1
|
Ede VG, Kate AS. Harnessing the Potential of Pheophorbides in Photodynamic Therapy: Natural Origins, Semi-Synthetic Advances, and Future Directions. Chem Biodivers 2025:e00146. [PMID: 40424628 DOI: 10.1002/cbdv.202500146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/25/2025] [Accepted: 05/02/2025] [Indexed: 05/29/2025]
Abstract
Photodynamic therapy (PDT) is a distinctive cancer treatment strategy that provides high specificity and minimal systemic toxicity. It involves the use of photosensitizers (PSs), which are activated by light to induce localized cell death through reactive oxygen species (ROS)-mediated oxidative damage. First-generation PSs, such as hematoporphyrin derivatives, demonstrated limited efficacy. Second-generation PSs, including both porphyrin-based and non-porphyrin-based compounds, have overcome some of these limitations but continue to face challenges such as poor water solubility and limited specificity. Naturally derived chlorin-based molecules referred to as pheophorbides and their semi-synthetic analogs hold significant potential as a PS for PDT. This review examines the physicochemical properties, structural diversity, and structure-activity relationships of pheophorbides derived from plant, marine, and microbial sources. It also highlights their distinctive nuclear magnetic resonance (NMR) signals, which could be useful in the identification of new pheophorbides. Focusing on future directions, the report emphasizes the potential of bacteriopheophorbides to address current limitations in PDT, offering innovative, nature-inspired approaches to cancer treatment.
Collapse
Affiliation(s)
- Venkata Gopal Ede
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat, India
| | - Abhijeet S Kate
- Department of Natural Products, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gandhinagar, Gujarat, India
| |
Collapse
|
2
|
Cai Y, Chai T, Nguyen W, Liu J, Xiao E, Ran X, Ran Y, Du D, Chen W, Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct Target Ther 2025; 10:115. [PMID: 40169560 PMCID: PMC11961771 DOI: 10.1038/s41392-025-02140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/11/2024] [Accepted: 01/13/2025] [Indexed: 04/03/2025] Open
Abstract
Phototherapy has emerged as a promising modality in cancer treatment, garnering considerable attention for its minimal side effects, exceptional spatial selectivity, and optimal preservation of normal tissue function. This innovative approach primarily encompasses three distinct paradigms: Photodynamic Therapy (PDT), Photothermal Therapy (PTT), and Photoimmunotherapy (PIT). Each of these modalities exerts its antitumor effects through unique mechanisms-specifically, the generation of reactive oxygen species (ROS), heat, and immune responses, respectively. However, significant challenges impede the advancement and clinical application of phototherapy. These include inadequate ROS production rates, subpar photothermal conversion efficiency, difficulties in tumor targeting, and unfavorable physicochemical properties inherent to traditional phototherapeutic agents (PTs). Additionally, the hypoxic microenvironment typical of tumors complicates therapeutic efficacy due to limited agent penetration in deep-seated lesions. To address these limitations, ongoing research is fervently exploring innovative solutions. The unique advantages offered by nano-PTs and nanocarrier systems aim to enhance traditional approaches' effectiveness. Strategies such as generating oxygen in situ within tumors or inhibiting mitochondrial respiration while targeting the HIF-1α pathway may alleviate tumor hypoxia. Moreover, utilizing self-luminescent materials, near-infrared excitation sources, non-photoactivated sensitizers, and wireless light delivery systems can improve light penetration. Furthermore, integrating immunoadjuvants and modulating immunosuppressive cell populations while deploying immune checkpoint inhibitors holds promise for enhancing immunogenic cell death through PIT. This review seeks to elucidate the fundamental principles and biological implications of phototherapy while discussing dominant mechanisms and advanced strategies designed to overcome existing challenges-ultimately illuminating pathways for future research aimed at amplifying this intervention's therapeutic efficacy.
Collapse
Affiliation(s)
- Yeyu Cai
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Tian Chai
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China
| | - William Nguyen
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Taicang, Suzhou, China
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Enhua Xiao
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xin Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuping Ran
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Du
- Department of Dermatovenereology, The West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Chen
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University (Air Force Medical University), Xi'an, Shanxi Province, China.
| | - Xiangyu Chen
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Millheim AC, Ponzano E, Moyano A. Substituent Effects in the Photophysical and Electrochemical Properties of Meso-Tetraphenylporphyrin Derivatives. Molecules 2024; 29:3689. [PMID: 39125093 PMCID: PMC11314014 DOI: 10.3390/molecules29153689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Porphyrins were identified some years ago as a promising, easily accessible, and tunable class of organic photoredox catalysts, but a systematic study on the effect of the electronic nature and of the position of the substituents on both the ground-state and the excited-state redox potentials of these compounds is still lacking. We prepared a set of known functionalized porphyrin derivatives containing different substituents either in one of the meso positions or at a β-pyrrole carbon, and we determined their ground- and (singlet) excited-state redox potentials. We found that while the estimated singlet excited-state energies are essentially unaffected by the introduction of substituents, the redox potentials (both in the ground- and in the singlet excited-state) depend on the electron-withdrawing or electron-donating nature of the substituents. Thus, the presence of groups with electron-withdrawing resonance effects results in an enhancement of the reduction facility of the photocatalyst, both in the ground and in the excited state. We next prepared a second set of four previously unknown meso-substituted porphyrins, having a benzoyl group at different positions. The reduction facility of the porphyrin increases with the proximity of the substituent to the porphine core, reaching a maximum when the benzoyl substituent is introduced at a meso position.
Collapse
Affiliation(s)
| | | | - Albert Moyano
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain; (A.C.M.); (E.P.)
| |
Collapse
|
4
|
Dardouri NE, Hrichi S, Torres P, Chaâbane-Banaoues R, Sorrenti A, Roisnel T, Turowska-Tyrk I, Babba H, Crusats J, Moyano A, Nasri H. Synthesis, Characterization, X-ray Molecular Structure, Antioxidant, Antifungal, and Allelopathic Activity of a New Isonicotinate-Derived meso-Tetraarylporphyrin. Molecules 2024; 29:3163. [PMID: 38999116 PMCID: PMC11243641 DOI: 10.3390/molecules29133163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024] Open
Abstract
The present article describes the synthesis of an isonicotinate-derived meso-arylporphyrin, that has been fully characterized by spectroscopic methods (including fluorescence spectroscopy), as well as elemental analysis and HR-MS. The structure of an n-hexane monosolvate has been determined by single-crystal X-ray diffraction analysis. The radical scavenging activity of this new porphyrin against the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical has been measured. Its antifungal activity against three yeast strains (C. albicans ATCC 90028, C. glabrata ATCC 64677, and C. tropicalis ATCC 64677) has been tested using the disk diffusion and microdilution methods. Whereas the measured antioxidant activity was low, the porphyrin showed moderate but encouraging antifungal activity. Finally, a study of its effect on the germination of lentil seeds revealed interesting allelopathic properties.
Collapse
Affiliation(s)
- Nour Elhouda Dardouri
- Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Science of Monastir, University of Monastir, Avenue de l'Environment, Monastir 5019, Tunisia
| | - Soukaina Hrichi
- Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Science of Monastir, University of Monastir, Avenue de l'Environment, Monastir 5019, Tunisia
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy, University of Monastir, LR12ES08, Monastir 5000, Tunisia
| | - Pol Torres
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Raja Chaâbane-Banaoues
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy, University of Monastir, LR12ES08, Monastir 5000, Tunisia
| | - Alessandro Sorrenti
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Thierry Roisnel
- Institute of Chemical Sciences of Rennes, UMR 6226, University of Rennes 1, Beaulieu Campus, 35042 Rennes, France
| | - Ilona Turowska-Tyrk
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Hamouda Babba
- Laboratory of Medical and Molecular Parasitology-Mycology (LP3M), Faculty of Pharmacy, University of Monastir, LR12ES08, Monastir 5000, Tunisia
| | - Joaquim Crusats
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
- Institute of Cosmos Science, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Albert Moyano
- Section of Organic Chemistry, Department of Inorganic and Organic Chemistry, Faculty of Chemistry, University of Barcelona, C. de Martí i Franquès 1-11, 08028 Barcelona, Spain
| | - Habib Nasri
- Laboratory of Physical Chemistry of Materials (LR01ES19), Faculty of Science of Monastir, University of Monastir, Avenue de l'Environment, Monastir 5019, Tunisia
| |
Collapse
|
5
|
Mei Y, Gu L, Chen Y, Zhang P, Cheng Y, Yuan R, Li X, Wang X, Guo P, He D, Zeng J. A Novel Photosensitizer Based 450-nm Blue Laser-Mediated Photodynamic Therapy Induces Apoptosis in Colorectal Cancer - in Vitro and in Vivo Study. FRONT BIOSCI-LANDMRK 2024; 29:199. [PMID: 38812322 DOI: 10.31083/j.fbl2905199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Due to its non-invasive and widely applicable features, photodynamic therapy (PDT) has been a prominent treatment approach against cancer in recent years. However, its widespread application in clinical practice is limited by the dark toxicity of photosensitizers and insufficient penetration of light sources. This study assessed the anticancer effects of a novel photosensitizer 5-(4-amino-phenyl)-10,15,20-triphenylporphyrin with diethylene-triaminopentaacetic acid (ATPP-DTPA)-mediated PDT (hereinafter referred to as ATPP-PDT) under the irradiation of a 450-nm blue laser on colorectal cancer (CRC) in vivo and in vitro. METHODS After 450-nm blue laser-mediated ATPP-PDT and the traditional photosensitizer 5-aminolevulinic acid (5-ALA)-PDT treatment, cell viability was detected through Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. Reactive oxygen species (ROS) generation was quantified by flow cytometry and fluorescence microscopy. Western blotting and transcriptome RNA sequencing and functional experiments were used to evaluate cell apoptosis and its potential mechanism. Anti-tumor experiment in vivo was performed in nude mice with subcutaneous tumors. RESULTS ATPP-DTPA had a marvelous absorption in the blue spectrum. Compared with 5-ALA, ATPP-DTPA could achieve significant killing effects at a lower dose. Owing to generating an excessive amount of ROS, 450-nm blue laser-mediated PDT based on ATPP-DTPA resulted in evident growth inhibition and apoptosis in CRC cells in vitro. After transcriptome RNA sequencing and functional experiments, p38 MAPK signaling pathway was confirmed to be involved in the regulation of apoptosis induced by 450-nm blue laser-mediated ATPP-PDT. Additionally, animal studies using xenograft model confirmed that ATPP-PDT had excellent anti-tumor effect and reasonable biosafety in vivo. CONCLUSIONS PDT mediated by 450-nm blue laser combined with ATPP-DTPA may be a novel and effective method for the treatment of CRC.
Collapse
Affiliation(s)
- Yibo Mei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Lijiang Gu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Yuhang Chen
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Pan Zhang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Yifan Cheng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Renfei Yuan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| | - Xing Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, Shaanxi, China
| | - Xinyang Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, 710061 Xi'an, Shaanxi, China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, 710061 Xi'an, Shaanxi, China
| | - Peng Guo
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, 710061 Xi'an, Shaanxi, China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, 710061 Xi'an, Shaanxi, China
| | - Dalin He
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, 710061 Xi'an, Shaanxi, China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, 710061 Xi'an, Shaanxi, China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province, 710061 Xi'an, Shaanxi, China
- Oncology Research Lab, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, 710061 Xi'an, Shaanxi, China
| |
Collapse
|
6
|
Niiuchi A, Tojo T, Kondo T, Yuasa M. Permeation behavior of porphyrin derivatives with different functional group positions across cancer cell membranes. Bioorg Med Chem Lett 2023; 94:129463. [PMID: 37647999 DOI: 10.1016/j.bmcl.2023.129463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Porphyrin, which shows selective accumulation in cancer cells, has attracted attention as a drug carrier. The influences of the functional porphyrin positions (β- and meso-positions) on porphyrin accumulation must be understood. In this work, we focused on the investigation of the phenyl functional group whose β-position influences cancer cell accumulation through direct membrane permeation and endocytosis. The endocytic pathway, in particular, is influenced by both clathrin-dependent and caveolae-dependent endocytosis.
Collapse
Affiliation(s)
- Ayano Niiuchi
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Toshifumi Tojo
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Boscencu R, Radulea N, Manda G, Machado IF, Socoteanu RP, Lupuliasa D, Burloiu AM, Mihai DP, Ferreira LFV. Porphyrin Macrocycles: General Properties and Theranostic Potential. Molecules 2023; 28:molecules28031149. [PMID: 36770816 PMCID: PMC9919320 DOI: 10.3390/molecules28031149] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Despite specialists' efforts to find the best solutions for cancer diagnosis and therapy, this pathology remains the biggest health threat in the world. Global statistics concerning deaths associated with cancer are alarming; therefore, it is necessary to intensify interdisciplinary research in order to identify efficient strategies for cancer diagnosis and therapy, by using new molecules with optimal therapeutic potential and minimal adverse effects. This review focuses on studies of porphyrin macrocycles with regard to their structural and spectral profiles relevant to their applicability in efficient cancer diagnosis and therapy. Furthermore, we present a critical overview of the main commercial formulations, followed by short descriptions of some strategies approached in the development of third-generation photosensitizers.
Collapse
Affiliation(s)
- Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Natalia Radulea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Gina Manda
- “Victor Babeş” National Institute of Pathology, 050096 Bucharest, Romania
| | - Isabel Ferreira Machado
- Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Radu Petre Socoteanu
- “Ilie Murgulescu” Institute of Physical Chemistry, Romanian Academy, 060021 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Andreea Mihaela Burloiu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| | - Dragos Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 6 Traian Vuia, 020956 Bucharest, Romania
| | - Luis Filipe Vieira Ferreira
- BSIRG—Biospectroscopy and Interfaces Research Group, iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico and Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence: (R.B.); (R.P.S.); (A.M.B.); (L.F.V.F.)
| |
Collapse
|
8
|
Tavakkoli Yaraki M, Liu B, Tan YN. Emerging Strategies in Enhancing Singlet Oxygen Generation of Nano-Photosensitizers Toward Advanced Phototherapy. NANO-MICRO LETTERS 2022; 14:123. [PMID: 35513555 PMCID: PMC9072609 DOI: 10.1007/s40820-022-00856-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 05/06/2023]
Abstract
The great promise of photodynamic therapy (PDT) has thrusted the rapid progress of developing highly effective photosensitizers (PS) in killing cancerous cells and bacteria. To mitigate the intrinsic limitations of the classical molecular photosensitizers, researchers have been looking into designing new generation of nanomaterial-based photosensitizers (nano-photosensitizers) with better photostability and higher singlet oxygen generation (SOG) efficiency, and ways of enhancing the performance of existing photosensitizers. In this paper, we review the recent development of nano-photosensitizers and nanoplasmonic strategies to enhance the SOG efficiency for better PDT performance. Firstly, we explain the mechanism of reactive oxygen species generation by classical photosensitizers, followed by a brief discussion on the commercially available photosensitizers and their limitations in PDT. We then introduce three types of new generation nano-photosensitizers that can effectively produce singlet oxygen molecules under visible light illumination, i.e., aggregation-induced emission nanodots, metal nanoclusters (< 2 nm), and carbon dots. Different design approaches to synthesize these nano-photosensitizers were also discussed. To further enhance the SOG rate of nano-photosensitizers, plasmonic strategies on using different types of metal nanoparticles in both colloidal and planar metal-PS systems are reviewed. The key parameters that determine the metal-enhanced SOG (ME-SOG) efficiency and their underlined enhancement mechanism are discussed. Lastly, we highlight the future prospects of these nanoengineering strategies, and discuss how the future development in nanobiotechnology and theoretical simulation could accelerate the design of new photosensitizers and ME-SOG systems for highly effective image-guided photodynamic therapy.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yen Nee Tan
- Institute of Materials Research and Engineering, The Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, #05-04, Singapore, 609607, Singapore.
| |
Collapse
|
9
|
The Comparison of In Vitro Photosensitizing Efficacy of Curcumin-Loaded Liposomes Following Photodynamic Therapy on Melanoma MUG-Mel2, Squamous Cell Carcinoma SCC-25, and Normal Keratinocyte HaCaT Cells. Pharmaceuticals (Basel) 2021; 14:ph14040374. [PMID: 33920669 PMCID: PMC8072566 DOI: 10.3390/ph14040374] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
The research focused on the investigation of curcumin encapsulated in hydrogenated soy phosphatidylcholine liposomes and its increased photoactive properties in photodynamic therapy (PDT). The goal of this study was two-fold: to emphasize the role of a natural photoactive plant-based derivative in the liposomal formulation as an easily bioavailable, alternative photosensitizer (PS) for the use in PDT of skin malignancies. Furthermore, the goal includes to prove the decreased cytotoxicity of phototoxic agents loaded in liposomes toward normal skin cells. Research was conducted on melanoma (MugMel2), squamous cell carcinoma (SCC-25), and normal human keratinocytes (HaCaT) cell lines. The assessment of viability with MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) evaluated cell death after exposure to blue light irradiation after 4 h of pre-incubation with free and encapsulated curcumin. Additionally, the wound healing assay, flow cytometry, and immunocytochemistry to detect apoptosis were performed. The malignant cells revealed increased phototoxicity after the therapy in comparison to normal cells. Moreover, liposome curcumin-based photodynamic therapy showed an increased ratio of apoptotic and necrotic cells. The study also demonstrated that nanocurcumin significantly decreased malignant cell motility following PDT treatment. Acquired results suggest that liposomal formulation of a poor soluble natural compound may improve photosensitizing properties of curcumin-mediated PDT treatment in skin cancers and reduce toxicity in normal keratinocytes.
Collapse
|
10
|
Zhang ZJ, Wang KP, Mo JG, Xiong L, Wen Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J Stem Cells 2020; 12:562-584. [PMID: 32843914 PMCID: PMC7415247 DOI: 10.4252/wjsc.v12.i7.562] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Photodynamic therapy (PDT) is an effective and promising cancer treatment. PDT directly generates reactive oxygen species (ROS) through photochemical reactions. This oxygen-dependent exogenous ROS has anti-cancer stem cell (CSC) effect. In addition, PDT may also increase ROS production by altering metabolism, endoplasmic reticulum stress, or potential of mitochondrial membrane. It is known that the half-life of ROS in PDT is short, with high reactivity and limited diffusion distance. Therefore, the main targeting position of PDT is often the subcellular localization of photosensitizers, which is helpful for us to explain how PDT affects CSC characteristics, including differentiation, self-renewal, apoptosis, autophagy, and immunogenicity. Broadly speaking, excess ROS will damage the redox system and cause oxidative damage to molecules such as DNA, change mitochondrial permeability, activate unfolded protein response, autophagy, and CSC resting state. Therefore, understanding the molecular mechanism by which ROS affect CSCs is beneficial to improve the efficiency of PDT and prevent tumor recurrence and metastasis. In this article, we review the effects of two types of photochemical reactions on PDT, the metabolic processes, and the biological effects of ROS in different subcellular locations on CSCs.
Collapse
Affiliation(s)
- Zi-Jian Zhang
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Kun-Peng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Jing-Gang Mo
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang Province, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China
| | - Yu Wen
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, China.
| |
Collapse
|
11
|
Functionalization of A3B-type porphyrin with Fe3O4 MNPs. Supramolecular assemblies, gas sensor and catalytic applications. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zhang J, Jiang C, Figueiró Longo JP, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B 2018; 8:137-146. [PMID: 29719775 PMCID: PMC5925394 DOI: 10.1016/j.apsb.2017.09.003] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 12/31/2022] Open
Abstract
Photodynamic therapy (PDT), based on the photoactivation of photosensitizers (PSs), has become a well-studied therapy for cancer. Photofrin®, belonging to the first generation of PS, is still widely used for the treatment of different kinds of cancers; however, it has several drawbacks that significantly limit its general clinical use. Consequently, there has been extensive research on the design of PS molecules with optimized pharmaceutical properties, with aiming of overcoming the disadvantages of traditional PS, such as poor chemical purity, long half-life, excessive accumulation into the skin, and low attenuation coefficients. The rational design of novel PS with desirable properties has attracted considerable research in the pharmaceutical field. This review presents an overview on the classical photosensitizers and the most significant recent advances in the development of PS with regard to their potential application in oncology.
Collapse
Affiliation(s)
- Juan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | | | | | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Luis Alexandre Muehlmann
- Institute of Biological Sciences, University of Brasilia, Brasilia 70910-900, Brazil
- Faculty of Ceilandia, University of Brasilia, Brasilia 72220-900, Brazil
| |
Collapse
|
13
|
Yoho J, Wogensthal K, Bennett TL, Palmer J, Comfort KK, Kango-Singh M, Swavey S, Stuart CH, Gmeiner WH. Water-Soluble Zinc Porphyrin Capable of Light-Induced Photocleavage of DNA: Cell Localization Studies inDrosophila Melanogasterand Light Activated Treatment of Lung Cancer Cells. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601077] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Joshua Yoho
- Department of Biology; University of Dayton; 300 College Park Dayton OH USA
| | - Kevin Wogensthal
- Department of Chemistry; University of Dayton; 300 College Park Dayton OH USA
| | - Thomas L. Bennett
- Department of Chemical and Materials Engineering; University of Dayton; SupraMolecular Applied Research and Technology Center; 300 College Park Dayton OH USA
| | - Jessica Palmer
- Department of Chemistry; University of Dayton; 300 College Park Dayton OH USA
| | - Kristen K. Comfort
- Department of Chemical and Materials Engineering; University of Dayton; SupraMolecular Applied Research and Technology Center; 300 College Park Dayton OH USA
| | | | - Shawn Swavey
- Department of Chemistry; University of Dayton; 300 College Park Dayton OH USA
| | | | - William H. Gmeiner
- Department of Cancer Biology; Department of Molecular Medicine and Translation Science; Wake Forest School of Medicine; 27157 Winston-Salem NC USA
| |
Collapse
|
14
|
Synthesis and antitumor activity evaluation of a novel porphyrin derivative for photodynamic therapy in vitro and in vivo. Tumour Biol 2015; 37:6923-33. [DOI: 10.1007/s13277-015-4576-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/02/2015] [Indexed: 01/25/2023] Open
|
15
|
Zhang D, Liu H, Wei Q, Zhou Q. Structure-activity relationship study of anticancer thymidine-quinoxaline conjugates under the low radiance of long wavelength ultraviolet light for photodynamic therapy. Eur J Med Chem 2015; 107:180-91. [PMID: 26584085 DOI: 10.1016/j.ejmech.2015.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 02/07/2023]
Abstract
Thymidine quinoxaline conjugate (dT-QX) is a thymidine analog with selective cytotoxicity against different cancer cells. In this study, the structure activity relationship study of dT-QX analogs was carried out under the low radiance of black fluorescent (UVA-1) light. Significantly enhanced cytotoxicity was observed under UVA-1 activation among analogs containing both thymidine and quinoxaline moieties with different length of the linker, stereochemical configuration and halogenated substituents. Among these analogs, the thymidine dichloroquinoxaline conjugate exhibited potent activity under UVA-1 activation as the best candidate with EC50 at 0.67 μM and 1.3 μM against liver and pancreatic cancer cells, respectively. In contrast, the replacement of thymidine moiety with a galactosyl residue or the replacement of quinoxaline moiety with a fluorescent pyrenyl residue or a simplified diketone structure resulted in the full loss of activity. Furthermore, it was revealed that the low radiance of UVA-1 at 3 mW/cm(2) for 20 min was sufficient enough to induce the full cytotoxicity of thymidine dichloroquinoxaline conjugate and that the cytotoxic mechanism was achieved through a rapid and steady production of reactive oxygen species.
Collapse
Affiliation(s)
- Dejun Zhang
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huaming Liu
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Wei
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qibing Zhou
- Department of Nanomedicine and Biopharmaceuticals, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|