1
|
Kadam V, Wacker M, Oeckl P, Korneck M, Dannenmann B, Skokowa J, Hauser S, Otto M, Synofzik M, Mengel D. Most L1CAM Is not Associated with Extracellular Vesicles in Human Biofluids and iPSC-Derived Neurons. Mol Neurobiol 2025:10.1007/s12035-025-04909-2. [PMID: 40210837 DOI: 10.1007/s12035-025-04909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
Transmembrane L1 cell adhesion molecule (L1CAM) is widely used as a marker to enrich for neuron-derived extracellular vesicles (EVs), especially in plasma. However, this approach lacks sufficient robust validation. This study aimed to assess whether human biofluids are indeed enriched for EVs, particularly neuron-derived EVs, by L1CAM immunoaffinity, utilizing multiple sources (plasma, CSF, conditioned media from iPSC-derived neurons [iNCM]) and different methods (mass spectrometry [MS], nanoparticle tracking analysis [NTA]). Following a systematic multi-step validation approach, we confirmed isolation of generic EV populations using size-exclusion chromatography (SEC) and polymer-aided precipitation (PPT)-two most commonly applied EV isolation methods-from all sources. Neurofilament light (NfL) was detected in both CSF and blood-derived EVs, indicating their neuronal origin. However, L1CAM immunoprecipitation did not yield enrichment of L1CAM in EV fractions. Instead, it was predominantly found in its free-floating form. Additionally, MS-based proteomic analysis of CSF-derived EVs also did not show L1CAM enrichment. Our study validates EV isolation from diverse biofluid sources by several isolation approaches and confirms that some EV subpopulations in human biofluids are of neuronal origin. Thorough testing across multiple sources by different orthogonal methods, however, does not support L1CAM as a marker to reliably enrich for a specific subpopulation of EVs, particularly of neuronal origin.
Collapse
Affiliation(s)
- Vaibhavi Kadam
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Madeleine Wacker
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE) Ulm, Ulm, Germany
| | - Milena Korneck
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tuebingen, Tuebingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
| | - Benjamin Dannenmann
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Julia Skokowa
- Department of Oncology, Hematology, Immunology, and Rheumatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany.
| | - David Mengel
- Division Translational Genomics of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tuebingen, Tuebingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Tuebingen, Tuebingen, Germany.
| |
Collapse
|
2
|
Matos BMD, Stimamiglio MA, Correa A, Robert AW. Human pluripotent stem cell-derived extracellular vesicles: From now to the future. World J Stem Cells 2023; 15:453-465. [PMID: 37342215 PMCID: PMC10277970 DOI: 10.4252/wjsc.v15.i5.453] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/14/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy. Little has been studied regarding EVs derived from human pluripotent stem cells (hPSC-EVs), even though hPSCs offer good opportunities for induction of tissue regeneration and unlimited proliferative ability. In this review article, we provide an overview of studies using hPSC-EVs, focusing on identifying the conditions in which the cells are cultivated for the isolation of EVs, how they are characterized, and applications already demonstrated. The topics reported in this article highlight the incipient status of the studies in the field and the significance of hPSC-EVs’ prospective applications as PSC-derived cell-free therapy products.
Collapse
Affiliation(s)
- Bruno Moises de Matos
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | | | - Alejandro Correa
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| | - Anny Waloski Robert
- Stem Cells Basic Biology Laboratory, Carlos Chagas Institute, Curitiba 81350010, Paraná, Brazil
| |
Collapse
|
3
|
Effect of cell culture media on extracellular vesicle secretion from mesenchymal stromal cells and neurons. Eur J Cell Biol 2022; 101:151270. [PMID: 35987046 DOI: 10.1016/j.ejcb.2022.151270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) secreted by neuronal cells in vitro have promising therapeutic potential for brain diseases. Optimization of cell culture conditions and methodologies for high-yield isolation of EVs for preclinical and clinical applications, however, remains a challenge. OBJECTIVE To probe the cell culture conditions required for optimal EV secretion by human-derived neuronal cells. METHODOLOGY First, we optimized the EV purification protocol using human mesenchymal stromal cell (MSC) cultures. Next, we compared the effects of different variables in human pluripotent stem cell (hPSC)-derived neuronal cultures on EV secretion. EVs were isolated from cell conditioned media (CCM) and control media with no cells (NCC) using ultrafiltration combined with size-exclusion chromatography (SEC). The hPSC neurons were cultured in 2 different media from which EVs were collected at 2 maturation time-points (days 46 and 60). Stimulation with 25 mM KCl was also evaluated as an activator of EV secretion by neurons. The collected SEC fractions were analyzed by nanoparticle tracking analysis (NTA), protein concentration assay, and blinded transmission electron microscopy (TEM). RESULTS A peak in cup-shaped particles was observed in SEC fractions 7-10 of MSC samples, but not corresponding media controls, indicating successful isolation of EVs. Culture medium had no significant effect on EV yield. The EV yield of the samples did not differ significantly according to the culture media used or the cell maturation time-points. Stimulation of neurons with KCl for 3 h reduced rather than increased the EV yield. CONCLUSIONS We demonstrated successful EV isolation from MSC and neuronal cells using an ultrafiltration-SEC method. The EV yield from MSC and neuronal cultures exhibited a large batch effect, apparently related to the culture media used, highlighting the importance of including NCC as a negative control in all cell culture experiments.
Collapse
|
4
|
Gu Z, Yin Z, Song P, Wu Y, He Y, Zhu M, Wu Z, Zhao S, Huang H, Wang H, Tong C, Qi Z. Safety and biodistribution of exosomes derived from human induced pluripotent stem cells. Front Bioeng Biotechnol 2022; 10:949724. [PMID: 36091443 PMCID: PMC9461140 DOI: 10.3389/fbioe.2022.949724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/27/2022] [Indexed: 12/03/2022] Open
Abstract
As a new cell-free therapy, exosomes have provided new ideas for the treatment of various diseases. Human induced pluripotent stem cells (hiPSCs) cannot be used in clinical trials because of tumorigenicity, but the exosomes derived from hiPSCs may combine the advantages of iPSC pluripotency and the nanoscale size of exosomes while avoiding tumorigenicity. Currently, the safety and biodistribution of hiPSC-exosomes in vivo are unclear. Here, we investigated the effects of hiPSC-exosomes on hemolysis, DNA damage, and cytotoxicity through cell experiments. We also explored the safety of vein injection of hiPSC-exosomes in rabbits and rats. Differences in organ distribution after nasal administration were compared in normal and Parkinson’s disease model mice. This study may provide support for clinical therapy and research of intravenous and nasal administration of hiPSC-exosomes.
Collapse
Affiliation(s)
- Zhewei Gu
- Medical College, Guangxi University, Nanning, China
| | - Zhiyu Yin
- Medical College, Guangxi University, Nanning, China
| | - Pengbo Song
- Medical College, Guangxi University, Nanning, China
| | - Ying Wu
- Medical College, Guangxi University, Nanning, China
| | - Ying He
- Medical College, Guangxi University, Nanning, China
| | - Maoshu Zhu
- Medical College, Guangxi University, Nanning, China
| | - Zhengxin Wu
- Medical College, Guangxi University, Nanning, China
| | - Sicheng Zhao
- Medical College, Guangxi University, Nanning, China
| | - Hongri Huang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Huihuang Wang
- GuangXi TaiMeiRenSheng Biotechnology Co., LTD., Nanning, China
| | - Cailing Tong
- Biotechcomer Co., Ltd., Xiamen, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning, China
- *Correspondence: Cailing Tong, ; Zhongquan Qi,
| |
Collapse
|
5
|
Boyd-Gibbins N, Karagiannis P, Hwang DW, Kim SI. iPSCs in NK Cell Manufacturing and NKEV Development. Front Immunol 2022; 13:890894. [PMID: 35874677 PMCID: PMC9305199 DOI: 10.3389/fimmu.2022.890894] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
Natural killer (NK) cell immunotherapies for cancer can complement existing T cell therapies while benefiting from advancements already made in the immunotherapy field. For NK cell manufacturing, induced pluripotent stem cells (iPSCs) offer advantages including eliminating donor variation and providing an ideal platform for genome engineering. At the same time, extracellular vesicles (EVs) have become a major research interest, and purified NK cell extracellular vesicles (NKEVs) have been shown to reproduce the key functions of their parent NK cells. NKEVs have the potential to be developed into a standalone therapeutic with reduced complexity and immunogenicity compared to cell therapies. This review explores the role iPSC technology can play in both NK cell manufacturing and NKEV development.
Collapse
Affiliation(s)
| | - Peter Karagiannis
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Do Won Hwang
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| | - Shin-Il Kim
- THERABEST Japan, Inc., Kobe, Japan
- Research and Development Center, THERABEST Co., Ltd., Seoul, South Korea
| |
Collapse
|
6
|
Wei L, Zou C, Chen L, Lin Y, Liang L, Hu B, Mao Y, Zou D. Molecular Insights and Prognosis Associated With RBM8A in Glioblastoma. Front Mol Biosci 2022; 9:876603. [PMID: 35573726 PMCID: PMC9098818 DOI: 10.3389/fmolb.2022.876603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most invasive brain tumors, and it is associated with high rates of recurrence and mortality. The purpose of this study was to investigate the expression of RBM8A in GBM and the potential influence of its expression on the disease. Methods: Levels of RBM8A mRNA in GBM patients and controls were examined in The Cancer Genome Atlas (TCGA), GSE16011 and GSE90604 databases. GBM samples in TCGA were divided into RBM8Ahigh and RBM8Alow groups. Differentially expressed genes (DEGs) between GBM patients and controls were identified, as were DEGs between RBM8Ahigh and RBM8Alow groups. DEGs common to both of these comparisons were analyzed for coexpression and regression analyses. In addition, we identified potential effects of RBM8A on competing endogenous RNAs, immune cell infiltration, methylation modifications, and somatic mutations. Results: RBM8A is expressed at significantly higher levels in GBM than control samples, and its level correlates with tumor purity. We identified a total of 488 mRNAs that differed between GBM and controls as well as between RBM8Ahigh and RBM8Alow groups, which enrichment analysis revealed to be associated mainly with neuroblast proliferation, and T cell immune responses. We identified 174 mRNAs that gave areas under the receiver operating characteristic curve >0.7 among coexpression module genes, of which 13 were significantly associated with overall survival of GBM patients. We integrated 11 candidate mRNAs through LASSO algorithm, then nomogram, risk score, and decision curve analyses were analyzed. We found that RBM8A may compete with DLEU1 for binding to miR-128-1-5p, and aberrant RBM8A expression was associations with tumor infiltration by immune cells. Some mRNAs associated with GBM prognosis also appear to be methylated or mutated. Conclusions: Our study strongly links RBM8A expression to GBM pathobiology and patient prognosis. The candidate mRNAs identified here may lead to therapeutic targets against the disease.
Collapse
Affiliation(s)
- Lei Wei
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liechun Chen
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Lin
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lucong Liang
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Beiquan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Donghua Zou, ; Yingwei Mao,
| |
Collapse
|
7
|
Yuan X, Chen X, Zeng C, Meckes DG, Li Y. Extracellular Vesicle Collection from Human Stem Cells Grown in Suspension Bioreactors. Methods Mol Biol 2022; 2436:193-204. [PMID: 34490594 PMCID: PMC10694804 DOI: 10.1007/7651_2021_416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Extracellular vesicles (EVs) are particles with 100-1000 nm sizes which are secreted by cells for intercellular communication. Meanwhile, studies have found that EVs secreted by human stem cells carry similar characteristics (microRNAs, proteins, metabolites, etc.) from their cell counterpart. Thus, EVs derived from stem cells, especially human induced pluripotent stem cells (hiPSCs) and human mesenchymal stromal/stem cells (hMSCs) are promising candidates for cell-free therapy. However, conventional planar culture is insufficient to produce a large amount of cells or EVs to satisfy clinical requirements. In this chapter, we described feasible approaches to harvest EVs secreted by lineage-specific hiPSCs and undifferentiated hMSCs in suspension bioreactors. Differentiation of hiPSCs to cortical organoids can be performed in suspension bioreactors and the corresponding EVs can be isolated and purified. This scale-up protocol can be applied to a majority of stem cell types with EV collection thus provides useful information for both experimental and biomanufacturing purposes.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Xingchi Chen
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - Changchun Zeng
- Department of Industrial & Manufacturing Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Yan Li
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Hart DA. What Molecular Recognition Systems Do Mesenchymal Stem Cells/Medicinal Signaling Cells (MSC) Use to Facilitate Cell-Cell and Cell Matrix Interactions? A Review of Evidence and Options. Int J Mol Sci 2021; 22:ijms22168637. [PMID: 34445341 PMCID: PMC8395489 DOI: 10.3390/ijms22168637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells, also called medicinal signaling cells (MSC), have been studied regarding their potential to facilitate tissue repair for >30 years. Such cells, derived from multiple tissues and species, are capable of differentiation to a number of lineages (chondrocytes, adipocytes, bone cells). However, MSC are believed to be quite heterogeneous with regard to several characteristics, and the large number of studies performed thus far have met with limited or restricted success. Thus, there is more to understand about these cells, including the molecular recognition systems that are used by these cells to perform their functions, to enhance the realization of their potential to effect tissue repair. This perspective article reviews what is known regarding the recognition systems available to MSC, the possible systems that could be looked for, and alternatives to enhance their localization to specific injury sites and increase their subsequent facilitation of tissue repair. MSC are reported to express recognition molecules of the integrin family. However, there are a number of other recognition molecules that also could be involved such as lectins, inducible lectins, or even a MSC-specific family of molecules unique to these cells. Finally, it may be possible to engineer expression of recognition molecules on the surface of MSC to enhance their function in vivo artificially. Thus, improved understanding of recognition molecules on MSC could further their success in fostering tissue repair.
Collapse
Affiliation(s)
- David A. Hart
- Department of Surgery and Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 4N1, Canada;
- McCaig Institute for Bone & Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Health Services Bone & Joint Health Strategic Clinical Network, Edmonton, AB T5H 3E4, Canada
- Centre for Hip Health & Mobility, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
9
|
Zwi-Dantsis L, Winter CW, Kauscher U, Ferrini A, Wang B, Whittaker TE, Hood SR, Terracciano CM, Stevens MM. Highly purified extracellular vesicles from human cardiomyocytes demonstrate preferential uptake by human endothelial cells. NANOSCALE 2020; 12:19844-19854. [PMID: 32969445 PMCID: PMC7610784 DOI: 10.1039/d0nr04278a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) represent a promising cell-free alternative for treatment of cardiovascular diseases. Nevertheless, the lack of standardised and reproducible isolation methods capable of recovering pure, intact EVs presents a significant obstacle. Additionally, there is significant interest in investigating the interactions of EVs with different cardiac cell types. Here we established a robust technique for the production and isolation of EVs harvested from an enriched (>97% purity) population of human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) with size exclusion chromatography. Utilizing an advanced fluorescence labelling strategy, we then investigated the interplay of the CM-EVs with the three major cellular components of the myocardium (fibroblasts, cardiomyocytes and endothelial cells) and identified that cardiac endothelial cells show preferential uptake of these EVs. Overall, our findings provide a great opportunity to overcome the translational hurdles associated with the isolation of intact, non-aggregated human iPSC-CM EVs at high purity. Furthermore, understanding in detail the interaction of the secreted EVs with their surrounding cells in the heart may open promising new avenues in the field of EV engineering for targeted delivery in cardiac regeneration.
Collapse
Affiliation(s)
- Limor Zwi-Dantsis
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sidhom K, Obi PO, Saleem A. A Review of Exosomal Isolation Methods: Is Size Exclusion Chromatography the Best Option? Int J Mol Sci 2020; 21:E6466. [PMID: 32899828 PMCID: PMC7556044 DOI: 10.3390/ijms21186466] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicles secreted by both prokaryotic and eukaryotic cells and play a vital role in intercellular communication. EVs are classified into several subtypes based on their origin, physical characteristics, and biomolecular makeup. Exosomes, a subtype of EVs, are released by the fusion of multivesicular bodies (MVB) with the plasma membrane of the cell. Several methods have been described in literature to isolate exosomes from biofluids including blood, urine, milk, and cell culture media, among others. While differential ultracentrifugation (dUC) has been widely used to isolate exosomes, other techniques including ultrafiltration, precipitating agents such as poly-ethylene glycol (PEG), immunoaffinity capture, microfluidics, and size-exclusion chromatography (SEC) have emerged as credible alternatives with pros and cons associated with each. In this review, we provide a summary of commonly used exosomal isolation techniques with a focus on SEC as an ideal methodology. We evaluate the efficacy of SEC to isolate exosomes from an array of biological fluids, with a particular focus on its application to adipose tissue-derived exosomes. We argue that exosomes isolated via SEC are relatively pure and functional, and that this methodology is reproducible, scalable, inexpensive, and does not require specialized equipment or user expertise. However, it must be noted that while SEC is a good candidate method to isolate exosomes, direct comparative studies are required to support this conclusion.
Collapse
Affiliation(s)
- Karim Sidhom
- Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada;
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada;
- Biology of Breathing Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
| | - Patience O. Obi
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada;
- Biology of Breathing Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Applied Health Sciences, Faculty of Graduate Studies, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ayesha Saleem
- Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada;
- Biology of Breathing Research Theme of CHRIM, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 3P4, Canada
- Applied Health Sciences, Faculty of Graduate Studies, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|