1
|
Roets B, Abrahamse H, Crous A. Biomaterial Properties and Differentiation Strategies for Tenogenic Differentiation of Mesenchymal Stem Cells. Cells 2025; 14:452. [PMID: 40136701 PMCID: PMC11940850 DOI: 10.3390/cells14060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Tendinopathy is a prevalent musculoskeletal condition that affects both aging populations and individuals involved in repetitive, high-intensity activities, such as athletes. Current treatment options primarily address symptom management or involve surgery, which carries a significant risk of complications and re-injury. This highlights the need for regenerative medicine approaches that combine stem cells, biomaterials, and growth factors. However, achieving effective tenogenic differentiation remains challenging due to the absence of standardized differentiation protocols. Consequently, a review of existing research has been conducted to identify optimal biomaterial properties and growth factor protocols. Findings suggest that the ideal biomaterial for tenogenic differentiation should feature a 3D structure to preserve tenogenic expression, incorporate a combination of aligned micro- and nanofibers to promote differentiation, and require further investigation into optimal stiffness. Additionally, growth factor protocols should include an induction phase to initiate tenogenic lineage commitment, followed by a maintenance phase to support matrix production and maturation.
Collapse
Affiliation(s)
| | | | - Anine Crous
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg 2028, South Africa; (B.R.); (H.A.)
| |
Collapse
|
2
|
DiStefano MS, Weiss SN, Nuss CA, Betts RL, Han B, Kuntz AF, Soslowsky LJ. Mature murine supraspinatus tendons demonstrate regional differences in multiscale structure, function and gene expression. PLoS One 2025; 20:e0318809. [PMID: 39977400 PMCID: PMC11841869 DOI: 10.1371/journal.pone.0318809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 02/22/2025] Open
Abstract
The hierarchical structure of tendon dictates its ability to effectively transmit loads from muscle to bone. Tendon- and site-specific differences in mechanical loading result in the establishment and remodeling of structure, as well as associated changes in composition throughout development and healing. Previous work has demonstrated region-specific differences in the response of collagen fibrils to mechanical loading within the insertion region and midsubstance regions of mouse supraspinatus tendons using atomic force microscopy. However, multiscale structure, function, and gene expression differences between the insertion and midsubstance of the supraspinatus tendon have not yet been linked together in a comprehensive study. Therefore, the purpose of this study was to elucidate site-specific hierarchical structure, function, and gene expression differences in mouse supraspinatus tendons. Supraspinatus tendons from day 150 wild-type C57BL/6 mice were harvested for regional mechanics, histology, transmission electron microscopy (TEM), and quantitative polymerase chain reaction (qPCR). Mechanical testing revealed that the midsubstance region demonstrated a greater modulus and increased collagen fiber realignment compared to the insertion region. Histological scoring demonstrated greater cellularity and more rounded cells in the insertion region. TEM analysis showed differences in collagen fibril diameter distributions between the two regions, with a shift towards smaller diameters observed at the insertion region. Gene expression analysis identified several genes that were differentially expressed between regions, with principal component analysis revealing distinct clustering based on region. These findings provide insight into the regional heterogeneity of the supraspinatus tendon and underscore the importance of considering these differences in the context of tendon injury and repair, contributing to a better understanding of tendon structure-function and guiding future studies aimed at elucidating the mechanisms underlying tendon pathology.
Collapse
Affiliation(s)
- Michael S. DiStefano
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Stephanie N. Weiss
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Courtney A. Nuss
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Rebecca L. Betts
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Biao Han
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew F. Kuntz
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
3
|
Emonts C, Bauer B, Büchter C, Pufe T, Gries T, Tohidnezhad M. Effect of Collagen Coating and Fiber Profile on Tenocyte Growth on Braided Poly-ε-Caprolactone Scaffolds for Tendon and Ligament Regeneration. Int J Mol Sci 2025; 26:1735. [PMID: 40004198 PMCID: PMC11855873 DOI: 10.3390/ijms26041735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/11/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Using scaffolds is a promising alternative to current methods of treatment for ruptures of tendons and ligaments. However, scaffolds are subject to a wide range of challenges, including mechanical, degradation, process-related and biological requirements. Poly-ε-caprolactone (PCL) fibers have already shown potential for tendon tissue engineering (TTE) because of their degradation kinetics and excellent mechanical properties. The objective of this study was to enhance the PCL scaffold for TTE, specifically in regard to the filament morphology and collagen coating. PCL fibers were melt-spun as monofilaments with circular and snowflake-shaped cross-sections. Different scaffold densities were achieved by applying three different braiding angles in the braiding process. Morphological characterization was conducted including porosity and pore size distribution using µ-CT. The scaffolds were collagenized and cellularized with primary tenocytes for 7 days. Immunofluorescence staining showed a certain alignment of cell growing direction with fiber direction. In cell viability and cell proliferation assays, significant improvements in cell response were observed for the snowflake fiber and collagen coating groups, especially when combined. The data suggest that the utilization of non-circular fibers may facilitate enhanced cell guidance and surface area, while the application of a collagen coating could optimize the cellular environment for adhesion and proliferation.
Collapse
Affiliation(s)
- Caroline Emonts
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany; (B.B.)
| | - Benedict Bauer
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany; (B.B.)
| | - Charlotte Büchter
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany; (B.B.)
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Gries
- Institut für Textiltechnik, RWTH Aachen University, 52074 Aachen, Germany; (B.B.)
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
4
|
Barbalinardo M, Falini G, Montroni D. Sustainable 3D Scaffolds Based on β-Chitin and Collagen I for Wound Dressing Applications. Polymers (Basel) 2025; 17:140. [PMID: 39861212 PMCID: PMC11769321 DOI: 10.3390/polym17020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
The development of greener substitutes for plastics is gaining massive importance in today's society. This also involves the medical field, where disposable materials are used to grant sterility. Here, a novel protocol using only a water-based solvent for the preparation of bio-based composite foams of actual β-chitin and collagen type I is presented. The influence of the ratio of this chitin polymorph to the collagen on the final material is then studied. The samples with 50:50 and 75:25 ratios produce promising results, such as remarkable water absorption (up to 7000 wt.%), exposed surface (up to 7 m2·g-1), and total pore volume (over 80 vol.%). The materials are also tested using wet mechanical compression, exhibiting a Young's modulus and tenacity (both calculated between 2% and 25% of deformation) of up to 20 Pa and 9 kPa, respectively. Fibroblasts, keratinocytes, and osteoblasts are grown on these scaffolds. The viability of fibroblasts and keratinocytes is observed for 72 h, whereas the viability of osteoblasts is observed for up to 21 days. Under the two conditions mentioned, cell activity and adhesion work even better than under its counterpart condition of pure collagen. In conclusion, these materials are promising candidates for sustainable regenerative medicine scaffolds or, specifically, as biodegradable wound dressings.
Collapse
Affiliation(s)
- Marianna Barbalinardo
- National Research Council (CNR), Institute for Nanostructured Materials (ISMN), Via P. Gobetti 101, 40129 Bologna, Italy
| | - Giuseppe Falini
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum−Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Devis Montroni
- Dipartimento di Chimica “G. Ciamician”, Alma Mater Studiorum−Università di Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
5
|
Bakht SM, Pardo A, Gomez‐Florit M, Caballero D, Kundu SC, Reis RL, Domingues RMA, Gomes ME. Human Tendon-on-Chip: Unveiling the Effect of Core Compartment-T Cell Spatiotemporal Crosstalk at the Onset of Tendon Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401170. [PMID: 39258510 PMCID: PMC11538684 DOI: 10.1002/advs.202401170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Indexed: 09/12/2024]
Abstract
The lack of representative in vitro models recapitulating human tendon (patho)physiology is among the major factors hindering consistent progress in the knowledge-based development of adequate therapies for tendinopathy.Here, an organotypic 3D tendon-on-chip model is designed that allows studying the spatiotemporal dynamics of its cellular and molecular mechanisms.Combining the synergistic effects of a bioactive hydrogel matrix with the biophysical cues of magnetic microfibers directly aligned on the microfluidic chip, it is possible to recreate the anisotropic architecture, cell patterns, and phenotype of tendon intrinsic (core) compartment. When incorporated with vascular-like vessels emulating the interface between its intrinsic-extrinsic compartments, crosstalk with endothelial cells are found to drive stromal tenocytes toward a reparative profile. This platform is further used to study adaptive immune cell responses at the onset of tissue inflammation, focusing on interactions between tendon compartment tenocytes and circulating T cells.The proinflammatory signature resulting from this intra/inter-cellular communication induces the recruitment of T cells into the inflamed core compartment and confirms the involvement of this cellular crosstalk in positive feedback loops leading to the amplification of tendon inflammation.Overall, the developed 3D tendon-on-chip provides a powerful new tool enabling mechanistic studies on the pathogenesis of tendinopathy as well as for assessing new therapies.
Collapse
Affiliation(s)
- Syeda M. Bakht
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | | | - David Caballero
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Subhas C. Kundu
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- School of Medicine and Biomedical Sciences (ICBAS), Unit for Multidisciplinary Research in Biomedicine (UMIB)University of PortoRua Jorge Viterbo Ferreira 228Porto4050‐313 PortoPortugal
| |
Collapse
|
6
|
Cheng L, Zheng Q, Qiu K, Elmer Ker DF, Chen X, Yin Z. Mitochondrial destabilization in tendinopathy and potential therapeutic strategies. J Orthop Translat 2024; 49:49-61. [PMID: 39430132 PMCID: PMC11488423 DOI: 10.1016/j.jot.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/22/2024] Open
Abstract
Tendinopathy is a prevalent aging-related disorder characterized by pain, swelling, and impaired function, often resulting from micro-scarring and degeneration caused by overuse or trauma. Current interventions for tendinopathy have limited efficacy, highlighting the need for innovative therapies. Mitochondria play an underappreciated and yet crucial role in tenocytes function, including energy production, redox homeostasis, autophagy, and calcium regulation. Abnormalities in mitochondrial function may lead to cellular senescence. Within this context, this review provides an overview of the physiological functions of mitochondria in tendons and presents current insights into mitochondrial dysfunction in tendinopathy. It also proposes potential therapeutic strategies that focus on targeting mitochondrial health in tenocytes. These strategies include: (1) utilizing reactive oxygen species (ROS) scavengers to mitigate the detrimental effects of aberrant mitochondria, (2) employing mitochondria-protecting agents to reduce the production of dysfunctional mitochondria, and (3) supplementing with exogenous normal mitochondria. In conclusion, mitochondria-targeted therapies hold great promise for restoring mitochondrial function and improving outcomes in patients with tendinopathy. The translational potential of this article: Tendinopathy is challenging to treat effectively due to its poorly understood pathogenesis. This review thoroughly analyzes the role of mitochondria in tenocytes and proposes potential strategies for the mitochondrial treatment of tendinopathy. These findings establish a theoretical basis for future research and the clinical translation of mitochondrial therapy for tendinopathy.
Collapse
Affiliation(s)
- Linxiang Cheng
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Qiangqiang Zheng
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Kaijie Qiu
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Zi Yin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| |
Collapse
|
7
|
Newton JB, Weiss SN, Nuss CA, Darrieutort-Laffite C, Eekhoff JD, Birk DE, Soslowsky LJ. Decorin and/or biglycan knockdown in aged mouse patellar tendon impacts fibril morphology, scar area, and mechanical properties. J Orthop Res 2024; 42:2400-2413. [PMID: 38967120 PMCID: PMC11479833 DOI: 10.1002/jor.25931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Small leucine-rich proteoglycans, such as decorin and biglycan, play pivotal roles in collagen fibrillogenesis during development, healing, and aging in tendon. Previous work has shown that the absence of decorin and biglycan affects fibril shape and mechanical properties during tendon healing. However, the roles of decorin and biglycan in the healing process of aged tendons are unclear. Therefore the objective of this study was to evaluate the differential roles of decorin and biglycan during healing of patellar tendon injury in aged mice. Aged (300 days old) female Dcn+/+/Bgn+/+ control (WT, n = 52), Dcnflox/flox (I-Dcn-/-, n = 36), Bgnflox/flox (I-Bgn-/-, n = 36), and compound Dcnflox/flox/Bgnflox/flox (I-Dcn-/-/Bgn-/-, n = 36) mice with a tamoxifen-inducible Cre were utilized. Targeted gene expression, collagen fibril diameter distributions, mechanical properties, and histological assays were employed to assess the effects of knockdown of decorin and/or biglycan at the time of injury. Knockdown resulted in alterations in fibril diameter distribution and scar area, but surprisingly did not lead to many differences in mechanical properties. Biglycan played a larger role in early healing stages, while decorin is more significant in later stages, particularly in scar remodeling. This study highlights some of the differential roles of biglycan and decorin in the regulation of fibril structure and scar area, as well as influencing gene expression during healing in aged mice.
Collapse
Affiliation(s)
- Joseph B Newton
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie N Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Courtney A Nuss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christelle Darrieutort-Laffite
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy D Eekhoff
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Flordia, USA
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Ahn SY. Various Strategies of Tendon Stem/Progenitor Cell Reprogramming for Tendon Regeneration. Int J Mol Sci 2024; 25:11745. [PMID: 39519296 PMCID: PMC11547070 DOI: 10.3390/ijms252111745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Rotator cuff tears (RCT) are the most common cause of shoulder pain among adults. "Rotator cuff" refers to the four muscles that cover the shoulder joint: supraspinatus, infraspinatus, subscapularis, and teres minor. These muscles help maintain the rotational movement and stability of the shoulder joint. RCT is a condition in which one or more of these four muscles become ruptured or damaged, causing pain in the arms and shoulders. RCT results from degenerative changes caused by chronic inflammation of the tendons and consequent tendon tissue defects. This phenomenon occurs because of the exhaustion of endogenous tendon stem cells. Tendon regeneration requires rejuvenation of these endogenous tendon stem/progenitor cells (TSPCs) prior to their growth phase. TSPCs exhibit clonogenicity, multipotency, and self-renewal properties; they express classical stem cell markers and genes associated with the tendon lineage. However, specific markers for TSPC are yet to be identified. In this review, we introduce novel TSPC markers and discuss various strategies for TSPC reprogramming. With further research, TSPC reprogramming technology could be adapted to treat age-related degenerative diseases, providing a new strategy for regenerative medicine.
Collapse
Affiliation(s)
- Sung Yong Ahn
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
9
|
Shama KA, Greenberg ZF, Tammame C, He M, Taylor BL. Diseased Tendon Models Demonstrate Influence of Extracellular Matrix Alterations on Extracellular Vesicle Profile. Bioengineering (Basel) 2024; 11:1019. [PMID: 39451395 PMCID: PMC11505312 DOI: 10.3390/bioengineering11101019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Tendons enable movement through their highly aligned extracellular matrix (ECM), predominantly composed of collagen I. Tendinopathies disrupt the structural integrity of tendons by causing fragmentation of collagen fibers, disorganization of fiber bundles, and an increase in glycosaminoglycans and microvasculature, thereby driving the apparent biomechanical and regenerative capacity in patients. Moreover, the complex cellular communication within the tendon microenvironment ultimately dictates the fate between healthy and diseased tendon, wherein extracellular vesicles (EVs) may facilitate the tendon's fate by transporting biomolecules within the tissue. In this study, we aimed to elucidate how the EV functionality is altered in the context of tendon microenvironments by using polycaprolactone (PCL) electrospun scaffolds mimicking healthy and pathological tendon matrices. Scaffolds were characterized for fiber alignment, mechanical properties, and cellular activity. EVs were isolated and analyzed for concentration, heterogeneity, and protein content. Our results show that our mimicked healthy tendon led to an increase in EV secretion and baseline metabolic activity over the mimicked diseased tendon, where reduced EV secretion and a significant increase in metabolic activity over 5 days were observed. These findings suggest that scaffold mechanics may influence EV functionality, offering insights into tendon homeostasis. Future research should further investigate how EV cargo affects the tendon's microenvironment.
Collapse
Affiliation(s)
- Kariman A. Shama
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | | | - Chadine Tammame
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| | - Mei He
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
- Department of Pharmaceutics, University of Florida, Gainesville, FL 32603, USA;
| | - Brittany L. Taylor
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA; (K.A.S.); (C.T.); (M.H.)
| |
Collapse
|
10
|
Li H, Iyer KS, Bao L, Zhai J, Li JJ. Advances in the Development of Granular Microporous Injectable Hydrogels with Non-spherical Microgels and Their Applications in Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301597. [PMID: 37499268 DOI: 10.1002/adhm.202301597] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Granular microporous hydrogels are emerging as effective biomaterial scaffolds for tissue engineering due to their improved characteristics compared to traditional nanoporous hydrogels, which better promote cell viability, cell migration, cellular/tissue infiltration, and tissue regeneration. Recent advances have resulted in the development of granular hydrogels made of non-spherical microgels, which compared to those made of spherical microgels have higher macroporosity, more stable mechanical properties, and better ability to guide the alignment and differentiation of cells in anisotropic tissue. The development of these hydrogels as an emerging research area is attracting increasing interest in regenerative medicine. This review first summarizes the fabrication techniques available for non-spherical microgels with different aspect-ratios. Then, it introduces the development of granular microporous hydrogels made of non-spherical microgels, their physicochemical characteristics, and their applications in tissue regeneration. The limitations and future outlook of research on microporous granular hydrogels are also critically discussed.
Collapse
Affiliation(s)
- Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Keerthi Subramanian Iyer
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Lei Bao
- Chemical and Environment Engineering Department, School of Engineering, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jiao Jiao Li
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
11
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
12
|
He W, Jiang C, Zhou P, Hu X, Gu X, Zhang S. Role of tendon-derived stem cells in tendon and ligament repair: focus on tissue engineer. Front Bioeng Biotechnol 2024; 12:1357696. [PMID: 39175617 PMCID: PMC11338810 DOI: 10.3389/fbioe.2024.1357696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
This review offered a comprehensive analysis of tendon and ligament injuries, emphasizing the crucial role of tendon-derived stem cells (TDSCs) in tissue engineering as a potential solution for these challenging medical conditions. Tendon and ligament injuries, prevalent among athletes, the elderly, and laborers, often result in long-term disability and reduced quality of life due to the poor intrinsic healing capacity of these avascular structures. The formation of biomechanically inferior scar tissue and a high rate of reinjury underscore the need for innovative approaches to enhance and guide the regenerative process. This review delved into the complexities of tendon and ligament structure and function, types of injuries and their impacts, and the limitations of the natural repair process. It particularly focused on the role of TDSCs within the context of tissue engineering. TDSCs, with their ability to differentiate into tenocytes, are explored in various applications, including biocompatible scaffolds for cell tracking, co-culture systems to optimize tendon-bone healing, and graft healing techniques. The review also addressed the challenges of immunoreactivity post-transplantation, the importance of pre-treating TDSCs, and the potential of hydrogels and decellularized matrices in supporting tendon regeneration. It concluded by highlighting the essential roles of mechanical and molecular stimuli in TDSC differentiation and the current challenges in the field, paving the way for future research directions.
Collapse
Affiliation(s)
- Wei He
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Chao Jiang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ping Zhou
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Xujun Hu
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - XiaoPeng Gu
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| | - SongOu Zhang
- Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- Department of Orthopedics, Zhoushan Guhechuan Hospital, Zhoushan, Zhejiang, China
| |
Collapse
|
13
|
Nakamichi R, Asahara H. The role of mechanotransduction in tendon. J Bone Miner Res 2024; 39:814-820. [PMID: 38795012 PMCID: PMC11301520 DOI: 10.1093/jbmr/zjae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 05/27/2024]
Abstract
Tendons play an important role in the maintenance of motor function by connecting muscles and bones and transmitting forces. Particularly, the role of mechanical stress has primarily focused on the key mechanism of tendon homeostasis, with much research on this topic. With the recent development of molecular biological techniques, the mechanisms of mechanical stress sensing and signal transduction have been gradually elucidated with the identification of mechanosensor in tendon cells and the master regulator in tendon development. This review provides a comprehensive overview of the structure and function of tendon tissue, including the role for physical performance and the detailed mechanism of mechanotransduction in its regulation. An important lesson is that the role of mechanotransduction in tendon tissue is only partially clarified, indicating the complexity of the mechanisms of motor function and fueling increasing interest in uncovering these mechanisms.
Collapse
Affiliation(s)
- Ryo Nakamichi
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
- Department of Orthopaedic Surgery, Okayama University hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama 700-8558, Japan
| | - Hiroshi Asahara
- Department of Molecular and Cellular Biology, Scripps Research, 10550 North Torrey Pines Road, MBB-102, La Jolla, CA 92037, United States
- Department of Systems Biomedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo 113-8510, Japan
| |
Collapse
|
14
|
Marzagalli M, Battaglia S, Raimondi M, Fontana F, Cozzi M, Ranieri FR, Sacchi R, Curti V, Limonta P. Anti-Inflammatory and Antioxidant Properties of a New Mixture of Vitamin C, Collagen Peptides, Resveratrol, and Astaxanthin in Tenocytes: Molecular Basis for Future Applications in Tendinopathies. Mediators Inflamm 2024; 2024:5273198. [PMID: 39108992 PMCID: PMC11303056 DOI: 10.1155/2024/5273198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/09/2024] [Accepted: 07/12/2024] [Indexed: 09/17/2024] Open
Abstract
Tendinopathy is one of the most frequent musculoskeletal disorders characterized by sustained tissue inflammation and oxidative stress, accompanied by extracellular matrix remodeling. Patients suffering from this pathology frequently experience pain, swelling, stiffness, and muscle weakness. Current pharmacological interventions are based on nonsteroidal anti-inflammatory drugs; however, the effectiveness of these strategies remains ambiguous. Accumulating evidence supports that oral supplementation of natural compounds can provide preventive, and possibly curative, effects. Vitamin C (Vit C), collagen peptides (Coll), resveratrol (Res), and astaxanthin (Asx) were reported to be endowed with potential beneficial effects based on their anti-inflammatory and antioxidant activities. Here, we analyzed the efficacy of a novel combination of these compounds (Mix) in counteracting proinflammatory (IL-1β) and prooxidant (H2O2) stimuli in human tenocytes. We demonstrated that Mix significantly impairs IL-6-induced IL-1β secretion, NF-κB nuclear translocation, and MMP-2 production; notably, a synergistic effect of Mix over the single compounds could be observed. Moreover, Mix was able to significantly counteract H2O2-triggered ROS production. Together, these results point out that Mix, a novel combination of Vit C, Coll, Resv, and Asx, significantly impairs proinflammatory and prooxidant stimuli in tenocytes, mechanisms that contribute to the onset of tendinopathies.
Collapse
Affiliation(s)
- Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | | | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| | - Marco Cozzi
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | | | - Roberto Sacchi
- Department of Earth and Environmental SciencesUniversity of Pavia, Pavia 27100, Italy
| | - Valeria Curti
- R&D Department Kolinpharma S.p.A., Lainate 20045, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”University of Milano, Milano 20133, Italy
| |
Collapse
|
15
|
Pitsilos C, Karachrysafi S, Fragou A, Gigis I, Papadopoulos P, Chalidis B. The Biological Effect of Platelet-Rich Plasma on Rotator Cuff Tears: A Prospective Randomized In Vivo Study. Int J Mol Sci 2024; 25:7957. [PMID: 39063199 PMCID: PMC11277466 DOI: 10.3390/ijms25147957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The positive effect of platelet-rich plasma (PRP) on tendon metabolism has been extensively investigated and proven in vitro. Additionally, in vivo animal studies have correlated the application of PRP with the enhancement of tenocyte anabolic activity in the setting of tendon degeneration. However, less is known about its in vivo effect on human tendon biology. The purpose of the current prospective randomized comparative study was to evaluate the effect of PRP on torn human supraspinatus tendon. Twenty consecutive eligible patients with painful and magnetic resonance imaging (MRI)-confirmed degenerative supraspinatus tendon tears were randomized in a one-to-one ratio into two groups. The patients in the experimental group (n = 10) underwent an ultrasound-guided autologous PRP injection in the subacromial space 6 weeks before the scheduled operation. In the control group (n = 10), no injection was made prior to surgery. Supraspinatus tendon specimens were harvested from the lateral end of the torn tendon during shoulder arthroscopy and were evaluated under optical and electron microscopy. In the control group, a mixed cell population of oval and rounded tenocytes within disorganized collagen and sites of accumulated inflammatory cells was detected. In contrast, the experimental group yielded abundant oval-shaped cells with multiple cytoplasmic processes within mainly parallel collagen fibers and less marked inflammation, simulating the intact tendon structure. These findings indicate that PRP can induce microscopic changes in the ruptured tendon by stimulating the healing process and can facilitate a more effective recovery.
Collapse
Affiliation(s)
- Charalampos Pitsilos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (C.P.); (I.G.); (P.P.)
| | - Sofia Karachrysafi
- Research Team “Histologistas”, Interinstitutional Postgraduate Program “Health and Environmental Factors”, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Laboratory of Histology-Embryology, Department of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aikaterini Fragou
- Laboratory of Biological Chemistry, Medical Department, School of Health Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis Gigis
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (C.P.); (I.G.); (P.P.)
| | - Pericles Papadopoulos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece; (C.P.); (I.G.); (P.P.)
| | - Byron Chalidis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
16
|
Li H, Liu X, Zhang L, Zhang L. Plunge-Freezing Cryopreservation of Tendons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14007-14015. [PMID: 38916446 DOI: 10.1021/acs.langmuir.4c01215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Allograft transplantation is an important method for tendon reconstruction after injury, and its clinical success highly relies on the storage and transportation of the grafts. Cryopreservation is a promising strategy for tendon storage. In this study, we report a novel cryopreservation agent (CPA) formulation with a high biocompatibility for tendon cryopreservation. Mainly composed of natural zwitterionic betaine and the biocompatible polymer poly(vinylpyrrolidone) (PVP), it exhibited ideal abilities to depress the freezing point and inhibit ice growth and recrystallization. Notably, after cryopreservation via plunge-freezing for 1 month, Young's modulus (144 MPa, 98% of fresh tendons) and ultimate stress (46.7 MPa, 99% of fresh tendons) remained stable, and the cross-linking of collagen microfibers, protein structures, and glycosaminoglycan (GAG) contents changed slightly. These results indicate that the formulation (5 wt % betaine and 5 wt % PVP in phosphate-buffered saline, PBS solution) effectively maintains the biomechanical properties and tissue structure. This work offers a novel cryopreservation method for tendons and may also provide insights into the long-term preservation of various other tissues.
Collapse
Affiliation(s)
- Haoyue Li
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xinmeng Liu
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Liming Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Zhang
- Department of Biochemical Engineering, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
17
|
Li H, Li Y, Xiang L, Luo S, Zhang Y, Li S. Therapeutic potential of GDF-5 for enhancing tendon regenerative healing. Regen Ther 2024; 26:290-298. [PMID: 39022600 PMCID: PMC11252783 DOI: 10.1016/j.reth.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 07/20/2024] Open
Abstract
Tendon injury is a common disorder of the musculoskeletal system, with a higher possibility of occurrence in elderly individuals and athletes. After a tendon injury, the tendon suffers from inadequate and slow healing, resulting in the formation of fibrotic scar tissue, ending up with inferior functional properties. Therapeutic strategies involving the application of growth factors have been advocated to promote tendon healing. Growth and differentiation-5 (GDF-5) represents one such factor that has shown promising effect on tendon healing in animal models and in vitro cultures. Although promising, these studies are limited as the molecular mechanisms by which GDF-5 exerts its effect remain incompletely understood. Starting from broadly introducing essential elements of current understanding about GDF-5, the present review aims to define the effect of GDF-5 and its possible mechanisms of action in tendon healing. Nevertheless, we still need more in vivo studies to explore dosage, application time and delivery strategy of GDF-5, so as to pave the way for future clinical translation.
Collapse
Affiliation(s)
- Hanyue Li
- School of Physical Education, Southwest Medical University, PR China
| | - Yini Li
- Department of Ultrasound, The Affiliated Hospital of Southwest Medical University, Sichuan, PR China
| | - Linmei Xiang
- Department of Dermatology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Shengyu Luo
- School of Physical Education, Southwest Medical University, PR China
| | - Yan Zhang
- Luzhou Vocational and Technical College, PR China
| | - Sen Li
- Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, PR China
| |
Collapse
|
18
|
Yeung CYC, Svensson RB, Mogensen NMB, Merkel MFR, Schjerling P, Jokipii-Utzon A, Zhang C, Carstensen H, Buhl R, Kjaer M. Mechanical properties, collagen and glycosaminoglycan content of equine superficial digital flexor tendons are not affected by training. J Anat 2024. [PMID: 38712668 DOI: 10.1111/joa.14051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
Physical activity can activate extracellular matrix (ECM) protein synthesis and influence the size and mechanical properties of tendon. In this study, we aimed to investigate whether different training histories of horses would influence the synthesis of collagen and other matrix proteins and alter the mechanical properties of tendon. Samples from superficial digital flexor tendon (SDFT) from horses that were either (a) currently race trained (n = 5), (b) previously race trained (n = 5) or (c) untrained (n = 4) were analysed for matrix protein abundance (mass spectrometry), collagen and glycosaminoglycan (GAG) content, ECM gene expression and mechanical properties. It was found that ECM synthesis by tendon fibroblasts in vitro varied depending upon the previous training history. In contrast, fascicle morphology, collagen and GAG content, mechanical properties and ECM gene expression of the tendon did not reveal any significant differences between groups. In conclusion, although we could not identify any direct impact of the physical training history on the mechanical properties or major ECM components of the tendon, it is evident that horse tendon cells are responsive to loading in vivo, and the training background may lead to a modification in the composition of newly synthesised matrix.
Collapse
Affiliation(s)
- Ching-Yan Chloé Yeung
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - René B Svensson
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Nikoline M B Mogensen
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Max F R Merkel
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Anja Jokipii-Utzon
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Cheng Zhang
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Clinical Medicine, Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Helena Carstensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Department of Orthopedic Surgery, Institute of Sports Medicine Copenhagen, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
19
|
DeFoor MT, Cognetti DJ, Yuan TT, Sheean AJ. Treatment of Tendon Injuries in the Servicemember Population across the Spectrum of Pathology: From Exosomes to Bioinductive Scaffolds. Bioengineering (Basel) 2024; 11:158. [PMID: 38391644 PMCID: PMC10886250 DOI: 10.3390/bioengineering11020158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/24/2024] Open
Abstract
Tendon injuries in military servicemembers are one of the most commonly treated nonbattle musculoskeletal injuries (NBMSKIs). Commonly the result of demanding physical training, repetitive loading, and frequent exposures to austere conditions, tendon injuries represent a conspicuous threat to operational readiness. Tendon healing involves a complex sequence between stages of inflammation, proliferation, and remodeling cycles, but the regenerated tissue can be biomechanically inferior to the native tendon. Chemical and mechanical signaling pathways aid tendon healing by employing growth factors, cytokines, and inflammatory responses. Exosome-based therapy, particularly using adipose-derived stem cells (ASCs), offers a prominent cell-free treatment, promoting tendon repair and altering mRNA expression. However, each of these approaches is not without limitations. Future advances in tendon tissue engineering involving magnetic stimulation and gene therapy offer non-invasive, targeted approaches for improved tissue engineering. Ongoing research aims to translate these therapies into effective clinical solutions capable of maximizing operational readiness and warfighter lethality.
Collapse
Affiliation(s)
- Mikalyn T DeFoor
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - Daniel J Cognetti
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| | - Tony T Yuan
- Advanced Exposures Diagnostics, Interventions and Biosecurity Group, 59 Medical Wing, Lackland Air Force Base, San Antonio, TX 78236, USA
- Center for Biotechnology (4D Bio3), Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Andrew J Sheean
- San Antonio Military Medical Center, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
20
|
Pugliese E, Rossoni A, Zeugolis DI. Enthesis repair - State of play. BIOMATERIALS ADVANCES 2024; 157:213740. [PMID: 38183690 DOI: 10.1016/j.bioadv.2023.213740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
The fibrocartilaginous enthesis is a highly specialised tissue interface that ensures a smooth mechanical transfer between tendon or ligament and bone through a fibrocartilage area. This tissue is prone to injury and often does not heal, even after surgical intervention. Enthesis augmentation approaches are challenging due to the complexity of the tissue that is characterised by the coexistence of a range of cellular and extracellular components, architectural features and mechanical properties within only hundreds of micrometres. Herein, we discuss enthesis repair and regeneration strategies, with particular focus on elegant interfacial and functionalised scaffold-based designs.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland
| | - Andrea Rossoni
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), University of Galway, Galway, Ireland; Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland.
| |
Collapse
|
21
|
Horvat U, Kozinc Ž. The Use of Shear-Wave Ultrasound Elastography in the Diagnosis and Monitoring of Musculoskeletal Injuries. Crit Rev Biomed Eng 2024; 52:15-26. [PMID: 38305275 DOI: 10.1615/critrevbiomedeng.2023049807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Ultrasound elastography is a valuable method employed to evaluate tissue stiffness, with shear-wave elastography (SWE) recently gaining significance in various settings. This literature review aims to explore the potential of SWE as a diagnostic and monitoring tool for musculoskeletal injuries. In total, 15 studies were found and included in the review. The outcomes of these studies demonstrate the effectiveness of SWE in detecting stiffness changes in individuals diagnosed with Achilles tendinopathy, Achilles tendon rupture, rotator cuff rupture, tendinosis of the long head of the biceps tendon, injury of the supraspinatus muscle, medial tibial stress syndrome, and patellar tendinopathy. Moreover, SWE proves its efficacy in distinguishing variations in tissue stiffness before the commencement and after the completion of rehabilitation in cases of Achilles tendon rupture and patellar tendinopathy. In summary, the findings from this review suggest that SWE holds promise as a viable tool for diagnosing and monitoring specific musculoskeletal injuries. However, while the field of ultrasound elastography for assessing musculoskeletal injuries has made considerable progress, further research is imperative to corroborate these findings in the future.
Collapse
Affiliation(s)
- Urša Horvat
- Univerza na Primorskem, Fakulteta za vede o zdravju, Polje 42, Izola, Slovenija
| | - Žiga Kozinc
- University of Primorska, Faculty of Health Sciences, Polje 42, SI-6310 Izola, Slovenia; University of Primorska, Andrej Marušič Institute, Muzejski trg 2, SI-6000 Koper, Slovenia
| |
Collapse
|
22
|
Newton JB, Nuss CA, Weiss SN, Betts RL, Soslowsky LJ. Novel application of in vivo microdialysis in a rat Achilles tendon acute injury model. J Appl Physiol (1985) 2024; 136:43-52. [PMID: 37969085 PMCID: PMC11212791 DOI: 10.1152/japplphysiol.00720.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/10/2024] [Indexed: 11/17/2023] Open
Abstract
Tendon injury and healing involve intricate changes to tissue metabolism, biology, and inflammation. Current techniques often require animal euthanasia or tissue destruction, limiting assessment of dynamic changes in tendon, including treatment response, disease development, rupture risk, and healing progression. Microdialysis, a minimally invasive technique, offers potential for longitudinal assessment, yet it has not been applied to rat tendon models. Therefore, the objective of this study is to adapt a novel application of an in vivo assay, microdialysis, using acute injury as a model for extreme disruption of the tendon homeostasis. We hypothesize that microdialysis will be able to detect measurable differences in the healing responses of acute injury with high specificity and sensitivity. Overall results suggest that microdialysis is a promising in vivo technique for longitudinal assessment for this system with strong correlations between extracellular fluid (ECF) and dialysate concentrations and reasonable recovery rates considering the limitations of this model. Strong positive correlations were found between dialysate and extracellular fluid (ECF) concentration for each target molecule of interest including metabolites, inflammatory mediators, and collagen synthesis and degradation byproducts. These results suggest that microdialysis is capable of detecting changes in tendon healing following acute tendon injury with high specificity and sensitivity. In summary, this is the first study to apply microdialysis to a rat tendon model and assess its efficacy as a direct measurement of tendon metabolism, biology, and inflammation.NEW & NOTEWORTHY This study adapts a novel application of microdialysis to rat tendon models, offering a minimally invasive avenue for longitudinal tendon assessment. Successfully detecting changes in tendon healing after acute injury, it showcases strong correlations between extracellular fluid and dialysate concentrations. The results highlight the potential of microdialysis as a direct measure of tendon metabolism, biology, and inflammation, bypassing the need for animal euthanasia and tissue destruction.
Collapse
Affiliation(s)
- Joseph B Newton
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Courtney A Nuss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Stephanie N Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rebecca L Betts
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
23
|
Tawonsawatruk T, Panaksri A, Hemstapat R, Praenet P, Rattanapinyopituk K, Boonyagul S, Tanadchangsaeng N. Fabrication and biological properties of artificial tendon composite from medium chain length polyhydroxyalkanoate. Sci Rep 2023; 13:20973. [PMID: 38017019 PMCID: PMC10684518 DOI: 10.1038/s41598-023-48075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
Medium chain length polyhydroxyalkanoate (MCL-PHA), a biodegradable and biocompatible material, has a mechanical characteristic of hyper-elasticity, comparable to elastomeric material with similar properties to human tendon flexibility. These MCL-PHA properties gave rise to applying this material as an artificial tendon or ligament implant. In this study, the material was solution-casted in cylinder and rectangular shapes in the molds with the designated small holes. A portion of the torn human tendon was threaded into the holes as a suture to generate a composite tendon graft. The tensile testing of the three types of MCL-PHA/tendon composite shows that the cylinder material shape with the zigzag threaded three holes has the highest value of maximum tensile strength at 56 MPa, closing to the ultimate tendon tensile stress (50-100 MPa). Fibroblast cells collected from patients were employed as primary tendon cells for growing to attach to the surface of the MCL-PHA material to prove the concept of the composite tendon graft. The cells could attach and proliferate with substantial viability and generate collagen, leading to chondrogenic induction of tendon cells. An in vivo biocompatibility was also conducted in a rat subcutaneous model in comparison with medical-grade silicone. The MCL-PHA material was found to be biocompatible with the surrounding tissues. For surgical application, after the MCL-PHA material is decomposed, tendon cells should develop into an attached tendon and co-generated as a tendon graft.
Collapse
Affiliation(s)
- Tulyapruek Tawonsawatruk
- Department of Orthopaedics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, Thailand
| | - Anuchan Panaksri
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Ruedee Hemstapat
- Department of Pharmacology, Faculty of Science, Mahidol University, Thung Phaya Thai, Ratchathewi, Bangkok, Thailand
| | - Passavee Praenet
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | - Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathum Wan, Bangkok, Thailand
| | - Sani Boonyagul
- College of Biomedical Engineering, Rangsit University, Lak Hok, Pathumthani, Thailand
| | | |
Collapse
|
24
|
Abstract
Many soft tissues of the human body possess hierarchically anisotropic structures, exhibiting orientation-specific mechanical properties and biological functionality. Hydrogels have been proposed as promising scaffold materials for tissue engineering applications due to their water-rich composition, excellent biocompatibility, and tunable physico-chemical properties. However, conventional hydrogels with homogeneous structures often exhibit isotropic properties that differ from those of biological tissues, limiting their further application. Recently, magnetically anisotropic hydrogels containing long-range ordered magneto-structures have attracted widespread interest owing to their highly controllable assembly strategy, rapid magnetic responsiveness and remote spatiotemporal regulation. In this review, we summarize the latest progress of magnetically anisotropic hydrogels for tissue engineering. The fabrication strategy of magnetically anisotropic hydrogels from magnetic nanofillers with different dimensions is systemically introduced. Then, the effects of magnetically anisotropic cues on the physicochemical properties of hydrogels and the cellular biological behavior are discussed. And the applications of magnetically anisotropic hydrogels in the engineering of different tissues are emphasized. Finally, the current challenges and the future perspectives for magnetically anisotropic hydrogels are presented.
Collapse
Affiliation(s)
- Lili Hao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hongli Mao
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
25
|
Luo J, Wang Z, Tang C, Yin Z, Huang J, Ruan D, Fei Y, Wang C, Mo X, Li J, Zhang J, Fang C, Li J, Chen X, Shen W. Animal model for tendinopathy. J Orthop Translat 2023; 42:43-56. [PMID: 37637777 PMCID: PMC10450357 DOI: 10.1016/j.jot.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Background Tendinopathy is a common motor system disease that leads to pain and reduced function. Despite its prevalence, our mechanistic understanding is incomplete, leading to limited efficacy of treatment options. Animal models contribute significantly to our understanding of tendinopathy and some therapeutic options. However, the inadequacies of animal models are also evident, largely due to differences in anatomical structure and the complexity of human tendinopathy. Different animal models reproduce different aspects of human tendinopathy and are therefore suitable for different scenarios. This review aims to summarize the existing animal models of tendinopathy and to determine the situations in which each model is appropriate for use, including exploring disease mechanisms and evaluating therapeutic effects. Methods We reviewed relevant literature in the PubMed database from January 2000 to December 2022 using the specific terms ((tendinopathy) OR (tendinitis)) AND (model) AND ((mice) OR (rat) OR (rabbit) OR (lapin) OR (dog) OR (canine) OR (sheep) OR (goat) OR (horse) OR (equine) OR (pig) OR (swine) OR (primate)). This review summarized different methods for establishing animal models of tendinopathy and classified them according to the pathogenesis they simulate. We then discussed the advantages and disadvantages of each model, and based on this, identified the situations in which each model was suitable for application. Results For studies that aim to study the pathophysiology of tendinopathy, naturally occurring models, treadmill models, subacromial impingement models and metabolic models are ideal. They are closest to the natural process of tendinopathy in humans. For studies that aim to evaluate the efficacy of possible treatments, the selection should be made according to the pathogenesis simulated by the modeling method. Existing tendinopathy models can be classified into six types according to the pathogenesis they simulate: extracellular matrix synthesis-decomposition imbalance, inflammation, oxidative stress, metabolic disorder, traumatism and mechanical load. Conclusions The critical factor affecting the translational value of research results is whether the selected model is matched with the research purpose. There is no single optimal model for inducing tendinopathy, and researchers must select the model that is most appropriate for the study they are conducting. The translational potential of this article The critical factor affecting the translational value of research results is whether the animal model used is compatible with the research purpose. This paper provides a rationale and practical guide for the establishment and selection of animal models of tendinopathy, which is helpful to improve the clinical transformation ability of existing models and develop new models.
Collapse
Affiliation(s)
- Junchao Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Zetao Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Zi Yin
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Xianan Mo
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Jiajin Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
| | - Jun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Department of Orthopedics, Longquan People's Hospital, Zhejiang, 323799, China
| | - Cailian Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
| | - Jianyou Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, 313000, Huzhou, Zhejiang, China
| | - Xiao Chen
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Orthopedics Research Institute of Zhejiang University, 310058, Hangzhou City, Zhejiang Province, China
- Sports Medicine Institute of Zhejiang University, 310058, Hangzhou, Zhejiang, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Clinical Research Center of Motor System Disease of Zhejiang Province, 315825, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, 310058, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Dabrowska S, Ekiert-Radecka M, Karbowniczek J, Weglarz WP, Heljak M, Lojkowski M, Obuchowicz R, Swieszkowski W, Mlyniec A. Calcification alters the viscoelastic properties of tendon fascicle bundles depending on matrix content. Acta Biomater 2023; 166:360-374. [PMID: 37172636 DOI: 10.1016/j.actbio.2023.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Tendon fascicle bundles are often used as biological grafts and thus must meet certain quality requirements, such as excluding calcification, which alters the biomechanical properties of soft tissues. In this work, we investigate the influence of early-stage calcification on the mechanical and structural properties of tendon fascicle bundles with varying matrix content. The calcification process was modeled using sample incubation in concentrated simulated body fluid. Mechanical and structural properties were investigated using uniaxial tests with relaxation periods, dynamic mechanical analysis, as well as magnetic resonance imaging and atomic force microscopy. Mechanical tests showed that the initial phase of calcification causes an increase in the elasticity, storage, and loss modulus, as well as a drop in the normalized value of hysteresis. Further calcification of the samples results in decreased modulus of elasticity and a slight increase in the normalized value of hysteresis. Analysis via MRI and scanning electron microscopy showed that incubation alters fibrillar relationships within the tendon structure and the flow of body fluids. In the initial stage of calcification, calcium phosphate crystals are barely visible; however, extending the incubation time for the next 14 days results in the appearance of calcium phosphate crystals within the tendon structure and leads to damage in its structure. Our results show that the calcification process modifies the collagen-matrix relationships and leads to a change in their mechanical properties. These findings will help to understand the pathogenesis of clinical conditions caused by calcification process, leading to the development of effective treatments for these conditions. STATEMENT OF SIGNIFICANCE: This study investigates how calcium mineral deposition in tendons affects their mechanical response and which processes are responsible for this phenomenon. By analyzing the elastic and viscoelastic properties of animal fascicle bundles affected by calcification induced via incubation in concentrated simulated body fluid, the study sheds light on the relationship between structural and biochemical changes in tendons and their altered mechanical response. This understanding is crucial for optimizing tendinopathy treatment and preventing tendon injury. The findings provide insights into the calcification pathway and its resulting changes in the biomechanical behaviors of affected tendons, which have been previously unclear.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Joanna Karbowniczek
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland.
| | | | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Maciej Lojkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland.
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland.
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| |
Collapse
|
27
|
Pringels L, Cook JL, Witvrouw E, Burssens A, Vanden Bossche L, Wezenbeek E. Exploring the role of intratendinous pressure in the pathogenesis of tendon pathology: a narrative review and conceptual framework. Br J Sports Med 2023; 57:1042-1048. [PMID: 36323498 PMCID: PMC10423488 DOI: 10.1136/bjsports-2022-106066] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 02/07/2023]
Abstract
Despite the high prevalence of tendon pathology in athletes, the underlying pathogenesis is still poorly understood. Various aetiological theories have been presented and rejected in the past, but the tendon cell response model still holds true. This model describes how the tendon cell is the key regulator of the extracellular matrix and how pathology is induced by a failed adaptation to a disturbance of tissue homeostasis. Such failure has been attributed to various kinds of stressors (eg, mechanical, thermal and ischaemic), but crucial elements seem to be missing to fully understand the pathogenesis. Importantly, a disturbance of tissue pressure homeostasis has not yet been considered a possible factor, despite it being associated with numerous pathologies. Therefore, we conducted an extensive narrative literature review on the possible role of intratendinous pressure in the pathogenesis of tendon pathology. This review explores the current understanding of pressure dynamics and the role of tissue pressure in the pathogenesis of other disorders with structural similarities to tendons. By bridging these insights with known structural changes that occur in tendon pathology, a conceptual model was constituted. This model provides an overview of the possible mechanism of how an increase in intratendinous pressure might be involved in the development and progression of tendon pathology and contribute to tendon pain. In addition, some therapies that could reduce intratendinous pressure and accelerate tendon healing are proposed. Further experimental research is encouraged to investigate our hypotheses and to initiate debate on the relevance of intratendinous pressure in tendon pathology.
Collapse
Affiliation(s)
- Lauren Pringels
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Jill L Cook
- La Trobe Sport and Exercise Medicine Research Centre, La Trobe University, Melbourne, Victoria, Australia
| | - Erik Witvrouw
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Arne Burssens
- Department of Orthopaedic Surgery, Ghent University Hospital, Ghent, Belgium
| | - Luc Vanden Bossche
- Department of Physical and Rehabilitation Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| | - Evi Wezenbeek
- Department of Rehabilitation Sciences and Physiotherapy, Ghent University, Ghent, Belgium
| |
Collapse
|
28
|
Lu J, Li H, Zhang Z, Xu R, Wang J, Jin H. Platelet-rich plasma in the pathologic processes of tendinopathy: a review of basic science studies. Front Bioeng Biotechnol 2023; 11:1187974. [PMID: 37545895 PMCID: PMC10401606 DOI: 10.3389/fbioe.2023.1187974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 08/08/2023] Open
Abstract
Tendinopathy is a medical condition that includes a spectrum of inflammatory and degenerative tendon changes caused by traumatic or overuse injuries. The pathological mechanism of tendinopathy has not been well defined, and no ideal treatment is currently available. Platelet-rich plasma (PRP) is an autologous whole blood derivative containing a variety of cytokines and other protein components. Various basic studies have found that PRP has the therapeutic potential to promote cell proliferation and differentiation, regulate angiogenesis, increase extracellular matrix synthesis, and modulate inflammation in degenerative tendons. Therefore, PRP has been widely used as a promising therapeutic agent for tendinopathy. However, controversies exist over the optimal treatment regimen and efficacy of PRP for tendinopathy. This review focuses on the specific molecular and cellular mechanisms by which PRP manipulates tendon healing to better understand how PRP affects tendinopathy and explore the reason for the differences in clinical trial outcomes. This article has also pointed out the future direction of basic research and clinical application of PRP in the treatment of tendinopathy, which will play a guiding role in the design of PRP treatment protocols for tendinopathy.
Collapse
Affiliation(s)
- Jialin Lu
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Han Li
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Ziyu Zhang
- Norman Bethune Health Science Center of Jilin University, Changchun, China
| | - Rui Xu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| | - Hui Jin
- Department of Pain, The Second Hospital of Jilin University, Changchun, China
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
29
|
Cramer A, Højfeldt G, Schjerling P, Agergaard J, van Hall G, Olsen J, Hölmich P, Kjaer M, Barfod KW. Achilles Tendon Tissue Turnover Before and Immediately After an Acute Rupture. Am J Sports Med 2023; 51:2396-2403. [PMID: 37313851 DOI: 10.1177/03635465231177890] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND An Achilles tendon rupture (ATR) is a frequent injury and results in the activation of tendon cells and collagen expression, but it is unknown to what extent turnover of the tendon matrix is altered before or after a rupture. PURPOSE/HYPOTHESIS The purpose of this study was to characterize tendon tissue turnover before and immediately after an acute rupture in patients. It was hypothesized that a rupture would result in pronounced collagen synthesis in the early phase (first 2 weeks) after the injury. STUDY DESIGN Cross-sectional study; Level of evidence, 3. METHODS The study included patients (N = 18) eligible for surgery after an ATR. At the time of inclusion, the patients ingested deuterium oxide (2H2O) orally, and on the day of surgery (within 14 days of the injury), they received a 3-hour flood-primed infusion of an 15N-proline tracer. During surgery, the patients had 1 biopsy specimen taken from the ruptured part of the Achilles tendon and 1 that was 3 to 5 cm proximal to the rupture as a control. The biopsy specimens were analyzed for carbon-14 (14C) levels in the tissue to calculate long-term turnover (years), incorporation of 2H-alanine (from 2H2O) into the tissue to calculate the fractional synthesis rate (FSR) of proteins in the short term (days), and incorporation of 15N-proline into the tissue to calculate the acute FSR (hours). RESULTS Both the rupture and the control samples showed consistently lower levels of 14C compared with the predicted level of 14C in a healthy tendon, which indicated increased tendon turnover in a fraction (48% newly synthesized) of the Achilles tendon already for a prolonged period before the rupture. Over the first days after the rupture, the synthesis rate for collagen was relatively constant, and the average synthesis rate on the day of surgery (2-14 days after the rupture) was 0.025% per hour, irrespective of the length of time after a rupture and the site of sampling (rupture vs control). No differences were found in the FSR between the rupture and control samples in the days after the rupture. CONCLUSION Higher than normal tissue turnover in the Achilles tendon before a rupture indicated that changes in the tendon tissue preceded the injury. In addition, we observed no increase in tendon collagen tissue turnover in the first 2 weeks after an ATR. This favors the view that an increase in the formation of new tendon collagen is not an immediate phenomenon during the regeneration of ruptured tendons in patients. REGISTRATION NCT03931486 (ClinicalTrials.gov identifier).
Collapse
Affiliation(s)
- Allan Cramer
- Sports Orthopedic Research Center-Copenhagen, Department of Orthopedic Surgery, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Grith Højfeldt
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Agergaard
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Metabolomics Core Facility, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Olsen
- Aarhus AMS Centre, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Per Hölmich
- Sports Orthopedic Research Center-Copenhagen, Department of Orthopedic Surgery, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Weisskirchner Barfod
- Sports Orthopedic Research Center-Copenhagen, Department of Orthopedic Surgery, Hvidovre Hospital, University of Copenhagen, Hvidovre, Denmark
| |
Collapse
|
30
|
Xuan H, Zhang Z, Jiang W, Li N, Sun L, Xue Y, Guan H, Yuan H. Dual-bioactive molecules loaded aligned core-shell microfibers for tendon tissue engineering. Colloids Surf B Biointerfaces 2023; 228:113416. [PMID: 37348269 DOI: 10.1016/j.colsurfb.2023.113416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023]
Abstract
Development of a controlled delivery ultrafine fibrous system with two bioactive molecules is required to stimulate tendon healing in different phase. In this study, we used emulsion stable jet electrospinning to fabricate aligned poly(L-lactic acid) (PLLA) based ultrafine fibers with two small bioactive molecules of L-Arginine (Arg) and low molecular weight hyaluronic acid (HA). The results demonstrated that the aligned Arg/HA/PLLA microfibrous scaffold showed core-shell structure and allowed sequential release of Arg and HA due to their different electric charge. The scaffold also showed enhanced hydrophilicity, cell migration, spread and proliferation. Using an Achilles tendon repair model in rats, we demonstrated that this novel fibrous scaffold can prevent adhesion and promote tendon regeneration. Additionally, two p53 and ER-α-mediated signalling pathways were described as the probable main path of synergistic effects of the novel scaffold on tendon generation. Thus, this study may provide an important strategy for developing biofunctional and biomimetic tendon scaffolds.
Collapse
Affiliation(s)
- Hongyun Xuan
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Zhuojun Zhang
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Wei Jiang
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Nianci Li
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Li Sun
- School of Life Sciences, Nantong University, Nantong 226019, PR China
| | - Ye Xue
- School of Life Sciences, Nantong University, Nantong 226019, PR China.
| | - Haitao Guan
- Department of Ultrasonography, Affiliated Suzhou Hospital, Medical School of Nanjing University, Nanjing University, Suzhou 215153, PR China.
| | - Huihua Yuan
- School of Life Sciences, Nantong University, Nantong 226019, PR China.
| |
Collapse
|
31
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
32
|
Fu W, Yang R, Li J. Single-cell and spatial transcriptomics reveal changes in cell heterogeneity during progression of human tendinopathy. BMC Biol 2023; 21:132. [PMID: 37280595 DOI: 10.1186/s12915-023-01613-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Musculoskeletal tissue degeneration impairs the life quality and motor function of many people, especially seniors and athletes. Tendinopathy is one of the most common diseases associated with musculoskeletal tissue degeneration, representing a major global healthcare burden that affects both athletes and the general population, with the clinical presentation of long-term recurring chronic pain and decreased tolerance to activity. The cellular and molecular mechanisms at the basis of the disease process remain elusive. Here, we use a single-cell and spatial RNA sequencing approach to provide a further understanding of cellular heterogeneity and molecular mechanisms underlying tendinopathy progression. RESULTS To explore the changes in tendon homeostasis during the tendinopathy process, we built a cell atlas of healthy and diseased human tendons using single-cell RNA sequencing of approximately 35,000 cells and explored the variations of cell subtypes' spatial distributions using spatial RNA sequencing. We identified and localized different tenocyte subpopulations in normal and lesioned tendons, found different differentiation trajectories of tendon stem/progenitor cells in normal/diseased tendons, and revealed the spatial location relationship between stromal cells and diseased tenocytes. We deciphered the progression of tendinopathy at a single-cell level, which is characterized by inflammatory infiltration, followed by chondrogenesis and finally endochondral ossification. We found diseased tissue-specific endothelial cell subsets and macrophages as potential therapeutic targets. CONCLUSIONS This cell atlas provides the molecular foundation for investigating how tendon cell identities, biochemical functions, and interactions contributed to the tendinopathy process. The discoveries revealed the pathogenesis of tendinopathy at single-cell and spatial levels, which is characterized by inflammatory infiltration, followed by chondrogenesis, and finally endochondral ossification. Our results provide new insights into the control of tendinopathy and potential clues to developing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Runze Yang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
33
|
Costa FR, Costa Marques MR, Costa VC, Santos GS, Martins RA, Santos MDS, Santana MHA, Nallakumarasamy A, Jeyaraman M, Lana JVB, Lana JFSD. Intra-Articular Hyaluronic Acid in Osteoarthritis and Tendinopathies: Molecular and Clinical Approaches. Biomedicines 2023; 11:biomedicines11041061. [PMID: 37189679 DOI: 10.3390/biomedicines11041061] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Musculoskeletal diseases continue to rise on a global scale, causing significant socioeconomic impact and decreased quality of life. The most common disorders affecting musculoskeletal structures are osteoarthritis and tendinopathies, complicated orthopedic conditions responsible for major pain and debilitation. Intra-articular hyaluronic acid (HA) has been a safe, effective, and minimally invasive therapeutic tool for treating these diseases. Several studies from bedside to clinical practice reveal the multiple benefits of HA such as lubrication, anti-inflammation, and stimulation of cellular activity associated with proliferation, differentiation, migration, and secretion of additional molecules. Collectively, these effects have demonstrated positive outcomes that assist in the regeneration of chondral and tendinous tissues which are otherwise destroyed by the predominant catabolic and inflammatory conditions seen in tissue injury. The literature describes the physicochemical, mechanical, and biological properties of HA, their commercial product types, and clinical applications individually, while their interfaces are seldom reported. Our review addresses the frontiers of basic sciences, products, and clinical approaches. It provides physicians with a better understanding of the boundaries between the processes that lead to diseases, the molecular mechanisms that contribute to tissue repair, and the benefits of the HA types for a conscientious choice. In addition, it points out the current needs for the treatments.
Collapse
|
34
|
Savadipour A, Palmer D, Ely EV, Collins KH, Garcia-Castorena JM, Harissa Z, Kim YS, Oestrich A, Qu F, Rashidi N, Guilak F. The role of PIEZO ion channels in the musculoskeletal system. Am J Physiol Cell Physiol 2023; 324:C728-C740. [PMID: 36717101 PMCID: PMC10027092 DOI: 10.1152/ajpcell.00544.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
PIEZO1 and PIEZO2 are mechanosensitive cation channels that are highly expressed in numerous tissues throughout the body and exhibit diverse, cell-specific functions in multiple organ systems. Within the musculoskeletal system, PIEZO1 functions to maintain muscle and bone mass, sense tendon stretch, and regulate senescence and apoptosis in response to mechanical stimuli within cartilage and the intervertebral disc. PIEZO2 is essential for transducing pain and touch sensations as well as proprioception in the nervous system, which can affect musculoskeletal health. PIEZO1 and PIEZO2 have been shown to act both independently as well as synergistically in different cell types. Conditions that alter PIEZO channel mechanosensitivity, such as inflammation or genetic mutations, can have drastic effects on these functions. For this reason, therapeutic approaches for PIEZO-related disease focus on altering PIEZO1 and/or PIEZO2 activity in a controlled manner, either through inhibition with small molecules, or through dietary control and supplementation to maintain a healthy cell membrane composition. Although many opportunities to better understand PIEZO1 and PIEZO2 remain, the studies summarized in this review highlight how crucial PIEZO channels are to musculoskeletal health and point to promising possible avenues for their modulation as a therapeutic target.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Daniel Palmer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Erica V Ely
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jaquelin M Garcia-Castorena
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zainab Harissa
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arin Oestrich
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Feini Qu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
35
|
Ostadi Moghaddam A, Arshee MR, Lin Z, Sivaguru M, Phillips H, McFarlin BL, Toussaint KC, Wagoner Johnson AJ. Orientation-dependent indentation reveals the crosslink-mediated deformation mechanisms of collagen fibrils. Acta Biomater 2023; 158:347-357. [PMID: 36638936 PMCID: PMC10039649 DOI: 10.1016/j.actbio.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/18/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023]
Abstract
The spatial arrangement and interactions of the extracellular matrix (ECM) components control the mechanical behavior of tissue at multiple length scales. Changes in microscale deformation mechanisms affect tissue function and are often hallmarks of remodeling and disease. Despite their importance, the deformation mechanisms that modulate the mechanical behavior of collagenous tissue, particularly in indentation and compression modes of deformation, remain poorly understood. Here, we develop an integrated computational and experimental approach to investigate the deformation mechanisms of collagenous tissue at the microscale. While the complex deformation arising from indentation with a spherical probe is often considered a pitfall rather than an opportunity, we leverage this orientation-dependent deformation to examine the shear-regulated interactions of collagen fibrils and the role of crosslinks in modulating these interactions. We specifically examine tendon and cervix, two tissues rich in collagen with quite different microstructures and mechanical functions. We find that interacting, crosslinked collagen fibrils resist microscale longitudinal compressive forces, while widely used constitutive models fail to capture this behavior. The reorientation of collagen fibrils tunes the compressive stiffness of complex tissues like cervix. This study offers new insights into the mechanical behavior of collagen fibrils during indentation, and more generally, under longitudinal compressive forces, and illustrates the mechanisms that contribute to the experimentally observed orientation-dependent mechanical behavior. STATEMENT OF SIGNIFICANCE: Remodeling and disease can affect the deformation and interaction of tissue constituents, and thus mechanical function of tissue. Yet, the microscale deformation mechanisms are not well characterized in many tissues. Here, we develop a combined experimental-computational approach to infer the microscale deformation mechanisms of collagenous tissues with very different functions: tendon and cervix. Results show that collagen fibrils resist microscale forces along their length, though widely-used constitutive models do not account for this mechanism. This deformation process partially modulates the compressive stiffness of complex tissues such as cervix. Computational modeling shows that crosslink-mediated shear deformations are central to this unexpected behavior. This study offers new insights into the deformation mechanisms of collagenous tissue and the function of collagen crosslinkers.
Collapse
Affiliation(s)
- A Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - M R Arshee
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Z Lin
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - M Sivaguru
- Flow Cytometry and Microscopy to Omics, Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | - H Phillips
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - B L McFarlin
- Department of Women, Children and Family Health Science, University of Illinois College of Nursing, Chicago, IL 60612, USA
| | - K C Toussaint
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - A J Wagoner Johnson
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
36
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
37
|
Chalidis B, Givissis P, Papadopoulos P, Pitsilos C. Molecular and Biologic Effects of Platelet-Rich Plasma (PRP) in Ligament and Tendon Healing and Regeneration: A Systematic Review. Int J Mol Sci 2023; 24:2744. [PMID: 36769065 PMCID: PMC9917492 DOI: 10.3390/ijms24032744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Platelet-rich plasma (PRP) has been introduced and applied to a wide spectrum of acute and chronic ligament and tendon pathologic conditions. Although the biological effect of PRP has been studied thoroughly in both animal and human studies, there is no consensus so far on the exact mechanism of its action as well as the optimal timing and dosage of its application. Therefore, we conducted a systematic review aiming to evaluate the molecular effect of the administration of PRP in tendoligamentous injuries and degenerative diseases. The literature search revealed 36 in vitro and in vivo studies examining the healing and remodeling response of animal and human ligament or tendon tissues to PRP. Platelet-rich plasma added in the culture media was highly associated with increased cell proliferation, migration, viability and total collagen production of both ligament- and tendon-derived cells in in vitro studies, which was further confirmed by the upregulation of collagen gene expression. In vivo studies correlated the PRP with higher fibroblastic anabolic activity, including increased cellularity, collagen production and vascularity of ligament tissue. Similarly, greater metabolic response of tenocytes along with the acceleration of the healing process in the setting of a tendon tear were noticed after PRP application, particularly between the third and fourth week after treatment. However, some studies demonstrated that PRP had no or even negative effect on tendon and ligament regeneration. This controversy is mainly related to the variable processes and methodologies of preparation of PRP, necessitating standardized protocols for both investigation and ap-plication.
Collapse
Affiliation(s)
- Byron Chalidis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Panagiotis Givissis
- 1st Orthopaedic Department, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Pericles Papadopoulos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece
| | - Charalampos Pitsilos
- 2nd Orthopaedic Department, Aristotle University of Thessaloniki, 54635 Thessaloniki, Greece
| |
Collapse
|
38
|
Marr N, Zamboulis DE, Werling D, Felder AA, Dudhia J, Pitsillides AA, Thorpe CT. The tendon interfascicular basement membrane provides a vascular niche for CD146+ cell subpopulations. Front Cell Dev Biol 2023; 10:1094124. [PMID: 36699014 PMCID: PMC9869387 DOI: 10.3389/fcell.2022.1094124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: The interfascicular matrix (IFM; also known as the endotenon) is critical to the mechanical adaptations and response to load in energy-storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT). We hypothesized that the IFM is a tendon progenitor cell niche housing an exclusive cell subpopulation. Methods: Immunolabelling of equine superficial digital flexor tendon was used to identify the interfascicular matrix niche, localising expression patterns of CD31 (endothelial cells), Desmin (smooth muscle cells and pericytes), CD146 (interfascicular matrix cells) and LAMA4 (interfascicular matrix basement membrane marker). Magnetic-activated cell sorting was employed to isolate and compare in vitro properties of CD146+ and CD146- subpopulations. Results: Labelling for CD146 using standard histological and 3D imaging of large intact 3D segments revealed an exclusive interfascicular cell subpopulation that resides in proximity to a basal lamina which forms extensive, interconnected vascular networks. Isolated CD146+ cells exhibited limited mineralisation (osteogenesis) and lipid production (adipogenesis). Discussion: This study demonstrates that the interfascicular matrix is a unique tendon cell niche, containing a vascular-rich network of basement membrane, CD31+ endothelial cells, Desmin+ mural cells, and CD146+ cell populations that are likely essential to tendon structure and/or function. Contrary to our hypothesis, interfascicular CD146+ subpopulations did not exhibit stem cell-like phenotypes. Instead, our results indicate CD146 as a pan-vascular marker within the tendon interfascicular matrix. Together with previous work demonstrating that endogenous tendon CD146+ cells migrate to sites of injury, our data suggest that their mobilisation to promote intrinsic repair involves changes in their relationships with local interfascicular matrix vascular and basement membrane constituents.
Collapse
Affiliation(s)
- Neil Marr
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Danae E. Zamboulis
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Dirk Werling
- Pathobiology and Population Sciences, Centre for Vaccinology and Regenerative Medicine, Royal Veterinary College, Hatfield, United Kingdom
| | - Alessandro A. Felder
- Research Software Development Group, Advanced Research Computing, University College London, London, United Kingdom
| | - Jayesh Dudhia
- Clinical Sciences and Services, Royal Veterinary College, Hatfield, United Kingdom
| | | | - Chavaunne T. Thorpe
- Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
39
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
40
|
Pagani CA, Bancroft AC, Tower RJ, Livingston N, Sun Y, Hong JY, Kent RN, Strong AL, Nunez JH, Medrano JMR, Patel N, Nanes BA, Dean KM, Li Z, Ge C, Baker BM, James AW, Weiss SJ, Franceschi RT, Levi B. Discoidin domain receptor 2 regulates aberrant mesenchymal lineage cell fate and matrix organization. SCIENCE ADVANCES 2022; 8:eabq6152. [PMID: 36542719 PMCID: PMC9770942 DOI: 10.1126/sciadv.abq6152] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
Extracellular matrix (ECM) interactions regulate both the cell transcriptome and proteome, thereby determining cell fate. Traumatic heterotopic ossification (HO) is a disorder characterized by aberrant mesenchymal lineage (MLin) cell differentiation, forming bone within soft tissues of the musculoskeletal system following traumatic injury. Recent work has shown that HO is influenced by ECM-MLin cell receptor signaling, but how ECM binding affects cellular outcomes remains unclear. Using time course transcriptomic and proteomic analyses, we identified discoidin domain receptor 2 (DDR2), a cell surface receptor for fibrillar collagen, as a key MLin cell regulator in HO formation. Inhibition of DDR2 signaling, through either constitutive or conditional Ddr2 deletion or pharmaceutical inhibition, reduced HO formation in mice. Mechanistically, DDR2 perturbation alters focal adhesion orientation and subsequent matrix organization, modulating Focal Adhesion Kinase (FAK) and Yes1 Associated Transcriptional Regulator and WW Domain Containing Transcription Regulator 1 (YAP/TAZ)-mediated MLin cell signaling. Hence, ECM-DDR2 interactions are critical in driving HO and could serve as a previously unknown therapeutic target for treating this disease process.
Collapse
Affiliation(s)
- Chase A. Pagani
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Alec C. Bancroft
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert J. Tower
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicholas Livingston
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Yuxiao Sun
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jonathan Y. Hong
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Robert N. Kent
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amy L. Strong
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Johanna H. Nunez
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Jessica Marie R. Medrano
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| | - Nicole Patel
- Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Benjamin A. Nanes
- Department of Dermatology, University of Texas Southwestern, Dallas, TX, USA
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
| | - Kevin M. Dean
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern, Dallas, TX, USA
- Cecil H. and The Ida Green Center for Systems Biology, University of Texas Southwestern, Dallas, TX, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Chunxi Ge
- School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M. Baker
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen J. Weiss
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | | | - Benjamin Levi
- Center for Organogenesis and Trauma, Department of Surgery, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
41
|
Disser NP, Piacentini AN, De Micheli AJ, Schonk MM, Yao VJH, Deng XH, Oliver DJ, Rodeo SA. Achilles Tendons Display Region-Specific Transcriptomic Signatures Associated With Distinct Mechanical Properties. Am J Sports Med 2022; 50:3866-3874. [PMID: 36305762 DOI: 10.1177/03635465221128589] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Previous studies have examined the transcriptomes and mechanical properties of whole tendons in different regions of the body. However, less is known about these characteristics within a single tendon. PURPOSE To develop a regional transcriptomic atlas and evaluate the region-specific mechanical properties of Achilles tendons. STUDY DESIGN Descriptive laboratory study. METHODS Achilles tendons from 2-month-old male Sprague Dawley rats were used. Tendons were isolated and divided into proximal, middle, and distal thirds for RNA sequencing (n = 5). For mechanical testing, the Achilles muscle-tendon-calcaneus unit was mounted in a custom-designed materials testing system with the unit clamped over the musculotendinous junction (MTJ) and the calcaneus secured at 90° of dorsiflexion (n = 9). Tendons were stretched to 20 N at a constant speed of 0.0167 mm/s. Cross-sectional area, strain, stress, and Young modulus were determined in each tendon region. RESULTS An open-access, interactive transcriptional atlas was generated that revealed distinct gene expression signatures in each tendon region. The proximal and distal regions had the largest differences in gene expression, with 2596 genes significantly differentially regulated at least 1.5-fold (q < .01). The proximal tendon displayed increased expression of genes resembling a tendon phenotype and increased expression of nerve cell markers. The distal region displayed increases in genes involved in extracellular matrix synthesis and remodeling, immune cell regulation, and a phenotype similar to cartilage and bone. There was a 3.72-fold increase in Young modulus from the proximal to middle region (P < .01) and an additional 1.34-fold increase from the middle to distal region (P = .027). CONCLUSION Within a single tendon, there are region-specific transcriptomic signatures and mechanical properties, and there is likely a gradient in the biological and functional phenotype from the proximal origin at the MTJ to the distal insertion at the enthesis. CLINICAL RELEVANCE These findings improve our understanding of the underlying biological heterogeneity of tendon tissue and will help inform the future targeted use of regenerative medicine and tissue engineering strategies for patients with tendon disorders.
Collapse
Affiliation(s)
- Nathaniel P Disser
- Hospital for Special Surgery, New York, New York, USA.,McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | | | - Andrea J De Micheli
- Hospital for Special Surgery, New York, New York, USA.,Department of Oncology of the Children's Research Center, University Children's Hospital Zürich, Zürich, Switzerland
| | | | - Vincent J H Yao
- Hospital for Special Surgery, New York, New York, USA.,Sophie Davis Biomedical Education Program at CUNY School of Medicine, New York, New York, USA
| | | | - David J Oliver
- Hospital for Special Surgery, New York, New York, USA.,The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, New York, USA
| | - Scott A Rodeo
- Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
42
|
Yeager K, Heifner J, Rubio F, Gray R, Orbay J, Mercer D. Flexor Carpi Radialis Tendon Insertion Onto the Trapezial Ridge: An Anatomic Description. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2022; 5:55-57. [PMID: 36704386 PMCID: PMC9870792 DOI: 10.1016/j.jhsg.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Purpose The flexor carpi radialis (FCR) tendon is often involved in surgical procedures of the hand and wrist. The FCR tendon may be mobilized from the trapezium during distal radius fracture fixation, for tendon transfer, and during carpometacarpal joint procedures. There is a paucity of literature describing the anatomy of the FCR insertion onto the trapezial ridge. We analyzed the insertional characteristics of the FCR onto the trapezium. Methods Forty-two fresh-frozen cadaveric wrists were dissected using the extended FCR approach through the FCR tendon sheath. The length of the fibrous portion of the FCR insertion onto the trapezial ridge was measured from proximal to distal using a digital caliper. Results FCR insertion onto the trapezium was present in all specimens. The mean length of the FCR insertion was 11.8 ± 4.14 mm. The character of the tissue quality varied across specimens. Conclusions These results demonstrate the commonality of the FCR fibers that insert onto the trapezium. The length and tissue quality of this insertion varied across specimens. Clinical relevance Understanding the complex anatomy of the hand and wrist facilitates surgical planning and intraoperative techniques. The FCR tendon insertion onto the trapezium is an important component of exposure for the volar approach to the distal radius and surgical management of thumb carpometacarpal joint arthritis.
Collapse
Affiliation(s)
- Kathryn Yeager
- Department of Orthopaedics and Rehabilitation, The University of New Mexico, Albuquerque, NM
| | - John Heifner
- St George’s University School of Medicine, Great River, NY,Corresponding author: John Heifner, MD, St George’s University School of Medicine, 3500 Sunrise Hwy, Great River, NY 11739.
| | | | - Robert Gray
- Department of Orthopaedic Surgery, NorthShore University Health System, Chicago, IL
| | | | - Deana Mercer
- Department of Orthopaedics and Rehabilitation, The University of New Mexico, Albuquerque, NM
| |
Collapse
|
43
|
Leiphart RJ, Weiss SN, DiStefano MS, Mavridis AA, Adams SA, Dyment NA, Soslowsky LJ. Collagen V deficiency during murine tendon healing results in distinct healing outcomes based on knockdown severity. J Biomech 2022; 144:111315. [PMID: 36201909 PMCID: PMC10108665 DOI: 10.1016/j.jbiomech.2022.111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Tendon function is dependent on proper organization and maintenance of the collagen I tissue matrix. Collagen V is a critical regulator of collagen I fibrils, and while prior studies have shown a negative impact of collagen V deficiency on tendon healing outcomes, these studies are confounded by collagen V deficiency through tendon development. The specific role of collagen V in regulating healing tendon properties is therefore unknown. By using inducible Col5a1 knockdown models and analyzing gene expression, fibril and histological tendon morphology, and tendon mechanical properties, this study defines the isolated role of collagen V through tendon healing. Patellar tendon injury caused large changes in tendon gene expression, and Col5a1 knockdown resulted in dysregulated expression of several genes through tendon healing. Col5a1 knockdown also impacted collagen fibril size and shape without observable changes in scar tissue formation. Surprisingly, heterozygous Col5a1 knockdown resulted in improved stiffness of healing tendons that was not observed with homozygous Col5a1 knockdown. Together, these results present an unexpected and dynamic role of collagen V deficiency on tendon healing outcomes following injury. This work suggests a model of tendon healing in which quasi-static mechanics may be improved through titration of collagen fibril size and shape with modulation of collagen V expression and activity.
Collapse
Affiliation(s)
- R J Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S N Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M S DiStefano
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A A Mavridis
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S A Adams
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - N A Dyment
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - L J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Sander IL, Dvorak N, Stebbins JA, Carr AJ, Mouthuy PA. Advanced Robotics to Address the Translational Gap in Tendon Engineering. CYBORG AND BIONIC SYSTEMS 2022; 2022:9842169. [PMID: 36285305 PMCID: PMC9508494 DOI: 10.34133/2022/9842169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Tendon disease is a significant and growing burden to healthcare systems. One strategy to address this challenge is tissue engineering. A widely held view in this field is that mechanical stimulation provided to constructs should replicate the mechanical environment of native tissue as closely as possible. We review recent tendon tissue engineering studies in this article and highlight limitations of conventional uniaxial tensile bioreactors used in current literature. Advanced robotic platforms such as musculoskeletal humanoid robots and soft robotic actuators are promising technologies which may help address translational gaps in tendon tissue engineering. We suggest the proposed benefits of these technologies and identify recent studies which have worked to implement these technologies in tissue engineering. Lastly, key challenges to address in adapting these robotic technologies and proposed future research directions for tendon tissue engineering are discussed.
Collapse
Affiliation(s)
- Iain L. Sander
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
- Oxford Gait Laboratory, Nuffield Orthopaedic Centre, Tebbit Centre, Windmill Road, Oxford OX3 7HE, UK
| | - Nicole Dvorak
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
| | - Julie A. Stebbins
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
- Oxford Gait Laboratory, Nuffield Orthopaedic Centre, Tebbit Centre, Windmill Road, Oxford OX3 7HE, UK
| | - Andrew J. Carr
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
| | - Pierre-Alexis Mouthuy
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Windmill Road, Oxford OX3 7LD, UK
| |
Collapse
|
45
|
Pellegrino R, Brindisino F, Barassi G, Sparvieri E, DI Iorio A, de Sire A, Ruosi C. Combined ultrasound guided peritendinous hyaluronic acid (500-730 Kda) injection with extracorporeal shock waves therapy vs. extracorporeal shock waves therapy-only in the treatment of shoulder pain due to rotator cuff tendinopathy. A randomized clinical trial. J Sports Med Phys Fitness 2022; 62:1211-1218. [PMID: 35686864 DOI: 10.23736/s0022-4707.22.13924-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Rotator cuff tendinopathy (RCTe) is the most common cause of pain and shoulder dysfunction. Numerous clinical studies have demonstrated the therapeutic capacity of exogenous peritendinous hyaluronic acid (HA), and the effectiveness of extracorporeal shockwaves therapy (ESWT) in reducing pain. The aim of this study was to evaluate the added effects of HA treatment plus ESWT (E-g) or ESWT alone (SC-g), focusing on reduction of self-reported pain and disability of patients with RCTe. METHODS Monocentric, randomized open-label clinical trial. Patients' selection, enrollment and interventions were conducted at the Chiparo Physical Medicine and Rehabilitation outpatient facility (Lecce, Italy). Patients with a diagnosis of RCTe, were randomly allocated to the E-g or to the SC-g. Participants were assessed for self-perceived pain, and for disability, at baseline, after 30 and 60 days. RESULTS Forty adults (mean age 50.8±6.3; 23 woman, 17 men) were enrolled in the study, twenty for each group. During the study, both groups improved their perceived level of disability of the arm (-25.01±2.79; P<0.001), and for pain (-3.13±0.50; P<0.001). A multiplicative effect was demonstrated in the time × treatment interaction for disability (beta±SE beta: 7.40±1.77; P<0.001), and pain (beta±SE beta: 0.95±0.32; P<0.001). Moreover, more patients in the E-g reached the MCID in the outcomes-score compared to SC-g. Lastly, number needed to treat were calculated, for disability: NNT=2 (95% CI: 1-3), and for pain-score: NNT=1 (95% CI: 1-2). CONCLUSIONS This study provides preliminary evidence that, compared to ESWT alone, the combining ESWT and peritendinous HA-injections, revert disability and reduces shoulder pain faster in patients with RCTe.
Collapse
Affiliation(s)
- Raffaello Pellegrino
- Unit of Antalgic Mini-Invasive and Rehab-Outpatients, Department of Medicine and Science of Aging, G. D'Annunzio University, Chieti, Italy.,Department of Scientific Research, Campus Ludes, Semmelweis University, Lugano, Switzerland
| | - Fabrizio Brindisino
- Vincenzo Tiberio Department of Medicine and Health Science, Cardarelli Hospital, University of Molise, Campobasso, Italy
| | - Giovanni Barassi
- Unit of Antalgic Mini-Invasive and Rehab-Outpatients, Department of Medicine and Science of Aging, G. D'Annunzio University, Chieti, Italy
| | | | - Angelo DI Iorio
- Unit of Antalgic Mini-Invasive and Rehab-Outpatients, Department of Medicine and Science of Aging, G. D'Annunzio University, Chieti, Italy -
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Carlo Ruosi
- School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
46
|
Dang R, Chen L, Sefat F, Li X, Liu S, Yuan X, Ning X, Zhang YS, Ji P, Zhang X. A Natural Hydrogel with Prohealing Properties Enhances Tendon Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105255. [PMID: 35304821 DOI: 10.1002/smll.202105255] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Tendon regeneration and reduction of peritendinous adhesion remain major clinical challenges. This study addresses these challenges by adopting a unique hydrogel derived from the skin secretion of Andrias davidianus (SSAD) and taking advantage of its biological effects, adhesiveness, and controllable microstructures. The SSAD-derived hydrogel contains many cytokines, which could promote tendon healing. In vitro, leach liquid of SSAD powder could promote tendon stem/progenitor cells migration. In vivo, the SSAD-derived hydrogel featuring double layers possesses strong adhesiveness and could reconnect ruptured Achilles tendons of Sprague-Dawley rats without suturing. The intimal SSAD-derived hydrogel, with a pore size of 241.7 ± 21.0 µm, forms the first layer of the hydrogel to promote tendon healing, and the outer layer SSAD-derived hydrogel, with a pore size of 3.3 ± 1.4 µm, reducing peritendinous adhesion by serving as a dense barrier. Additionally, the SSAD-derived hydrogel exhibits antioxidant and antibacterial characteristics, which further contribute to the reduction of peritendinous adhesion. In vivo studies suggest that the SSAD-derived hydrogel reduces peritendinous adhesion, increases collagen fiber deposition, promotes cell proliferation, and improves the biomechanical properties of the regenerated tendons, indicating better functional restoration. The SSAD-derived bilayer hydrogel may be a feasible biomaterial for tendon repair in the future.
Collapse
Affiliation(s)
- Ruyi Dang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Liling Chen
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science and Technology (Polymer IRC), University of Bradford, Bradford, BD7 1DP, UK
- Biomedical and Electronics Engineering Department, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Xian Li
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Shilin Liu
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xulei Yuan
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Xiaoqiao Ning
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Ping Ji
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| | - Ximu Zhang
- Chongqing Key Laboratory of Oral Disease and Biomedical Sciences and Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education and Stomatological Hospital of Chongqing Medical University, Chongqing, 401174, P. R. China
| |
Collapse
|
47
|
Yu YH, Shen SJ, Hsu YH, Chou YC, Yu PC, Liu SJ. Tri-Layered Doxycycline-, Collagen- and Bupivacaine-Loaded Poly(lactic-co-glycolic acid) Nanofibrous Scaffolds for Tendon Rupture Repair. Polymers (Basel) 2022; 14:polym14132659. [PMID: 35808704 PMCID: PMC9269609 DOI: 10.3390/polym14132659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
Achilles tendon rupture is a severe injury, and its optimal therapy remains controversial. Tissue engineering scaffolds play a significant role in tendon healing and tissue regeneration. In this study, we developed tri-layered doxycycline/collagen/bupivacaine (DCB)-composite nanofibrous scaffolds to repair injured Achilles tendons. Doxycycline, collagen, and bupivacaine were integrated into poly(lactic-co-glycolic acid) (PLGA) nanofibrous membranes, layer by layer, using an electrospinning technique as healing promoters, a 3D scaffold, and painkillers, respectively. After spinning, the properties of the nanofibrous scaffolds were characterized. In vitro drug discharge behavior was also evaluated. Furthermore, the effectiveness of the DCB–PLGA-composite nanofibers in repairing ruptured Achilles tendons was investigated in an animal tendon model with histological analyses. The experimental results show that, compared to the pristine PLGA nanofibers, the biomolecule-loaded nanofibers exhibited smaller fiber size distribution and an enhanced hydrophilicity. The DCB-composite nanofibers provided a sustained release of doxycycline and bupivacaine for over 28 days in vivo. Additionally, Achilles tendons repaired using DCB-composite nanofibers exhibited a significantly higher maximum load-to-failure than normal tendons, suggesting that the biomolecule-incorporated nanofibers are promising scaffolds for repairing Achilles tendons.
Collapse
Affiliation(s)
- Yi-Hsun Yu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.); (Y.-H.H.); (Y.-C.C.)
| | - Shih-Jyun Shen
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan;
| | - Yung-Heng Hsu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.); (Y.-H.H.); (Y.-C.C.)
| | - Ying-Chao Chou
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.); (Y.-H.H.); (Y.-C.C.)
| | - Ping-Chun Yu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
| | - Shih-Jung Liu
- Bone and Joint Research Center, Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; (Y.-H.Y.); (Y.-H.H.); (Y.-C.C.)
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan;
- Correspondence: ; Tel.: +886-3-2118166; Fax: +886-3-2118558
| |
Collapse
|
48
|
Gomez-Florit M, Labrador-Rached CJ, Domingues RM, Gomes ME. The tendon microenvironment: Engineered in vitro models to study cellular crosstalk. Adv Drug Deliv Rev 2022; 185:114299. [PMID: 35436570 DOI: 10.1016/j.addr.2022.114299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022]
Abstract
Tendinopathy is a multi-faceted pathology characterized by alterations in tendon microstructure, cellularity and collagen composition. Challenged by the possibility of regenerating pathological or ruptured tendons, the healing mechanisms of this tissue have been widely researched over the past decades. However, so far, most of the cellular players and processes influencing tendon repair remain unknown, which emphasizes the need for developing relevant in vitro models enabling to study the complex multicellular crosstalk occurring in tendon microenvironments. In this review, we critically discuss the insights on the interaction between tenocytes and the other tendon resident cells that have been devised through different types of existing in vitro models. Building on the generated knowledge, we stress the need for advanced models able to mimic the hierarchical architecture, cellularity and physiological signaling of tendon niche under dynamic culture conditions, along with the recreation of the integrated gradients of its tissue interfaces. In a forward-looking vision of the field, we discuss how the convergence of multiple bioengineering technologies can be leveraged as potential platforms to develop the next generation of relevant in vitro models that can contribute for a deeper fundamental knowledge to develop more effective treatments.
Collapse
|
49
|
Huang X, Lv ZT, Cheng P, Chen AM. A Novel Low Air Pressure-Assisted Approach for the Construction of Cells-Decellularized Tendon Scaffold Complex. Curr Med Sci 2022; 42:569-576. [DOI: 10.1007/s11596-022-2603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/09/2022] [Indexed: 11/03/2022]
|
50
|
Ribbans WJ, September AV, Collins M. Tendon and Ligament Genetics: How Do They Contribute to Disease and Injury? A Narrative Review. Life (Basel) 2022; 12:life12050663. [PMID: 35629331 PMCID: PMC9147569 DOI: 10.3390/life12050663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 12/15/2022] Open
Abstract
A significant proportion of patients requiring musculoskeletal management present with tendon and ligament pathology. Our understanding of the intrinsic and extrinsic mechanisms that lead to such disabilities is increasing. However, the complexity underpinning these interactive multifactorial elements is still not fully characterised. Evidence highlighting the genetic components, either reducing or increasing susceptibility to injury, is increasing. This review examines the present understanding of the role genetic variations contribute to tendon and ligament injury risk. It examines the different elements of tendon and ligament structure and considers our knowledge of genetic influence on form, function, ability to withstand load, and undertake repair or regeneration. The role of epigenetic factors in modifying gene expression in these structures is also explored. It considers the challenges to interpreting present knowledge, the requirements, and likely pathways for future research, and whether such information has reached the point of clinical utility.
Collapse
Affiliation(s)
- William J. Ribbans
- School of Health, The University of Northampton, Northampton NN1 5PH, UK
- The County Clinic, Northampton NN1 5DB, UK
- Correspondence: ; Tel.: +44-1604-795414
| | - Alison V. September
- Division of Physiological Sciences, Department of Human Biology, Health Sciences Faculty, University of Cape Town, Cape Town 7700, South Africa; (A.V.S.); (M.C.)
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, Health Sciences Faculty, University of Cape Town, Cape Town 7700, South Africa
- International Federation of Sports Medicine (FIMS), Collaborative Centre of Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| | - Malcolm Collins
- Division of Physiological Sciences, Department of Human Biology, Health Sciences Faculty, University of Cape Town, Cape Town 7700, South Africa; (A.V.S.); (M.C.)
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Department of Human Biology, Health Sciences Faculty, University of Cape Town, Cape Town 7700, South Africa
- International Federation of Sports Medicine (FIMS), Collaborative Centre of Sports Medicine, Department of Human Biology, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|