response of the gut was also indicated by a decrease in neutrophil infiltration, as assayed by a myeloperoxidase (MPO) assay. Additionally, a significant improvement in the histological score of the gut and faster recovery to 90% of its original size was observed. These findings suggest that f-hPSC treatments could serve as an effective and safe anti-inflammatory and pro-regenerative treatment for IBD.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Laboratory of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (A.L.H.); (E.V.)
| | - Astar Lazmi Hailu
- Laboratory of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (A.L.H.); (E.V.)
| | - Evgenia Volinsky
- Laboratory of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (A.L.H.); (E.V.)
| | - Boaz Adani
- Laboratory of Biotechnology and Radiobiology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (A.L.H.); (E.V.)
| | - Orit Pappo
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel;
| | - Eran Israeli
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel;
| |
Collapse
|
2
|
Cheng J, Zhang C. Mesenchymal Stem Cell Therapy: Therapeutic Opportunities and Challenges for Diabetic Kidney Disease. Int J Mol Sci 2024; 25:10540. [PMID: 39408867 PMCID: PMC11477055 DOI: 10.3390/ijms251910540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease (ESRD), which severely affects the quality of patients' lives. However, the current therapeutic approaches can only postpone its progression to ESRD. It is therefore imperative to develop a novel therapeutic strategy for renal injury in DKD, with the objective of restoring renal function and reversing the process of ESRD. In recent years, the potential of mesenchymal stem cell (MSC) therapy for DKD has garnered increasing attention within the scientific community. Preclinical research on MSC therapy has yielded promising results, and the safety of MSC treatment in vivo has been substantiated in clinical studies. An increasing body of evidence suggests that MSC therapy has significant potential for the treatment of DKD. This article reviews the existing research on MSCs and their derived exosomes in treating DKD and analyzes the underlying mechanism of MSC-based therapy for DKD. Additionally, we discuss the potential of combining MSC therapy with conventional pharmacological treatments, along with the constraints and prospects of MSC therapy for DKD. We hope this review can provide a precise and comprehensive understanding of MSCs for the treatment of DKD.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China;
| |
Collapse
|
3
|
Deng X, Zhang S, Qing Q, Wang P, Ma H, Ma Q, Zhao W, Tang H, Lu M. Distinct biological characteristics of mesenchymal stem cells separated from different components of human placenta. Biochem Biophys Rep 2024; 39:101739. [PMID: 38974020 PMCID: PMC11225169 DOI: 10.1016/j.bbrep.2024.101739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have tremendous potential in cell therapy and regenerative medicine. The placenta-derived MSCs (PMSCs) are becoming favorable sources as they are ethically preferable and rich in MSCs. Although several subgroups of PMSCs have been identified from human term placenta, optimal sources for specific clinical applications remain to be elucidated. This study aimed to isolate MSCs from various components of the placenta, and compare their biological characteristics, including morphology, proliferation, immunophenotype, differentiation potential, growth factor and cytokine secretion, and immunomodulatory properties. Finally, four distinct groups of PMSCs were isolated from the placenta: amniotic membrane-derived MSCs (AM-MSCs), chorionic membrane-derived MSCs (CM-MSCs), chorionic plate-derived MSCs (CP-MSCs), and chorionic villi-derived MSCs (CV-MSCs). The results showed that CV-MSCs had good proliferation ability, and were easier to induce osteogenic and chondrogenic differentiation; CP-MSCs exhibited the strongest inhibitory effect on the proliferation of activated T cells, secreted high levels of EGF and IL-6, and could well differentiate into osteoblasts, adipocytes, and chondroblasts; AM-MSCs showed good growth dynamics in the early generations, were able to grow at high density, and tended to induce differentiation into osteogenic and neural lineages. These findings may provide novel evidence for the selection of seed cells in clinical application.
Collapse
Affiliation(s)
- Xiangxiong Deng
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Su Zhang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Quan Qing
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Pengfei Wang
- Huzhou Maternity and Child Health Care Hospital, Huzhou, Zhejiang, 313000, China
| | - Haiyang Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Qinghua Ma
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Weixiang Zhao
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Hanjing Tang
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| | - Min Lu
- Zhejiang Gene Stem Cell Biotech Co. Ltd., Huzhou, Zhejiang, 313000, China
| |
Collapse
|
4
|
Singh P, Metkari SM, Tripathi A, Bhartiya D. Reversing Uteropathies Including Cancer-Like Changes in Mice by Transplanting Mesenchymal Stromal Cells or XAR Treatment. Stem Cell Rev Rep 2024; 20:258-282. [PMID: 37779174 DOI: 10.1007/s12015-023-10632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
Pluripotent, very small embryonic-like stem cells (VSELs) and tissue-committed 'progenitors' termed endometrial stem cells (EnSCs) are reported in mouse uterus. They express gonadal and gonadotropin hormone receptors and thus are vulnerable to early-life endocrine insults. Neonatal exposure of mouse pups to endocrine disruption cause stem/progenitor cells to undergo epigenetic changes, excessive self-renewal, and blocked differentiation that results in various uteropathies including non-receptive endometrium, hyperplasia, endometriosis, adenomyosis, and cancer-like changes in adult life. Present study investigated reversal of these uteropathies, by normalizing functions of VSELs and EnSCs. Two strategies were evaluated including (i) transplanting mesenchymal stromal cells (provide paracrine support) on D60 or (ii) oral administration of XAR (epigenetic regulator) daily from days 60-100 and effects were studied later in 100 days old mice. Results show normalization of stem/progenitor cells (Oct-4, Oct-4A, Sox-2, Nanog) and Wnt signalling (Wnt-4, β-catenin, Axin-2) specific transcripts. Flow cytometry results showed reduced numbers of 2-6 µm, LIN-CD45-SCA-1 + VSELs. Hyperplasia (Ki67) of epithelial (Pax-8, Foxa-2) and myometrial (α-Sma, Tgf-β) cells was reduced, adenogenesis (differentiation of glands) was restored, endometrial receptivity and differentiation (LIF, c-KIT, SOX-9, NUMB) and stromal cells niche (CD90, VIMENTIN, Pdgfra, Vimentin) were improved, cancer stem cells markers (OCT-4, CD166) were reduced while tumor suppressor genes (PTEN, P53) and epigenetic regulators (Ezh-2, Sirt-1) were increased. To conclude, normalizing VSELs/EnSCs to manage uteropathies provides a novel basis for initiating clinical studies. The study falls under the umbrella of United Nations Sustainable Development Goal 3 to ensure healthy lives and well-being for all of all ages.
Collapse
Affiliation(s)
- Pushpa Singh
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - S M Metkari
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400 013, India
| | - Deepa Bhartiya
- Stem Cell Biology Department, ICMR-National Institute for Research in Reproductive & Child Health, Jehangir Merwanji Street, Parel, Mumbai, 400 012, India.
- Epigeneres Biotech Pvt Ltd, Lower Parel, Mumbai, 400 013, India.
| |
Collapse
|
5
|
Subayyil AA, Basmaeil YS, Kulayb HB, Alrodayyan M, Alhaber LAA, Almanaa TN, Khatlani T. Preconditioned Chorionic Villus Mesenchymal Stem/Stromal Cells (CVMSCs) Minimize the Invasive Phenotypes of Breast Cancer Cell Line MDA231 In Vitro. Int J Mol Sci 2023; 24:ijms24119569. [PMID: 37298519 DOI: 10.3390/ijms24119569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 06/12/2023] Open
Abstract
Among the newer choices of targeted therapies against cancer, stem cell therapy is gaining importance because of their antitumor properties. Stem cells suppress growth, metastasis, and angiogenesis, and induce apoptosis in cancer cells. In this study, we have examined the impact of the cellular component and the secretome of preconditioned and naïve placenta-derived Chorionic Villus Mesenchymal Stem Cells (CVMSCs) on the functional characteristics of the Human Breast Cancer cell line MDA231. MDA231 cells were treated with preconditioned CVMSCs and their conditioned media (CM), followed by an evaluation of their functional activities and modulation in gene and protein expression. Human Mammary Epithelial Cells (HMECs) were used as a control. CM obtained from the preconditioned CVMSCs significantly altered the proliferation of MDA231 cells, yet no change in other phenotypes, such as adhesion, migration, and invasion, were observed at various concentrations and time points tested. However, the cellular component of preconditioned CVMSCs significantly inhibited several phenotypes of MDA231 cells, including proliferation, migration, and invasion. CVMSCs-treated MDA231 cells exhibited modulation in the expression of various genes involved in apoptosis, oncogenesis, and Epithelial to Mesenchymal Transition (EMT), explaining the changes in the invasive behavior of MDA231 cells. These studies reveal that preconditioned CVMSCs may make useful candidate in a stem cell-based therapy against cancer.
Collapse
Affiliation(s)
- Abdullah Al Subayyil
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Yasser S Basmaeil
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Hayaa Bin Kulayb
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Maha Alrodayyan
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| | - Lama Abdulaziz A Alhaber
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tanvir Khatlani
- Blood and Cancer Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia
| |
Collapse
|
6
|
Teoh PL, Mohd Akhir H, Abdul Ajak W, Hiew VV. Human Mesenchymal Stromal Cells Derived from Perinatal Tissues: Sources, Characteristics and Isolation Methods. Malays J Med Sci 2023; 30:55-68. [PMID: 37102047 PMCID: PMC10125235 DOI: 10.21315/mjms2023.30.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/22/2022] [Indexed: 04/28/2023] Open
Abstract
Mesenchymal stromal/stem cells (MSCs) derived from perinatal tissues have become indispensable sources for clinical applications due to their superior properties, ease of accessibility and minimal ethical concerns. MSCs isolated from different placenta (PL) and umbilical cord (UC) compartments exhibit great potential for stem cell-based therapies. However, their biological activities could vary due to tissue origins and differences in differentiation potentials. This review provides an overview of MSCs derived from various compartments of perinatal tissues, their characteristics and current isolation methods. Factors affecting the yield and purity of MSCs are also discussed as they are important to ensure consistent and unlimited supply for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Peik Lin Teoh
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | | | - Warda Abdul Ajak
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Vun Vun Hiew
- Biotechnology Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
7
|
Mao Y, Yang Y, Sun C, Zou Y, Zhang Y, Wu B, Li C, Huang J, Zhang W, Wang J. Human amniotic mesenchymal stem cells promote endometrium regeneration in a rat model of intrauterine adhesion. Cell Biol Int 2023; 47:75-85. [PMID: 36317446 DOI: 10.1002/cbin.11951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/08/2022]
Abstract
Human amniotic transplantation has been proposed to improve the therapeutic efficacy of intrauterine adhesions (IUAs). Human amniotic mesenchymal stem stromal cells (hAMSCs) can differentiate into multiple tissue types. This study aimed to investigate the mechanism by which hAMSCs transplantation promotes endometrial regeneration. The rat models with IUA were established through mechanical and infective methods, and PKH26-labeled hAMSCs were transplanted through the tail vein (combined with/without estrogen). Under three different conditions, hAMSCs differentiated into endometrium-like cells. HE and Mason staining assays, and immunohistochemistry were used to compare the changes in rat models treated with hAMSCs and/or estrogen transplantation. To define the induction of hAMSCs to endometrium-like cells in vitro, an induction medium (cytokines, estrogen) was used to investigate the differentiation of hAMSCs into endometrium-like cells. qRT-polymerase chain reaction (PCR) and western blotting were performed to detect the differentiation of hAMSCs into endometrium-like cells. A greater number of glands, fewer endometrial fibrotic areas, and stronger expression of vascular endothelial growth factor and cytokeratin in the combined group (hAMSCs transplantation combined with estrogen) than in the other treatment groups were observed. hAMSCs could be induced into endometrium-like cells by cytokine treatment (TGF-β1, EGF, and PDGF-BB). Transplantation of hAMSCs is an effective alternative for endometrial regeneration after injury in rats. The differentiation protocol for hAMSCs will be useful for further studies on human endometrial regeneration.
Collapse
Affiliation(s)
- Yanhua Mao
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Yang
- Department of Obstetrics and Gynecology, Shanghai Jiading Maternal Child Health Hospital, Shanghai, China
| | - Congcong Sun
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Yulong Zou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingfeng Zhang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Benyuan Wu
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Changjiang Li
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jinglin Huang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Wenwen Zhang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Obstetrics and Gynecology, The University-Town Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Zhu Y, Kong B, Liu R, Zhao Y. Developing biomedical engineering technologies for reproductive medicine. SMART MEDICINE 2022; 1:e20220006. [PMID: 39188735 PMCID: PMC11235786 DOI: 10.1002/smmd.20220006] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/08/2022] [Indexed: 08/28/2024]
Abstract
Infertility is a rising global health issue with a far-reaching impact on the socioeconomic livelihoods. As there are highly complex causes of male and female infertility, it is highly desired to promote and maintain reproductive health by the integration of advanced technologies. Biomedical engineering, a mature technology applied in the fields of biology and health care, has emerged as a powerful tool in the diagnosis and treatment of infertility. Nowadays, various promising biomedical engineering approaches are under investigation to address human infertility. Biomedical engineering approaches can not only improve our fundamental understanding of sperm and follicle development in bioengineered devices combined with microfabrication, biomaterials, and relevant cells, but also be applied to repair uterine, ovary, and cervicovaginal tissues and restore tissue function. Here, we introduce the infertility in male and female and provide a comprehensive summary of the various promising biomedical engineering technologies and their applications in reproductive medicine. Also, the challenges and prospects of biomedical engineering technologies for clinical transformation are discussed. We believe that this review will promote communications between engineers, biologists, and clinicians and potentially contribute to the clinical transformation of these innovative research works in the immediate future.
Collapse
Affiliation(s)
- Yujuan Zhu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| | - Bin Kong
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Liu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiangChina
| |
Collapse
|
9
|
Heat-Induced Proteotoxic Stress Response in Placenta-Derived Stem Cells (PDSCs) Is Mediated through HSPA1A and HSPA1B with a Potential Higher Role for HSPA1B. Curr Issues Mol Biol 2022; 44:4748-4768. [PMID: 36286039 PMCID: PMC9600182 DOI: 10.3390/cimb44100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
Placenta-derived stem cells (PDSCs), due to unique traits such as mesenchymal and embryonic characteristics and the absence of ethical constraints, are in a clinically and therapeutically advantageous position. To aid in stemness maintenance, counter pathophysiological stresses, and withstand post-differentiation challenges, stem cells require elevated protein synthesis and consequently augmented proteostasis. Stem cells exhibit source-specific proteostasis traits, making it imperative to study them individually from different sources. These studies have implications for understanding stem cell biology and exploitation in the augmentation of therapeutic applications. Here, we aim to identify the primary determinants of proteotoxic stress response in PDSCs. We generated heat-induced dose-responsive proteotoxic stress models of three stem cell types: placental origin cells, the placenta-derived mesenchymal stem cells (pMSCs), maternal origin cells, the decidua parietalis mesenchymal stem cells (DPMSCs), and the maternal–fetal interface cells, decidua basalis mesenchymal stem cells (DBMSCs), and measured stress induction through biochemical and cell proliferation assays. RT-PCR array analysis of 84 genes involved in protein folding and protein quality control led to the identification of Hsp70 members HSPA1A and HSPA1B as the prominent ones among 17 significantly expressed genes and with further analysis at the protein level through Western blotting. A kinetic analysis of HSPA1A and HSPA1B gene and protein expression allowed a time series evaluation of stress response. As identified by protein expression, an active stress response is in play even at 24 h. More prominent differences in expression between the two homologs are detected at the translational level, alluding to a potential higher requirement for HSPA1B during proteotoxic stress response in PDSCs.
Collapse
|
10
|
Zhang Y, Zhong Y, Zou L, Liu X. Significance of Placental Mesenchymal Stem Cell in Placenta Development and Implications for Preeclampsia. Front Pharmacol 2022; 13:896531. [PMID: 35721156 PMCID: PMC9198303 DOI: 10.3389/fphar.2022.896531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
The well-developed placentation is fundamental for the reproductive pregnancy while the defective placental development is the pathogenetic basis of preeclampsia (PE), a dangerous complication of pregnancy comprising the leading causes of maternal and perinatal morbidity and mortality. Placenta-derived mesenchymal stem cells (PMSCs) are a group of multipotent stem cells that own a potent capacity of differentiating into constitutive cells of vessel walls. Additionally, with the paracrine secretion of various factors, PMSCs inextricably link and interact with other component cells in the placenta, collectively improving the placental vasculature, uterine spiral artery remolding, and uteroplacental interface immunoregulation. Recent studies have further indicated that preeclamptic PMSCs, closely implicated in the abnormal crosstalk between other ambient cells, disturb the homeostasis and development in the placenta. Nevertheless, PMSCs transplantation or PMSCs exosome therapies tend to improve the placental vascular network and trophoblastic functions in the PE model, suggesting PMSCs may be a novel and putative therapeutic strategy for PE. Herein, we provide an overview of the multifaceted contributions of PMSCs in early placental development. Thereinto, the intensive interactions between PMSCs and other component cells in the placenta were particularly highlighted and further extended to the implications in the pathogenesis and therapeutic strategies of PE.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqi Zhong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Decidua Parietalis Mesenchymal Stem/Stromal Cells and Their Secretome Diminish the Oncogenic Properties of MDA231 Cells In Vitro. Cells 2021; 10:cells10123493. [PMID: 34944000 PMCID: PMC8700435 DOI: 10.3390/cells10123493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to suppress tumor growth, inhibit angiogenesis, regulate cellular signaling, and induce apoptosis in cancer cells. We have earlier reported that placenta-derived decidua parietalis mesenchymal stem/stromal cells (DPMSCs) not only retained their functional characteristics in the cancer microenvironment but also exhibited increased expression of anti-apoptotic genes, demonstrating their anti-tumor properties in the tumor setting. In this study, we have further evaluated the effects of DPMSCs on the functional outcome of human breast cancer cell line MDA231. MDA231 cells were exposed to DPMSCs, and their biological functions, including adhesion, proliferation, migration, and invasion, were evaluated. In addition, genomic and proteomic modifications of the MDA231 cell line, in response to the DPMSCs, were also evaluated. MDA231 cells exhibited a significant reduction in proliferation, migration, and invasion potential after their treatment with DPMSCs. Furthermore, DPMSC treatment diminished the angiogenic potential of MDA231 cells. DPMSC treatment modulated the expression of various pro-apoptotic as well as oncogenes in MDA231 cells. The properties of DPMSCs to inhibit the invasive characteristics of MDA231 cells demonstrate that they may be a useful candidate in a stem-cell-based therapy against cancer.
Collapse
|
12
|
James JL, Umapathy A, Srinivasan S, Barker CN, Brooks A, Hearn J, Chhana A, Williams E, Sheppard H, McGlashan SR. The Chondrogenic Potential of First-Trimester and Term Placental Mesenchymal Stem/Stromal Cells. Cartilage 2021; 13:544S-558S. [PMID: 34521248 PMCID: PMC8804733 DOI: 10.1177/19476035211044822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES Mesenchymal stem/stromal cells (MSCs) are a well-established cell source for cartilage engineering, but challenges remain as differentiation often results in chondrocyte hypertrophy. Chondrogenic potential also varies with MSC source and donor age. We assessed the chondrogenic potential of first-trimester and term placental MSCs and compared their response to commonly used bone marrow MSCs (BM-MSCs). DESIGN MSCs were isolated from first-trimester and term placentae. BM-MSCs were commercially obtained. Chondrogenesis was induced by micromass culture in commercial chondrogenic media for 7, 14, or 21 days. Pellets were assessed for glycosaminoglycan (GAG) content, and types I, II, and X collagen. Gene expression was profiled using Qiagen RT2 human MSC arrays. RESULTS At day 0, first-trimester and term MSCs expression levels of many chondrogenic genes to BM-MSC after 21 days of culture. Only first trimester MSCs showed significant changes in chondrogenic gene expression during induction compared to day 0 undifferentiated MSCs (greater BMP4, KAT2B, and reduced GDF6 expression). Additionally, first-trimester MSCs showed significantly greater expression of ABCB1 (at days 14 and 21) and BMP4 (at days 7, 14, 21) compared with term MSCs. Both first-trimester and term pellets showed increased GAG content over time and term MSCs had significantly GAG greater compared with BM-MSCs at days 7 and 14. Type II collagen was present in all pellets but unlike BM-MSCs, type I collagen was not observed in first-trimester or term MSC pellets. CONCLUSIONS These data highlight differences in BM-MSC and placental MSC chondrogenesis and demonstrate that placental MSCs may be an alternative cell source.
Collapse
Affiliation(s)
- Joanna L. James
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Anandita Umapathy
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Sonia Srinivasan
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Claire N. Barker
- Anatomy and Medical Imaging, The
University of Auckland, Auckland, New Zealand
| | - Anna Brooks
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - James Hearn
- Molecular Medicine and Pathology, The
University of Auckland, Auckland, New Zealand
| | - Ashika Chhana
- Anatomy and Medical Imaging, The
University of Auckland, Auckland, New Zealand
| | - Eloise Williams
- Obstetrics and Gynaecology, The
University of Auckland, Auckland, New Zealand
| | - Hilary Sheppard
- School of Biological Sciences, The
University of Auckland, Auckland, New Zealand
| | - Sue R. McGlashan
- Anatomy and Medical Imaging, The
University of Auckland, Auckland, New Zealand,Sue R. McGlashan, Department of Anatomy and
Medical Imaging, School of Medical Sciences, The University of Auckland, Faculty
of Medical and Health Sciences, 85 Park Road, Grafton, Auckland 1142, New
Zealand.
| |
Collapse
|
13
|
Guerrero EN, Vega S, Fu C, De León R, Beltran D, Solis MA. Increased proliferation and differentiation capacity of placenta-derived mesenchymal stem cells from women of median maternal age correlates with telomere shortening. Aging (Albany NY) 2021; 13:24542-24559. [PMID: 34845112 PMCID: PMC8660609 DOI: 10.18632/aging.203724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023]
Abstract
Mesenchymal stem cells (MSCs) experience functional decline with systemic aging, resulting in reduced proliferation, increased senescence, and lower differentiation potential. The placenta represents a valuable source of MSCs, but the possible effect of donor age on the properties of placenta-derived mesenchymal stem cells (PDMSCs) has not been thoroughly studied. Thus, the aim of this study was to underscore the effect of maternal age on the biological characteristics and stemness properties of PDMSCs. PDMSCs were isolated from 5 donor age groups (A: 18-21, B: 22-25, C: 26-30, D:31-35 and E: ≥36 years) for comparison of morphological, proliferative and differentiation properties. The pluripotency markers NANOG, OCT4, and SSEA4, as well as multipotency and differentiation markers, showed higher expression in PDMSCs from mothers aged 22-35 years, with up to a 7-fold increase in adipogenesis. Cumulative population doubling, cell growth curves, and colony-forming unit-fibroblast assays revealed higher self-renewal ability in donors 26-30 years old. An increase in the proliferative characteristics of PDMSCs correlated with increased telomere shortening, suggesting that shorter telomere lengths could be related to cellular division rather than aging. A clear understanding of the effect of maternal age on MSC regenerative potential will assist in increasing the effectiveness of future cell therapies.
Collapse
Affiliation(s)
- Erika N. Guerrero
- Stem Cell Research Group, Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
- Universidad Latina de Panamá, Panama City, Republic of Panama
| | - Shantal Vega
- Stem Cell Research Group, Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
- Universidad de Panamá, Panama City, Republic of Panama
| | - Cindy Fu
- Stem Cell Research Group, Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
- Universidad Latina de Panamá, Panama City, Republic of Panama
| | - Ruth De León
- Stem Cell Research Group, Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
| | - Davis Beltran
- Department of Research in Virology and Biotechnology, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
| | - Mairim Alexandra Solis
- Stem Cell Research Group, Department of Research in Sexual and Reproductive Health, Gorgas Memorial Institute for Health Studies, Panama City, Republic of Panama
- Universidad de Panamá, Panama City, Republic of Panama
- Sistema Nacional de Investigación, SENACYT, Panama City, Republic of Panama
| |
Collapse
|
14
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
15
|
Chu Y, Zhu C, Yue C, Peng W, Chen W, He G, Liu C, Lv Y, Gao G, Yao K, Han R, Hu X, Zhang Y, Ye Y. Chorionic villus-derived mesenchymal stem cell-mediated autophagy promotes the proliferation and invasiveness of trophoblasts under hypoxia by activating the JAK2/STAT3 signalling pathway. Cell Biosci 2021; 11:182. [PMID: 34645519 PMCID: PMC8513187 DOI: 10.1186/s13578-021-00681-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trophoblast dysfunction during pregnancy is fundamentally involved in preeclampsia. Several studies have revealed that human chorionic villous mesenchymal stem cells (CV-MSCs) could regulate trophoblasts function. RESULTS To understand how human chorionic villous mesenchymal stem cells (CV-MSCs) regulate trophoblast function, we treated trophoblasts with CV-MSC supernatant under hypoxic conditions. Treatment markedly enhanced proliferation and invasion and augmented autophagy. Transcriptome and pathway analyses of trophoblasts before and after treatment revealed JAK2/STAT3 signalling as an upstream regulator. In addition, STAT3 mRNA and protein levels increased during CV-MSC treatment. Consistent with these findings, JAK2/STAT3 signalling inhibition reduced the autophagy, survival and invasion of trophoblasts, even in the presence of CV-MSCs, and blocking autophagy did not affect STAT3 activation in trophoblasts treated with CV-MSCs. Importantly, STAT3 overexpression increased autophagy levels in trophoblasts; thus, it positively regulated autophagy in hypoxic trophoblasts. Human placental explants also proved our findings by showing that STAT3 was activated and that LC3B-II levels were increased by CV-MSC treatment. CONCLUSION In summary, our data suggest that CV-MSC-dependent JAK2/STAT3 signalling activation is a prerequisite for autophagy upregulation in trophoblasts.
Collapse
Affiliation(s)
- Yijing Chu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Chengzhan Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chongyu Yue
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Wei Peng
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Weiping Chen
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Guifang He
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changchang Liu
- Medical Animal Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yang Lv
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Guoqiang Gao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Ke Yao
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Rendong Han
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Xiaoyu Hu
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China
| | - Yan Zhang
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China.
| | - Yuanhua Ye
- Department of Obstetrics and Gynaecology, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266000, China.
| |
Collapse
|
16
|
Al Subayyil A, Basmaeil YS, Alenzi R, Khatlani T. Human Placental Mesenchymal Stem/Stromal cells (pMSCs) inhibit agonist-induced platelet functions reducing atherosclerosis and thrombosis phenotypes. J Cell Mol Med 2021; 25:9268-9280. [PMID: 34535958 PMCID: PMC8500971 DOI: 10.1111/jcmm.16848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem/stromal cells isolated from human term placenta (pMSCs) have potential to treat clinically manifested inflammatory diseases. Atherosclerosis is a chronic inflammatory disease, and platelets play a contributory role towards its pathogenesis. During transplantation, MSCs interact with platelets and exert influence on their functional outcome. In this study, we investigated the consequences of interaction between pMSCs and platelets, and its impact on platelet-mediated atherosclerosis in vitro. Human platelets were treated with various types of pMSCs either directly or with their secretome, and their effect on agonist-mediated platelet activation and functional characteristics were evaluated. Human umbilical vein endothelial cells (HUVECs) were used as control. The impact of pMSCs treatment on platelets was evaluated by the expression of activation markers and by platelet functional analysis. A subset of pMSCs reduced agonist-induced activation of platelets, both via direct contact and with secretome treatments. Decrease in platelet activation translated into diminished spreading, limited adhesion and minimized aggregation. In addition, pMSCs decreased oxidized LDL (ox-LDL)-inducedCD36-mediated platelet activation, establishing their protective role in atherosclerosis. Gene expression and protein analysis show that pMSCs express pro- and anti-thrombotic proteins, which might be responsible for the modulation of agonist-induced platelet functions. These data suggest the therapeutic benefits of pMSCs in atherosclerosis.
Collapse
Affiliation(s)
- Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Yasser S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Reem Alenzi
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
FURIN and placental syncytialisation: a cautionary tale. Cell Death Dis 2021; 12:635. [PMID: 34155192 PMCID: PMC8217546 DOI: 10.1038/s41419-021-03898-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/29/2022]
Abstract
FURIN is a pro-protein convertase previously shown to be important for placental syncytialisation (Zhou et al. [1]), a process of cell fusion whereby placental cytotrophoblast cells fuse to form a multinucleated syncytium. This finding has been broadly accepted however, we have evidence suggesting the contrary. Spontaneously syncytialising term primary human trophoblast cells and BeWo choriocarcinoma cells were treated with either FURIN siRNA or negative control siRNA or the protease inhibitor, DEC-RVKR-CMK, or vehicle. Cells were then left to either spontaneously syncytialise (primary trophoblasts) or were induced to syncytialise with forskolin (BeWo). Effects on syncytialisation were measured by determining human chorionic gonadotrophin secretion and E-cadherin protein levels. We showed that FURIN is not important for syncytialisation in either cell type. However, in primary trophoblasts another protease also inhibited by DEC-RVKR-CMK, may be involved. Our results directly contrast with those published by Zhou et al. Zhou et al. however, used first trimester villous explants to study syncytialisation, and we used term primary trophoblasts. Therefore, we suggest that FURIN may be involved in syncytialisation of first trimester trophoblasts, but not term trophoblasts. What is more concerning is that our results using BeWo cells do not agree with their results, even though for the most part, we used the same experimental design. It is unclear why these experiments yielded different results, however we wanted to draw attention to simple differences in measuring syncytialisation or flaws in method reporting (including omission of cell line source and passage numbers, siRNA concentration and protein molecular weights) and choice of immunoblot loading controls, that could impact on experimental outcomes. Our study shows that careful reporting of methods by authors and thorough scrutiny by referees are vital. Furthermore, a universal benchmark for measuring syncytialisation is required so that various studies of syncytialisation can be validated.
Collapse
|
18
|
Basmaeil Y, Al Subayyil A, Abumaree M, Khatlani T. Conditions Mimicking the Cancer Microenvironment Modulate the Functional Outcome of Human Chorionic Villus Mesenchymal Stem/Stromal Cells in vitro. Front Cell Dev Biol 2021; 9:650125. [PMID: 34235143 PMCID: PMC8255990 DOI: 10.3389/fcell.2021.650125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem/stromal cells isolated from chorionic villi of human term placentae (CV-MSCs) possess unique biological characters. They exhibit self-renewal, directional migration, differentiation, and immunomodulatory effects on other cell lineages, by virtue of which they can be utilized as therapeutic carriers, for drug targeting, and therapy. Tumors display characteristic features of a damaged tissue microenvironment, which is saturated with conditions such as hypoxia, sustained inflammation, and increased oxidative stress. CV-MSCs function normally in a high oxidative stress environment induced by hydrogen peroxide (H2O2) and glucose and also protect endothelial cells from their damaging effects. For their therapeutic applications in a disease like cancer, it is necessary to ascertain the effects of tumor microenvironment on their functional outcome. In this study, we investigated the functional activities, of CV-MSCs in response to conditioned media (CM) obtained from the culture of breast cancer cell line MDA-231 (CM-MDA231). CV-MSCs were exposed to CM-MDA231 for different spatio-temporal conditions, and their biological functions as well as modulation in gene expression were evaluated. Effect of CM-MDA231 on factors responsible for changes in functional outcome were also investigated at the protein levels. CV-MSCs exhibited significant reduction in proliferation but increased adhesion and migration after CM-MDA231 treatment. Interestingly, there was no change in their invasion potential. CM-MDA231 treatment modulated expression of various genes involved in important cellular events including, integration, survival, message delivery and favorable outcome after transplantation. Analysis of pathways related to cell cycle regulation revealed significant changes in the expression of p53, and increased phosphorylation of Retinoblastoma (Rb) and Checkpoint Kinase 2 in CV-MSCs treated with CM-MDA231. To summarize, these data reveal that CV-MSCs retain the ability to survive, adhere, and migrate after sustained treatment with CM-MDA231, a medium that mimics the cancer microenvironment. These properties of CV-MSCs to withstand the inflammatory tumor like microenvironment prove that they may make useful candidate in a stem cell based therapy against cancer. However, further pre-clinical studies are needed to validate their therapeutic usage.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Abdullah Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Mohammad Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulal Aziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Mesenchymal Stem/Stromal Cells from the Placentae of Growth Restricted Pregnancies Are Poor Stimulators of Angiogenesis. Stem Cell Rev Rep 2021; 16:557-568. [PMID: 32080795 DOI: 10.1007/s12015-020-09959-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extensively branched vascular network within the placenta is vital for materno-fetal exchange, and inadequate development of this network is implicated in the pregnancy disorder fetal growth restriction (FGR), where babies are born pathologically small. Placental mesenchymal stem/stromal cells (pMSCs) and placental macrophages both reside in close proximity to blood vessels within the placenta, where they are thought to promote angiogenesis via paracrine mechanisms. However, the relationship between pMSCs, macrophages and placental vascular development has not yet been examined. We aimed to determine if inadequate paracrine stimulation of placental vascular development by pMSCs and macrophages during pregnancy may contribute to the inadequate vascularisation seen in FGR. Media conditioned by MSCs from FGR placentae significantly inhibited endothelial tube formation, compared to conditioned media derived from normal pMSCs. Similarly, macrophages exposed to media conditioned by FGR pMSCs were less able to stimulate endothelial tube formation in comparison to macrophages exposed to media conditioned by normal pMSCs. While MSCs from normal placentae produce a combination of angiogenic and anti-angiogenic cytokines, there were no significant differences in the secretion of the anti-angiogenic cytokines thrombospondin-1, insulin growth factor binding protein-4, or decorin between normal and FGR pMSCs that could explain how FGR pMSCs inhibited endothelial tube formation. Together, these data suggest a dysregulation in the secretion of paracrine factors by pMSCs in FGR placentae. These findings illustrate how cross talk between pro-angiogenic cell types in the placenta may be crucial for adequate angiogenesis.
Collapse
|
20
|
Gorodetsky R, Aicher WK. Allogenic Use of Human Placenta-Derived Stromal Cells as a Highly Active Subtype of Mesenchymal Stromal Cells for Cell-Based Therapies. Int J Mol Sci 2021; 22:5302. [PMID: 34069909 PMCID: PMC8157571 DOI: 10.3390/ijms22105302] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The application of mesenchymal stromal cells (MSCs) from different sources, including bone marrow (BM, bmMSCs), adipose tissue (atMSCs), and human term placenta (hPSCs) has been proposed for various clinical purposes. Accumulated evidence suggests that the activity of the different MSCs is indirect and associated with paracrine release of pro-regenerative and anti-inflammatory factors. A major limitation of bmMSCs-based treatment for autologous application is the limited yield of cells harvested from BM and the invasiveness of the procedure. Similar effects of autologous and allogeneic MSCs isolated from various other tissues were reported. The easily available fresh human placenta seems to represent a preferred source for harvesting abundant numbers of human hPSCs for allogenic use. Cells derived from the neonate tissues of the placenta (f-hPSC) can undergo extended expansion with a low risk of senescence. The low expression of HLA class I and II on f-hPSCs reduces the risk of rejection in allogeneic or xenogeneic applications in normal immunocompetent hosts. The main advantage of hPSCs-based therapies seems to lie in the secretion of a wide range of pro-regenerative and anti-inflammatory factors. This renders hPSCs as a very competent cell for therapy in humans or animal models. This review summarizes the therapeutic potential of allogeneic applications of f-hPSCs, with reference to their indirect pro-regenerative and anti-inflammatory effects and discusses clinical feasibility studies.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Center of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72076 Tuebingen, Germany
| |
Collapse
|
21
|
Lattanzi W, Ripoli C, Greco V, Barba M, Iavarone F, Minucci A, Urbani A, Grassi C, Parolini O. Basic and Preclinical Research for Personalized Medicine. J Pers Med 2021; 11:jpm11050354. [PMID: 33946634 PMCID: PMC8146055 DOI: 10.3390/jpm11050354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
Basic and preclinical research founded the progress of personalized medicine by providing a prodigious amount of integrated profiling data and by enabling the development of biomedical applications to be implemented in patient-centered care and cures. If the rapid development of genomics research boosted the birth of personalized medicine, further development in omics technologies has more recently improved our understanding of the functional genome and its relevance in profiling patients’ phenotypes and disorders. Concurrently, the rapid biotechnological advancement in diverse research areas enabled uncovering disease mechanisms and prompted the design of innovative biological treatments tailored to individual patient genotypes and phenotypes. Research in stem cells enabled clarifying their role in tissue degeneration and disease pathogenesis while providing novel tools toward the development of personalized regenerative medicine strategies. Meanwhile, the evolving field of integrated omics technologies ensured translating structural genomics information into actionable knowledge to trace detailed patients’ molecular signatures. Finally, neuroscience research provided invaluable models to identify preclinical stages of brain diseases. This review aims at discussing relevant milestones in the scientific progress of basic and preclinical research areas that have considerably contributed to the personalized medicine revolution by bridging the bench-to-bed gap, focusing on stem cells, omics technologies, and neuroscience fields as paradigms.
Collapse
Affiliation(s)
- Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Cristian Ripoli
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Viviana Greco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marta Barba
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Iavarone
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Angelo Minucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
| | - Andrea Urbani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (W.L.); (C.R.); (V.G.); (M.B.); (F.I.); (A.M.); (A.U.); (C.G.)
- Dipartimento Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
22
|
MicroRNA124 and microRNA21-5p regulate migration, proliferation and differentiation of rat bone marrow mesenchymal stem cells. Biosci Rep 2021; 40:226597. [PMID: 33026076 PMCID: PMC7584812 DOI: 10.1042/bsr20193531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 08/29/2020] [Accepted: 10/02/2020] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that can be a useful source of cells for the treatment of many diseases, including neurologic diseases. The curative effect of MSCs relies mostly on cell’s capacity of migration, proliferation and differentiation. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles on regulating various cell behaviors. Here, we report that miRNA-124 (miR124) and miRNA-21-5p (miR21-5p) display different regulatory roles on migration, proliferation and neuron differentiation of MSCs. MiR124 was shown greatly promoting MSCs migration and neuronal differentiation. MiR21-5p could significantly enhance the proliferation and neuronal differentiation ability of MSCs. MiR124 and miR21-5p synergistically promote differentiation of MSCs into neurons. Collectively, miR124 and miR21-5p can functionally regulate cell migration, proliferation and neuronal differentiation of MSCs. Therefore, miR124 and miR21-5p may be promising tools to improve transplantation efficiency for neural injury.
Collapse
|
23
|
Soto J, Ding X, Wang A, Li S. Neural crest-like stem cells for tissue regeneration. Stem Cells Transl Med 2021; 10:681-693. [PMID: 33533168 PMCID: PMC8046096 DOI: 10.1002/sctm.20-0361] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/18/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neural crest stem cells (NCSCs) are a transient population of cells that arise during early vertebrate development and harbor stem cell properties, such as self‐renewal and multipotency. These cells form at the interface of non‐neuronal ectoderm and neural tube and undergo extensive migration whereupon they contribute to a diverse array of cell and tissue derivatives, ranging from craniofacial tissues to cells of the peripheral nervous system. Neural crest‐like stem cells (NCLSCs) can be derived from pluripotent stem cells, placental tissues, adult tissues, and somatic cell reprogramming. NCLSCs have a differentiation capability similar to NCSCs, and possess great potential for regenerative medicine applications. In this review, we present recent developments on the various approaches to derive NCLSCs and the therapeutic application of these cells for tissue regeneration.
Collapse
Affiliation(s)
- Jennifer Soto
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| | - Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, People's Republic of China
| | - Aijun Wang
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, California, USA.,Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA.,Department of Biomedical Engineering, University of California Davis, Davis, California, USA
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California, USA.,Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
24
|
Papait A, Cargnoni A, Sheleg M, Silini AR, Kunis G, Ofir R, Parolini O. Perinatal Cells: A Promising COVID-19 Therapy? Front Bioeng Biotechnol 2021; 8:619980. [PMID: 33520970 PMCID: PMC7841388 DOI: 10.3389/fbioe.2020.619980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has become a priority in the health systems of all nations worldwide. In fact, there are currently no specific drugs or preventive treatments such as vaccines. The numerous therapies available today aim to counteract the symptoms caused by the viral infection that in some subjects can evolve causing acute respiratory distress syndromes (ARDS) with consequent admission to intensive care unit. The exacerbated response of the immune system, through cytokine storm, causes extensive damage to the lung tissue, with the formation of edema, fibrotic tissues and susceptibility to opportunistic infections. The inflammatory picture is also aggravated by disseminated intravascular coagulation which worsens the damage not only to the respiratory system, but also to other organs. In this context, perinatal cells represent a valid strategy thanks to their strong immunomodulatory potential, their safety profile, the ability to reduce fibrosis and stimulate reparative processes. Furthermore, perinatal cells exert antibacterial and antiviral actions. This review therefore provides an overview of the characteristics of perinatal cells with a particular focus on the beneficial effects that they could have in patients with COVID-19, and more specifically for their potential use in the treatment of ARDS and sepsis.
Collapse
Affiliation(s)
- Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | - Antonietta R. Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia, Italy
| | | | | | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
| |
Collapse
|
25
|
Rungsiwiwut R, Virutamasen P, Pruksananonda K. Mesenchymal stem cells for restoring endometrial function: An infertility perspective. Reprod Med Biol 2021; 20:13-19. [PMID: 33488279 PMCID: PMC7812475 DOI: 10.1002/rmb2.12339] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) can be derived from several tissues such as bone marrow, placenta, adipose tissue, or endometrial tissue. MSCs gain a lot of attention for cell-based therapy due to their characteristics including differentiation ability and immunomodulatory effect. Preclinical and clinical studies demonstrated that MSCs can be applied to treat female infertility by improving of the functions of ovary and uterus. This mini- review focuses on the current study of treatment of endometrial infertility by using MSCs. METHODS The present study performed a literature review focusing on the effect of MSCs for treatment of women infertility caused by endometrial dysfunction. RESULTS Bone marrow-, umbilical cord-, adipose-, amniotic-, and menstruation-derived MSCs enhance endometrial cell proliferation, injury repairs as well as reducing scar formation. The beneficial mechanism probably via immunomodulatory, cell differentiation, stimulates endometrial cell proliferation and down-regulation of fibrosis genes. The major advantage of using MSCs is to improve endometrial functions resulting in increased implantation and pregnancy. CONCLUSIONS MSCs exhibit a potential for endometrial infertility treatment. Adipose- and menstruation-derived stem cells show advantages over other sources because the cells can be derived easily and do not causes graft rejection after autologous transplantation.
Collapse
Affiliation(s)
| | - Pramuan Virutamasen
- Department of Obstetrics and GynecologyFaculty of MedicineChulalongkorn UniversityBangkokThailand
| | - Kamthorn Pruksananonda
- Department of Obstetrics and GynecologyFaculty of MedicineChulalongkorn UniversityBangkokThailand
| |
Collapse
|
26
|
Sung Y, Lee SM, Park M, Choi HJ, Kang S, Choi BI, Lew H. Treatment of traumatic optic neuropathy using human placenta-derived mesenchymal stem cells in Asian patients. Regen Med 2020; 15:2163-2179. [PMID: 33315474 DOI: 10.2217/rme-2020-0044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To assess the safety and feasibility of subtenon transplantation of human placenta-derived mesenchymal stem cells (hPMSCs) in Asian patients with traumatic optic neuropathy. Materials & methods: The survival of retinal ganglion cells in the rat retina was evaluated by monitoring the expression of Tuj1 and Gfap after optic nerve compression. Based on the preclinical data, we conducted a Phase I, open label, single center, nonrandomized clinical trial in four Asian traumatic optic neuropathy patients. The safety and ophthalmologic changes were evaluated. Results: The levels of Tuj1 and Gfap expression were significantly increased in the hPMSC treatment group compared with the sham group, suggesting a protective effect of hPMSCs on the optic nerve and retinal ganglion cells. There was no evidence of adverse proliferation, tumorigenicity, severe inflammation or other serious issues during the 12-month follow-up period. Visual acuity improved in all four patients. Conclusion: The results suggested that hPMSCs are safe and have potential utility in regenerative medicine. Clinical trial registration number: 20150196587 (Korean FDA), 2015-07-123-054 (IRB).
Collapse
Affiliation(s)
- Youngje Sung
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Sang Min Lee
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Mira Park
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Hye Jeong Choi
- Department of Radiation, CHA Bundang Medical Center, CHA University, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Sukho Kang
- Department of Obstetrics & Gynecology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| | - Byung In Choi
- Division, CHA Stem Cell Institute, CHA Biotech Co., Ltd, Seoul 135 907, Republic of Korea
| | - Helen Lew
- Department of Ophthalmology, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 463 712, Republic of Korea
| |
Collapse
|
27
|
Peng SY, Wu TH, Lin TY, Hii LY, Chan KS, Fu TY, Chang SC, Shen PC, Liu KY, Shaw SW. Application of cattle placental stem cells for treating ovarian follicular cyst. World J Stem Cells 2020; 12:1366-1376. [PMID: 33312404 PMCID: PMC7705470 DOI: 10.4252/wjsc.v12.i11.1366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND High humidity and temperature in Taiwan have significant effects on the reproductivity of Holstein cattle, resulting in the occurrence of bovine ovarian follicular cyst (OFC). Because of economic loss from OFC, manual rupture and hormone injection have been advocated for the management of OFC. However, these incomplete treatments increase hormone resistance in cattle. Mesenchymal stem cells (MSCs) derived from placental stem cells (PSCs) demonstrate potential properties for the treatment of several diseases via promoting angiogenesis and immune modulation. AIM To establish the possibility of cattle placental stem cells (CPSCs) as a treatment modality for OFC of cows in Taiwan. METHODS The cows with OFC were divided into three groups: control (BC1 and BC2), hormone (H1 and H2), and CPSC (PS1 and PS2) treatment groups. In the hormone treatment group, the cows were given gonadotrophin-releasing hormone (GnRH)-prostaglandin-GnRH intramuscular injection with or without drainage of follicular fluid. In the CPSC treatment group, CPSCs were isolated from the placenta after labor. With the identification of surface antigen on stem cells, the cows were administered ovarian injection of 1 × 106 or 6 × 106 CPSCs with drainage. In all groups, OFC was scanned by ultrasound once a week for a total of seven times. The concentrations of estradiol and progesterone in serum were tested in the same period. The estrus cycle was analyzed by food intake and activity. If estrus was detected, artificial insemination was conducted. Then the cow was monitored by ultrasound for confirmation of pregnancy. RESULTS After 7 d of culture, CPSCs were successfully isolated from placental pieces. CPSCs significantly proliferated every 24 h and had high expression of MSC markers such as cluster of differentiation 44, as determined by flow cytometry. Ultrasound showed lower numbers of OFCs with drainage of follicular fluid. We achieved recovery rates of 0%, 50%, 50%, 75%, 75% and 75% in BC1, BC2, H1, H2, PS1, and PS2, respectively. Higher concentrations of progesterone were detected in the CPSC treatment groups. However, both hormone and CPSC treatment groups had no significant difference in the concentration of estradiol. The estrus rate was 0%, 100%, 25%, 75%, 75% and 75% in BC1, BC2, H1, H2, PS1, and PS2, respectively. The two fetuses were born in H2 and PS1. In brief, cows with CPSC injection achieved higher recovery, estrus, and inseminated conception rates. CONCLUSION CPSCs have efficacy in treating cows with OFC, and thus, may serve as an alternative treatment for reproductive disorders.
Collapse
Affiliation(s)
- Shao-Yu Peng
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Tsung-Hsin Wu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Tzu-Yi Lin
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ling-Yien Hii
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Kok-Seong Chan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Tzu-Yen Fu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Shen-Chang Chang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Pingtung 912, Taiwan
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Kang-You Liu
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 912, Taiwan
| | - Steven W. Shaw
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Prenatal Cell and Gene Therapy Group, Institute for Women's Health, University College London, London WC1E 6HU, United Kingdom.
| |
Collapse
|
28
|
Bajetto A, Thellung S, Dellacasagrande I, Pagano A, Barbieri F, Florio T. Cross talk between mesenchymal and glioblastoma stem cells: Communication beyond controversies. Stem Cells Transl Med 2020; 9:1310-1330. [PMID: 32543030 PMCID: PMC7581451 DOI: 10.1002/sctm.20-0161] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/25/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from bone marrow or other adult tissues (adipose tissue, dental pulp, amniotic fluid, and umbilical cord). In vitro, MSCs grow as adherent cells, display fibroblast-like morphology, and self-renew, undergoing specific mesodermal differentiation. High heterogeneity of MSCs from different origin, and differences in preparation techniques, make difficult to uniform their functional properties for therapeutic purposes. Immunomodulatory, migratory, and differentiation ability, fueled clinical MSC application in regenerative medicine, whereas beneficial effects are currently mainly ascribed to their secretome and extracellular vesicles. MSC translational potential in cancer therapy exploits putative anti-tumor activity and inherent tropism toward tumor sites to deliver cytotoxic drugs. However, controversial results emerged evaluating either the therapeutic potential or homing efficiency of MSCs, as both antitumor and protumor effects were reported. Glioblastoma (GBM) is the most malignant brain tumor and its development and aggressive nature is sustained by cancer stem cells (CSCs) and the identification of effective therapeutic is required. MSC dualistic action, tumor-promoting or tumor-targeting, is dependent on secreted factors and extracellular vesicles driving a complex cross talk between MSCs and GBM CSCs. Tumor-tropic ability of MSCs, besides providing an alternative therapeutic approach, could represent a tool to understand the biology of GBM CSCs and related paracrine mechanisms, underpinning MSC-GBM interactions. In this review, recent findings on the complex nature of MSCs will be highlighted, focusing on their elusive impact on GBM progression and aggressiveness by direct cell-cell interaction and via secretome, also facing the perspectives and challenges in treatment strategies.
Collapse
Affiliation(s)
- Adriana Bajetto
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
| | | | | | - Aldo Pagano
- Dipartimento di Medicina SperimentaleUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| | | | - Tullio Florio
- Dipartimento di Medicina InternaUniversità di GenovaGenovaItaly
- IRCCS Ospedale Policlinico San MartinoGenovaItaly
| |
Collapse
|
29
|
Recent Advances in Understandings Towards Pathogenesis and Treatment for Intrauterine Adhesion and Disruptive Insights from Single-Cell Analysis. Reprod Sci 2020; 28:1812-1826. [PMID: 33125685 PMCID: PMC8189970 DOI: 10.1007/s43032-020-00343-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/01/2020] [Indexed: 12/22/2022]
Abstract
Intrauterine adhesion is a major cause of menstrual irregularities, infertility, and recurrent pregnancy losses and the progress towards its amelioration and therapy is slow and unsatisfactory. We aim to summarize and evaluate the current treatment progress and research methods for intrauterine adhesion. We conducted literature review in January 2020 by searching articles at PubMed on prevention and treatment, pathogenesis, the repair of other tissues/organs, cell plasticity, and the stem cell–related therapies for intrauterine adhesion. A total of 110 articles were selected for review. Uterine cell heterogeneity, expression profile, and cell-cell interaction were investigated based on scRNA-seq of uterus provided by Human Cell Landscape (HCL) project. Previous knowledge on intrauterine adhesion (IUA) pathogenesis was mostly derived from correlation studies by differentially expressed genes between endometrial tissue of intrauterine adhesion patients/animal models and normal endometrial tissue. Although the TGF-β1/SMAD pathway was suggested as the key driver for IUA pathogenesis, uterine cell heterogeneity and distinct expression profile among different cell types highlighted the importance of single-cell investigations. Cell-cell interaction in the uterus revealed the central hub of endothelial cells interacting with other cells, with endothelial cells in endothelial to mesenchymal transition and fibroblasts as the strongest interaction partners. The potential of stem cell–related therapies appeared promising, yet suffers from largely animal studies and nonstandard study design. The need to dissect the roles of endometrial cells, endothelial cells, and fibroblasts and their interaction is evident in order to elucidate the molecular and cellular mechanisms in both intrauterine adhesion pathogenesis and treatment.
Collapse
|
30
|
Boss AL, Brooks AES, Chamley LW, James JL. Influence of culture media on the derivation and phenotype of fetal-derived placental mesenchymal stem/stromal cells across gestation. Placenta 2020; 101:66-74. [PMID: 32932101 DOI: 10.1016/j.placenta.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Derivation of pure fetal placental mesenchymal stem/stromal cells (pMSCs) is key to understand their role in placental development. However, isolated pMSCs are often contaminated by maternal-derived decidual MSCs (dMSCs). EGM-2 medium promotes the derivation of term fetal pMSCs, but the extent of first-trimester maternal pMSC contamination remains unclear. Culture media can also affect MSC phenotype. Here, we examined the effects of culture media on maternal pMSC contamination and fetal pMSC phenotype across gestation. METHODS pMSCs were derived from first-trimester or term placentae in advanced-DMEM/F12 medium or EGM-2 medium. Proportions of maternal (XX) and fetal (XY) cells in male pMSC cultures were determined by fluorescence in-situ hybridization. pMSC phenotype was analysed by flow cytometry, immunohistochemistry and Alamar blue proliferation assays. RESULTS When derived in advanced-DMEM/F12, all first trimester pMSC isolates exhibited maternal contamination (>72% XX cells, n = 5), whilst 7/9 term pMSC isolates were >98% fetal. When derived in EGM-2, all first trimester (n = 4) and term (n = 9) pMSC isolates contained 95-100% fetal cells. Fetal pMSCs in EGM-2 proliferated 2-fold (first-trimester) or 4-fold (term) faster than those in advanced-DMEM/F12 (p < 0.05, n = 3). Fetal pMSCs in both media expressed the generic MSC marker profile (CD90+, CD105+, CD73+, CD31-, CD34-, CD144-). However, pMSCs transferred from EGM-2 to advanced-DMEM/F12 increased expression of smooth muscle cell markers calponin and α-smooth muscle actin, and decreased expression of the vascular cell marker VEGFR2 (n = 3). CONCLUSIONS Deriving first-trimester pMSC in EGM-2 dramatically reduces maternal dMSC contamination. Media affects fetal pMSC phenotype, and careful consideration should be given to application specific culture conditions.
Collapse
Affiliation(s)
- Anna L Boss
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand.
| | - Anna E S Brooks
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| |
Collapse
|
31
|
Salehinejad P, Moshrefi M, Eslaminejad T. An Overview on Mesenchymal Stem Cells Derived from Extraembryonic Tissues: Supplement Sources and Isolation Methods. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2020; 13:57-65. [PMID: 32753904 PMCID: PMC7354009 DOI: 10.2147/sccaa.s248519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022]
Abstract
Purpose The main aim of this review was to provide an updated comprehensive report regarding isolation methods of MSCs from human extra embryonic tissues, including cord blood, amniotic fluid, and different parts of the placenta and umbilical cord, with respect to the efficacy of these methods. Results Extra embryonic tissues are the most available source for harvesting of mesenchymal stem cells (MSCs). They make a large number of cells accessible using non-invasive methods of isolation and the least immune-rejection reactions. A successful culture of primary cells requires obtaining a maximum yield of functional and viable cells from the tissues. In addition, there are many reports associated with their differentiation into various kinds of cells, and there are some clinical trials regarding their utilization for patients. Conclusion Currently, cord blood-MSCs have been tested for cartilage and lung diseases. Umbilical cord-MSCs were tested for liver and neural disorders. However, these MSCs can be isolated, expanded, and cryopreserved in a cell bank for patients in need.
Collapse
Affiliation(s)
- Parvin Salehinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mojgan Moshrefi
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Research and Clinical Center for Infertility, Yazd Reproductive Science Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
32
|
Volinsky E, Lazmi-Hailu A, Cohen N, Adani B, Faroja M, Grunewald M, Gorodetsky R. Alleviation of acute radiation-induced bone marrow failure in mice with human fetal placental stromal cell therapy. Stem Cell Res Ther 2020; 11:337. [PMID: 32746939 PMCID: PMC7397607 DOI: 10.1186/s13287-020-01850-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose Selected placental mesenchymal stromal cells isolated from the fetal mesenchymal placental tissues (f-hPSCs) were tested as cell therapy of lethal acute radiation syndrome (ARS) with bone marrow regeneration and induced extramedullary hematopoiesis. Methods and materials f-hPSCs were isolated from the chorionic plate of human placentae and further expanded in regular culture conditions. 2 × 106 f-hPSCs were injected on days 1 and 4 to 8-Gy total body irradiated (TBI) C3H mice, both intramuscularly and subcutaneously. Pre-splenectomized TBI mice were used to test the involvement of extramedullary spleen hematopoiesis in the f-hPSC-induced hematopoiesis recovery in the TBI mice. Weight and survival of the mice were followed up within the morbid period of up to 23 days following irradiation. The role of hematopoietic progenitors in the recovery of treated mice was evaluated by flow cytometry, blood cell counts, and assay of possibly relevant growth factors. Results and conclusions The survival rate of all groups of TBI f-hPSC-treated mice at the end of the follow-up was dramatically elevated from < 10% in untreated to ~ 80%, with a parallel regain of body weight, bone marrow (BM) recovery, and elevated circulating progenitors of blood cell lineages. Blood erythropoietin levels were elevated in all f-hPSC-treated mice. Extramedullary splenic hematopoiesis was recorded in the f-hPSC-treated mice, though splenectomized mice still had similar survival rate. Our findings suggest that the indirect f-hPSC life-saving therapy of ARS may also be applied for treating other conditions with a failure of the hematopoietic system and severe pancytopenia.
Collapse
Affiliation(s)
- Evgenia Volinsky
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel.,IMRIC-Developmental Biology and Cancer Research, Hebrew University School of Medicine, P.O. Box 12271, 91121, Jerusalem, Israel
| | - Astar Lazmi-Hailu
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Nerel Cohen
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Boaz Adani
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel
| | - Mohammad Faroja
- General Surgery, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Myriam Grunewald
- IMRIC-Developmental Biology and Cancer Research, Hebrew University School of Medicine, P.O. Box 12271, 91121, Jerusalem, Israel.
| | - Raphael Gorodetsky
- Laboratory of Biotechnology and Radiobiology, Hadassah - Hebrew University Medical Center, POB 12000, 91120, Jerusalem, Israel.
| |
Collapse
|
33
|
Basmaeil Y, Rashid MA, Khatlani T, AlShabibi M, Bahattab E, Abdullah ML, Abomaray F, Kalionis B, Massoudi S, Abumaree M. Preconditioning of Human Decidua Basalis Mesenchymal Stem/Stromal Cells with Glucose Increased Their Engraftment and Anti-diabetic Properties. Tissue Eng Regen Med 2020; 17:209-222. [PMID: 32077075 PMCID: PMC7105536 DOI: 10.1007/s13770-020-00239-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/10/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Mesenchymal stem/stromal cells (MSCs) from the decidua basalis (DBMSCs) of the human placenta have important functions that make them potential candidates for cellular therapy. Previously, we showed that DBMSC functions do not change significantly in a high oxidative stress environment, which was induced by hydrogen peroxide (H2O2) and immune cells. Here, we studied the consequences of glucose, another oxidative stress inducer, on the phenotypic and functional changes in DBMSCs. Methods: DBMSCs were exposed to a high level of glucose, and its effect on DBMSC phenotypic and functional properties was determined. DBMSC expression of oxidative stress and immune molecules after exposure to glucose were also identified. Results: Conditioning of DBMSCs with glucose improved their adhesion and invasion. Glucose also increased DBMSC expression of genes with survival, proliferation, migration, invasion, anti-inflammatory, anti-chemoattractant and antimicrobial properties. In addition, DBMSC expression of B7H4, an inhibitor of T cell proliferation was also enhanced by glucose. Interestingly, glucose modulated DBMSC expression of genes involved in insulin secretion and prevention of diabetes. Conclusion: These data show the potentially beneficial effects of glucose on DBMSC functions. Preconditioning of DBMSCs with glucose may therefore be a rational strategy for increasing their therapeutic potential by enhancing their engraftment efficiency. In addition, glucose may program DBMSCs into insulin producing cells with ability to counteract inflammation and infection associated with diabetes. However, future in vitro and in vivo studies are essential to investigate the findings of this study further. Electronic supplementary material The online version of this article (10.1007/s13770-020-00239-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasser Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| | - Manar Al Rashid
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal AlShabibi
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Eman Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Kingdom of Saudi Arabia
| | - Meshan L Abdullah
- Experimental Medicine, King Abdullah International Medical Research Center MNG-HA, Ali Al Arini, Ar Rimayah, Riyadh, 11481, Kingdom of Saudi Arabia
| | - Fawaz Abomaray
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 14186, Stockholm, Sweden
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre and University of Melbourne, Parkville, VIC, 3010, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, 20 Flemington Rd, Parkville, VIC, 3052, Australia
| | - Safia Massoudi
- Department of Forensic Biology, College of Forensic Sciences, Naif Arab University for Security Sciences, Khurais Rd, Ar Rimayah, Riyadh, 14812, Kingdom of Saudi Arabia
| | - Mohammad Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 1515, P.O. Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Mail Code 3124, P.O. Box 3660, Riyadh, 11481, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Dhoke NR, Kaushik K, Das A. Cxcr6-Based Mesenchymal Stem Cell Gene Therapy Potentiates Skin Regeneration in Murine Diabetic Wounds. Mol Ther 2020; 28:1314-1326. [PMID: 32112713 DOI: 10.1016/j.ymthe.2020.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapies for wound healing are often compromised due to low recruitment and engraftment of transplanted cells, as well as delayed differentiation into cell lineages for skin regeneration. An increased expression of chemokine ligand CXCL16 in wound bed and its cognate receptor, CXCR6, on murine bone-marrow-derived MSCs suggested a putative therapeutic relevance of exogenous MSC transplantation therapy. Induction of the CXCL16-CXCR6 axis led to activation of focal adhesion kinase (FAK), Src, and extracellular signal-regulated kinases 1/2 (ERK1/2)-mediated matrix metalloproteinases (MMP)-2 promoter regulation and expression, the migratory signaling pathways in MSC. CXCL16 induction also increased the transdifferentiation of MSCs into endothelial-like cells and keratinocytes. Intravenous transplantation of allogenic stable MSCs with Cxcr6 gene therapy potentiated skin tissue regeneration by increasing recruitment and engraftment as well as neovascularization and re-epithelialization at the wound site in excisional splinting wounds of type I and II diabetic mice. This study suggests that activation of the CXCL16-CXCR6 axis in bioengineered MSCs with Cxcr6 overexpression provides a promising therapeutic approach for the treatment of diabetic wounds.
Collapse
Affiliation(s)
- Neha R Dhoke
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad 500 007, TS, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad 500 007, TS, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Hyderabad 500 007, TS, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad 500 007, TS, India.
| |
Collapse
|
35
|
Turner JM, Robertson NT, Hartel G, Kumar S. Impact of low-dose aspirin on adverse perinatal outcome: meta-analysis and meta-regression. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2020; 55:157-169. [PMID: 31479546 DOI: 10.1002/uog.20859] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To perform a meta-analysis and meta-regression of randomized controlled trials (RCTs) to evaluate the impact of low-dose aspirin (LDA) on perinatal outcome, independent of its effect on pre-eclampsia (PE), preterm birth and low birth weight. METHODS An electronic search of EMBASE, PubMed, CENTRAL, PROSPERO and Google Scholar databases was performed to identify RCTs assessing the impact of LDA in pregnancy, published in English prior to May 2019, which reported perinatal outcomes of interest (placental abruption, delivery mode, low 5-min Apgar score, neonatal acidosis, neonatal intensive care unit admission, periventricular hemorrhage and perinatal death). Risk ratios (RR) and 95% CI were calculated and pooled for analysis. Analysis was stratified according to gestational age at commencement of treatment (≤ 16 weeks vs > 16 weeks) and subgroup analysis was performed to assess the impact of aspirin dose (< 100 mg vs ≥ 100 mg). Meta-regression was used to assess the impact of LDA on perinatal outcome, independent of the reduction in PE, preterm birth and low birth weight. RESULTS Forty studies involving 34 807 participants were included. When LDA was commenced ≤ 16 weeks' gestation, it was associated with a significant reduction in the risk of perinatal death (RR, 0.47; 95% CI, 0.25-0.88; P = 0.02; number needed to treat, 92); however, this risk reduction was only seen when a daily dose of ≥ 100 mg was administered. If commenced > 16 weeks' gestation, LDA was associated with a significant reduction in 5-min Apgar score < 7 (RR, 0.75; 95% CI, 0.58-0.96; P = 0.02) and periventricular hemorrhage (RR, 0.68; 95% CI, 0.47-0.99; P = 0.04), but a trend towards an increase in the risk of placental abruption (RR, 1.20; 95% CI, 1.00-1.46; P = 0.06) was also noted. LDA was not associated with any significant increase in adverse events if commenced ≤ 16 weeks gestation. LDA had no effect on delivery mode, irrespective of the gestational age at which it was started. Meta-regression confirmed that the effect of LDA on perinatal death, when treatment was started ≤ 16 weeks' gestation, was independent of any reduction in the rate of PE and preterm birth. CONCLUSION LDA improves some important perinatal outcomes, without increasing adverse events such as placental abruption or periventricular hemorrhage, and its utility, if commenced prior to 16 weeks' gestation, may be considered in a wider context beyond the prevention of PE or fetal growth restriction. Copyright © 2019 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J M Turner
- Mater Research Institute, University of Queensland, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - N T Robertson
- Mater Research Institute, University of Queensland, South Brisbane, Queensland, Australia
| | - G Hartel
- Division of Biostatistics, QIMR Berghofer Institute of Medical Research, University of Queensland, Herston, Queensland, Australia
| | - S Kumar
- Mater Research Institute, University of Queensland, South Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Papait A, Vertua E, Magatti M, Ceccariglia S, De Munari S, Silini AR, Sheleg M, Ofir R, Parolini O. Mesenchymal Stromal Cells from Fetal and Maternal Placenta Possess Key Similarities and Differences: Potential Implications for Their Applications in Regenerative Medicine. Cells 2020; 9:cells9010127. [PMID: 31935836 PMCID: PMC7017205 DOI: 10.3390/cells9010127] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/27/2022] Open
Abstract
Placenta-derived mesenchymal stromal cells (MSC) have attracted more attention for their immune modulatory properties and poor immunogenicity, which makes them suitable for allogeneic transplantation. Although MSC isolated from different areas of the placenta share several features, they also present significant biological differences, which might point to distinct clinical applications. Hence, we compared cells from full term placenta distinguishing them on the basis of their origin, either maternal or fetal. We used cells developed by Pluristem LTD: PLacenta expanded mesenchymal-like adherent stromal cells (PLX), maternal-derived cells (PLX-PAD), fetal-derived cells (PLX-R18), and amniotic membrane-derived MSC (hAMSC). We compared immune modulatory properties evaluating effects on T-lymphocyte proliferation, expression of cytotoxicity markers, T-helper and T-regulatory cell polarization, and monocyte differentiation toward antigen presenting cells (APC). Furthermore, we investigated cell immunogenicity. We show that MSCs and MSC-like cells from both fetal and maternal sources present immune modulatory properties versus lymphoid (T cells) and myeloid (APC) cells, whereby fetal-derived cells (PLX-R18 and hAMSC) have a stronger capacity to modulate immune cell proliferation and differentiation. Our results emphasize the importance of understanding the cell origin and characteristics in order to obtain a desired result, such as modulation of the inflammatory response that is critical in fostering regenerative processes.
Collapse
Affiliation(s)
- Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, 25124 Brescia, Italy; (A.P.); (E.V.); (M.M.); (S.D.M.); (A.R.S.)
| | - Elsa Vertua
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, 25124 Brescia, Italy; (A.P.); (E.V.); (M.M.); (S.D.M.); (A.R.S.)
| | - Marta Magatti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, 25124 Brescia, Italy; (A.P.); (E.V.); (M.M.); (S.D.M.); (A.R.S.)
| | - Sabrina Ceccariglia
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Silvia De Munari
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, 25124 Brescia, Italy; (A.P.); (E.V.); (M.M.); (S.D.M.); (A.R.S.)
| | - Antonietta Rosa Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, 25124 Brescia, Italy; (A.P.); (E.V.); (M.M.); (S.D.M.); (A.R.S.)
| | | | - Racheli Ofir
- Pluristem LTD, Haifa 31905, Israel; (M.S.); (R.O.)
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, 25124 Brescia, Italy; (A.P.); (E.V.); (M.M.); (S.D.M.); (A.R.S.)
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: ; Tel.: +39-0630154464
| |
Collapse
|
37
|
Mathew SA, Naik C, Cahill PA, Bhonde RR. Placental mesenchymal stromal cells as an alternative tool for therapeutic angiogenesis. Cell Mol Life Sci 2020; 77:253-265. [PMID: 31468060 PMCID: PMC11104823 DOI: 10.1007/s00018-019-03268-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/24/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
Dysregulation of angiogenesis is a phenomenon observed in several disorders such as diabetic foot, critical limb ischemia and myocardial infarction. Mesenchymal stromal cells (MSCs) possess angiogenic potential and have recently emerged as a powerful tool for cell therapy to promote angiogenesis. Although bone marrow-derived MSCs are the primary cell of choice, obtaining them has become a challenge. The placenta has become a popular alternative as it is a highly vascular organ, easily available and ethically more favorable with a rich supply of MSCs. Comparatively, placenta-derived MSCs (PMSCs) are clinically promising due to their proliferative, migratory, clonogenic and immunomodulatory properties. PMSCs release a plethora of cytokines and chemokines key to angiogenic signaling and facilitate the possibility of delivering PMSC-derived exosomes as a targeted therapy to promote angiogenesis. However, there still remains the challenge of heterogeneity in the isolated populations, questions on the maternal or fetal origin of these cells and the diversity in previously reported isolation and culture conditions. Nonetheless, the growing rate of clinical trials using PMSCs clearly indicates a shift in favor of PMSCs. The overall aim of the review is to highlight the importance of this rather poorly understood cell type and emphasize the need for further investigations into their angiogenic potential as an alternative source for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Suja Ann Mathew
- School of Regenerative Medicine, Manipal Academy of Higher Education, MAHE, Allalasandra, Near Royal Orchid, Yellahanka, Bangalore, 560 065, India.
| | - Charuta Naik
- School of Regenerative Medicine, Manipal Academy of Higher Education, MAHE, Allalasandra, Near Royal Orchid, Yellahanka, Bangalore, 560 065, India
| | - Paul A Cahill
- School of Biotechnology, Faculty of Science and Health, Dublin City University, Glasnevin Dublin 9, Ireland
| | - Ramesh R Bhonde
- Dr. D.Y. Patil Vidyapeeth (DPU), Pimpri, Pune, 411018, India.
| |
Collapse
|
38
|
Lee JK, Oh SJ, Park H, Shin OS. Recent Updates on Research Models and Tools to Study Virus-Host Interactions at the Placenta. Viruses 2019; 12:E5. [PMID: 31861492 PMCID: PMC7020004 DOI: 10.3390/v12010005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The placenta is a unique mixed organ, composed of both maternal and fetal tissues, that is formed only during pregnancy and serves as the key physiological and immunological barrier preventing maternal-fetal transmission of pathogens. Several viruses can circumvent this physical barrier and enter the fetal compartment, resulting in miscarriage, preterm birth, and birth defects, including microcephaly. The mechanisms underlying viral strategies to evade the protective role of placenta are poorly understood. Here, we reviewed the role of trophoblasts and Hofbauer cells in the placenta and have highlighted characteristics of vertical and perinatal infections caused by a wide range of viruses. Moreover, we explored current progress and future opportunities in cellular targets, pathogenesis, and underlying biological mechanisms of congenital viral infections, as well as novel research models and tools to study the placenta.
Collapse
Affiliation(s)
- Jae Kyung Lee
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| | - Soo-Jin Oh
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| | - Hosun Park
- Department of Microbiology, College of Medicine, Yeungnam University, 170 Hyeonchung-ro, Namgu, Daegu 42415, Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308 Korea; (J.K.L.); (S.-J.O.)
| |
Collapse
|
39
|
Shao X, Ai G, Wang L, Qin J, Li Y, Jiang H, Zhang T, Zhou L, Gao Z, Cheng J, Cheng Z. Adipose-derived stem cells transplantation improves endometrial injury repair. ZYGOTE 2019; 27:367-374. [PMID: 31452481 DOI: 10.1017/s096719941900042x] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endometrial injury is an important cause of intrauterine adhesion (IUA), amenorrhea and infertility in women, with limited effective therapies. Recently, stem cells have been used in animal experiments to repair and improve injured endometrium. To date, our understanding of adipose-derived stem cells (ADSCs) in endometrial injury repair and their further therapeutic mechanisms is incomplete. Here, we examined the benefit of ADSCs in restoration of injured endometrium by applying a rat endometrial injury model. The results revealed by immunofluorescence showed that green fluorescent protein (GFP)-labelled ADSCs can differentiate into endometrial epithelial cells in vivo. At 30 days after ADSCs transplantation, injured endometrium was significantly improved, with increased microvessel density, endometrial thickness and glands when compared with the model group. Furthermore, the fertility of rats with injured endometrium in ADSCs group was improved and had a higher conception rate (60% vs 20%, P = 0.014) compared with the control phosphate-buffered saline (PBS) group. However, there was no difference in the control group compared with the sham group. In addition, expression levels of the oestrogen receptor Eα/β (ERα, ERβ) and progesterone receptor (PR) detected by western blot and enzyme-linked immunosorbent assay (ELISA) were higher in the ADSCs group than in the PBS group. Taken together, these results suggested that ADSC transplantation could improve endometrial injury as a novel therapy for IUA.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guihai Ai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lian Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yue Li
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Huici Jiang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Tingting Zhang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Linlin Zhou
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhengliang Gao
- Lifeng Institute of Regenerative Medicine, Tongji University, Shanghai, 200092, China
| | - Jiajing Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
40
|
Huang YZ, Wu CG, Xie HQ, Li ZY, Silini A, Parolini O, Wu Y, Deng L, Huang YC. Strontium Promotes the Proliferation and Osteogenic Differentiation of Human Placental Decidual Basalis- and Bone Marrow-Derived MSCs in a Dose-Dependent Manner. Stem Cells Int 2019; 2019:4242178. [PMID: 31885606 PMCID: PMC6893266 DOI: 10.1155/2019/4242178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/28/2019] [Accepted: 08/22/2019] [Indexed: 02/05/2023] Open
Abstract
The osteogenic potential of mesenchymal stromal cells (MSCs) varies among different tissue sources. Strontium enhances the osteogenic differentiation of bone marrow-derived MSCs (BM-MSCs), but whether it exerts similar effects on placental decidual basalis-derived MSCs (PDB-MSCs) remains unknown. Here, we compared the influence of strontium on the proliferation and osteogenic differentiation of human PDB- and BM-MSCs in vitro. We found that 1 mM and 10 mM strontium, but not 0.1 mM strontium, evidently promoted the proliferation of human PDB- and BM-MSCs. These doses of strontium showed a comparable alkaline phosphatase activity in both cell types, but their osteogenic gene expressions were promoted in a dose-dependent manner. Strontium at doses of 0.1 mM and 1 mM elevated several osteogenic gene expressions of PDB-MSCs, but not those of BM-MSCs at an early stage. Nevertheless, they failed to enhance the mineralization of either cell type. By contrast, 10 mM strontium facilitated the osteogenic gene expression as well as the mineralization of human PDB- and BM-MSCs. Collectively, this study demonstrated that human PDB- and BM-MSCs shared a great similarity in response to strontium, which promoted their proliferation and osteogenic differentiation in a dose-dependent manner.
Collapse
Affiliation(s)
- Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cheng-Guang Wu
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia 25124, Italy
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, Brescia 25124, Italy
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Roma 00168, Italy
| | - Yi Wu
- Medical College, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Li Deng
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Orthopaedic Research Center, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| |
Collapse
|
41
|
Wei LL, Pan YS, Tang Q, Yang ZJ, Song WQ, Gao YF, Li J, Zhang L, Liu SG. Decreased ALCAM expression and promoter hypermethylation is associated with preeclampsia. Hypertens Res 2019; 43:13-22. [PMID: 31601971 DOI: 10.1038/s41440-019-0337-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/15/2019] [Accepted: 08/19/2019] [Indexed: 01/27/2023]
Abstract
Preeclampsia (PE) is a major obstetrical complication that results in maternal and fetal morbidity and mortality. Aberrant epigenetic modifications are widely involved in the pathogenesis of PE. Previously, the activated leukocyte cell adhesion molecule (ALCAM) was reported to be required for blastocyst implantation but has not been described in the context of pathological pregnancy. This study explored the expression of ALCAM and its methylation levels in the placentas and peripheral venous blood of patients with PE from a Chinese Han population. The mRNA and protein expression levels of ALCAM were downregulated in the PE placentas compared with the control placentas (P < 0.05). The methylation rate of the ALCAM gene promoter was considerably elevated in the placentas (P = 0.003, odds ratio (OR) = 0.264, 95% confidence interval (95% CI) [0.108-0.647], cases n = 47, controls n = 53) and peripheral blood (P = 0.007, OR = 0.455, 95% CI [0.256-0.806], cases n = 100, controls n = 100) of the PE patients compared with those of the normotensive women, suggesting a negative relationship between ALCAM methylation and gene transcription. Moreover, the transcriptional expression of ALCAM was dramatically increased by demethylating treatment in trophoblastic cells. ALCAM is expected to be involved in the pathogenesis of PE through methylation regulation.
Collapse
Affiliation(s)
- Li-Li Wei
- Department of Nursing, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yue-Shuai Pan
- Department of Nursing, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Tang
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zong-Jun Yang
- Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, China
| | - Wei-Qing Song
- Department of Clinical Laboratory, Qingdao Municipal Hospital, Qingdao, China
| | - Yu-Fang Gao
- Department of Nursing, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Li
- Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lu Zhang
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shi-Guo Liu
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
42
|
Xia L, Meng Q, Xi J, Han Q, Cheng J, Shen J, Xia Y, Shi L. The synergistic effect of electroacupuncture and bone mesenchymal stem cell transplantation on repairing thin endometrial injury in rats. Stem Cell Res Ther 2019; 10:244. [PMID: 31391117 PMCID: PMC6686409 DOI: 10.1186/s13287-019-1326-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/25/2019] [Accepted: 07/04/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Tissue regeneration disorder after endometrial injury is an important cause of intrauterine adhesions, amenorrhea, and infertility in women. Both bone marrow mesenchymal stem cell (BMSC) transplantation and electroacupuncture (EA) are promising therapeutic applications for endometrial injury. This study examined their combined effects on thin endometrium in rats and the possible mechanisms underlying these effects. METHODS A thin endometrial model was established in Sprague-Dawley (SD) rats by perfusing 95% ethanol into the right side of the uterus. The wounds were randomly treated with PBS (model group), BMSCs only (BMSC group), EA only (EA group), and BMSCs combined with EA (BMSC + EA group). Endometrial morphological alterations were observed by hematoxylin and eosin (H&E) staining. Changes in markers of epithelial and stromal endometrium cells, endometrial receptivity-related chemokines, and paracrine factors were detected using immunohistochemistry, western blotting, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Finally, the functional recovery of the uterus was evaluated by determining the rate of embryo implantation. RESULTS As shown by endometrial morphology, the damaged uteri in all the treatment groups recovered to some extent, with the best effects observed in the BMSC + EA group. Further studies showed that EA promoted the migration of transplanted BMSCs to damaged uteri by activating the stromal cell-derived factor-1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) axis. As compared with the other groups, upregulated expression of endometrial cytokeratin and vimentin, increased secretion of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in endometrial lesions, and improved embryo implantation rates on the 8th day of pregnancy were found in the BMSC + EA group. CONCLUSIONS EA plays an important role in supporting BMSCs in the repair of thin endometrium, most likely by promoting the migration of BMSCs and enhancing the paracrine effect of BMSCs.
Collapse
Affiliation(s)
- Liangjun Xia
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Qingyu Meng
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jin Xi
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Qin Han
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jie Cheng
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Jie Shen
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Youbing Xia
- Xuzhou Medical University, Xuzhou, 221004, China.
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| | - Liyun Shi
- School of Medicine and Life Science, Nanjing University of Chinese Medicine, Nanjing, 210046, China.
| |
Collapse
|
43
|
Mohammadi A, Maleki-Jamshid A, Milan PB, Ebrahimzadeh K, Faghihi F, Joghataei MT. Intrahippocampal Transplantation of Undifferentiated Human Chorionic- Derived Mesenchymal Stem Cells Does Not Improve Learning and Memory in the Rat Model of Sporadic Alzheimer Disease. Curr Stem Cell Res Ther 2019; 14:184-190. [PMID: 30033876 DOI: 10.2174/1574888x13666180723111249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's Disease (AD) is a progressive neurodegenerative disorder with consequent cognitive impairment and behavioral deficits. AD is characterized by loss of cholinergic neurons and the presence of beta-amyloid protein deposits. Stem cell transplantation seems to be a promising strategy for regeneration of defects in the brain. METHOD One of the suitable type of stem cells originated from fetal membrane is Chorion-derived Mesenchymal Stem Cells (C-MSCs). MSCs were isolated from chorion and characterized by Flowcytometric analysis. Then C-MSCs labeled with DiI were transplanted into the STZ induced Alzheimer disease model in rat. RESULTS Nissl staining and behavior test were used to assess the efficacy of the transplanted cells. Phenotypic and Flowcytometric studies showed that isolated cells were positive for mesenchymal stem cell marker panel with spindle like morphology. CONCLUSION Learning and memory abilities were not improved after stem cell transplantation. C-MSCs transplantation can successfully engraft in injured site but the efficacy and function of transplanted cells were not clinically satisfied.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Maleki-Jamshid
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Pars Advanced and Minimally Invasive medical Manners Research Center, Pars hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Kaveh Ebrahimzadeh
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Isolation and expansion of high yield of pure mesenchymal stromal cells from fresh and cryopreserved placental tissues. Cryobiology 2019; 89:100-103. [PMID: 31128944 DOI: 10.1016/j.cryobiol.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 01/15/2023]
Abstract
The injection of placental stromal cells isolated from fetal human tissues (f-hPSC) was reported to indirectly induce tissue regeneration in different animal models. A procedure of f-hPSC isolation from fragments of both selected fresh or cryopreserved bulk placental neonate tissues is proposed, based on their high migratory potential,. The fragments of the desired fetal placental tissues are adhered to a culture dish by traces of diluted fibrin and covered with culture medium. Spontaneous migration of pure f-hPSC from the tissue fragments to the cell culture dishes is followed by their rapid expansion by numerous passages. The isolated f-hPSC express typical mesenchymal surface antigens, including CD29, CD105, CD166 and CD146, with negative expression of white blood cell lineage and endothelial cells markers. Optimal yields of f-hPSC cultures can also be obtained from tissue samples cryopreserved in medium composed of 10% dimethyl sulfoxide (M2SO) and 50% fetal calf serum. Slightly better yields are obtained with media supplemented with 1% human albumin. Medium with 5% M2SO and/or 0.25 mg/ml PEG yielded inferior results. The f-hPSC from fresh or cryopreserved tissues express similar cell markers and growth kinetics. The proposed isolation protocol may also be applied for high yield isolation of stromal cells from fresh and cryopreserved tissue of other organs.
Collapse
|
45
|
Silini AR, Masserdotti A, Papait A, Parolini O. Shaping the Future of Perinatal Cells: Lessons From the Past and Interpretations of the Present. Front Bioeng Biotechnol 2019; 7:75. [PMID: 31024907 PMCID: PMC6467938 DOI: 10.3389/fbioe.2019.00075] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022] Open
Abstract
Since their discovery and characterization, mesenchymal stromal cells (MSC) have been a topic of great interest in regenerative medicine. Over the last 10 years, detailed studies investigated the properties of MSC from perinatal tissues and have indicated that these cells may represent important tools for restoring tissue damage or promoting regeneration and repair of the tissue microenvironment. At first, perinatal tissue-derived MSC drew attention due to their potential differentiation capacities suggested by their early embryological origin. It is nowadays accepted that perinatal tissue-derived MSC are promising for a wide range of regenerative medicine applications because of their unique immune modulatory properties, rather than their differentiation ability. As a matter of fact, the activation and function of various cells of the innate and adaptive immune systems are suppressed and modulated by MSC from different perinatal tissues, such as human term placenta. However, the mechanisms by which they act on immune cells to facilitate tissue repair during pathological processes remain to be thoroughly elucidated to develop safe and efficient therapeutic approaches. In addition to immune modulatory ability, several other peculiar characteristics of placenta MSC, less explored and/or more debated, are being investigated. These include an understanding of the anti-microbial properties and the role of placental MSC in tumor progression. Moreover, a thorough investigation on preparation methods, bioactive factors, mechanisms of action of the cell secretome, and the development of potency assays to predict clinical efficacy of placenta MSC and their products, are necessary to provide a solid basis for their clinical application.
Collapse
Affiliation(s)
| | - Alice Masserdotti
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy.,Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Papait
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy
| | - Ornella Parolini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza, Brescia, Italy.,Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
46
|
Al-Sowayan B, Keogh RJ, Abumaree M, Georgiou HM, Kalionis B. Valproic acid stimulates in vitro migration of the placenta-derived mesenchymal stem/stromal cell line CMSC29. Stem Cell Investig 2019; 6:3. [PMID: 30976600 DOI: 10.21037/sci.2019.01.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/11/2018] [Indexed: 01/07/2023]
Abstract
Background The placenta is an abundant source of mesenchymal stem/stromal cells (MSC), but our understanding of their functional properties remains limited. We previously created a placental-derived chorionic MSC (CMSC) cell line to overcome the difficulties associated with conducting extensive ex vivo optimization and experimental work on primary cells. The aim of this study was to characterize the migratory behavior of the CMSC29 cell line in vitro. Methods Stimulators of MSC migration, including two cytokines, stromal cell-derived factor-1α (SDF-1α) and hepatocyte growth factor (HGF), and a pharmacological agent, valproic acid (VPA), were tested for their ability to stimulate CMSC29 cell migration. Assessment of cell migration was performed using the xCELLigence Real-Time Cell Analyzer (RTCA). Results There was no significant increase in CMSC29 cell migration towards serum free medium with increasing concentration gradients of SDF-1α or HGF. In contrast, treating CMSC29 cells with VPA alone significantly increased their migration towards serum free medium. Conclusions Immortalized CMSC29 cells retain important properties of primary CMSC, but their migratory properties are altered. CMSC29 cells do not migrate in response to factors that reportedly stimulate primary MSC/CMSC migration. However, CMSC29 increase their migration in response to VPA treatment alone. Further studies are needed to determine the mechanism by which VPA acts alone to stimulate CMSC29 migration. Still, this study provides evidence that VPA pre-treatment may improve the benefits of cell-based therapies that employ certain MSC sub-types.
Collapse
Affiliation(s)
- Balta Al-Sowayan
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia.,Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Rosemary J Keogh
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Mohammed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11426, Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, 11481, Saudi Arabia
| | - Harry M Georgiou
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine, Pregnancy Research Centre, Royal Women's Hospital, Parkville, Victoria 3052, Australia.,Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
47
|
Abumaree MH, Alshehri NA, Almotery A, Al Subayyil AM, Bahattab E, Abomaray FM, Khatlani T, Kalionis B, Jawdat D, El-Muzaini MF, Al Jumah MA, AlAskar AS. Preconditioning human natural killer cells with chorionic villous mesenchymal stem cells stimulates their expression of inflammatory and anti-tumor molecules. Stem Cell Res Ther 2019; 10:50. [PMID: 30728068 PMCID: PMC6366106 DOI: 10.1186/s13287-019-1153-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/22/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background Mesenchymal stem cells derived from the chorionic villi of human placentae (pMSCs) produce a unique array of mediators that regulate the essential cellular functions of their target cells. These properties make pMSCs attractive candidates for cell-based therapy. Here, we examined the effects of culturing human natural killer (NK) cells with pMSCs on NK cell functions. Methods pMSCs were cultured with IL-2-activated and non-activated NK cells. NK cell proliferation and cytolytic activities were monitored. NK cell expression of receptors mediating their cytolytic activity against pMSCs, and the mechanisms underlying this effect on pMSCs, were also investigated. Results Our findings show that IL-2-activated NK cells, but not freshly isolated NK cells, efficiently lyse pMSCs and that this response might involve the activating NK cell receptor CD69. Interestingly, although pMSCs expressed HLA class I molecules, they were nevertheless lysed by NK cells, suggesting that HLA class I antigens do not play a significant role in protecting pMSCs from NK cell cytolytic activity. Co-culturing NK cells with pMSCs also inhibited NK cell expression of receptors, including CD69, NKpG2D, CD94, and NKp30, although these co-cultured NK cells were not inhibited in lysing cancer cells in vitro. Importantly, co-cultured NK cells significantly increased their production of molecules with anti-tumor effects. Conclusions These findings suggest that pMSCs might have potential applications in cancer therapy.
Collapse
Affiliation(s)
- M H Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia. .,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, 11481, Mail Code 3124, Riyadh, Saudi Arabia.
| | - N A Alshehri
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - A Almotery
- College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, P.O. Box 3660, 11481, Mail Code, Riyadh, 3124, Saudi Arabia
| | - A M Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - E Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O Box 6086, Riyadh, 11442, Saudi Arabia
| | - F M Abomaray
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Karolinska Institutet, 14186, Stockholm, Sweden
| | - T Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - B Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - D Jawdat
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - M F El-Muzaini
- Department of Obstetrics and Gynaecology, King Abdulaziz Medical City, Minstry of National Guard Health Affairs, P.O. Box 3660, 11481, Mail Code, Riyadh, 3124, Saudi Arabia
| | - M A Al Jumah
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia
| | - A S AlAskar
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code 1515, Riyadh, Saudi Arabia.,College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 3660, 11481, Mail Code, Riyadh, 3124, Saudi Arabia.,Adult Hematology and Stem Cell Transplantation, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O. Box 22490, 11426, Mail Code, Riyadh, 1515, Saudi Arabia
| |
Collapse
|
48
|
Lee B, Koeppel AF, Wang ET, Gonzalez TL, Sun T, Kroener L, Lin Y, Joshi NV, Ghadiali T, Turner SD, Rich SS, Farber CR, Rotter JI, Ida Chen YD, Goodarzi MO, Guller S, Harwood B, Serna TB, Williams J, Pisarska MD. Differential gene expression during placentation in pregnancies conceived with different fertility treatments compared with spontaneous pregnancies. Fertil Steril 2019; 111:535-546. [PMID: 30611556 DOI: 10.1016/j.fertnstert.2018.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To identify differences in the transcriptomic profiles during placentation from pregnancies conceived spontaneously vs. those with infertility using non-in vitro fertilization (IVF) fertility treatment (NIFT) or IVF. DESIGN Cohort study. SETTING Academic medical center. PATIENT(S) Women undergoing chorionic villus sampling at gestational age 11-13 weeks (n = 141), with pregnancies that were conceived spontaneously (n = 74), with NIFT (n = 33), or with IVF (n = 34), resulting in the delivery of viable offspring. INTERVENTION(S) Collection of chorionic villus samples from women who conceived spontaneously, with NIFT, or with IVF for gene expression analysis using RNA sequencing. MAIN OUTCOME MEASURE(S) Baseline maternal, paternal, and fetal demographics, maternal medical conditions, pregnancy complications, and outcomes. Differential gene expression of first-trimester placenta. RESULT(S) There were few differences in the transcriptome of first-trimester placenta from NIFT, IVF, and spontaneous pregnancies. There was one protein-coding differentially expressed gene (DEG) between the spontaneous and infertility groups, CACNA1I, one protein-coding DEG between the spontaneous and IVF groups, CACNA1I, and five protein-coding DEGs between the NIFT and IVF groups, SLC18A2, CCL21, FXYD2, PAEP, and DNER. CONCLUSION(S) This is the first and largest study looking at transcriptomic profiles of first-trimester placenta demonstrating similar transcriptomic profiles in pregnancies conceived using NIFT or IVF and spontaneous conceptions. Gene expression differences found to be highest in the NIFT group suggest that the underlying infertility, in addition to treatment-related factors, may contribute to the observed gene expression profiles.
Collapse
Affiliation(s)
- Bora Lee
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Alex F Koeppel
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Erica T Wang
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Tania L Gonzalez
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tianyanxin Sun
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lindsay Kroener
- Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Yayu Lin
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Nikhil V Joshi
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California
| | - Tejal Ghadiali
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Stephen D Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | | | | | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Seth Guller
- Department of Obstetrics/Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut
| | - Bryna Harwood
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Tania B Serna
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - John Williams
- Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California; Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Margareta D Pisarska
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; Department of Obstetrics and Gynecology, University of California, Los Angeles (UCLA) David Geffen School of Medicine, Los Angeles, California.
| |
Collapse
|
49
|
Genes responsible for proliferation, differentiation, and junction adhesion are significantly up-regulated in human ovarian granulosa cells during a long-term primary in vitro culture. Histochem Cell Biol 2018; 151:125-143. [PMID: 30382374 PMCID: PMC6394675 DOI: 10.1007/s00418-018-1750-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2018] [Indexed: 01/10/2023]
Abstract
The human ovarian granulosa cells (GCs) surround the oocyte and form the proper architecture of the ovarian follicle. The ability of GCs to proliferate and differentiate in the conditions of in vitro culture has been proven. However, there is still a large field for extensive investigation of molecular basics, as well as marker genes, responsible for these processes. This study aimed to find the new marker genes, encoding proteins that regulate human GCs in vitro capability for proliferation and differentiation during long-term primary culture. The human follicular GCs were collected from hyper-stimulated ovarian follicles during IVF procedures and transferred to a long-term in vitro culture. The culture lasted for 30 days, with RNA samples isolated at days 1, 7, 15, 30. Transcriptomic analysis was then performed with the use of Affymetrix microarray. Obtained results were then subjected to bioinformatical evaluation and sorting. After subjecting the datasets to KEGG analysis, three differentially expressed ontology groups "cell differentiation" (GO:0030154), "cell proliferation" (GO:0008283) and "cell-cell junction organization" (GO:0045216) were chosen for further investigation. All three of those ontology groups are involved in human GCs' in vitro lifespan, proliferation potential, and survival capability. Changes in expression of genes of interest belonging to the chosen GOs were validated with the use of RT-qPCR. In this manuscript, we suggest that VCL, PARVA, FZD2, NCS1, and COL5A1 may be recognized as new markers of GC in vitro differentiation, while KAT2B may be a new marker of their proliferation. Additionally, SKI, GLI2, FERMT2, and CDH2 could also be involved in GC in vitro proliferation and differentiation processes. We demonstrated that, in long-term in vitro culture, GCs exhibit markers that suggest their ability to differentiate into different cells types. Therefore, the higher expression profile of these genes may also be associated with the induction of cellular differentiation processes that take place beyond the long-term primary in vitro culture.
Collapse
|
50
|
Human decidua basalis mesenchymal stem/stromal cells protect endothelial cell functions from oxidative stress induced by hydrogen peroxide and monocytes. Stem Cell Res Ther 2018; 9:275. [PMID: 30359307 PMCID: PMC6202803 DOI: 10.1186/s13287-018-1021-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/17/2018] [Accepted: 09/28/2018] [Indexed: 01/28/2023] Open
Abstract
Background Human decidua basalis mesenchymal stem/multipotent stromal cells (DBMSCs) inhibit endothelial cell activation by inflammation induced by monocytes. This property makes them a promising candidate for cell-based therapy to treat inflammatory diseases, such as atherosclerosis. This study was performed to examine the ability of DBMSCs to protect endothelial cell functions from the damaging effects resulting from exposure to oxidatively stress environment induced by H2O2 and monocytes. Methods DBMSCs were co-cultured with endothelial cells isolated from human umbilical cord veins in the presence of H2O2 and monocytes, and various functions of endothelial cell were then determined. The effect of DBMSCs on monocyte adhesion to endothelial cells in the presence of H2O2 was also examined. In addition, the effect of DBMSCs on HUVEC gene expression under the influence of H2O2 was also determined. Results DBMSCs reversed the effect of H2O2 on endothelial cell functions. In addition, DBMSCs reduced monocyte adhesion to endothelial cells and also reduced the stimulatory effect of monocytes on endothelial cell proliferation in the presence of H2O2. Moreover, DBMSCs modified the expression of many genes mediating important endothelial cell functions. Finally, DBMSCs increased the activities of glutathione and thioredoxin reductases in H2O2-treated endothelial cells. Conclusions We conclude that DBMSCs have potential for therapeutic application in inflammatory diseases, such as atherosclerosis by protecting endothelial cells from oxidative stress damage. However, more studies are needed to elucidate this further.
Collapse
|