1
|
Ding JY, Meng TT, Du RL, Song XB, Li YX, Gao J, Ji R, He QY. Bibliometrics of trends in global research on the roles of stem cells in myocardial fibrosis therapy. World J Stem Cells 2024; 16:1086-1105. [PMID: 39734477 PMCID: PMC11669986 DOI: 10.4252/wjsc.v16.i12.1086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/05/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Myocardial fibrosis, a condition linked to several cardiovascular diseases, is associated with a poor prognosis. Stem cell therapy has emerged as a potential treatment option and the application of stem cell therapy has been studied extensively. However, a comprehensive bibliometric analysis of these studies has yet to be conducted. AIM To map thematic trends, analyze research hotspots, and project future directions of stem cell-based myocardial fibrosis therapy. METHODS We conducted a bibliometric and visual analysis of studies in the Web of Science Core Collection using VOSviewer and Microsoft Excel. The dataset included 1510 articles published between 2001 and 2024. Countries, organizations, authors, references, keywords, and co-citation networks were examined to identify evolving research trends. RESULTS Our findings revealed a steady increase in the number of publications, with a projected increase to over 200 publications annually by 2030. Initial research focused on stem cell-based therapy, particularly for myocardial infarction and heart failure. More recently, there has been a shift toward cell-free therapy, involving extracellular vesicles, exosomes, and microRNAs. Key research topics include angiogenesis, inflammation, apoptosis, autophagy, and oxidative stress. CONCLUSION This analysis highlights the evolution of stem cell therapies for myocardial fibrosis, with emerging interest in cell-free approaches. These results are expected to guide future scientific exploration and decision-making.
Collapse
Affiliation(s)
- Jing-Yi Ding
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Tian-Tian Meng
- Department of Rehabilitation, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100071, China
| | - Ruo-Lin Du
- Department of Emergency Medicine, South Branch of Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xin-Bin Song
- Department of Intensive Care Unit, Zhumadian Hospital of Traditional Chinese Medicine, Zhumadian 463000, Henan Province, China
| | - Yi-Xiang Li
- Department of Chinese Medicine, The Third People's Hospital of Henan Province, Zhengzhou 450000 Henan Province, China
| | - Jing Gao
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ran Ji
- Department of Intensive Care Unit, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Qing-Yong He
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
2
|
Kitahara R, Imamura T, Domen T, Matsumoto Y, Inoue Y, Ogawa N, Saito T, Ueno M, Minagawa T, Ogawa T, Ishizuka O. Biofabricated adipose-derived mesenchymal cell sheets recover cryo-injured kidneys in rats. Tissue Eng Part A 2024. [PMID: 39276109 DOI: 10.1089/ten.tea.2024.0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024] Open
Abstract
This study aimed to develop a treatment for chronic kidney disease (CKD) by investigating whether transplantation of biofabricated adipose-derived mesenchymal cell (AMC) sheets could improve renal tissue and function. Thirty-nine 10-week-old male Sprague-Dawley rats underwent the harvesting of adipose tissues and right nephrectomy. AMCs that were collected from adipose tissues were labeled and cultured on temperature-responsive dishes, and applied to a gelatin hydrogel sheet. Subsequently, two identical AMC-gelatin sheets were attached together to biofabricate a bilayered AMC-gelatin sheet. Further, 3 weeks after nephrectomy, the renal artery and vein of the left kidney were clamped, and the kidney was sprayed with liquid nitrogen for 60 seconds. The biofabricated AMC sheet was autologously transplanted into the renal capsule of the cryo-injured region (n = 14). Control rats were given acellular sheet (n = 25). One day before and four weeks after transplantation, blood and 24-hour urinary specimens were collected. Histological analysis of the experimental kidneys was performed four weeks after transplantation. Four weeks after transplantation, in the acellular control-transplanted rats, creatinine clearance levels tended to increase, while serum creatinine levels significantly increased. However, in the biofabricated AMC sheet-transplanted rats, creatinine clearance levels significantly increased, and serum creatinine levels remained unchanged and were significantly lower than that of the control rats. The ratio of damaged to undamaged renal tubules in the AMC sheet-transplanted rats was lower than that in the control rats. In addition, the occupancy rate of fibrotic areas in the renal cortex under the AMC sheet-transplanted regions was significantly lower than that in the control regions. After transplantation, while the expressions of transforming growth factor-beta 1 and hypoxia-inducible factor-1 alpha were observed in both the control- and AMC sheet-transplanted regions, these expressions tended to be lower in the AMC sheet-transplanted rats than in the control rats. The labeled transplanted AMCs were detected in the transplanted regions, with some of them also showing positive staining for the vascular endothelial growth factor antibody. In conclusion, the biofabricated AMC sheets improved renal functions by ameliorating renal tubule disorders and renal fibrosis. Therefore, biofabricated AMC sheets would serve as a potential treatment for CKD.
Collapse
Affiliation(s)
- Ryo Kitahara
- Shinshu University School of Medicine, Department of Urology , Matsumoto, Nagano, Japan;
| | - Tetsuya Imamura
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Takahisa Domen
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Yuki Matsumoto
- Shinshu University School of Medicine, Department of Urology, Asahi 3-1-1, Matsumoto, Nagano, Japan, 390-8621;
| | - Yoshihiro Inoue
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Noriyuki Ogawa
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Tetsuichi Saito
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Manabu Ueno
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Tomonori Minagawa
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Teruyuki Ogawa
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| | - Osamu Ishizuka
- Shinshu University School of Medicine, Department of Urology, Matsumoto, Nagano, Japan;
| |
Collapse
|
3
|
Tang XL, Wysoczynski M, Gumpert AM, Li Y, Wu WJ, Li H, Stowers H, Bolli R. Effect of intravenous cell therapy in rats with old myocardial infarction. Mol Cell Biochem 2022; 477:431-444. [PMID: 34783963 PMCID: PMC8896398 DOI: 10.1007/s11010-021-04283-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Mounting evidence shows that cell therapy provides therapeutic benefits in experimental and clinical settings of chronic heart failure. However, direct cardiac delivery of cells via transendocardial injection is logistically complex, expensive, entails risks, and is not amenable to multiple dosing. Intravenous administration would be a more convenient and clinically applicable route for cell therapy. Thus, we determined whether intravenous infusion of three widely used cell types improves left ventricular (LV) function and structure and compared their efficacy. Rats with a 30-day-old myocardial infarction (MI) received intravenous infusion of vehicle (PBS) or 1 of 3 types of cells: bone marrow mesenchymal stromal cells (MSCs), cardiac mesenchymal cells (CMCs), and c-kit-positive cardiac cells (CPCs), at a dose of 12 × 106 cells. Rats were followed for 35 days after treatment to determine LV functional status by serial echocardiography and hemodynamic studies. Blood samples were collected for Hemavet analysis to determine inflammatory cell profile. LV ejection fraction (EF) dropped ≥ 20 points in all hearts at 30 days after MI and deteriorated further at 35-day follow-up in the vehicle-treated group. In contrast, deterioration of EF was halted in rats that received MSCs and attenuated in those that received CMCs or CPCs. None of the 3 types of cells significantly altered scar size, myocardial content of collagen or CD45-positive cells, or Hemavet profile. This study demonstrates that a single intravenous administration of 3 types of cells in rats with chronic ischemic cardiomyopathy is effective in attenuating the progressive deterioration in LV function. The extent of LV functional improvement was greatest with CPCs, intermediate with CMCs, and least with MSCs.
Collapse
Affiliation(s)
- Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Marcin Wysoczynski
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Anna M Gumpert
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Yan Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Wen-Jian Wu
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Hong Li
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Heather Stowers
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, 550 S Jackson Street, ACB Bldg, 3rd Floor, Louisville, KY, 40202, USA.
| |
Collapse
|
4
|
Sharma P, Wang X, Ming CLC, Vettori L, Figtree G, Boyle A, Gentile C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003765. [PMID: 33464713 DOI: 10.1002/smll.202003765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Despite the latest advances in cardiovascular biology and medicine, myocardial infarction (MI) remains one of the major causes of deaths worldwide. While reperfusion of the myocardium is critical to limit the ischemic damage typical of a MI event, it causes detrimental morphological and functional changes known as "reperfusion injury." This complex scenario is poorly represented in currently available models of ischemia/reperfusion injury, leading to a poor translation of findings from the bench to the bedside. However, more recent bioengineered in vitro models of the human heart represent more clinically relevant tools to prevent and treat MI in patients. These include 3D cultures of cardiac cells, the use of patient-derived stem cells, and 3D bioprinting technology. This review aims at highlighting the major features typical of a heart attack while comparing current in vitro, ex vivo, and in vivo models. This information has the potential to further guide in developing novel advanced in vitro cardiac models of ischemia/reperfusion injury. It may pave the way for the generation of advanced pathophysiological cardiac models with the potential to develop personalized therapies.
Collapse
Affiliation(s)
- Poonam Sharma
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Laura Vettori
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Gemma Figtree
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Andrew Boyle
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carmine Gentile
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
5
|
Bolli R, Tang XL, Guo Y, Li Q. After the storm: an objective appraisal of the efficacy of c-kit+ cardiac progenitor cells in preclinical models of heart disease. Can J Physiol Pharmacol 2021; 99:129-139. [PMID: 32937086 PMCID: PMC8299902 DOI: 10.1139/cjpp-2020-0406] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The falsification of data related to c-kit+ cardiac progenitor cells (CPCs) by a Harvard laboratory has been a veritable tragedy. Does this fraud mean that CPCs are not beneficial in models of ischemic cardiomyopathy? At least 50 studies from 26 laboratories independent of the Harvard group have reported beneficial effects of CPCs in mice, rats, pigs, and cats. The mechanism of action remains unclear. Our group has shown that CPCs do not engraft in the diseased heart, do not differentiate into new cardiac myocytes, do not regenerate dead myocardium, and thus work via paracrine mechanisms. A casualty of the misconduct at Harvard has been the SCIPIO trial, a collaboration between the Harvard group and the group in Louisville. The retraction of the SCIPIO paper was caused exclusively by issues with data generated at Harvard, not those generated in Louisville. In the retraction notice, the Lancet editors stated: "Although we do not have any reservations about the clinical work in Louisville that used the preparations from Anversa's laboratory in good faith, the lack of reliability regarding the laboratory work at Harvard means that we are now retracting this paper". We must be careful not to dismiss all work on CPCs because of one laboratory's misconduct. An unbiased review of the literature supports the therapeutic potential of CPCs for heart failure at the preclinical level.
Collapse
Affiliation(s)
- Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Xian-Liang Tang
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Yiru Guo
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| | - Qianghong Li
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
6
|
Stem cell-derived cell sheet transplantation for heart tissue repair in myocardial infarction. Stem Cell Res Ther 2020; 11:19. [PMID: 31915074 PMCID: PMC6950817 DOI: 10.1186/s13287-019-1536-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Stem cell-derived sheet engineering has been developed as the next-generation treatment for myocardial infarction (MI) and offers attractive advantages in comparison with direct stem cell transplantation and scaffold tissue engineering. Furthermore, induced pluripotent stem cell-derived cell sheets have been indicated to possess higher potential for MI therapy than other stem cell-derived sheets because of their capacity to form vascularized networks for fabricating thickened human cardiac tissue and their long-term therapeutic effects after transplantation in MI. To date, stem cell sheet transplantation has exhibited a dramatic role in attenuating cardiac dysfunction and improving clinical manifestations of heart failure in MI. In this review, we retrospectively summarized the current applications and strategy of stem cell-derived cell sheet technology for heart tissue repair in MI.
Collapse
|
7
|
Involvement of CXCR4 in Normal and Abnormal Development. Cells 2019; 8:cells8020185. [PMID: 30791675 PMCID: PMC6406665 DOI: 10.3390/cells8020185] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
CXC motif chemokine receptor type 4 (CXCR4) is associated with normal and abnormal development, including oncogenesis. The ligand of CXCR4 is stromal cell-derived factor (SDF), also known as CXC motif ligand (CXCL) 12. Through the SDF-1/CXCR4 axis, both homing and migration of hematopoietic (stem) cells are regulated through niches in the bone marrow. Outside of the bone marrow, however, SDF-1 can recruit CXCR4-positive cells from the bone marrow. SDF/CXCR4 has been implicated in the maintenance and/or differentiation of stemness, and tissue-derived stem cells can be associated with SDF-1 and CXCR4 activity. CXCR4 plays a role in multiple pathways involved in carcinogenesis and other pathologies. Here, we summarize reports detailing the functions of CXCR4. We address the molecular signature of CXCR4 and how this molecule and cells expressing it are involved in either normal (maintaining stemness or inducing differentiation) or abnormal (developing cancer and other pathologies) events. As a constituent of stem cells, the SDF-1/CXCR4 axis influences downstream signal transduction and the cell microenvironment.
Collapse
|
8
|
Wang Y, Lu C, He C, Chen B, Zheng Y, Zheng J, Zhang J, Wu Z. Construction of a Multilayered Mesenchymal Stem Cell Sheet with a 3D Dynamic Culture System. J Vis Exp 2018. [PMID: 30394393 DOI: 10.3791/58624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Stem cell therapy shows a promising future in regenerating injured organ and tissues, and the cell sheet technique has been developed to improve the low cell retention and poor survival within the target zone. However, during the in vitro construction process, a solution for maintaining stem cell bioactivity and increasing the cell amount within the cell sheet is urgently needed. Here, this protocol presents a method for constructing a multilayered cell sheet with favorable stem cell bioactivity and optimal operability. Decellularized porcine pericardium (DPP) is prepared by phospholipase A2 (PLA2) decellularization method as the cell sheet scaffold, and rat bone marrow mesenchymal stem cells (BMSCs) are isolated and expanded as the seeded cells. The temporary multilayered cell sheet structure is constructed by using RAD16-I peptide hydrogel. Finally, the cell sheet is cultured with a dynamic perfusion system to stabilize the three-dimensional (3D) structure, and the cell sheet could be obtained following a 48-hour culture in vitro. This protocol provides an efficient and feasible method for constructing a multilayered stem cell sheet, and the cell sheet could be developed as a favorable stem cell therapy product in the future.
Collapse
Affiliation(s)
- Yingwei Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University; Department of Developmental and Regenerative Biology, Jinan University
| | - Cheng Lu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University; Department of Developmental and Regenerative Biology, Jinan University
| | | | - Baoxin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University; Department of Developmental and Regenerative Biology, Jinan University
| | - Youling Zheng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University; Department of Developmental and Regenerative Biology, Jinan University
| | - Junming Zheng
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University; Department of Developmental and Regenerative Biology, Jinan University
| | - Jianhua Zhang
- Department of Cardiology, First Affiliated Hospital of Jinan University;
| | - Zheng Wu
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University; Department of Developmental and Regenerative Biology, Jinan University;
| |
Collapse
|
9
|
Lee YB, Lee JY, Byun H, Ahmad T, Akashi M, Matsusaki M, Shin H. One-step delivery of a functional multi-layered cell sheet using a thermally expandable hydrogel with controlled presentation of cell adhesive proteins. Biofabrication 2018; 10:025001. [DOI: 10.1088/1758-5090/aa9d43] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Novakova V, Sandhu GS, Dragomir-Daescu D, Klabusay M. Apelinergic system in endothelial cells and its role in angiogenesis in myocardial ischemia. Vascul Pharmacol 2016; 76:1-10. [DOI: 10.1016/j.vph.2015.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/01/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
|
11
|
Lee KM, Kim H, Nemeno JG, Yang W, Yoon J, Lee S, Lee JI. Natural cardiac extracellular matrix sheet as a biomaterial for cardiomyocyte transplantation. Transplant Proc 2015; 47:751-6. [PMID: 25891725 DOI: 10.1016/j.transproceed.2014.12.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/31/2014] [Indexed: 11/26/2022]
Abstract
Cardiovascular diseases associated with myocardial infarction are among the major causes of death worldwide due to the limited regenerative capacity of cardiac tissues. Although various approaches, such as biosynthetic biomaterials, have been developed to promote postinfarction cardiac regeneration, a number of limitations, including the immune complications caused by biodegradation of these scaffolds and insufficient cell migration, need to be overcome prior to their clinical application. Hence, the development of natural biomaterials to support myocardial regeneration is crucial. Here, we investigated the effects of a natural biomaterial, cardiac extracellular matrix (ECM) on the proliferation and maintenance of cardiomyocytes in order to assess its suitability for cardiomyocyte expansion. The ECM components not only provide mechanical support, but also induce and preserve the required phenotypic and functional characteristics of the cells. We prepared ECM sheets from decellularized cardiac sections. Cardiomyocytes were then cultured with and without these cardiac ECM sheets. We compared the proliferation rates and phenotypes, and cardiac gene and protein expression, of the cultured cardiomyocytes by automatic cell counting and the MTT assay, microscopy, and RT-PCR and western blotting, respectively. The cardiomyocytes cultured with the natural cardiac ECM sheets exhibited higher proliferation rates and cardiac gene and protein expression than those cultured without the ECM sheets. Our results demonstrate that the ECM sheets are suitable for use in cardiomyocyte transplantation and can provide a novel in vitro model for investigating cell and ECM interactions. We hypothesize that these ECM sheets can be used in the future to improve cardiac transplantation strategies.
Collapse
Affiliation(s)
- K M Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University, Seoul, Republic of Korea
| | - H Kim
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University, Seoul, Republic of Korea
| | - J G Nemeno
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University, Seoul, Republic of Korea
| | - W Yang
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University, Seoul, Republic of Korea
| | - J Yoon
- IT Design Fusion Program, Graduate School Of NID Fusion Technology, Seoul National University of Science and Technology, Seoul, Republic of Korea
| | - S Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University, Seoul, Republic of Korea
| | - J I Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science & Technology (IBST), Konkuk University, Seoul, Republic of Korea; Department of Veterinary Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Building a bridge to recovery: the pathophysiology of LVAD-induced reverse modeling in heart failure. Surg Today 2015; 46:149-54. [PMID: 25840890 DOI: 10.1007/s00595-015-1149-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/20/2015] [Indexed: 10/23/2022]
Abstract
Heart failure mainly caused by ischemic or dilated cardiomyopathy is a life-threatening disorder worldwide. The previous work in cardiac surgery has led to many excellent surgical techniques for treating cardiac diseases, and these procedures are now able to prolong the human lifespan. However, surgical treatment for end-stage heart failure has been under-explored, although left ventricular assist device (LVAD) implantation and heart transplantation are options to treat the condition. LVAD can provide powerful circulatory support for end-stage heart failure patients and improve the survival and quality of life after implantation compared with the existing medical counterparts. Moreover, LVADs play a crucial role in the "bridge to transplantation", "bridge to recovery" and recently have served as "destination therapy". The structural and molecular changes that improve the cardiac function after LVAD implantation are called "reverse remodeling", which means that patients who have received a LVAD can be weaned from the LVAD with restoration of their cardiac function. This strategy is a desirable alternative to heart transplantation in terms of both the patient quality of life and due to the organ shortage. The mechanism of this bridge to recovery is interesting, and is different from other treatments for heart failure. Bridge to recovery therapy is one of the options in regenerative therapy which only a surgeon can provide. In this review, we pathophysiologically analyze the reverse remodeling phenomenon induced by LVAD and comment about the clinical evidence with regard to its impact on the bridge to recovery.
Collapse
|
13
|
Takahashi H, Shimizu T, Nakayama M, Yamato M, Okano T. Anisotropic cellular network formation in engineered muscle tissue through the self-organization of neurons and endothelial cells. Adv Healthc Mater 2015; 4:356-60. [PMID: 25146917 DOI: 10.1002/adhm.201400297] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 08/04/2014] [Indexed: 01/12/2023]
Abstract
Tissue anisotropy directed by cell sheets: Aligned myoblasts can be harvested as an anisotropic cell sheet using a micropatterned thermoresponsive substrate. Neurons and endothelial cells sandwiched between multiple anisotropic cell sheets self-organize oriented cellular networks in the tissue construct. This simple tissue engineering technique is useful for the creation of biomimetic microstructures in complex tissue, required for future advances in regenerative medicine.
Collapse
Affiliation(s)
- Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Masamichi Nakayama
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science; Tokyo Women's Medical University; 8-1 Kawada-cho Shinjuku-ku Tokyo 162-8666 Japan
| |
Collapse
|
14
|
Talab SS, Kajbafzadeh AM, Elmi A, Tourchi A, Sabetkish S, Sabetkish N, Monajemzadeh M. Bladder reconstruction using scaffold-less autologous smooth muscle cell sheet engineering: early histological outcomes for autoaugmentation cystoplasty. BJU Int 2014; 114:937-45. [DOI: 10.1111/bju.12685] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Saman S. Talab
- Section of Tissue Engineering and Stem Cells Therapy; Pediatric Urology Research Center; Tehran Iran
| | | | - Azadeh Elmi
- Section of Tissue Engineering and Stem Cells Therapy; Pediatric Urology Research Center; Tehran Iran
| | - Ali Tourchi
- Section of Tissue Engineering and Stem Cells Therapy; Pediatric Urology Research Center; Tehran Iran
| | - Shabnam Sabetkish
- Section of Tissue Engineering and Stem Cells Therapy; Pediatric Urology Research Center; Tehran Iran
| | - Nastaran Sabetkish
- Section of Tissue Engineering and Stem Cells Therapy; Pediatric Urology Research Center; Tehran Iran
| | - Maryam Monajemzadeh
- Department of Pathology; Children's Medical Center; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
15
|
Matsuda T, Miyagawa S, Fukushima S, Kitagawa-Sakakida S, Akimaru H, Horii-Komatsu M, Kawamoto A, Saito A, Asahara T, Sawa Y. Human cardiac stem cells with reduced notch signaling show enhanced therapeutic potential in a rat acute infarction model. Circ J 2013; 78:222-31. [PMID: 24107361 DOI: 10.1253/circj.cj-13-0534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Because human cardiac stem cells (CSC) have regeneration potential in damaged cardiac tissue, there is increasing interest in using them in cell-based therapies for cardiac failure. However, culture conditions, by which CSCs are expanded while maintaining their therapeutic potential, have not been optimized. We hypothesized that the plating cell-density would affect proliferation activity, differentiation and therapeutic potential of CSCs through the Notch signaling pathway. METHODS AND RESULTS Human CSCs were plated at 4 different densities. The population doubling time, C-KIT positivity, and dexamethasone-induced multidifferentiation potential were examined in vitro. The therapeutic potential of CSCs was assessed by transplanting them into a rat acute myocardial infarction (AMI) model. The low plating density (340cells/cm(2)) maintained the multidifferentiation potential with greater proliferation activity and C-KIT positivity in vitro. On the other hand, the high plating density (5,500cells/cm(2)) induced autonomous differentiation into endothelial cells by activating Notch signaling in vitro. CSCs cultured at low or high density with Notch signal inhibitor showed significantly greater therapeutic potential in vivo compared with those cultured at high density. CONCLUSIONS CSCs cultured with reduced Notch signaling showed better cardiomyogenic differentiation and therapeutic potentials in a rat AMI model. Thus, reducing Notch signaling is important when culturing CSCs for clinical applications.
Collapse
Affiliation(s)
- Takenori Matsuda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen YS, Tsou PC, Lo JM, Tsai HC, Wang YZ, Hsiue GH. Poly(N-isopropylacrylamide) hydrogels with interpenetrating multiwalled carbon nanotubes for cell sheet engineering. Biomaterials 2013; 34:7328-34. [DOI: 10.1016/j.biomaterials.2013.06.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
|
17
|
Szepes M, Benkő Z, Cselenyák A, Kompisch KM, Schumacher U, Lacza Z, Kiss L. Comparison of the direct effects of human adipose- and bone-marrow-derived stem cells on postischemic cardiomyoblasts in an in vitro simulated ischemia-reperfusion model. Stem Cells Int 2013; 2013:178346. [PMID: 23853609 PMCID: PMC3703900 DOI: 10.1155/2013/178346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 05/31/2013] [Indexed: 12/31/2022] Open
Abstract
Regenerative therapies hold a promising and exciting future for the cure of yet untreatable diseases, and mesenchymal stem cells are in the forefront of this approach. However, the relative efficacy and the mechanism of action of different types of mesenchymal stem cells are still incompletely understood. We aimed to evaluate the effects of human adipose- (hASC) and bone-marrow-derived stem cells (hBMSCs) and adipose-derived stem cell conditioned media (ACM) on the viability of cardiomyoblasts in an in vitro ischemia-reperfusion (I-R) model. Flow cytometric viability analysis revealed that both cell treatments led to similarly increased percentages of living cells, while treatment with ACM did not (I-R model: 12.13 ± 0.75%; hASC: 24.66 ± 2.49%; hBMSC: 25.41 ± 1.99%; ACM: 13.94 ± 1.44%). Metabolic activity measurement (I-R model: 0.065 ± 0.033; hASC: 0.652 ± 0.089; hBMSC: 0.607 ± 0.059; ACM: 0.225 ± 0.013; arbitrary units) and lactate dehydrogenase assay (I-R model: 0.225 ± 0.006; hASC: 0.148 ± 0.005; hBMSC: 0.146 ± 0.004; ACM: 0.208 ± 0.009; arbitrary units) confirmed the flow cytometric results while also indicated a slight beneficial effect of ACM. Our results highlight that mesenchymal stem cells have the same efficacy when used directly on postischemic cells, and differences found between them in preclinical and clinical investigations are rather related to other possible causes such as their immunomodulatory or angiogenic properties.
Collapse
Affiliation(s)
- Mónika Szepes
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Zsolt Benkő
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Attila Cselenyák
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Kai Michael Kompisch
- Department of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Udo Schumacher
- Department of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Hospital Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Zsombor Lacza
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| | - Levente Kiss
- Institute of Human Physiology and Clinical Experimental Research, Semmelweis University, Tűzoltó Utca 37-47, Budapest 1094, Hungary
| |
Collapse
|