1
|
Miao X, Huang Y, Ge KX, Xu Y. Application of scRNA-seq in Dental Research: Seeking Regenerative Clues From the Structure of Tooth and Periodontium in Physical or Pathological States. FRONT BIOSCI-LANDMRK 2025; 30:26200. [PMID: 40018926 DOI: 10.31083/fbl26200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 03/01/2025]
Abstract
This review presents a comprehensive overview of single-cell RNA sequencing (scRNA-seq) analyses used to study tooth and periodontal tissues. The intricate cellular composition of both teeth and periodontium are revealed, leading to the identification of new cell types and tracing lineage profiles for each cell type. Herein, we summarize the progression of dental and periodontal tissue formation, tooth homeostasis, and regenerative mechanisms. scRNA-seq analyses have demonstrated that the cellular constituent ratio of dental and periodontal tissues transforms homeostasis or injury repair. Importantly, single-cell data in the diseased tissue demonstrated a change in both cell types and intercellular communication patterns compared to the normal state. These findings provide valuable insights into the underlying disease mechanisms at the cellular level in the context of single-cell vision, thereby facilitating the investigation of potential therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Miao
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Yufen Huang
- Department of Respiratory Medicine, Children's Hospital, Zhejiang University School of Medicine, 310052 Hangzhou, Zhejiang, China
- National Clinical Research Center for Child Health, 310052 Hangzhou, Zhejiang, China
| | - Kelsey Xingyun Ge
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, S.A.R., China
| | - Yunlong Xu
- Endodontic Department, Changzhou Stomatological Hospital, 213000 Changzhou, Jiangsu, China
| |
Collapse
|
2
|
Jiravejchakul N, Abe GL, Loza M, Park S, Matangkasombut P, Sasaki JI, Imazato S, Diez D, Standley DM. Intercellular crosstalk in adult dental pulp is mediated by heparin-binding growth factors Pleiotrophin and Midkine. BMC Genomics 2023; 24:184. [PMID: 37024794 PMCID: PMC10077760 DOI: 10.1186/s12864-023-09265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND In-depth knowledge of the cellular and molecular composition of dental pulp (DP) and the crosstalk between DP cells that drive tissue homeostasis are not well understood. To address these questions, we performed a comparative analysis of publicly available single-cell transcriptomes of healthy adult human DP to 5 other reference tissues: peripheral blood mononuclear cells, bone marrow, adipose tissue, lung, and skin. RESULTS Our analysis revealed that DP resident cells have a unique gene expression profile when compared to the reference tissues, and that DP fibroblasts are the main cell type contributing to this expression profile. Genes coding for pleiotrophin (PTN) and midkine (MDK), homologous heparin-binding growth-factors, possessed the highest differential expression levels in DP fibroblasts. In addition, we identified extensive crosstalk between DP fibroblasts and several other DP resident cells, including Schwann cells, mesenchymal stem cells and odontoblasts, mediated by PTN and MDK. CONCLUSIONS DP fibroblasts emerge as unappreciated players in DP homeostasis, mainly through their crosstalk with glial cells. These findings suggest that fibroblast-derived growth factors possess major regulatory functions and thus have a potential role as dental therapeutic targets.
Collapse
Affiliation(s)
- Natnicha Jiravejchakul
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Gabriela L Abe
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan.
| | - Martin Loza
- Laboratory of Functional Analysis in silico, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-dai, Minato-ku, Tokyo, 108- 8639, Japan
| | - Soyoung Park
- Department of Systems Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Jun-Ichi Sasaki
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan
| | - Satoshi Imazato
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan
- Department of Dental Biomaterials, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, 565-0871, Japan
| | - Diego Diez
- Quantitative Immunology Research Unit, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan
| | - Daron M Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan.
- Department of Systems Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Japan.
| |
Collapse
|
3
|
Retana-Lobo C, Reyes-Carmona J. Immunohistochemical characterization of stem cell, vascular, neural, and differentiation markers in the apical papilla and dental pulp of human teeth at various stages of root development. J Histotechnol 2023; 46:17-27. [PMID: 36111541 DOI: 10.1080/01478885.2022.2122665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
This study aimed to evaluate the expression of several differentiation markers in the apical papilla (AP) and dental pulp (DP) of human permanent teeth. Twenty young human teeth were extracted and classified according to three Moorrees tooth development stages: initial root formation (Ri), root length ½ (R1/2), and root length complete (Rc). Immunohistochemical assays were performed using STRO-1, VEGF Receptor-2, Neurofilament heavy (NFH), and Nestin antibodies and analyzed under light microscopy. Decalcified, formalin fixed paraffin embedded tooth sections stained with hematoxylin and eosin showed an apical cell rich zone between the DP and AP. The AP revealed fewer vascular and cellular components than the DP. STRO-1 was expressed on vascular and neuronal elements beneath the odontoblast (OB) and in the sub-odontoblastic (SOB) zone, and VEGFR-2 positive cells were observed in the endothelium, arterioles, and blood vessels. Neuroepithelial stem cell protein (Nestin) was highly expressed in differentiated odontoblasts in the predentin odontotoblast and odontoblast cell processes. Neurofilament heavy (NFH) was expressed in mature axons throughout the DP. STRO-1 and VEGFR-2 microvascular expression was higher at the stages Ri and R1/2 while STRO-1 and NFH expression showed strong spatial distribution of Rc neuronal elements as compared to Ri and R1/2. Differentiated OB and SOB cells showed Nestin expression, indicating a reservoir of newly differentiated odontoblast-like cells.
Collapse
Affiliation(s)
- Cristina Retana-Lobo
- Endodontics Section, Restorative Science Department, Faculty of Dentistry, University of Costa Rica, San José, Costa Rica
| | - Jessie Reyes-Carmona
- Endodontics Section, Restorative Science Department, Faculty of Dentistry, University of Costa Rica, San José, Costa Rica
| |
Collapse
|
4
|
Sano H, Nakakura-Ohshima K, Okada Y, Sato T, Ohshima H. The effect of intentionally perforating the floor of the pulp chamber on pulpal healing after tooth replantation in mice. J Oral Biosci 2023; 65:31-39. [PMID: 36737038 DOI: 10.1016/j.job.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Shortening the root of a mouse molar prior to tooth replantation results in early revascularization in the pulp cavity and activation of the dental pulp quiescent stem cells. This study aimed to validate the effects of pulp chamber floor perforation on pulpal healing after tooth replantation as a strategy to promote early revascularization into the pulp. METHODS The maxillary first molars of three-week-old Crlj:CD1 mice were extracted and repositioned into the original socket: the left teeth were immediately replanted (control group: CG), whereas the floor of the pulp chamber of the right teeth was perforated with a tungsten carbide bur before tooth replantation (experimental group: EG). The samples were collected from three days to eight weeks postoperatively. In addition to the TUNEL assay, immunohistochemistry for Nestin, CK14, and Ki-67 was conducted. RESULTS In the EG, early revascularization occurred with a decrease in apoptosis and an increase in cell proliferation, facilitating pulpal healing, compared with the CG. The rate of Nestin-positive perimeter in the distal root significantly increased on days 5 and 14 and the amount of Nestin-positive hard tissue increased on day 14. However, on day 7, the number of epithelial cell rests of Malassez in the EG significantly decreased, making the EG susceptible to ankylosis at the floor. CONCLUSIONS Intentionally perforating the floor of the pulp chamber provides a route for early revascularization, resulting in better pulpal healing after tooth replantation.
Collapse
Affiliation(s)
- Hiroto Sano
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan; Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasuo Okada
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Takuichi Sato
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
5
|
de Souza W, Gemini-Piperni S, Grenho L, Rocha LA, Granjeiro JM, Melo SA, Fernandes MH, Ribeiro AR. Titanium dioxide nanoparticles affect osteoblast-derived exosome cargos and impair osteogenic differentiation of human mesenchymal stem cells. Biomater Sci 2023; 11:2427-2444. [PMID: 36756939 DOI: 10.1039/d2bm01854c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Titanium (Ti) and its alloys are the most widely used metallic biomaterials in total joint replacement; however, increasing evidence supports the degradation of its surface due to corrosion and wear processes releasing debris (ions, and micro and nanoparticles) and contribute to particle-induced osteolysis and implant loosening. Cell-to-cell communication involving several cell types is one of the major biological processes occurring during bone healing and regeneration at the implant-bone interface. In addition to the internal response of cells to the uptake and intracellular localization of wear debris, a red flag is the ability of titanium dioxide nanoparticles (mimicking wear debris) to alter cellular communication with the tissue background, disturbing the balance between osseous tissue integrity and bone regenerative processes. This study aims to understand whether titanium dioxide nanoparticles (TiO2 NPs) alter osteoblast-derived exosome (Exo) biogenesis and whether exosomal protein cargos affect the communication of osteoblasts with human mesenchymal stem/stromal cells (HMSCs). Osteoblasts are derived from mesenchymal stem cells coexisting in the bone microenvironment during development and remodelling. We observed that TiO2 NPs stimulate immature osteoblast- and mature osteoblast-derived Exo secretion that present a distinct proteomic cargo. Functional tests confirmed that Exos derived from both osteoblasts decrease the osteogenic differentiation of HMSCs. These findings are clinically relevant since wear debris alter extracellular communication in the bone periprosthetic niche, contributing to particle-induced osteolysis and consequent prosthetic joint failure.
Collapse
Affiliation(s)
- Wanderson de Souza
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil
| | - S Gemini-Piperni
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil.,Lab∈n Group, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, Brazil
| | - Liliana Grenho
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Luís A Rocha
- Physics Department, Paulista State University, São Paulo, Brazil.,IBTN/Br - Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, São Paulo State University, Bauru, São Paulo, Brazil
| | - José M Granjeiro
- Directory of Metrology Applied to Life Sciences, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,Postgraduate Program in Translational Biomedicine, University Grande Rio, Duque de Caxias, Brazil.,Dental School, Fluminense Federal University, Niterói, Brazil
| | - Sonia A Melo
- i3S-Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Maria H Fernandes
- Faculty of Dental Medicine, University of Porto, Porto, Portugal.,LAQV/REQUIMTE, University of Porto, Porto, Portugal
| | - Ana R Ribeiro
- Postgraduate Program in Biotechnology, National Institute of Metrology Quality and Technology, Rio de Janeiro, Brazil.,NanoSafety group, International Iberian Nanotechnology Laboratory - INL, 4715-330, Braga, Portugal.
| |
Collapse
|
6
|
Yuan SM, Yang XT, Zhang SY, Tian WD, Yang B. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World J Stem Cells 2022; 14:435-452. [PMID: 36157522 PMCID: PMC9350620 DOI: 10.4252/wjsc.v14.i7.435] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
For more than 20 years, researchers have isolated and identified postnatal dental pulp stem cells (DPSCs) from different teeth, including natal teeth, exfoliated deciduous teeth, healthy teeth, and diseased teeth. Their mesenchymal stem cell (MSC)-like immunophenotypic characteristics, high proliferation rate, potential for multidirectional differentiation and biological features were demonstrated to be superior to those of bone marrow MSCs. In addition, several main application forms of DPSCs and their derivatives have been investigated, including stem cell injections, modified stem cells, stem cell sheets and stem cell spheroids. In vitro and in vivo administration of DPSCs and their derivatives exhibited beneficial effects in various disease models of different tissues and organs. Therefore, DPSCs and their derivatives are regarded as excellent candidates for stem cell-based tissue regeneration. In this review, we aim to provide an overview of the potential application of DPSCs and their derivatives in the field of regenerative medicine. We describe the similarities and differences of DPSCs isolated from donors of different ages and health conditions. The methodologies for therapeutic administration of DPSCs and their derivatives are introduced, including single injections and the transplantation of the cells with a support, as cell sheets, or as cell spheroids. We also summarize the underlying mechanisms of the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Sheng-Meng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xue-Ting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Yuan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Wei-Dong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Engineering Research Center of Oral Translational Medicine, National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
7
|
Chen Z, Wu W, Zheng C, Lan Y, Xie H, Xie Z. KLF6 facilitates differentiation of odontoblasts through modulating the expression of P21 in vitro. Int J Oral Sci 2022; 14:20. [PMID: 35422483 PMCID: PMC9010434 DOI: 10.1038/s41368-022-00172-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/08/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Multiple signaling pathways are involved in the regulation of cell proliferation and differentiation in odontogenesis and dental tissue renewal, but the details of these mechanisms remain unknown. Here, we investigated the expression patterns of a transcription factor, Krüppel-like factor 6 (KLF6), during the development of murine tooth germ and its function in odontoblastic differentiation. KLF6 was almost ubiquitously expressed in odontoblasts at various stages, and it was co-expressed with P21 (to varying degrees) in mouse dental germ. To determine the function of Klf6, overexpression and knockdown experiments were performed in a mouse dental papilla cell line (iMDP-3). Klf6 functioned as a promoter of odontoblastic differentiation and inhibited the proliferation and cell cycle progression of iMDP-3 through p21 upregulation. Dual-luciferase reporter assay and chromatin immunoprecipitation showed that Klf6 directly activates p21 transcription. Additionally, the in vivo study showed that KLF6 and P21 were also co-expressed in odontoblasts around the reparative dentin. In conclusion, Klf6 regulates the transcriptional activity of p21, thus promoting the cell proliferation to odontoblastic differentiation transition in vitro. This study provides a theoretical basis for odontoblast differentiation and the formation of reparative dentine regeneration.
Collapse
|
8
|
An ex vivo organ culture screening model revealed that low temperature conditions prevent side effects of anticancer drugs. Sci Rep 2022; 12:3093. [PMID: 35197531 PMCID: PMC8866511 DOI: 10.1038/s41598-022-06945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/09/2022] [Indexed: 11/08/2022] Open
Abstract
Development of chemotherapy has led to a high survival rate of cancer patients; however, the severe side effects of anticancer drugs, including organ hypoplasia, persist. To assume the side effect of anticancer drugs, we established a new ex vivo screening model and described a method for suppressing side effects. Cyclophosphamide (CPA) is a commonly used anticancer drug and causes severe side effects in developing organs with intensive proliferation, including the teeth and hair. Using the organ culture model, we found that treatment with CPA disturbed the growth of tooth germs by inducing DNA damage, apoptosis and suppressing cellular proliferation and differentiation. Furthermore, low temperature suppressed CPA-mediated inhibition of organ development. Our ex vivo and in vitro analysis revealed that low temperature impeded Rb phosphorylation and caused cell cycle arrest at the G1 phase during CPA treatment. This can prevent the CPA-mediated cell damage of DNA replication caused by the cross-linking reaction of CPA. Our findings suggest that the side effects of anticancer drugs on organ development can be avoided by maintaining the internal environment under low temperature.
Collapse
|
9
|
Imai C, Sano H, Quispe-Salcedo A, Saito K, Nakatomi M, Ida-Yonemochi H, Okano H, Ohshima H. Exploration of the role of the subodontoblastic layer in odontoblast-like cell differentiation after tooth drilling using Nestin-enhanced green fluorescent protein transgenic mice. J Oral Biosci 2022; 64:77-84. [PMID: 35031478 DOI: 10.1016/j.job.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Original odontoblasts and regenerated odontoblast-like cells (OBLCs) may differently regulate Nestin expression. This study aimed to investigate the role of the subodontoblastic layer (SOBL) using green fluorescent protein (GFP) reactivity in the process of OBLC differentiation after tooth drilling in Nestin-enhanced GFP transgenic mice. METHODS A groove-shaped cavity was prepared on the mesial surface of the maxillary first molars of 5- or 6-week-old mice under deep anesthesia. Immunohistochemical staining for Nestin and GFP and Nestin in situ hybridization were conducted on the sections obtained at 1-14 days postoperative. RESULTS Odontoblasts showed intense endogenous Nestin protein and mRNA expression, whereas the coronal SOBL cells showed a Nestin-GFP-positive reaction in the control groups. The injured odontoblasts had significantly decreased Nestin immunoreactivity as well as decreased expression of Nestin mRNA 1-2 days after the injury; subsequently, newly differentiated OBLCs were arranged along the pulp-dentin border, with significantly increased Nestin expression as well as increased expression of Nestin mRNA on days 3-5 to form reparative dentin. Nestin-GFP-positive cells at the pulp-dentin border significantly increased in number on days 1 and 2. GFP(+)/Nestin(+) and GFP(-)/Nestin(+) cells were intermingled in the newly differentiated OBLCs. CONCLUSIONS The commitment of Nestin-GFP-positive cells into Nestin-positive OBLCs suggests that the restriction of endogenous Nestin protein and mRNA expression in the static SOBL cells was removed by exogenous stimuli, resulting in their migration along the pulp-dentin border and their differentiation into OBLCs.
Collapse
Affiliation(s)
- Chihiro Imai
- Faculty of Dentistry, Niigata University, Niigata, Japan
| | - Hiroto Sano
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan; Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mitsushiro Nakatomi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| |
Collapse
|
10
|
Biological characteristics of dental pulp stem cells and their potential use in regenerative medicine. J Oral Biosci 2022; 64:26-36. [PMID: 35031479 DOI: 10.1016/j.job.2022.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Regenerative medicine has emerged as a multidisciplinary field with the promising potential of renewing tissues and organs. The main types of adult stem cells used in clinical trials are hematopoietic and mesenchymal stem cells (MSCs). Stem cells are defined as self-renewing clonogenic progenitor cells that can generate one or more types of specialized cells. HIGHLIGHT MSCs form adipose, cartilage, and bone tissue. Their protective and regenerative effects, such as mitogenic, anti-apoptotic, anti-inflammatory, and angiogenic effects, are mediated through paracrine and endocrine mechanisms. Dental pulp is a valuable source of stem cells because the collection of dental pulp for stem cell isolation is non-invasive, in contrast to conventional sources, such as bone marrow and adipose tissue. Teeth are an excellent source of dental pulp stem cells (DPSCs) for therapeutic procedures and they can be easily obtained after tooth extraction or the shedding of deciduous teeth. Thus, there is increased interest in optimizing and establishing standard procedures for obtaining DPSCs; preserving well-defined DPSC cultures for specific applications; and increasing the efficiency, reproducibility, and safety of the clinical use of DPSCs. CONCLUSION This review comprehensively describes the biological characteristics and origins of DPSCs, their identification and harvesting, key aspects related to their characterization, their multilineage differentiation potential, current clinical applications, and their potential use in regenerative medicine for future dental and medical applications.
Collapse
|
11
|
The Role of Dendritic Cells during Physiological and Pathological Dentinogenesis. J Clin Med 2021; 10:jcm10153348. [PMID: 34362130 PMCID: PMC8348392 DOI: 10.3390/jcm10153348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The dental pulp is a soft connective tissue of ectomesenchymal origin that harbors distinct cell populations, capable of interacting with each other to maintain the vitality of the tooth. After tooth injuries, a sequence of complex biological events takes place in the pulpal tissue to restore its homeostasis. The pulpal response begins with establishing an inflammatory reaction that leads to the formation of a matrix of reactionary or reparative dentin, according to the nature of the exogenous stimuli. Using several in vivo designs, antigen-presenting cells, including macrophages and dendritic cells (DCs), are identified in the pulpal tissue before tertiary dentin deposition under the afflicted area. However, the precise nature of this phenomenon and its relationship to inherent pulp cells are not yet clarified. This literature review aims to discuss the role of pulpal DCs and their relationship to progenitor/stem cells, odontoblasts or odontoblast-like cells, and other immunocompetent cells during physiological and pathological dentinogenesis. The concept of “dentin-pulp immunology” is proposed for understanding the crosstalk among these cell types after tooth injuries, and the possibility of immune-based therapies is introduced to accelerate pulpal healing after exogenous stimuli.
Collapse
|
12
|
Nakakura-Ohshima K, Quispe-Salcedo A, Sano H, Hayasaki H, Ohshima H. The effects of reducing the root length by apicoectomy on dental pulp revascularization following tooth replantation in mice. Dent Traumatol 2021; 37:677-690. [PMID: 33861506 DOI: 10.1111/edt.12679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND/AIM Root length is a critical factor for dental pulp regeneration following tooth replantation. The aim of this study was to analyze the effects of reducing the root length by apicoectomy on the pulp healing process using a model for tooth replantation. MATERIAL AND METHODS After extraction of the upper first molars (M1) of 3-week-old mice, the roots from the experimental group (EG) were shortened to half to two-thirds of their length before replantation, whereas in the control group (CG) the extracted teeth were immediately repositioned into their alveolar sockets. To determine the effects of root resection on the survival of inherent pulp cells, this study included tooth transplantation with root resection using wild-type (WT) and green fluorescent protein (GFP) transgenic mice. The M1 of GFP transgenic mice were transplanted into the alveolar socket of the M1 of WT mice. The roots of the right M1 were shortened (EG), whereas the left M1 remained untreated (CG). RESULTS Apoptotic cells in the EG significantly decreased in number compared with the CG at day 3. Cell proliferative activity in the EG was significantly higher than that in the CG in the root pulp during days 3-5, and nestin-positive odontoblast-like cells began to arrange themselves along the pulp-dentin border in the cusp area at day 5 in the EG but not in the CG. At week 2, tertiary dentin had formed throughout the pulp in the EG, whereas the combined tissue of dentin and bone occupied the pulp space in 60% of the CG. Root resection also positively affected the survival of inherent pulp cells to differentiate into odontoblast-like cells as demonstrated by transplantation using GFP transgenic mice. CONCLUSIONS Reducing the root length accelerated pulp regeneration following tooth replantation due to the better environment for revascularization.
Collapse
Affiliation(s)
- Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Angela Quispe-Salcedo
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,School of Stomatology, Faculty of Health Science, Universidad Científica del Sur, Lima, Peru
| | - Hiroto Sano
- Division of Clinical Chemistry, Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan.,Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata, Niigata, Japan
| | - Haruaki Hayasaki
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
13
|
Ishikawa Y, Ida-Yonemochi H, Saito K, Nakatomi M, Ohshima H. The Sonic Hedgehog–Patched–Gli Signaling Pathway Maintains Dental Epithelial and Pulp Stem/Progenitor Cells and Regulates the Function of Odontoblasts. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.651334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study aimed to elucidate the role of the Sonic hedgehog (Shh)–Patched (Ptch)–Gli signaling pathway in maintaining dental epithelial and pulp stem/progenitor cells and regulating the function of odontoblasts. Doxycycline (dox)-inducible histone 2B (H2B)–green fluorescent protein (GFP) transgenic mice ingested dox at prenatal embryonic days 14.5 or 15.5 and their offspring were collected from postnatal day 1 (P1) to week 3 (P3W). Immunohistochemistry for Gli1, Ptch1, and Ptch2 andin situhybridization forShhandPtch1were conducted. Mandibular incisors of postnatal day 2 H2B-GFP transgenic and wild-type mice were cultivated in a nutrient medium with Shh antibody for 4 days and subsequently processed for immunohistochemistry for Sox2. In molars, dense H2B-GFP-label-retaining cells (H2B-GFP-LRCs) were densely distributed throughout the dental pulp during P1 to postnatal week 2 (P2W) and decreased in number by postnatal P3W, whereas the number of dense H2B-GFP-LRCs in the subodontoblastic layer increased in number at P2W. Gli1+and Pthc1+cells were distributed throughout the enamel organ and dental pulp, including the odontoblast and subodontoblastic layers.ShhmRNA was expressed in the inner enamel epithelium and shifted into odontoblasts after dentin deposition.Ptch1mRNA was expressed in the inner enamel epithelium and cuspal pulpal tissue on P1 and decreased in intensity from postnatal week 1 to P3W. In incisors, the apical bud contained H2B-GFP-LRCs, Gli1+cells, and Ptch1+cells. The addition of Shh antibody to explants induced a decrease in the number of Sox2+cells due to the increase in apoptotic cells in the apical bud. Thus, the Shh–Ptch–Gli signaling pathway plays a role in maintaining quiescent adult stem cells and regulating the function of odontoblasts.
Collapse
|
14
|
Kataoka K, Fujita H, Isa M, Gotoh S, Arasaki A, Ishida H, Kimura R. The human EDAR 370V/A polymorphism affects tooth root morphology potentially through the modification of a reaction-diffusion system. Sci Rep 2021; 11:5143. [PMID: 33664401 PMCID: PMC7933414 DOI: 10.1038/s41598-021-84653-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Morphological variations in human teeth have long been recognized and, in particular, the spatial and temporal distribution of two patterns of dental features in Asia, i.e., Sinodonty and Sundadonty, have contributed to our understanding of the human migration history. However, the molecular mechanisms underlying such dental variations have not yet been completely elucidated. Recent studies have clarified that a nonsynonymous variant in the ectodysplasin A receptor gene (EDAR 370V/A; rs3827760) contributes to crown traits related to Sinodonty. In this study, we examined the association between the EDAR polymorphism and tooth root traits by using computed tomography images and identified that the effects of the EDAR variant on the number and shape of roots differed depending on the tooth type. In addition, to better understand tooth root morphogenesis, a computational analysis for patterns of tooth roots was performed, assuming a reaction-diffusion system. The computational study suggested that the complicated effects of the EDAR polymorphism could be explained when it is considered that EDAR modifies the syntheses of multiple related molecules working in the reaction-diffusion dynamics. In this study, we shed light on the molecular mechanisms of tooth root morphogenesis, which are less understood in comparison to those of tooth crown morphogenesis.
Collapse
Affiliation(s)
- Keiichi Kataoka
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hironori Fujita
- Astrobiology Center, National Institutes of Natural Sciences, Tokyo, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate School for Advanced Studies), Aichi, Japan
| | - Mutsumi Isa
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Shimpei Gotoh
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Akira Arasaki
- Department of Oral and Maxillofacial Functional Rehabilitation, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, 903-0215, Japan.
| |
Collapse
|
15
|
Ren Y, Su S, Liu X, Zhang Y, Zhao Y, Xiao E. Microbiota-Derived Short-Chain Fatty Acids Promote BMP Signaling by Inhibiting Histone Deacetylation and Contribute to Dentinogenic Differentiation in Murine Incisor Regeneration. Stem Cells Dev 2020; 29:1201-1214. [PMID: 32689895 DOI: 10.1089/scd.2020.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Microbiota and their metabolites short-chain fatty acids (SCFAs) have important roles in regulating tissue regeneration and mesenchymal stem cell (MSC) differentiation. In this study, we explored the potential effects of SCFAs on murine incisor regeneration and dental MSCs. We observed that SCFA deficiency induced by depletion of microbiota through antibiotic treatment led to lower renewal rate and delayed dentinogenesis in mice incisors. Supplementation with SCFAs in drinking water during antibiotic treatment can rescue the renewal rate and dentinogenesis effectively. In vitro, stimulation with SCFAs could promote differentiation of dental MSCs to odontoblasts. We further found that SCFAs could contribute to dentinogenic differentiation of dental MSCs by increasing bone morphogenetic protein (BMP) signal activation. SCFAs could inhibit deacetylation and increase BMP7 transcription of dental MSCs, which promoted BMP signaling. Our results suggested that SCFAs were required for incisor regeneration as well as differentiation of dental MSCs. Microbiota and their metabolites should be concerned as important factors in the tissue renewal and regeneration.
Collapse
Affiliation(s)
- Yi Ren
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - Shenping Su
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - Xingyu Liu
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuming Zhao
- Department of Pediatric Dentistry, and Peking University School and Hospital of Stomatology, Beijing, China
| | - E Xiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Stomatology, First People's Hospital of Jinzhong, Jinzhong, China
| |
Collapse
|
16
|
Soda M, Saito K, Ida-Yonemochi H, Nakakura-Ohshima K, Kenmotsu S, Ohshima H. Reduced enamel epithelium-derived cell niche in the junctional epithelium is maintained for a long time in mice. J Periodontol 2019; 91:819-827. [PMID: 31495928 DOI: 10.1002/jper.19-0269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/12/2019] [Accepted: 08/26/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND Although numerous reports have demonstrated that the junctional epithelium (JE) is derived from the reduced enamel epithelium (REE), the fate of the REE-derived JE remains controversial. The present study elucidated the fate of the REE-derived JE and the cell dynamics of stem/progenitor cells in the JE following tooth eruption. METHODS Mandibular first molar germs (embryonic days 15 to postnatal 1-day-old) were transplanted into the socket of 2-week-old mice after extraction of the upper first molars of B6 wild-type (WT) and green fluorescent protein (GFP) transgenic mice. After analysis by µ-CT, paraffin sections were processed for immunohistochemistry for Nestin, Ki67 and GFP. We also performed chasing analysis using BrdU-administered TetOP-H2B-GFP mice. RESULTS Amelogenesis progressed normally in the cervical areas, and the structure of the JE was like that in normal tooth development. The JE was GFP-negative in transplantations using GFP transgenic mice as the host, and the oral epithelium (OE) showed a positive reaction. By contrast, the JE remained GFP-positive throughout the experimental period in transplantations using GFP transgenic mice as the donor. Chasing analysis revealed that H2B-GFP- and 5-Bromo-2'-deoxyuridine (BrdU)-labeled cells in the basal side of the JE translocated to oral side of the JE as the chasing time increased. Some label-retaining cells remained at the supra-basal cell layer in the JE. CONCLUSION These results suggest that REE-derived cell niche in the JE is maintained for a long time following tooth eruption. Therefore, the JE may be available as the source of the odontogenic epithelium.
Collapse
Affiliation(s)
- Miki Soda
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroko Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kuniko Nakakura-Ohshima
- Division of Pediatric Dentistry, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shinichi Kenmotsu
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hayato Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
17
|
Nakatsugawa K, Kurosaka H, Inubushi T, Aoyama G, Isogai Y, Usami Y, Toyosawa S, Yamashiro T. Stage- and tissue-specific effect of cyclophosphamide during tooth development. Eur J Orthod 2019; 41:519-530. [PMID: 30715254 DOI: 10.1093/ejo/cjz002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the toxic effect of cyclophosphamide (CPA) in the development of rodent molars. METHODS CPA was administered intraperitoneally in postnatal mice between Day 1 and Day 10, and the morphological phenotype was evaluated at Day 26 using micro-computed tomography and histological analysis, including cell proliferation and cell death analyses. RESULTS M3 molars of the mice who received 100 mg/kg CPA treatment at Day 6 or M2 molars who received treatment at Day 1 resulted in tooth agenesis or marked hypoplasia. Histological observation demonstrated that CPA treatment at Day 6 resulted in shrinkage of the M3 tooth germs, with a significant reduction in the proliferation of apoptotic cells. Conversely, CPA exposure at Day 2, which occurs at around the bud stage of M3, resulted in crown and root hypoplasia, with reduced numbers of cusp and root. In addition, CPA exposure at Day 10, which is the late bell stage of M3, induced root shortening; however, it did not affect crown morphogenesis. LIMITATIONS The timing of CPA administration is limited to after birth. Therefore, its effect during the early stages of M1 and M2 could not be investigated. CONCLUSION Defective phenotypes were evident in both crown and roots due to the effect of CPA. Interestingly, the severity of the phenotypes was associated with the developmental stages of the tooth germs at the time of CPA administration. The cap/early bell stage is the most susceptive timing for tooth agenesis, whereas the late bell stage is predominantly affected in terms of root formation by CPA administration.
Collapse
Affiliation(s)
- Kohei Nakatsugawa
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Gozo Aoyama
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yukako Isogai
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yu Usami
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
18
|
Saito K, Ohshima H. The putative role of insulin-like growth factor (IGF)-binding protein 5 independent of IGF in the maintenance of pulpal homeostasis in mice. Regen Ther 2019; 11:217-224. [PMID: 31516919 PMCID: PMC6732709 DOI: 10.1016/j.reth.2019.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Although insulin-like growth factor binding protein 5 (IGFBP5) may play a crucial role in activating the functions of periodontal and bone marrow stem cells, the factors responsible for regulating the maintenance of dental pulp stem cells (DPSCs) remain to be clarified. This study aimed to elucidate the role of IGFBP5 in maintaining pulpal homeostasis during tooth development and pulpal healing after tooth injury in doxycycline-inducible TetOP-histone 2B (H2B)-green fluorescent protein (GFP) transgenic mice (GFP expression was induced at E14.5 or E15.5) by using TUNEL assay, RT-PCR, in situ hybridization for Igfbp5, and immunohistochemistry for IGFBP5, Nestin, and GFP. To observe the pulpal response to exogenous stimuli, the roots of the maxillary first molars were resected, and the coronal portion was autografted into the sublingual region. Intense IGFBP5/Igfbp5 expression was observed in cells from the center of the pulp tissue and the subodontoblastic layer in developing teeth during postnatal Week 4. Intense H2B-GFP-expressing label-retaining cells (LRCs) were localized in the subodontoblastic layer in addition to the center of the pulp tissue, suggesting that slowly dividing cell populations reside in these areas. During postoperative days 3–7, the LRCs were maintained in the dental pulp, showed an IGFBP5-positve reaction in their nuclei, and lacked a TUNEL-positive reaction. In situ hybridization and RT-PCR analyses confirmed the expression of Igfbp5 in the dental pulp. These findings suggest that IGFBP5 play a pivotal role in regulating the survival and apoptosis of DPSCs during both tooth development and pulpal healing following tooth injury.
Collapse
Key Words
- ANOVA, one-way analysis of variance
- Apoptosis
- DAB, diaminobenzidine
- DPSC, dental pulp stem cell
- Dental pulp
- GFP, green fluorescent protein
- H&E, hematoxylin and eosin
- H2B, histone 2B
- IGF, insulin-like growth factor
- IGF-IR, insulin-like growth factor I receptor
- IGFBP5, insulin-like growth factor binding protein 5
- LRC, label-retaining cell
- MAS, Matsunami adhesive silane
- Mice (Transgenic)
- PDLSCs, periodontal ligament stem cells
- RT-PCR, reverse transcriptase-polymerase chain reaction
- Stem cells
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
- Transplantation
Collapse
|
19
|
Sunohara M, Kamata H, Maeda Y, Miwa Y, Karibe H, Sato I. Distribution of glutamate receptor, ionotropic, kainate 1 and neuropeptide calcitonin gene-related peptide mRNAs during formation of the embryonic and postnatal mouse molar in the maxilla. Ann Anat 2019; 227:151401. [PMID: 31330309 DOI: 10.1016/j.aanat.2019.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 11/28/2022]
Abstract
The neuropeptide calcitonin gene-related peptide (CGRP) is a well-characterized neurotransmitter. Glutamate receptor, ionotropic, kainate 1 (Grik1) has also been demonstrated to generate high-affinity kainate receptors. However, little is known about the roles of CGRP and Grik1 during the developmental formation of teeth. In this study, we endeavoured to analyse the expression and localization of CGRP and Grik1 mRNAs using in situ hybridization on the mouse maxilla during development from the embryonic stage (E18.5) to after birth (P10, P15 and P20). We found that hybridization with an anti-sense probe for CGRP clearly localized in the maxilla at E18.5 in contrast to that of P15 and P20. Hybridization with an anti-sense probe for CGRP was not detected in the dental pulp of molars in the maxilla at P10, which is in contrast to Grik1 mRNA at the same developmental stage. Hybridization with an anti-sense probe for Grik1 mRNA was detected in the basal region of the dental pulp of molars at P10 and P15. Finally, these markers were not detected in molars in the mouse maxilla at P20. The ratio of positive cells for the hybridization signals of Grik1and CGRP in the dental pulp decreased from E18.5 (p<0.001). These features in CGRP and Grik1r mRNAs may indicate roles of function during tooth development between embryonic and postnatal stages with root formation and erupted movements.
Collapse
Affiliation(s)
- Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hiroaki Kamata
- Division of Pediatric Dentistry, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan; Department of Pediatric Dentistry, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Yuuki Maeda
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan; Division of Anatomy, Nippon Dental University Graduate School of Life Dentistry, Tokyo, Japan
| | - Yoko Miwa
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hiroyuki Karibe
- Department of Pediatric Dentistry, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Iwao Sato
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
20
|
Nakaki T, Nakakura-Ohshima K, Nakagawa E, Ishikawa Y, Saito K, Ida-Yonemochi H, Ohshima H. Donor–host tissue interaction in allogenic transplanted tooth germ with special reference to periodontal tissue. J Oral Biosci 2018. [DOI: 10.1016/j.job.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Nestin expression is differently regulated between odontoblasts and the subodontoblastic layer in mice. Histochem Cell Biol 2018; 149:383-391. [DOI: 10.1007/s00418-018-1651-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2018] [Indexed: 01/22/2023]
|
22
|
Quiescent adult stem cells in murine teeth are regulated by Shh signaling. Cell Tissue Res 2017; 369:497-512. [DOI: 10.1007/s00441-017-2632-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/22/2017] [Indexed: 12/17/2022]
|
23
|
Differentiation capacity and maintenance of dental pulp stem/progenitor cells in the process of pulpal healing following tooth injuries. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Yukita A, Hara M, Hosoya A, Nakamura H. Relationship between localization of proteoglycans and induction of neurotrophic factors in mouse dental pulp. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Werle SB, Chagastelles P, Pranke P, Casagrande L. The effects of hypoxia on in vitro culture of dental-derived stem cells. Arch Oral Biol 2016; 68:13-20. [DOI: 10.1016/j.archoralbio.2016.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/18/2016] [Accepted: 03/20/2016] [Indexed: 12/19/2022]
|
26
|
Lin G, Alwaal A, Zhang X, Wang J, Wang L, Li H, Wang G, Ning H, Lin CS, Xin Z, Lue TF. Presence of stem/progenitor cells in the rat penis. Stem Cells Dev 2015; 24:264-70. [PMID: 25162971 DOI: 10.1089/scd.2014.0360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tissue resident stem cells are believed to exist in every organ, and their identification is commonly done using a combination of immunostaining for putative stem cell markers and label-retaining cell (LRC) strategy. In this study, we employed these approaches to identify potential stem cells in the penis. Newborn rats were intraperitoneally injected with thymidine analog, 5-ethynyl-2-deoxyuridine (EdU), and their penis was harvested at 7 h, 3 days, 1 week, and 4 weeks. It was processed for EdU stains and immunofluorescence staining for stem cell markers A2B5, PCNA, and c-kit. EdU-positive cells were counted for each time point and co-localized with each stem cell marker, then isolated and cultured in vitro followed by their characterization using flowcytometry and immunofluorescence. At 7 h post-EdU injection, 410 ± 105.3 penile corporal cells were labeled in each cross-section (∼28%). The number of EdU-positive cells at 3 days increased to 536 ± 115.6, while their percentage dropped to 25%. Progressively fewer EdU-positive cells were present in the sacrificed rat penis at longer time points (1 and 4 weeks). They were mainly distributed in the subtunic and perisinusoidal spaces, and defined as subtunic penile progenitor cells (STPCs) and perisinusoidal penile progenitor cells (PPCs). These cells expressed c-kit, A2B5, and PCNA. After culturing in vitro, only ∼0.324% corporal cells were EdU-labeled LRCs and expressed A2B5/PCNA. Therefore, labeling of penis cells by EdU occurred randomly, and label retaining was not associated with expression of c-kit, A2B5, or PCNA. The penile LRCs are mainly distributed within the subtunic and perisinusoidal space.
Collapse
Affiliation(s)
- Guiting Lin
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California , San Francisco, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hosoya A, Nakamura H. Ability of stem and progenitor cells in the dental pulp to form hard tissue. JAPANESE DENTAL SCIENCE REVIEW 2015. [DOI: 10.1016/j.jdsr.2015.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
28
|
Nakaki T, Saito K, Ida-Yonemochi H, Nakagawa E, Kenmotsu S, Ohshima H. Contribution of Donor and Host Mesenchyme to the Transplanted Tooth Germs. J Dent Res 2014; 94:112-20. [DOI: 10.1177/0022034514556536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autologous tooth germ transplantation of immature teeth is an alternative method of tooth replacement that could be used instead of dental implants in younger patients. However, it is paramount that the dental pulp remain vital and that root formation continue in the transplanted location. The goal of this study is to characterize the healing of allogenic tooth grafts in an animal model using GFP-labeled donor or host postnatal mice. In addition, the putative stem cells were labeled before transplantation with a pulse-chase paradigm. Transplanted molars formed cusps and roots and erupted into occlusion by 2 wk postoperatively. Host label-retaining cells (LRCs) were maintained in the center of pulp tissue associating with blood vessels. Dual labeling showed that a proportion of LRCs were incorporated into the odontoblast layer. Host cells, including putative dendritic cells and the endothelium, also immigrated into the pulp tissue but did not contribute to the odontoblast layer. Therefore, LRCs or putative mesenchymal stem cells are retained in the transplanted pulps. Hertwig’s epithelial root sheath remains vital, and epithelial LRCs are present in the donor cervical loops. Thus, the dynamic donor-host interaction occurred in the developing transplant, suggesting that these changes affect the characteristics of the dental pulp.
Collapse
Affiliation(s)
- T. Nakaki
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K. Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H. Ida-Yonemochi
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - E. Nakagawa
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S. Kenmotsu
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H. Ohshima
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
29
|
Saito K, Nakatomi M, Kenmotsu S, Ohshima H. Allogenic tooth transplantation inhibits the maintenance of dental pulp stem/progenitor cells in mice. Cell Tissue Res 2014; 356:357-67. [PMID: 24671256 DOI: 10.1007/s00441-014-1818-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 01/10/2023]
Abstract
Our recent study suggested that allogenic tooth transplantation may affect the maintenance of dental pulp stem/progenitor cells. This study aims to elucidate the influence of allograft on the maintenance of dental pulp stem/progenitor cells following tooth replantation and allo- or auto-genic tooth transplantation in mice using BrdU chasing, immunohistochemistry for BrdU, nestin and Ki67, in situ hybridization for Dspp, transmission electron microscopy and TUNEL assay. Following extraction of the maxillary first molar in BrdU-labeled animals, the tooth was immediately repositioned in the original socket, or the roots were resected and immediately allo- or auto-grafted into the sublingual region in non-labeled or the same animals. In the control group, two types of BrdU label-retaining cells (LRCs) were distributed throughout the dental pulp: those with dense or those with granular reaction for BrdU. In the replants and autogenic transplants, dense LRCs remained in the center of dental pulp associating with the perivascular environment throughout the experimental period and possessed a proliferative capacity and maintained the differentiation capacity into the odontoblast-like cells or fibroblasts. In contrast, LRCs disappeared in the center of the pulp tissue by postoperative week 4 in the allografts. The disappearance of LRCs was attributed to the extensive apoptosis occurring significantly in LRCs except for the newly-differentiated odontoblast-like cells even in cases without immunological rejection. The results suggest that the host and recipient interaction in the allografts disturbs the maintenance of dense LRCs, presumably stem/progenitor cells, resulting in the disappearance of these cell types.
Collapse
Affiliation(s)
- Kotaro Saito
- Division of Anatomy and Cell Biology of the Hard Tissue, Department of Tissue Regeneration and Reconstruction, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata, 951-8514, Japan
| | | | | | | |
Collapse
|
30
|
Ida-Yonemochi H, Nakatomi M, Ohshima H. Establishment of in vitro culture system for evaluating dentin–pulp complex regeneration with special reference to the differentiation capacity of BrdU label-retaining dental pulp cells. Histochem Cell Biol 2014; 142:323-33. [DOI: 10.1007/s00418-014-1200-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2014] [Indexed: 12/15/2022]
|
31
|
Zhao Y, Guo K, Li D, Yuan Q, Yao Z. Special function of nestin(+) neurons in the medial septum-diagonal band of Broca in adult rats. Neural Regen Res 2014; 9:308-17. [PMID: 25206817 PMCID: PMC4146154 DOI: 10.4103/1673-5374.128229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2013] [Indexed: 12/15/2022] Open
Abstract
Nestin(+) neurons have been shown to express choline acetyltransferase (ChAT) in the medial septum-diagonal band of Broca in adult rats. This study explored the projection of nestin(+) neurons to the olfactory bulb and the time course of nestin(+) neurons in the medial septum-diagonal band of Broca in adult rats during injury recovery after olfactory nerve transection. This study observed that all nestin(+) neurons were double-labeled with ChAT in the medial septum-diagonal band of Broca. Approximately 53.6% of nestin(+) neurons were projected to the olfactory bulb and co-labeled with fast blue. A large number of nestin(+) neurons were not present in each region of the medial septum-diagonal band of Broca. Nestin(+) neurons in the medial septum and vertical limb of the diagonal band of Broca showed obvious compensatory function. The number of nestin(+) neurons decreased to a minimum later than nestin(-)/ChAT(+) neurons in the medial septum-diagonal band of Broca. The results suggest that nestin(+) cholinergic neurons may have a closer connection to olfactory bulb neurons. Nestin(+) cholinergic neurons may have a stronger tolerance to injury than Nestin(-)/ChAT(+) neurons. The difference between nestin(+) and nestin(-)/ChAT(+) neurons during the recovery process requires further investigations.
Collapse
Affiliation(s)
- Yuhong Zhao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Dongpei Li
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qunfang Yuan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhibin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
32
|
Vandomme J, Touil Y, Ostyn P, Olejnik C, Flamenco P, El Machhour R, Segard P, Masselot B, Bailliez Y, Formstecher P, Polakowska R. Insulin-like growth factor 1 receptor and p38 mitogen-activated protein kinase signals inversely regulate signal transducer and activator of transcription 3 activity to control human dental pulp stem cell quiescence, propagation, and differentiation. Stem Cells Dev 2014; 23:839-51. [PMID: 24266654 DOI: 10.1089/scd.2013.0400] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dental pulp stem cells (DPSCs) remain quiescent until activated in response to severe dental pulp damage. Once activated, they exit quiescence and enter regenerative odontogenesis, producing reparative dentin. The factors and signaling molecules that control the quiescence/activation and commitment to differentiation of human DPSCs are not known. In this study, we determined that the inhibition of insulin-like growth factor 1 receptor (IGF-1R) and p38 mitogen-activated protein kinase (p38 MAPK) signaling commonly activates DPSCs and promotes their exit from the G0 phase of the cell cycle as well as from the pyronin Y(low) stem cell compartment. The inhibition of these two pathways, however, inversely determines DPSC fate. In contrast to p38 MAPK inhibitors, IGF-1R inhibitors enhance dental pulp cell sphere-forming capacity and reduce the cells' colony-forming capacity without inducing cell death. The inverse cellular changes initiated by IGF-1R and p38 MAPK inhibitors were accompanied by inverse changes in the levels of active signal transducer and activator of transcription 3 (STAT3) factor, inactive glycogen synthase kinase 3, and matrix extracellular phosphoglycoprotein, a marker of early odontoblast differentiation. Our data suggest that there is cross talk between the IGF-1R and p38 MAPK signaling pathways in DPSCs and that the signals provided by these pathways converge at STAT3 and inversely regulate its activity to maintain quiescence or to promote self-renewal and differentiation of the cells. We propose a working model that explains the possible interactions between IGF-1R and p38 MAPK at the molecular level and describes the cellular consequences of these interactions. This model may inspire further fundamental study and stimulate research on the clinical applications of DPSC in cellular therapy and tissue regeneration.
Collapse
Affiliation(s)
- Jerome Vandomme
- 1 Inserm U837 Jean-Pierre Aubert Research Center, Institut pour la Recherche sur le Cancer de Lille (IRCL) , Lille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sohn WJ, Choi MA, Yamamoto H, Lee S, Lee Y, Jung JK, Jin MU, An CH, Jung HS, Suh JY, Shin HI, Kim JY. Contribution of mesenchymal proliferation in tooth root morphogenesis. J Dent Res 2013; 93:78-83. [PMID: 24155265 DOI: 10.1177/0022034513511247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In mouse tooth development, the roots of the first lower molar develop after crown formation to form 2 cylindrical roots by post-natal day 5. This study compared the morphogenesis and cellular events of the mesial-root-forming (MRF) and bifurcation-forming (BF) regions, located in the mesial and center of the first lower molar, to better define the developmental mechanisms involved in multi-rooted tooth formation. We found that the mesenchyme in the MRF showed relatively higher proliferation than the bifurcation region. This suggested that spatially regulated mesenchymal proliferation is required for creating cylindrical root structure. The mechanism may involve the mesenchyme forming a physical barrier to epithelial invagination of Hertwig's epithelial root sheath. To test these ideas, we cultured roots in the presence of pharmacological inhibitors of microtubule and actin polymerization, nocodazole and cytochalasin-D. Cytochalasin D also inhibits proliferation in epithelium and mesenchyme. Both drugs resulted in altered morphological changes in the tooth root structures. In particular, the nocodazole- and cytochalasin-D-treated specimens showed a loss of root diameter and formation of a single-root, respectively. Immunolocalization and three-dimensional reconstruction results confirmed these mesenchymal cellular events, with higher proliferation in MRF in multi-rooted tooth formation.
Collapse
Affiliation(s)
- W-J Sohn
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Saito K, Nakatomi M, Ohshima H. Dynamics of Bromodeoxyuridine Label–retaining Dental Pulp Cells during Pulpal Healing after Cavity Preparation in Mice. J Endod 2013; 39:1250-5. [DOI: 10.1016/j.joen.2013.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 06/29/2013] [Accepted: 06/29/2013] [Indexed: 12/24/2022]
|
35
|
Huang S, Leung VYL, Long D, Chan D, Lu WW, Cheung KMC, Zhou G. Coupling of small leucine-rich proteoglycans to hypoxic survival of a progenitor cell-like subpopulation in Rhesus Macaque intervertebral disc. Biomaterials 2013; 34:6548-58. [PMID: 23764115 DOI: 10.1016/j.biomaterials.2013.05.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 05/16/2013] [Indexed: 01/07/2023]
Abstract
Degeneration of the intervertebral disc (IVD) is a major spinal disorder that associates with neck and back pain. Recent studies of clinical samples and animal models for IVD degeneration have identified cells with multi-potency in the IVD. However, IVD tissue-specific progenitor cells and their niche components are not clear, although degenerated IVD-derived cells possess in vitro characteristics of mesenchymal stromal cell (MSCs). Here, we firstly identified the tissue-specific intervertebral disc progenitor cells (DPCs) from healthy Rhesus monkey and report the niche components modulated the survival of DPCs under hypoxia. DPCs possess clonogenicity, multipotency and retain differentiation potential after extended expansion in vitro and in vivo. In particular, the nucleus pulposus-derived DPCs are sensitive to low oxygen tension and undergo apoptosis under hypoxic conditions due to their inability to induce/stabilize hypoxia-inducible factors (HIF). The presence of small leucine-rich proteoglycans (SLRP), biglycan or decorin, can reduce the susceptibility of DPCs to hypoxia-induced apoptosis via promoting the activation/stabilization of HIF-1α and HIF-2α. As IVD is avascular, we propose SLRPs are niche components of DPCs in IVD homeostasis, providing new insights in progenitor cell biology and niche factors under a hypoxic microenvironment.
Collapse
Affiliation(s)
- Shishu Huang
- Department of Orthopaedics and Traumatology, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region
| | | | | | | | | | | | | |
Collapse
|
36
|
Yang GB, Li XY, Yuan GH, Liu H, Fan MW. Immortalization and characterization of human dental papilla cells with odontoblastic differentiation. Int Endod J 2013; 46:565-72. [PMID: 23186070 DOI: 10.1111/iej.12029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 10/09/2012] [Indexed: 01/22/2023]
Abstract
AIM To establish a cell line of immortalized human dental papilla cells (hDPCs). METHODOLOGY Primary hDPCs were cultured and infected with lentivirus containing the hTERT gene. Integration and transcription of the hTERT gene were verified by PCR. The characteristics of the cells, such as morphology, proliferation and mineralization, were analysed. Also, the expression of odontoblastic-related markers including ALP, DMP1, DLX3, OSX, DSP and Nestin, was detected by immunohistochemistry and real-time RT-PCR. RESULTS hTERT gene was integrated into genomic DNA of immortalized cells (hDPC-TERT) and transcribed into mRNA. With long-time culture, hDPC-TERT bypassed senescence and grew over 120 population doublings. hDPC-TERT cells have a higher proliferation rate, but retain the phenotypic characteristics of the primary hDPCs, and so was ALP activity and mineralization activity. Furthermore, the hDPC-TERT cells express no DSP and Nestin with maintenance medium, but highly expressed DSP and Nestin after odontoblastic induction. CONCLUSIONS A line of immortalized human dental papilla cells, which remains in an undifferentiated state and has odontoblastic differentiation potential, was established. This cell line can be used as a cell model for studying the mechanism of the initiation of odontoblast differentiation.
Collapse
Affiliation(s)
- G B Yang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|
37
|
Nakatomi M, Ida-Yonemochi H, Ohshima H. Lymphoid Enhancer-binding Factor 1 Expression Precedes Dentin Sialophosphoprotein Expression during Rat Odontoblast Differentiation and Regeneration. J Endod 2013; 39:612-8. [DOI: 10.1016/j.joen.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 12/02/2012] [Accepted: 12/10/2012] [Indexed: 11/30/2022]
|
38
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Yoshiba N, Yoshiba K, Ohkura N, Shigetani Y, Takei E, Hosoya A, Nakamura H, Okiji T. Immunohistochemical analysis of two stem cell markers of α-smooth muscle actin and STRO-1 during wound healing of human dental pulp. Histochem Cell Biol 2012; 138:583-92. [PMID: 22673840 DOI: 10.1007/s00418-012-0978-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2012] [Indexed: 12/13/2022]
Abstract
Recent studies have employed two markers, alpha-smooth muscle actin (α-SMA) and STRO-1, to detect cells with mesenchymal stem cell properties in dental pulp. The present study aimed to explore the expression profile of α-SMA and STRO-1 in intact dental pulp as well as during wound healing in adult dental pulp tissue. Healthy pulps were mechanically exposed and capped with the clinically used materials MTA (ProRoot White MTA) or Ca(OH)₂ to induce a mineralized barrier at the exposed surface. After 7-42 days, the teeth were extracted and processed for immunohistochemical analysis using antibodies against α-SMA, STRO-1 and nestin (a neurogenic cytoskeletal protein expressed in odontoblasts). In normal pulp, α-SMA was detected in vascular smooth muscle cells and pericytes. Double immunofluorescent staining with STRO-1 and α-SMA showed that STRO-1 was localized in vascular smooth muscle cells, pericytes and endothelial cells, in addition to nerve fibers. During the process of dental pulp healing, numerous α-SMA-positive cells emerged at the wound margin at 14 days, and the initially formed mineralized barrier was lined with α-SMA-positive cells similar in appearance to reparative odontoblasts, some of which co-expressed nestin. STRO-1 was abundant in nerve fibers. In the advanced stage of mineralized barrier formation at 42 days, cells lining the barrier were stained with nestin, and no staining of α-SMA was detected in those cells. These observations indicate that α-SMA-positive cells temporarily appear along the wound margin during the earlier phase of mineralized barrier formation and STRO-1 is confined in vascular and neuronal elements.
Collapse
Affiliation(s)
- Nagako Yoshiba
- Division of Cardiology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8514, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Quispe-Salcedo A, Ida-Yonemochi H, Nakatomi M, Ohshima H. Expression patterns of nestin and dentin sialoprotein during dentinogenesis in mice. Biomed Res 2012; 33:119-32. [DOI: 10.2220/biomedres.33.119] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|