1
|
Xu J, Song Z. The role of different physical exercises as an anti-aging factor in different stem cells. Biogerontology 2025; 26:63. [PMID: 40009244 DOI: 10.1007/s10522-025-10205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
The senescence process is connected to the characteristics of cellular aging. Understanding their causal network helps develop a framework for creating new treatments to slow down the senescence process. A growing body of research indicates that aging may adversely affect stem cells (SCs). SCs change their capability to differentiate into different cell types and decrease their potential for renewal as they age. Research has indicated that consistent physical exercise offers several health advantages, including a reduced risk of age-associated ailments like tumors, heart disease, diabetes, and neurological disorders. Exercise is a potent physiological stressor linked to higher red blood cell counts and an enhanced immune system, promoting disease resistance. Sports impact mesenchymal SCs (MSCs), hematopoietic SCs (HSCs), neuronal SCs (NuSCs), and muscular SCs (MuSCs), among other aged SCs types. These changes to the niche will probably affect the amount and capability of adult SCs after exercise. In this work, we looked into how different types of SCs age. The impact of physical activity on the aging process has been studied. Additionally, there has been discussion and study on the impact of different sports and physical activities on SCs as an anti-aging component.
Collapse
Affiliation(s)
- Jia Xu
- College of Physical Education, North-West Normal University, Lanzhou, 730070, China
| | - Zhe Song
- Cangzhou Medical College, Cangzhou, 061001, China.
| |
Collapse
|
2
|
Zhou H, Han X, Huang C, Wu H, Hu Y, Chen C, Tao J. Exercise-induced adaptive response of different immune organs during ageing. Ageing Res Rev 2024; 102:102573. [PMID: 39486525 DOI: 10.1016/j.arr.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The immune system plays a crucial role in the ageing process. As individuals age, significant alterations in the immune system experiences occur, marked by a decline in immune cell count, compromised immune function, and decreased immune regulation across various immune organs. These changes collectively weaken the capacity to combat diseases and infections, highlighting the vulnerability that accompanies ageing. Exercise is a potent intervention that profoundly influences holistic well-being and disease mitigation, with a notable emphasis on immune modulation. In general, regular moderate exercise holds significant potential to enhance immune defense mechanisms and metabolic well-being by augmenting the circulation and activation of immune cells. However, some exercise modalities would trigger detrimental effects on the immune system. It can be seen that the regulatory responses of various immune organs to diverse exercise patterns are different. This review aims to examine the immunological responses elicited by exercise across various immune organs, including the lymph nodes, spleen, bone marrow, and thymus, to underscore the nuanced interplay between exercise patterns and the immune organ. This underscores the importance of customizing exercise interventions to optimize immune function across the lifespan.
Collapse
Affiliation(s)
- Huanghao Zhou
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, China
| | - Chunxiu Huang
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Huijuan Wu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yue Hu
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Cong Chen
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jing Tao
- College of Rehsabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| |
Collapse
|
3
|
Zapata-Linares N, Berenbaum F, Houard X. Role of joint adipose tissues in osteoarthritis. ANNALES D'ENDOCRINOLOGIE 2024; 85:214-219. [PMID: 38871517 DOI: 10.1016/j.ando.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Osteoarthritis (OA) is the most common musculoskeletal disease, without any curative treatment. Obesity being the main modifiable risk factor for OA, much attention focused on the role of adipose tissues (AT). In addition to the involvement of visceral and subcutaneous AT via systemic ways, many arguments also highlight the involvement of local AT, present in joint tissues. Local AT include intra-articular AT (IAAT), which border the synovium, and bone marrow AT (BMAT) localized within marrow cavities in the bones. This review describes the known features and involvement of IAAT and BMAT in joint homeostasis and OA. Recent findings evidence that alteration in magnetic resonance imaging signal intensity of infrapatellar fat pad can be predictive of the development and progression of knee OA. IAAT and synovium are partners of the same functional unit; IAAT playing an early and pivotal role in synovial inflammation and fibrosis and OA pain. BMAT, whose functions have only recently begun to be studied, is in close functional interaction with its microenvironment. The volume and molecular profile of BMAT change according to the pathophysiological context, enabling fine regulation of haematopoiesis and bone metabolism. Although its role in OA has not yet been studied, the localization of BMAT, its functions and the importance of the bone remodelling processes that occur in OA argue in favour of a role for BMAT in OA.
Collapse
Affiliation(s)
- Natalia Zapata-Linares
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France
| | - Francis Berenbaum
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France; Rheumatology Department, AP-HP Saint-Antoine Hospital, 184, rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Xavier Houard
- Centre de recherche Saint-Antoine (CRSA), Sorbonne université, Inserm, 75012 Paris, France.
| |
Collapse
|
4
|
Kamperschroer C, Tartaro K, Goodchild L, Menke C, Artrip A, Pisharath H. Cold Agglutinin Disease in a Rhesus Macaque ( Macaca mulatta). Comp Med 2023; 73:398-406. [PMID: 38087406 PMCID: PMC10702163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/20/2023] [Accepted: 08/11/2023] [Indexed: 12/18/2023]
Abstract
Cold agglutinin disease (CAD) is a condition involving anemia and its related symptoms; it is caused by autoantibodies that bind and agglutinate red blood cells in areas susceptible to hypothermia, such as extremities exposed to cold temperatures. CAD is rare, with 5 to 20 human cases per million individuals. In this report, we describe a case of CAD in a previously healthy and experimentally naïve adult Indian rhesus macaque that was housed indoors and presented with blood in the urine. After our observations of hemoglobinuria and anemia led us to suspect CAD, we demonstrated that the macaque's blood agglutinated at reduced temperatures. We also noticed that the provision of cold foraging treats triggered episodes of hemoglobinuria. Further investigation revealed that serum from the macaque agglutinated RBCs in vitro with high thermal amplitude (at or below 30 °C) and had an antibody titer of 8 to 32. The serum contained autoantibodies of the immunoglobulin M (IgM) isotype; agglutinins of the IgG isotype were not detected. The cold-dependent IgM autoantibodies in the serum from the affected macaque reacted against a common RBC antigen because RBCs collected from other macaques were bound and agglutinated by the affected animal's IgM under cold conditions. This in vitro binding activity was reversible when the test temperature was returned to normal body temperature (37 °C). These findings demonstrated cold-dependent RBC-specific IgM agglutinins and led us to a diagnosis of CAD. This is the first documented case of spontaneous CAD in a rhesus macaque.
Collapse
Affiliation(s)
| | - Karrie Tartaro
- Pfizer Inc., Immunosafety Sciences, Groton, Connecticut; and
| | | | | | | | | |
Collapse
|
5
|
Sabarathinam S, Dhanasekaran D, Ganamurali N. Insight on sarcopenic obesity and epicatechin as a promising treatment option. Diabetes Metab Syndr 2023; 17:102856. [PMID: 37742361 DOI: 10.1016/j.dsx.2023.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AND AIM Sarcopenic Obesity (SO) in the elderly population is a complex and multifactorial condition which refers to the loss of skeletal muscle mass, strength, and function associated with aging, while obesity involves excessive adipose tissue accumulation. The simultaneous occurrence of these two conditions presents a unique set of challenges to public health and clinical management. This narrative review aims to provide an overview of the use of epicatechin (EC) in the treatment of SO and its related complications. METHOD A survey of studies related to preclinical and clinical evidence of Epicatechin in sarcopenic obesity and its complications was performed in the following database Medline, Scopus, ProQuest, Embase, Web of Science, and Google scholar. Followed by structural activity relationship and pharmacokinetic profile of Epicatechin was discussed in this paper. RESULTS The main pharmacological effect of Epicatechin is myostatin inhibition activity which has been described by both in vitro and in vivo studies earlier. The SO is directly correlated with the alteration of Myostatin. The pre-clinical and clinical studies suggest that epicatechin can be a potential candidate in the management of SO and its related complication. CONCLUSION The present review describes the pharmacokinetic profile and structural activity of epicatechin respective to SO and its related complications. The goal of this review is to update the scientific community on the therapeutic potential of epicatechin in SO and age-related factors. Conduction of clinical and pre-clinical trials, also drug dosage optimization may provide with insights on the use of epicatechin in SO.
Collapse
Affiliation(s)
- Sarvesh Sabarathinam
- Drug Testing Laboratory, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India; Clinical Trial Unit, Metabolic Ward, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India; Certificate Programme-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| | - Dhivya Dhanasekaran
- Certificate Programme-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Nila Ganamurali
- Certificate Programme-Analytical Techniques in Herbal Drug Industry, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
6
|
Karolczak K, Watala C. Estradiol as the Trigger of Sirtuin-1-Dependent Cell Signaling with a Potential Utility in Anti-Aging Therapies. Int J Mol Sci 2023; 24:13753. [PMID: 37762053 PMCID: PMC10530977 DOI: 10.3390/ijms241813753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Aging entails the inevitable loss of the structural and functional integrity of cells and tissues during the lifetime. It is a highly hormone-dependent process; although, the exact mechanism of hormone involvement, including sex hormones, is unclear. The marked suppression of estradiol synthesis during menopause suggests that the hormone may be crucial in maintaining cell lifespan and viability in women. Recent studies also indicate that the same may be true for men. Similar anti-aging features are attributed to sirtuin 1 (SIRT1), which may possibly be linked at the molecular level with estradiol. This finding may be valuable for understanding the aging process, its regulation, and possible prevention against unhealthy aging. The following article summarizes the initial studies published in this field with a focus on age-associated diseases, like cancer, cardiovascular disease and atherogenic metabolic shift, osteoarthritis, osteoporosis, and muscle damage, as well as neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Kamil Karolczak
- Department of Haemostatic Disorders, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215 Lodz, Poland;
| | | |
Collapse
|
7
|
Barthelemy J, Bogard G, Wolowczuk I. Beyond energy balance regulation: The underestimated role of adipose tissues in host defense against pathogens. Front Immunol 2023; 14:1083191. [PMID: 36936928 PMCID: PMC10019896 DOI: 10.3389/fimmu.2023.1083191] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/09/2023] [Indexed: 03/06/2023] Open
Abstract
Although the adipose tissue (AT) is a central metabolic organ in the regulation of whole-body energy homeostasis, it is also an important endocrine and immunological organ. As an endocrine organ, AT secretes a variety of bioactive peptides known as adipokines - some of which have inflammatory and immunoregulatory properties. As an immunological organ, AT contains a broad spectrum of innate and adaptive immune cells that have mostly been studied in the context of obesity. However, overwhelming evidence supports the notion that AT is a genuine immunological effector site, which contains all cell subsets required to induce and generate specific and effective immune responses against pathogens. Indeed, AT was reported to be an immune reservoir in the host's response to infection, and a site of parasitic, bacterial and viral infections. In addition, besides AT's immune cells, preadipocytes and adipocytes were shown to express innate immune receptors, and adipocytes were reported as antigen-presenting cells to regulate T-cell-mediated adaptive immunity. Here we review the current knowledge on the role of AT and AT's immune system in host defense against pathogens. First, we will summarize the main characteristics of AT: type, distribution, function, and extraordinary plasticity. Second, we will describe the intimate contact AT has with lymph nodes and vessels, and AT immune cell composition. Finally, we will present a comprehensive and up-to-date overview of the current research on the contribution of AT to host defense against pathogens, including the respiratory viruses influenza and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Isabelle Wolowczuk
- Univ. Lille, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (Inserm), Centre Hospitalier Universitaire de Lille (CHU Lille), Institut Pasteur de Lille, U1019 - UMR 9017 - Center for Infection and Immunity of Lille (CIIL), Lille, France
| |
Collapse
|
8
|
Lins CF, Salmon CEG, Amorim de Souza L, Quesado RCS, de Souza Moraes R, Silva-Pinto AC, Matos MA, Nogueira-Barbosa MH. Quantitative MRI evaluation of bone marrow in sickle cell disease: relationship with haemolysis and clinical severity. Clin Radiol 2023; 78:e268-e278. [PMID: 36623977 DOI: 10.1016/j.crad.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 12/27/2022]
Abstract
AIM To evaluate bone marrow fat fraction using the Dixon technique (FFDix) of magnetic resonance imaging (MRI) as a potential biomarker of haemolysis and clinical severity in the overall assessment and follow-up of sickle cell disease (SCD) patients. MATERIAL AND METHODS The present study was a cross-sectional study in which healthy individuals and SCD patients (matched for age, sex, and weight) were subjected to MRI of the lumbar spine and pelvis to quantify FFDix in the bone marrow using the Dixon technique. SCD severity was analysed by clinical and laboratory data, and an online calculator. A high degree of haemolysis was defined using the cut-off values haemoglobin (Hb) ≤10 g/dl, lactate dehydrogenase (LDH) ≥325 U/l, reticulocytes ≥3% and total bilirubin (TB) ≥1.2 mg/dl. Pearson's correlation, receiver operating characteristic (ROC) curve and binary logistic regression analysis were performed. RESULTS Forty-eight SCD patients (26 homozygous: HbSS and 22 compound heterozygous: HbSC) and 48 healthy individuals participated in the study. FFDix was lower in SCD patients than in the control group, showing even lower values in the HbSS subtype and patients with a higher degree of haemolysis. HbSC patients with a higher degree of haemolysis using hydroxyurea (medium dosage 9.8 mg/kg/day) had lower FFDix. ROC curves and odds ratios for detecting patients with a higher degree of haemolysis at the different FFDix measurement sites demonstrated excellent performance: iliac bones (cut-off ≤16.75%, AUC = 0.824, p<0.001), femoral heads (cut-off ≤46.7%, AUC = 0.775, p=0.001), lumbar vertebrae (cut-off ≤7.8%, AUC = 0.755, p=0.002). CONCLUSION Decreased FFDix is indicative of higher degree of haemolysis and SCD severity with great potential as a non-invasive biomarker contributing to the overall assessment and follow-up of SCD patients.
Collapse
Affiliation(s)
- C Freitas Lins
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil; Clínica Delfin Medicina Diagnóstica, Av. Antônio Carlos Magalhães, 442, Pituba, Salvador, Bahia, Brazil; Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, Brazil.
| | - C E Garrido Salmon
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - L Amorim de Souza
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - R C Saldanha Quesado
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - R de Souza Moraes
- Clínica Delfin Medicina Diagnóstica, Av. Antônio Carlos Magalhães, 442, Pituba, Salvador, Bahia, Brazil
| | - A C Silva-Pinto
- Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil
| | - M Almeida Matos
- Bahiana School of Medicine and Public Health (EBMSP), Av. Dom João VI, 275, Brotas, Salvador, Bahia, Brazil
| | - M H Nogueira-Barbosa
- Ribeirão Preto Medical School, USP Ribeirão Preto, Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, Campus Universitário s/n - Monte Alegre, Ribeirão Preto, SP, Brazil; Ribeirão Preto Medical School Musculoskeletal Imaging Research Laboratory, Brazil; Department of Orthopedic Surgery, University of Missouri Health Care, Columbia, MO, USA
| |
Collapse
|
9
|
Vick LV, Collins CP, Khuat LT, Wang Z, Dunai C, Aguilar EG, Stoffel K, Yendamuri S, Smith R, Mukherjee S, Barbi J, Canter RJ, Monjazeb AM, Murphy WJ. Aging augments obesity-induced thymic involution and peripheral T cell exhaustion altering the "obesity paradox". Front Immunol 2023; 13:1012016. [PMID: 36776393 PMCID: PMC9910174 DOI: 10.3389/fimmu.2022.1012016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/07/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction The incidence of obesity, a condition characterized by systemic chronic inflammation, has reached pandemic proportions and is a poor prognostic factor in many pathologic states. However, its role on immune parameters has been diverse and at times contradictory. We have previously demonstrated that obesity can result in what has been called the "obesity paradox" which results in increased T cell exhaustion, but also greater efficacy of immune checkpoint blockade in cancer treatment. Methods The role of obesity, particularly in the context of aging, has not been robustly explored using preclinical models. We therefore evaluated how age impacts the immune environment on T cell development and function using diet-induced obese (DIO) mice. Results We observed that DIO mice initially displayed greater thymopoiesis but then developed greater thymic involution over time compared to their lean counterparts. Both aging and obesity resulted in increased T cell memory conversion combined with increased expression of T cell exhaustion markers and Treg expansion. This increased T cell immunosuppression with age then resulted in a loss of anti-tumor efficacy by immune checkpoint inhibitors (ICIs) in older DIO mice compared to the younger DIO counterparts. Discussion These results suggest that both aging and obesity contribute to T cell dysfunction resulting in increased thymic involution. This combined with increased T cell exhaustion and immunosuppressive parameters affects immunotherapy efficacy reducing the advantage of obesity in cancer immunotherapy responses.
Collapse
Affiliation(s)
- Logan V. Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Craig P. Collins
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Lam T. Khuat
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ziming Wang
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Cordelia Dunai
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ethan G. Aguilar
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Kevin Stoffel
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Sai Yendamuri
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Randall Smith
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sarbajit Mukherjee
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph Barbi
- Department of Thoracic Surgery, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
- Department of Immunology Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California Davis Comprehensive Cancer Center, University of California School of Medicine, Sacramento, CA, United States
| | - William J. Murphy
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, United States
- Department of Internal Medicine, Division of Hematology and Oncology, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
10
|
Wang L, Jiang J, Li Y, Huang J, Wang R, Liang Y, He C, Liu S. Global trends and hotspots in research on osteoporosis rehabilitation: A bibliometric study and visualization analysis. Front Public Health 2022; 10:1022035. [PMID: 36530674 PMCID: PMC9748484 DOI: 10.3389/fpubh.2022.1022035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022] Open
Abstract
Background The field of rehabilitation medicine plays an essential role in the comprehensive management of osteoporosis and its consequences. The benefits of therapeutic exercise are increasingly being recognized in this area, which receives an increasing number of publications. this study was designed to comprehensively identify collaborative networks, parse and track research trends, spotlight present hotspots, and accurately predict frontiers and focus on the health topics related to osteoporosis rehabilitation. Methods This research adopted computer retrieval of osteoporosis rehabilitation-related research published in the Web of Science Core Collection (WoSCC) from inception to June 14, 2022. The bibliometric visualization and comparative analysis involving countries, institutions, journals, authors, references, and keywords were performed using the CiteSpace and VOSviewer software. Results A total of 3,268 articles were included, and the number of articles published each year has demonstrated a steady increase. The United States and the University of Melbourne were the highest productive country and institution, with 1,325 and 87 articles, respectively. The journal of osteoporosis international has published the greatest number of articles, with 221 publications, and the journal of bone and mineral research ranked first in the co-citation counts (cited by 11,792 times). The most productive and highly-cited authors were Heinonen A and Cummings S, with 35 publications and 680 citations. Conclusions At present, "physical activity," "weight bearing exercise," "muscle strength," "whole body vibration," "postmenopausal women," "older women," children, men are the noteworthy research hot topics. Future research that focus on the major modes and parameters of physical activity/exercise for osteoporosis (including whole body vibration, weight bearing exercises, resistance training), targeted multicomponent training regimens, rehabilitation therapy for postmenopausal women, older women, children and men, osteoporosis related-sarcopenia and fractures, and mesenchymal stem cells are becoming frontiers and focus on the health topics related to osteoporosis rehabilitation in the upcoming years, which are worthy of further exploration.
Collapse
Affiliation(s)
- Liqiong Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaojiao Jiang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Li
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Jinming Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Renjie Wang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiang Liang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Chengqi He
| | - Shaxin Liu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China,Rehabilitation Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, China,Shaxin Liu
| |
Collapse
|
11
|
Vauclard A, Bellio M, Valet C, Borret M, Payrastre B, Severin S. Obesity: Effects on bone marrow homeostasis and platelet activation. Thromb Res 2022. [DOI: 10.1016/j.thromres.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Inflammation Regulates Haematopoietic Stem Cells and Their Niche. Int J Mol Sci 2022; 23:ijms23031125. [PMID: 35163048 PMCID: PMC8835214 DOI: 10.3390/ijms23031125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 11/16/2022] Open
Abstract
Haematopoietic stem cells (HSCs) reside in the bone marrow and are supported by the specialised microenvironment, a niche to maintain HSC quiescence. To deal with haematopoietic equilibrium disrupted during inflammation, HSCs are activated from quiescence directly and indirectly to generate more mature immune cells, especially the myeloid lineage cells. In the process of proliferation and differentiation, HSCs gradually lose their self-renewal potential. The extensive inflammation might cause HSC exhaustion/senescence and malignant transformation. Here, we summarise the current understanding of how HSC functions are maintained, damaged, or exhausted during acute, prolonged, and pathological inflammatory conditions. We also highlight the inflammation-altered HSC niche and its impact on escalating the insults on HSCs.
Collapse
|
13
|
Romero-Márquez JM, Varela-López A, Navarro-Hortal MD, Badillo-Carrasco A, Forbes-Hernández TY, Giampieri F, Domínguez I, Madrigal L, Battino M, Quiles JL. Molecular Interactions between Dietary Lipids and Bone Tissue during Aging. Int J Mol Sci 2021; 22:ijms22126473. [PMID: 34204176 PMCID: PMC8233828 DOI: 10.3390/ijms22126473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Age-related bone disorders such as osteoporosis or osteoarthritis are a major public health problem due to the functional disability for millions of people worldwide. Furthermore, fractures are associated with a higher degree of morbidity and mortality in the long term, which generates greater financial and health costs. As the world population becomes older, the incidence of this type of disease increases and this effect seems notably greater in those countries that present a more westernized lifestyle. Thus, increased efforts are directed toward reducing risks that need to focus not only on the prevention of bone diseases, but also on the treatment of persons already afflicted. Evidence is accumulating that dietary lipids play an important role in bone health which results relevant to develop effective interventions for prevent bone diseases or alterations, especially in the elderly segment of the population. This review focuses on evidence about the effects of dietary lipids on bone health and describes possible mechanisms to explain how lipids act on bone metabolism during aging. Little work, however, has been accomplished in humans, so this is a challenge for future research.
Collapse
Affiliation(s)
- Jose M. Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - María D. Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Alberto Badillo-Carrasco
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
| | - Tamara Y. Forbes-Hernández
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, 36310 Vigo, Spain;
| | - Francesca Giampieri
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Irma Domínguez
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Lorena Madrigal
- Universidad Internacional Iberoamericana, Calle 15 Num. 36, Entre 10 y 12 IMI III, Campeche 24560, Mexico;
| | - Maurizio Battino
- Department of Clinical Sicences, Università Politecnica delle Marche, 60131 Ancona, Italy; (F.G.); (M.B.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - José L. Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ‘‘José Mataix”, Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., 18100 Armilla, Spain; (J.M.R.-M.); (A.V.-L.); (M.D.N.-H.); (A.B.-C.)
- Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain;
- Correspondence:
| |
Collapse
|
14
|
Haring B, Reiner AP, Liu J, Tobias DK, Whitsel E, Berger JS, Desai P, Wassertheil-Smoller S, LaMonte MJ, Hayden KM, Bick AG, Natarajan P, Weinstock JS, Nguyen PK, Stefanick M, Simon MS, Eaton CB, Kooperberg C, Manson JE. Healthy Lifestyle and Clonal Hematopoiesis of Indeterminate Potential: Results From the Women's Health Initiative. J Am Heart Assoc 2021; 10:e018789. [PMID: 33619969 PMCID: PMC8174283 DOI: 10.1161/jaha.120.018789] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Presence of clonal hematopoiesis of indeterminate potential (CHIP) is associated with a higher risk of atherosclerotic cardiovascular disease, cancer, and mortality. The relationship between a healthy lifestyle and CHIP is unknown. Methods and Results This analysis included 8709 postmenopausal women (mean age, 66.5 years) enrolled in the WHI (Women's Health Initiative), free of cancer or cardiovascular disease, with deep‐coverage whole genome sequencing data available. Information on lifestyle factors (body mass index, smoking, physical activity, and diet quality) was obtained, and a healthy lifestyle score was created on the basis of healthy criteria met (0 point [least healthy] to 4 points [most healthy]). CHIP was derived on the basis of a prespecified list of leukemogenic driver mutations. The prevalence of CHIP was 8.6%. A higher healthy lifestyle score was not associated with CHIP (multivariable‐adjusted odds ratio [OR] [95% CI], 0.99 [0.80–1.23] and 1.13 [0.93–1.37]) for the upper (3 or 4 points) and middle category (2 points), respectively, versus referent (0 or 1 point). Across score components, a normal and overweight body mass index compared with obese was significantly associated with a lower odds for CHIP (OR, 0.71 [95% CI, 0.57–0.88] and 0.83 [95% CI, 0.68–1.01], respectively; P‐trend 0.0015). Having never smoked compared with being a current smoker tended to be associated with lower odds for CHIP. Conclusions A healthy lifestyle, based on a composite score, was not related to CHIP among postmenopausal women. However, across individual lifestyle factors, having a normal body mass index was strongly associated with a lower prevalence of CHIP. These findings support the idea that certain healthy lifestyle factors are associated with a lower frequency of CHIP.
Collapse
Affiliation(s)
- Bernhard Haring
- Department of Internal Medicine I University of Würzburg Bavaria Germany
| | - Alexander P Reiner
- Division of Public Health Sciences Department of Epidemiology Fred Hutchinson Cancer Research CenterUniversity of Washington Seattle WA
| | | | - Deirdre K Tobias
- Department of Nutrition Harvard T.H. Chan School of Public Health Boston MA.,Division of Preventive Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| | - Eric Whitsel
- Department of Epidemiology and Medicine University of North Carolina Chapel Hill NC
| | - Jeffrey S Berger
- Department of Medicine Center for the Prevention of Cardiovascular Disease New York University School of Medicine New York City NY
| | - Pinkal Desai
- Division of Hematology and Oncology Weill Cornell Medical College New York NY
| | | | - Michael J LaMonte
- Department of Epidemiology and Environmental Health School of Public Health and Health Professions University at Buffalo-SUNY Buffalo NY
| | - Kathleen M Hayden
- Division of Public Health Sciences Department of Social Sciences and Health Policy Wake Forest School of Medicine Winston-Salem NC
| | - Alexander G Bick
- Department of Medicine Program in Medical and Population Genetics Harvard Medical SchoolBroad Institute of Harvard and MIT Cambridge MA
| | - Pradeep Natarajan
- Department of Medicine Program in Medical and Population Genetics Harvard Medical SchoolBroad Institute of Harvard and MIT Cambridge MA
| | - Joshua S Weinstock
- Department of Biostatistics and Center for Statistical Genetics University of Michigan School of Public Health Ann Arbor MI
| | - Patricia K Nguyen
- Department of Medicine Stanford University Medical Center Palo Alto CA
| | - Marcia Stefanick
- Department of Medicine Stanford University Medical Center Palo Alto CA.,Departments of Obstetrics and Gynecology Stanford University Palo Alto CA
| | - Michael S Simon
- Department of Oncology Karmanos Cancer Institute at Wayne State University Detroit MI
| | - Charles B Eaton
- Department of Epidemiology Center for Primary Care and Prevention Brown University Providence RI
| | | | - JoAnn E Manson
- Division of Preventive Medicine Department of Medicine Brigham and Women's Hospital Harvard Medical School Boston MA
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Epidemiologic studies reveal that the link between obesity and osteoarthritis cannot be uniquely explained by overweight-associated mechanical overload. For this reason, much attention focuses on the endocrine activity of adipose tissues. In addition to the systemic role of visceral and subcutaneous adipose tissues, many arguments highlight the involvement of local adipose tissues in osteoarthritis. RECENT FINDINGS Alteration in MRI signal intensity of the infrapatellar fat pad may predict both accelerated knee osteoarthritis and joint replacement. In this context, recent studies show that mesenchymal stromal cells could play a pivotal role in the pathological remodelling of intra-articular adipose tissues (IAATs) in osteoarthritis. In parallel, recent findings underline bone marrow adipose tissue as a major player in the control of the bone microenvironment, suggesting its possible role in osteoarthritis. SUMMARY The recent description of adipose tissues of various phenotypes within an osteoarthritic joint allows us to evoke their direct involvement in the initiation and progression of the osteoarthritic process. We can expect in the near future the discovery of novel molecules targeting these tissues.
Collapse
Affiliation(s)
| | - Florent Eymard
- Department of Rheumatology, AP-HP Henri Mondor Hospital
- Gly-CRRET Research Unit 4397, Université Paris-Est Créteil
| | - Francis Berenbaum
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
- Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| | - Xavier Houard
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA)
| |
Collapse
|
16
|
Luo J, Dou L, Yang Z, Zhou Z, Huang H. CBFA2T2 promotes adipogenic differentiation of mesenchymal stem cells by regulating CEBPA. Biochem Biophys Res Commun 2020; 529:133-139. [PMID: 32703401 DOI: 10.1016/j.bbrc.2020.05.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/16/2020] [Indexed: 12/28/2022]
Abstract
The unique metabolic characteristics and diverse functions of marrow adipose tissue (MAT) have drawn more attention recently. Previously, we have reported that CBFA2T2 is required for BMP2-induced osteogenic differentiation of mesenchymal stem/stromal cells (MSCs). In the present study, we further investigated the role of CBFA2T2 in regulation of adipogenic differentiation in mouse bone marrow-derived MSCs (mBMSCs) and human dental pulp stem cells (hDPSCs). We found CBFA2T2 expression was dramatically upregulated during adipogenesis of mBMSCs and hDPSCs. More importantly, knockdown of CBFA2T2 in mBMSCs and hDPSCs significantly inhibited the process of adipogenic differentiation, as revealed by the expression of adipogenic markers and Oil Red O staining. Mechanistically, we found knockdown of CBFA2T2 led to an increase in H3K9me2 and H3K9me3 levels at promoter of CEBPA, an essential transcription factor of adipogenesis. Taken together, these findings suggest CBFA2T2 is key regulator of adipogenic differentiation of MSCs, and it may represent a therapeutic target for conditions with excessive MAT.
Collapse
Affiliation(s)
- Jun Luo
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lei Dou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengyan Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhi Zhou
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
17
|
Colditz J, Picke AK, Hofbauer LC, Rauner M. Contributions of Dickkopf-1 to Obesity-Induced Bone Loss and Marrow Adiposity. JBMR Plus 2020; 4:e10364. [PMID: 32537550 PMCID: PMC7285751 DOI: 10.1002/jbm4.10364] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/08/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022] Open
Abstract
Low bone strength in overweight individuals is a significant medical problem. One important determinant of mesenchymal stem cell fate into osteoblasts or adipocytes is the Wnt signaling pathway. We recently showed that Dickkopf‐1 (DKK1), a potent Wnt inhibitor, is upregulated in obese mice. In this study, we investigated the role of DKK1 in the pathogenesis of obesity‐induced bone loss using global and tissue‐specific KO mice. Obesity was induced in 8‐week‐old male mice with an inducible global (Rosa26‐CreERT2) or osteoprogenitor‐ (Osx–Cre‐) specific deletion of Dkk1 with a high‐fat diet (HFD) containing 60% fat. After 12 weeks, body weight, bone volume, bone fat mass, and bone turnover were assessed. Dkk1fl/fl;Rosa26‐CreERT2 mice experienced a similar increase in body weight and white fat pads as control mice. A HFD significantly reduced trabecular bone mass and the bone formation rate in Cre‐ mice and Dkk1fl/fl;Rosa26‐CreERT2 mice. Interestingly, Dkk1fl/fl;Rosa26‐CreERT2 mice were protected from HFD‐induced cortical bone loss. Furthermore, a HFD was associated with increased bone marrow fat in the femur, which was less pronounced in Dkk1fl/fl;Rosa26‐CreERT2 mice. Mice with an osteoprogenitor‐specific Dkk1 deletion showed similar results as the global knockout, showing a protection against HFD‐induced cortical bone loss and an accumulation of bone marrow fat, but a similar decrease in trabecular bone volume. In summary, DKK1 appears to contribute distinctly to cortical, but not trabecular bone loss in obesity. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Juliane Colditz
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| | - Ann-Kristin Picke
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| | - Martina Rauner
- Department of Medicine III, Center for Healthy Aging Technische Universität Dresden Dresden Germany
| |
Collapse
|
18
|
Wang M, Tan Y, Shi Y, Wang X, Liao Z, Wei P. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front Endocrinol (Lausanne) 2020; 11:568. [PMID: 32982969 PMCID: PMC7477770 DOI: 10.3389/fendo.2020.00568] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenic obesity and diabetes are two increasing health problems worldwide, which both share many common risk factors, such as aging, and general obesity. The pathogenesis of sarcopenic obesity includes aging, physical inactivity, malnutrition, low-grade inflammation, insulin resistance, and hormonal changes. Nevertheless, there are two major reasons to cause diabetes: impaired insulin secretion and impaired insulin action. Furthermore, the individual diagnosis of obesity and sarcopenia should be combined to adequately define sarcopenic obesity. Also, the diagnosis of diabetes includes fasting plasma glucose test (FPG), 2-h oral glucose tolerance test (OGTT), glycated hemoglobin (A1C), and random plasma glucose coupled with symptoms. Healthy diet and physical activity are beneficial to both sarcopenic obesity and diabetes, but there are only recommended drugs for diabetes. This review consolidates and discusses the latest research in pathogenesis, diagnosis, and treatments of diabetes and sarcopenic obesity.
Collapse
Affiliation(s)
- Mina Wang
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Acupuncture Neuromodulation, Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yan Tan
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Shi
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xu Wang
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zehuan Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Stockholm, Sweden
- Zehuan Liao
| | - Peng Wei
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Peng Wei
| |
Collapse
|
19
|
McGrath C, Sankaran JS, Misaghian‐Xanthos N, Sen B, Xie Z, Styner MA, Zong X, Rubin J, Styner M. Exercise Degrades Bone in Caloric Restriction, Despite Suppression of Marrow Adipose Tissue (MAT). J Bone Miner Res 2020; 35:106-115. [PMID: 31509274 PMCID: PMC6980282 DOI: 10.1002/jbmr.3872] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/13/2019] [Accepted: 08/30/2019] [Indexed: 01/06/2023]
Abstract
Marrow adipose tissue (MAT) and its relevance to skeletal health during caloric restriction (CR) is unknown: It remains unclear whether exercise, which is anabolic to bone in a calorie-replete state, alters bone or MAT in CR. We hypothesized that response of bone and MAT to exercise in CR differs from the calorie-replete state. Ten-week-old female B6 mice fed a regular diet (RD) or 30% CR diet were allocated to sedentary (RD, CR, n = 10/group) or running exercise (RD-E, CR-E, n = 7/group). After 6 weeks, CR mice weighed 20% less than RD, p < 0.001; exercise did not affect weight. Femoral bone volume (BV) via 3D MRI was 20% lower in CR versus RD (p < 0.0001). CR was associated with decreased bone by μCT: Tb.Th was 16% less in CR versus RD, p < 0.003, Ct.Th was 5% less, p < 0.07. In CR-E, Tb.Th was 40% less than RD-E, p < 0.0001. Exercise increased Tb.Th in RD (+23% RD-E versus RD, p < 0.003) but failed to do so in CR. Cortical porosity increased after exercise in CR (+28%, p = 0.04), suggesting exercise during CR is deleterious to bone. In terms of bone fat, metaphyseal MAT/ BV rose 159% in CR versus RD, p = 0.003 via 3D MRI. Exercise decreased MAT/BV by 52% in RD, p < 0.05, and also suppressed MAT in CR (-121%, p = 0.047). Histomorphometric analysis of adipocyte area correlated with MAT by MRI (R2 = 0.6233, p < 0.0001). With respect to bone, TRAP and Sost mRNA were reduced in CR. Intriguingly, the repressed Sost in CR rose with exercise and may underlie the failure of CR-bone quantity to increase in response to exercise. Notably, CD36, a marker of fatty acid uptake, rose 4088% in CR (p < 0.01 versus RD), suggesting that basal increases in MAT during calorie restriction serve to supply local energy needs and are depleted during exercise with a negative impact on bone. © 2019 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Cody McGrath
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Jeyantt S Sankaran
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Negin Misaghian‐Xanthos
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Buer Sen
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Zhihui Xie
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Martin A Styner
- Department of Computer ScienceUniversity of North CarolinaChapel HillNCUSA
- Department of PsychiatryUniversity of North CarolinaChapel HillNCUSA
| | - Xiaopeng Zong
- Biomedical Research Imaging CenterUniversity of North CarolinaChapel HillNCUSA
| | - Janet Rubin
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| | - Maya Styner
- Department of Medicine, Division of EndocrinologyUniversity of North CarolinaChapel HillNCUSA
| |
Collapse
|
20
|
Casado-Díaz A, Dorado G, Quesada-Gómez JM. Influence of olive oil and its components on mesenchymal stem cell biology. World J Stem Cells 2019; 11:1045-1064. [PMID: 31875868 PMCID: PMC6904865 DOI: 10.4252/wjsc.v11.i12.1045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Extra virgin olive oil is characterized by its high content of unsaturated fatty acid residues in triglycerides, mainly oleic acid, and the presence of bioactive and antioxidant compounds. Its consumption is associated with lower risk of suffering chronic diseases and unwanted processes linked to aging, due to the antioxidant capacity and capability of its components to modulate cellular signaling pathways. Consumption of olive oil can alter the physiology of mesenchymal stem cells (MSCs). This may explain part of the healthy effects of olive oil consumption, such as prevention of unwanted aging processes. To date, there are no specific studies on the action of olive oil on MSCs, but effects of many components of such food on cell viability and differentiation have been evaluated. The objective of this article is to review existing literature on how different compounds of extra virgin olive oil, including residues of fatty acids, vitamins, squalene, triterpenes, pigments and phenols, affect MSC maintenance and differentiation, in order to provide a better understanding of the healthy effects of this food. Interestingly, most studies have shown a positive effect of these compounds on MSCs. The collective findings support the hypothesis that at least part of the beneficial effects of extra virgin olive oil consumption on health may be mediated by its effects on MSCs.
Collapse
Affiliation(s)
- Antonio Casado-Díaz
- CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain
| | - Gabriel Dorado
- Departement Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, CIBERFES, Córdoba 14071, Spain
| | - José Manuel Quesada-Gómez
- Unidad de Gestión Clínica de Endocrinología y Nutrición, CIBER de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Córdoba 14004, Spain.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The goal of this review is to discuss the role of insulin signaling in bone marrow adipocyte formation, metabolic function, and its contribution to cellular senescence in relation to metabolic bone diseases. RECENT FINDINGS Insulin signaling is an evolutionally conserved signaling pathway that plays a critical role in the regulation of metabolism and longevity. Bone is an insulin-responsive organ that plays a role in whole body energy metabolism. Metabolic disturbances associated with obesity and type 2 diabetes increase a risk of fragility fractures along with increased bone marrow adiposity. In obesity, there is impaired insulin signaling in peripheral tissues leading to insulin resistance. However, insulin signaling is maintained in bone marrow microenvironment leading to hypermetabolic state of bone marrow stromal (skeletal) stem cells associated with accelerated senescence and accumulation of bone marrow adipocytes in obesity. This review summarizes current findings on insulin signaling in bone marrow adipocytes and bone marrow stromal (skeletal) stem cells and its importance for bone and fat metabolism. Moreover, it points out to the existence of differences between bone marrow and peripheral fat metabolism which may be relevant for developing therapeutic strategies for treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark.
- Department of Molecular Physiology of Bone, Institute of Physiology, Czech Academy of Sciences, 142 20, Prague 4, Czech Republic.
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, 5000, Odense C, Denmark
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Cellular and Molecular Medicine, The Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Evaluation of Whole-Body Vibration Exercise on Neuromuscular Activation Through Electromyographic Pattern of Vastus Lateralis Muscle and on Range of Motion of Knees in Metabolic Syndrome: A Quasi-Randomized Cross-Over Controlled Trial. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9234997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Metabolic syndrome (MetS) is related to overweight and obesity, and contributes to clinical limitations. Exercise is used for the management of MetS individuals, who are often not motivated to perform this practice. Whole body vibration exercise (WBVE) produces several biological effects, besides being safe, effective, and feasible for MetS individuals. This pseudo-randomized and cross-over controlled trial study aimed to analyze the effects of WBVE on MetS individuals’ neuromuscular activation using the surface electromyography (sEMG) pattern (root mean square (RMS)) of the vastus lateralis (VL) muscle and on the range of motion (ROM) of the knees. Participants (n = 39) were allocated to two groups: the treatment group (TG), which was exposed to WBVE, and the control group (CG). WBVE interventions were performed twice a week, for a period of 5 weeks. ROM and sEMG were analyzed at baseline, after the first session, and before and after the last session. sEMG (%RMS) significantly increased in the acute effect of the last session of WBVE (108.00 ± 5.07, p < 0.008, right leg; 106.20 ± 3.53, p < 0.02, left leg) compared to the CG. ROM did not significantly change in TG or CG. In conclusion, 5 weeks of WBVE exerted neuromuscular effects capable of increasing VL muscle RMS in individuals with MetS, this effect being potentially useful in the physical rehabilitation of these individuals.
Collapse
|
23
|
Sebo ZL, Rendina-Ruedy E, Ables GP, Lindskog DM, Rodeheffer MS, Fazeli PK, Horowitz MC. Bone Marrow Adiposity: Basic and Clinical Implications. Endocr Rev 2019; 40:1187-1206. [PMID: 31127816 PMCID: PMC6686755 DOI: 10.1210/er.2018-00138] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 04/03/2019] [Indexed: 12/14/2022]
Abstract
The presence of adipocytes in mammalian bone marrow (BM) has been recognized histologically for decades, yet, until recently, these cells have received little attention from the research community. Advancements in mouse transgenics and imaging methods, particularly in the last 10 years, have permitted more detailed examinations of marrow adipocytes than ever before and yielded data that show these cells are critical regulators of the BM microenvironment and whole-body metabolism. Indeed, marrow adipocytes are anatomically and functionally separate from brown, beige, and classic white adipocytes. Thus, areas of BM space populated by adipocytes can be considered distinct fat depots and are collectively referred to as marrow adipose tissue (MAT) in this review. In the proceeding text, we focus on the developmental origin and physiologic functions of MAT. We also discuss the signals that cause the accumulation and loss of marrow adipocytes and the ability of these cells to regulate other cell lineages in the BM. Last, we consider roles for MAT in human physiology and disease.
Collapse
Affiliation(s)
- Zachary L Sebo
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | | | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring, New York
| | - Dieter M Lindskog
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut.,Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark C Horowitz
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Pagnotti GM, Styner M, Uzer G, Patel VS, Wright LE, Ness KK, Guise TA, Rubin J, Rubin CT. Combating osteoporosis and obesity with exercise: leveraging cell mechanosensitivity. Nat Rev Endocrinol 2019; 15:339-355. [PMID: 30814687 PMCID: PMC6520125 DOI: 10.1038/s41574-019-0170-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Osteoporosis, a condition of skeletal decline that undermines quality of life, is treated with pharmacological interventions that are associated with poor adherence and adverse effects. Complicating efforts to improve clinical outcomes, the incidence of obesity is increasing, predisposing the population to a range of musculoskeletal complications and metabolic disorders. Pharmacological management of obesity has yet to deliver notable reductions in weight and debilitating complications are rarely avoided. By contrast, exercise shows promise as a non-invasive and non-pharmacological method of regulating both osteoporosis and obesity. The principal components of exercise - mechanical signals - promote bone and muscle anabolism while limiting formation and expansion of fat mass. Mechanical regulation of bone and marrow fat might be achieved by regulating functions of differentiated cells in the skeletal tissue while biasing lineage selection of their common progenitors - mesenchymal stem cells. An inverse relationship between adipocyte versus osteoblast fate selection from stem cells is implicated in clinical conditions such as childhood obesity and increased marrow adiposity in type 2 diabetes mellitus, as well as contributing to skeletal frailty. Understanding how exercise-induced mechanical signals can be used to improve bone quality while decreasing fat mass and metabolic dysfunction should lead to new strategies to treat chronic diseases such as osteoporosis and obesity.
Collapse
Affiliation(s)
- Gabriel M Pagnotti
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Maya Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Gunes Uzer
- College of Mechanical and Biomedical Engineering, Boise State University, Boise, ID, USA
| | - Vihitaben S Patel
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Laura E Wright
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Kirsten K Ness
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Theresa A Guise
- School of Medicine, Division of Endocrinology, Indiana University, Indianapolis, IN, USA
| | - Janet Rubin
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Clinton T Rubin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
25
|
Comparison of Hematopoietic and Spermatogonial Stem Cell Niches from the Regenerative Medicine Aspect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1107:15-40. [PMID: 29882209 DOI: 10.1007/5584_2018_217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|