1
|
Lee MJ, Cho JY, Bae S, Jung HS, Kang CM, Kim SH, Choi HJ, Lee CK, Kim H, Jo D, Paik YK. Inhibition of the Alternative Complement Pathway May Cause Secretion of Factor B, Enabling an Early Detection of Pancreatic Cancer. J Proteome Res 2024; 23:985-998. [PMID: 38306169 DOI: 10.1021/acs.jproteome.3c00695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
This study aims to elucidate the cellular mechanisms behind the secretion of complement factor B (CFB), known for its dual roles as an early biomarker for pancreatic ductal adenocarcinoma (PDAC) and as the initial substrate for the alternative complement pathway (ACP). Using parallel reaction monitoring analysis, we confirmed a consistent ∼2-fold increase in CFB expression in PDAC patients compared with that in both healthy donors (HD) and chronic pancreatitis (CP) patients. Elevated ACP activity was observed in CP and other benign conditions compared with that in HD and PDAC patients, suggesting a functional link between ACP and PDAC. Protein-protein interaction analyses involving key complement proteins and their regulatory factors were conducted using blood samples from PDAC patients and cultured cell lines. Our findings revealed a complex control system governing the ACP and its regulatory factors, including Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation, adrenomedullin (AM), and complement factor H (CFH). Particularly, AM emerged as a crucial player in CFB secretion, activating CFH and promoting its predominant binding to C3b over CFB. Mechanistically, our data suggest that the KRAS mutation stimulates AM expression, enhancing CFH activity in the fluid phase through binding. This heightened AM-CFH interaction conferred greater affinity for C3b over CFB, potentially suppressing the ACP cascade. This sequence of events likely culminated in the preferential release of ductal CFB into plasma during the early stages of PDAC. (Data set ID PXD047043.).
Collapse
Affiliation(s)
- Min Jung Lee
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, South Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, South Korea
| | - Sumi Bae
- JW BioScience Corp., 38 Gwacheon-daero, Gwacheon-si, Gyeonggi-do 13840, South Korea
| | - Hye Soo Jung
- JW BioScience Corp., 38 Gwacheon-daero, Gwacheon-si, Gyeonggi-do 13840, South Korea
| | - Chang Moo Kang
- Department of Surgery, Division of HBP Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Sung Hyun Kim
- Department of Surgery, Division of HBP Surgery, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hye Jin Choi
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Choong-Kun Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Hoguen Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Daewoong Jo
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 03929, Korea
| | - Young-Ki Paik
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, South Korea
- Cellivery R&D Institute, Cellivery Therapeutics, Inc., Seoul 03929, Korea
| |
Collapse
|
2
|
Kuhn MB, VandenBerg HS, Reynolds AJ, Carson MD, Warner AJ, LaRue AC, Novince CM, Hathaway-Schrader JD. C3a-C3aR signaling is a novel modulator of skeletal homeostasis. Bone Rep 2023; 18:101662. [PMID: 36860797 PMCID: PMC9969257 DOI: 10.1016/j.bonr.2023.101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Osteoimmune studies have identified complement signaling as an important regulator of the skeleton. Specifically, complement anaphylatoxin receptors (i.e., C3aR, C5aR) are expressed on osteoblasts and osteoclasts, implying that C3a and/or C5a may be candidate mediators of skeletal homeostasis. The study aimed to determine how complement signaling influences bone modeling/remodeling in the young skeleton. Female C57BL/6J C3aR-/-C5aR-/- vs. wildtype and C3aR-/- vs. wildtype mice were examined at age 10 weeks. Trabecular and cortical bone parameters were analyzed by micro-CT. In situ osteoblast and osteoclast outcomes were determined by histomorphometry. Osteoblast and osteoclast precursors were assessed in vitro. C3aR-/-C5aR-/- mice displayed an increased trabecular bone phenotype at age 10 weeks. In vitro studies revealed C3aR-/-C5aR-/- vs. wildtype cultures had less bone-resorbing osteoclasts and increased bone-forming osteoblasts, which were validated in vivo. To determine whether C3aR alone was critical for the enhanced skeletal outcomes, wildtype vs. C3aR-/- mice were evaluated for osseous tissue outcomes. Paralleling skeletal findings in C3aR-/-C5aR-/- mice, C3aR-/- vs. wildtype mice had an enhanced trabecular bone volume fraction, which was attributed to increased trabecular number. There was elevated osteoblast activity and suppressed osteoclastic cells in C3aR-/- vs. wildtype mice. Furthermore, primary osteoblasts derived from wildtype mice were stimulated with exogenous C3a, which more profoundly upregulated C3ar1 and the pro-osteoclastic chemokine Cxcl1. This study introduces the C3a/C3aR signaling axis as a novel regulator of the young skeleton.
Collapse
Affiliation(s)
- Megan B. Kuhn
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Hayden S. VandenBerg
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Andrew J. Reynolds
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Matthew D. Carson
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics-Div. of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amy J. Warner
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics-Div. of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Amanda C. LaRue
- Research Services, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Chad M. Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Pediatrics-Div. of Endocrinology, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jessica D. Hathaway-Schrader
- Department of Stomatology-Div. of Periodontics, College of Dental Medicine, Medical University of South Carolina, Charleston, SC, USA
- Research Services, Ralph H. Johnson Department of Veterans Affairs Health Care System, Charleston, SC, USA
- Department of Pathology and Laboratory Medicine, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
3
|
Ghosh M, Rana S. The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. Int Immunopharmacol 2023; 118:110081. [PMID: 36989901 DOI: 10.1016/j.intimp.2023.110081] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The complement system is one of the oldest known tightly regulated host defense systems evolved for efficiently functioning cell-based immune systems and antibodies. Essentially, the complement system acts as a pivot between the innate and adaptive arms of the immune system. The complement system collectively represents a cocktail of ∼50 cell-bound/soluble glycoproteins directly involved in controlling infection and inflammation. Activation of the complement cascade generates complement fragments like C3a, C4a, and C5a as anaphylatoxins. C5a is the most potent proinflammatory anaphylatoxin, which is involved in inflammatory signaling in a myriad of tissues. This review provides a comprehensive overview of human C5a in the context of its structure and signaling under several pathophysiological conditions, including the current and future therapeutic applications targeting C5a.
Collapse
Affiliation(s)
- Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
4
|
Kovács P, Pushparaj PN, Takács R, Mobasheri A, Matta C. The clusterin connectome: Emerging players in chondrocyte biology and putative exploratory biomarkers of osteoarthritis. Front Immunol 2023; 14:1103097. [PMID: 37033956 PMCID: PMC10081159 DOI: 10.3389/fimmu.2023.1103097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionClusterin is amoonlighting protein that hasmany functions. It is amultifunctional Q6 holdase chaperone glycoprotein that is present intracellularly and extracellularly in almost all bodily fluids. Clusterin is involved in lipid transport, cell differentiation, regulation of apoptosis, and clearance of cellular debris, and plays a protective role in ensuring cellular survival. However, the possible involvement of clusterin in arthritic disease remains unclear. Given the significant potential of clusterin as a biomarker of osteoarthritis (OA), a more detailed analysis of its complex network in an inflammatory environment, specifically in the context of OA, is required. Based on the molecular network of clusterin, this study aimed to identify interacting partners that could be developed into biomarker panels for OA.MethodsThe STRING database and Cytoscape were used to map and visualize the clusterin connectome. The Qiagen Ingenuity Pathway Analysis (IPA) software was used to analyze and study clusterinassociated signaling networks in OA. We also analyzed transcription factors known to modulate clusterin expression, which may be altered in OA.ResultsThe top hits in the clusterin network were intracellular chaperones, aggregate-forming proteins, apoptosis regulators and complement proteins. Using a text-mining approach in Cytoscape, we identified additional interacting partners, including serum proteins, apolipoproteins, and heat shock proteins.DiscussionBased on known interactions with proteins, we predicted potential novel components of the clusterin connectome in OA, including selenoprotein R, semaphorins, and meprins, which may be important for designing new prognostic or diagnostic biomarker panels.
Collapse
Affiliation(s)
- Patrik Kovács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research (CEGMR), Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Roland Takács
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Ali Mobasheri
- FibroHealth Interdisciplinary Research Programme, Fibrobesity Cluster, Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| | - Csaba Matta
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- *Correspondence: Csaba Matta, ; Ali Mobasheri,
| |
Collapse
|
5
|
Al-Ansari MM, Aleidi SM, Masood A, Alnehmi EA, Abdel Jabar M, Almogren M, Alshaker M, Benabdelkamel H, Abdel Rahman AM. Proteomics Profiling of Osteoporosis and Osteopenia Patients and Associated Network Analysis. Int J Mol Sci 2022; 23:ijms231710200. [PMID: 36077598 PMCID: PMC9456664 DOI: 10.3390/ijms231710200] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Bone mass reduction due to an imbalance in osteogenesis and osteolysis is characterized by low bone mineral density (LBMD) and is clinically classified as osteopenia (ON) or osteoporosis (OP), which is more severe. Multiple biomarkers for diagnosing OP and its progression have been reported; however, most of these lack specificity. This cohort study aimed to investigate sensitive and specific LBMD-associated protein biomarkers in patients diagnosed with ON and OP. A label-free liquid chromatography-mass spectrometry (LC-MS) proteomics approach was used to analyze serum samples. Patients’ proteomics profiles were filtered for potential confounding effects, such as age, sex, chronic diseases, and medication. A distinctive proteomics profile between the control, ON, and OP groups (Q2 = 0.7295, R2 = 0.9180) was identified, and significant dysregulation in a panel of proteins (n = 20) was common among the three groups. A comparison of these proteins showed that the levels of eight proteins were upregulated in ON, compared to those in the control and the OP groups, while the levels of eleven proteins were downregulated in the ON group compared to those in the control group. Interestingly, only one protein, myosin heavy chain 14 (MYH14), showed a linear increase from the control to the ON group, with the highest abundance in the OP group. A significant separation in the proteomics profile between the ON and OP groups (Q2 = 0.8760, R2 = 0.991) was also noted. Furthermore, a total of twenty-six proteins were found to be dysregulated between the ON and the OP groups, with fourteen upregulated and twelve downregulated proteins in the OP, compared to that in the ON group. Most of the identified dysregulated proteins were immunoglobulins, complement proteins, cytoskeletal proteins, coagulation factors, and various enzymes. Of these identified proteins, the highest area under the curve (AUC) in the receiver operating characteristic (ROC) analysis was related to three proteins (immunoglobulin Lambda constant 1 (IGLC1), RNA binding protein (MEX3B), and fibulin 1 (FBLN1)). Multiple reaction monitoring (MRM), LC-MS, was used to validate some of the identified proteins. A network pathway analysis of the differentially abundant proteins demonstrated dysregulation of inflammatory signaling pathways in the LBMD patients, including the tumor necrosis factor (TNF), toll-like receptor (TL4), and interferon-γ (IFNG) signaling pathways. These results reveal the existence of potentially sensitive protein biomarkers that could be used in further investigations of bone health and OP progression.
Collapse
Affiliation(s)
- Mysoon M. Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Molecular Oncology, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Shereen M. Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Eman A. Alnehmi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Mai Abdel Jabar
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
| | - Maha Almogren
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alshaker
- Department of Family Medicine and Polyclinic, King Faisal Specialist Hospital & Research Center, Riyadh 11211, Saudi Arabia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Correspondence:
| |
Collapse
|
6
|
Ruocco A, Sirico A, Novelli R, Iannelli S, Van Breda SV, Kyburz D, Hasler P, Aramini A, Amendola PG. The role of C5a-C5aR1 axis in bone pathophysiology: A mini-review. Front Cell Dev Biol 2022; 10:957800. [PMID: 36003145 PMCID: PMC9393612 DOI: 10.3389/fcell.2022.957800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Bone remodeling is a physiological, dynamic process that mainly depends on the functions of 2 cell types: osteoblasts and osteoclasts. Emerging evidence suggests that complement system is crucially involved in the regulation of functions of these cells, especially during inflammatory states. In this context, complement component 5a (C5a), a powerful pro-inflammatory anaphylatoxin that binds the receptor C5aR1, is known to regulate osteoclast formation and osteoblast inflammatory responses, and has thus been proposed as potential therapeutic target for the treatment of inflammatory bone diseases. In this review, we will analyze the role of C5a-C5aR1 axis in bone physiology and pathophysiology, describing its involvement in the pathogenesis of some of the most frequent inflammatory bone diseases such as rheumatoid arthritis, and also in osteoporosis and bone cancer and metastasis. Moreover, we will examine C5aR1-based pharmacological approaches that are available and have been tested so far for the treatment of these conditions. Given the growing interest of the scientific community on osteoimmunology, and the scarcity of data regarding the role of C5a-C5aR1 axis in bone pathophysiology, we will highlight the importance of this axis in mediating the interactions between skeletal and immune systems and its potential use as a therapeutic target.
Collapse
Affiliation(s)
| | | | | | | | | | - Diego Kyburz
- Departement Biomedizin, University of Basel, Basel, Switzerland
| | - Paul Hasler
- Division of Rheumatology, Kantonsspital Aarau AG, Aarau, Switzerland
| | | | | |
Collapse
|
7
|
Cheng TH, Zeng J, Dehghani A, Dimaculangan D, Zhang M, Maheshwari AV. Complement C3-α and C3-β Levels in Synovial Fluid But Not in Blood Correlate With the Severity of Osteoarthritis Research Society International Histopathological Grades in Primary Knee Osteoarthritis. J Arthroplasty 2022; 37:1541-1548.e1. [PMID: 35367611 DOI: 10.1016/j.arth.2022.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Primary osteoarthritis (OA) is the most common cause of knee arthritis worldwide. The knee synovial fluid complement C3-β chain levels have been shown to correlate with clinical symptoms of knee OA. It is not known whether the complement C3 in the synovial fluid is derived from the circulation or is produced locally in the knee. METHODS Fifty primary OA patients undergoing a total knee arthroplasty procedure were evaluated for biochemical analyses of C3-α and C3-β chains in the synovial fluid and blood plasma. These levels were corelated with the severity of corresponding knee OA based on the Osteoarthritis Research Society International (OARSI) grade. RESULTS Both synovial C3-α and C3-β levels correlated significantly with the severity of OA. Neither plasma C3-α levels nor C3-β levels significantly correlated with OARSI grading. Neither synovial C3-α levels nor C3-β correlated significantly with plasma C3-α or C3-β levels, respectively. Synovial C3-α chain and C3-β chain levels were significantly higher in the grade >6 group. In plasma, neither C3-α chain levels nor C3-β chain levels were significantly different between the groups. Neither synovial C3-α nor C3-β levels significantly correlated with plasma erythrocyte sedimentation rate or C-reactive protein levels. CONCLUSION In knee primary OA, C3 seems to be produced and released locally into the synovial fluid instead of being derived from blood in the circulation. Synovial C3 levels, but not blood plasma C3, correlate with the histopathological severity of primary OA in the knee. Synovial C3 may be an important factor in the pathogenesis of primary OA clinical symptoms and a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Tzu Hsuan Cheng
- Department of Anesthesiology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Jianying Zeng
- Department of Pathology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Amir Dehghani
- Department of Pathology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Dennis Dimaculangan
- Department of Anesthesiology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Ming Zhang
- Department of Anesthesiology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York; Department of Pathology, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York
| | - Aditya V Maheshwari
- Department of Orthopedics, College of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York
| |
Collapse
|
8
|
Garg V, Chandanala S, David-Luther M, Govind M, Prasad RR, Kumar A, Prasanna SJ. The Yin and Yang of Immunity in Stem Cell Decision Guidance in Tissue Ecologies: An Infection Independent Perspective. Front Cell Dev Biol 2022; 10:793694. [PMID: 35198558 PMCID: PMC8858808 DOI: 10.3389/fcell.2022.793694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The impact of immune system and inflammation on organ homeostasis and tissue stem cell niches in the absence of pathogen invasion has long remained a conundrum in the field of regenerative medicine. The paradoxical role of immune components in promoting tissue injury as well as resolving tissue damage has complicated therapeutic targeting of inflammation as a means to attain tissue homeostasis in degenerative disease contexts. This confound could be resolved by an integrated intricate assessment of cross-talk between inflammatory components and micro- and macro-environmental factors existing in tissues during health and disease. Prudent fate choice decisions of stem cells and their differentiated progeny are key to maintain tissue integrity and function. Stem cells have to exercise this fate choice in consultation with other tissue components. With this respect tissue immune components, danger/damage sensing molecules driving sterile inflammatory signaling cascades and barrier cells having immune-surveillance functions play pivotal roles in supervising stem cell decisions in their niches. Stem cells learn from their previous damage encounters, either endogenous or exogenous, or adapt to persistent micro-environmental changes to orchestrate their decisions. Thus understanding the communication networks between stem cells and immune system components is essential to comprehend stem cell decisions in endogenous tissue niches. Further the systemic interactions between tissue niches integrated through immune networks serve as patrolling systems to establish communication links and orchestrate micro-immune ecologies to better organismal response to injury and promote regeneration. Understanding these communication links is key to devise immune-centric regenerative therapies. Thus the present review is an integrated attempt to provide a unified purview of how inflammation and immune cells provide guidance to stem cells for tissue sculpting during development, organismal aging and tissue crisis based on the current knowledge in the field.
Collapse
|
9
|
Jiang F, Liu H, Peng F, Liu Z, Ding K, Song J, Li L, Chen J, Shao Q, Yan S, De Veirman K, Vanderkerken K, Fu R. Complement C3a activates osteoclasts by regulating the PI3K/PDK1/SGK3 pathway in patients with multiple myeloma. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0430. [PMID: 33960177 PMCID: PMC8330530 DOI: 10.20892/j.issn.2095-3941.2020.0430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Myeloma bone disease (MBD) is the most common complication of multiple myeloma (MM). Our previous study showed that the serum levels of C3/C4 in MM patients were significantly positively correlated with the severity of bone disease. However, the mechanism of C3a/C4a in osteoclasts MM patients remains unclear. METHODS The formation and function of osteoclasts were analyzed after adding C3a/C4a in vitro. RNA-seq analysis was used to screen the potential pathways affecting osteoclasts, and the results were verified by Western blot, qRT-PCR, and pathway inhibitors. RESULTS The osteoclast area per view induced by 1 μg/mL (mean ± SD: 50.828 ± 12.984%) and 10 μg/mL (53.663 ± 12.685%) of C3a was significantly increased compared to the control group (0 μg/mL) (34.635 ± 8.916%) (P < 0.001 and P < 0.001, respectively). The relative mRNA expressions of genes, OSCAR/TRAP/RANKL/cathepsin K, induced by 1 μg/mL (median: 5.041, 3.726, 1.638, and 4.752, respectively) and 10 μg/mL (median: 5.140, 3.702, 2.250, and 5.172, respectively) of C3a was significantly increased compared to the control group (median: 3.137, 2.004, 0.573, and 2.257, respectively) (1 μg/mL P = 0.001, P = 0.003, P < 0.001, and P = 0.008, respectively; 10 μg/mL: P < 0.001, P = 0.019, P < 0.001, and P = 0.002, respectively). The absorption areas of the osteoclast resorption pits per view induced by 1 μg/mL (mean ± SD: 51.464 ± 11.983%) and 10 μg/mL (50.219 ± 12.067%) of C3a was also significantly increased (33.845 ± 8.331%) (P < 0.001 and P < 0.001, respectively) compared to the control. There was no difference between the C4a and control groups. RNA-seq analysis showed that C3a promoted the proliferation of osteoclasts using the phosphoinositide 3-kinase (PI3K) signaling pathway. The relative expressions of PIK3CA/phosphoinositide dependent kinase-1 (PDK1)/serum and glucocorticoid inducible protein kinases (SGK3) genes and PI3K/PDK1/p-SGK3 protein in the C3a group were significantly higher than in the control group. The activation role of C3a in osteoclasts of MM patients was reduced by the SGK inhibitor (EMD638683). CONCLUSIONS C3a activated osteoclasts by regulating the PI3K/PDK1/SGK3 pathways in MM patients, which was reduced using a SGK inhibitor. Overall, our results identified potential therapeutic targets and strategies for MBD patients.
Collapse
Affiliation(s)
- Fengjuan Jiang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fengping Peng
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jia Song
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jin Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qing Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Siyang Yan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Kim De Veirman
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology-Myeloma Center Brussels, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
10
|
Assirelli E, Pulsatelli L, Dolzani P, Mariani E, Lisignoli G, Addimanda O, Meliconi R. Complement Expression and Activation in Osteoarthritis Joint Compartments. Front Immunol 2020; 11:535010. [PMID: 33193305 PMCID: PMC7658426 DOI: 10.3389/fimmu.2020.535010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 10/05/2020] [Indexed: 01/15/2023] Open
Abstract
Objective To investigate complement(C) factors(F) and their activation fragments expression in OA joint tissues. Design Immunohistochemistry and quantitative imaging were performed to analyze C3, C4, and CF (factor) B expression on osteochondral biopsies (43 patients) collected during arthroplasty. Isolated chondrocytes and synoviocytes, cartilage and synovial tissues obtained from surgical specimens of OA patients (15 patients) were cultured with or without IL-1β. Real time PCR for CFB, C3, and C4 was performed. Culture supernatants were analyzed for C3a, C5a, CFBa, and terminal complement complex (TCC) production. Results In osteochondral biopsies, C factor expression was located in bone marrow, in a few subchondral bone cells and chondrocytes. C3 was the most expressed while factor C4 was the least expressed factor. Gene expression showed that all C factors analyzed were expressed both in chondrocytes and synoviocytes. In chondrocyte cultures and cartilage explants, CFB expression was significantly higher than C3 and C4. Furthermore, CFB, but not C3 and C4 expression was significantly induced by IL-1β. As to C activation factors, C3a was the most produced and CFBa was induced by IL-1β in synovial tissue. TCC production was undetectable in isolated chondrocytes and synoviocytes cell culture supernatants, whereas it was significantly augmented in cartilage explants. Conclusion C factors were locally produced and activated in OA joint with the contribution of all tissues (cartilage, bone, and synovium). Our results support the involvement of innate immunity in OA and suggest an association between some C alternative pathway component and joint inflammation.
Collapse
Affiliation(s)
- Elisa Assirelli
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Lia Pulsatelli
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Paolo Dolzani
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Erminia Mariani
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Gina Lisignoli
- Laboratory of Immunorheumatology and Tissue Regeneration, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Olga Addimanda
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| | - Riccardo Meliconi
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum—University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Teixeira GQ, Yong Z, Goncalves RM, Kuhn A, Riegger J, Brisby H, Barreto Henriksson H, Ruf M, Nerlich A, Mauer UM, Ignatius A, Brenner RE, Neidlinger-Wilke C. Terminal complement complex formation is associated with intervertebral disc degeneration. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 30:217-226. [PMID: 32936402 DOI: 10.1007/s00586-020-06592-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/16/2020] [Accepted: 09/03/2020] [Indexed: 01/31/2023]
Abstract
PURPOSE The complement system is a crucial part of innate immunity. Recent work demonstrated an unexpected contribution to tissue homeostasis and degeneration. This study investigated for the first time, in human disc tissues, the deposition profile of the complement activation product terminal complement complex (TCC), an inflammatory trigger and inducer of cell lysis, and its inhibitor CD59, and their correlation with the degree of disc degeneration (DD). METHODS Disc biopsies were collected from patients diagnosed with DD (n = 39, age 63 ± 12) and adolescent idiopathic scoliosis (AIS, n = 10, age 17 ± 4) and compared with discs from healthy Young (n = 11, age 7 ± 7) and Elder (n = 10, age 65 ± 15) donors. Immunohistochemical detection of TCC and CD59 in nucleus pulposus (NP), annulus fibrosus (AF) and endplate (EP) was correlated with age, Pfirrmann grade and Modic changes. RESULTS Higher percentage of TCC+ cells was detected in the NP and EP of DD compared to Elder (P < 0.05), and in the EP of Young versus Elder (P < 0.001). In DD, TCC deposition was positively correlated with Pfirrmann grade, but not with Modic changes, whereas for Young donors, a negative correlation was found with age, indicating TCC's involvement not only in DD, but also in early stages of skeletal development. Higher CD59 positivity was found in AIS and DD groups compared to Young (P < 0.05), and it was negatively correlated with the age of the patients. CONCLUSION TCC deposition positively correlated with the degree of disc degeneration. A functional relevance of TCC may exist in DD, representing a potential target for new therapeutics.
Collapse
Affiliation(s)
- Graciosa Q Teixeira
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany
| | - Zhiyao Yong
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany
| | - Raquel M Goncalves
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Amelie Kuhn
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University, Ulm, Germany
| | - Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University, Ulm, Germany
| | - Helena Brisby
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Barreto Henriksson
- Department of Orthopedics, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Orthopedics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Michael Ruf
- Center for Spine Surgery, Orthopedics, and Traumatology, SRH-Klinikum Karlsbad-Langensteinbach, Karlsbad, Germany
| | - Andreas Nerlich
- Department of Pathology, Academic Hospital Munich-Bogenhausen, Munich, Germany
| | - Uwe M Mauer
- Department of Neurosurgery, German Armed Forces Hospital, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany
| | - Rolf E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University, Ulm, Germany
| | - Cornelia Neidlinger-Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre, Ulm University, Ulm, Germany.
| |
Collapse
|
12
|
Riegger J, Huber-Lang M, Brenner RE. Crucial role of the terminal complement complex in chondrocyte death and hypertrophy after cartilage trauma. Osteoarthritis Cartilage 2020; 28:685-697. [PMID: 31981738 DOI: 10.1016/j.joca.2020.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Innate immune response and particularly terminal complement complex (TCC) deposition are thought to be involved in the pathogenesis of posttraumatic osteoarthritis. However, the possible role of TCC in regulated cell death as well as chondrocyte hypertrophy and senescence has not been unraveled so far and was first addressed using an ex vivo human cartilage trauma-model. DESIGN Cartilage explants were subjected to blunt impact (0.59 J) and exposed to human serum (HS) and cartilage homogenate (HG) with or without different potential therapeutics: RIPK1-inhibitor Necrostatin-1 (Nec), caspase-inhibitor zVAD, antioxidant N-acetyl cysteine (NAC) and TCC-inhibitors aurintricarboxylic acid (ATA) and clusterin (CLU). Cell death and hypertrophy/senescence-associated markers were evaluated on mRNA and protein level. RESULTS Addition of HS resulted in significantly enhanced TCC deposition on chondrocytes and decrease of cell viability after trauma. This effect was potentiated by HG and was associated with expression of RIPK3, MLKL and CASP8. Cytotoxicity of HS could be prevented by heat-inactivation or specific inhibitors, whereby combination of Nec and zVAD as well as ATA exhibited highest cell protection. Moreover, HS+HG exposition enhanced the gene expression of CXCL1, IL-8, RUNX2 and VEGFA as well as secretion of IL-6 after cartilage trauma. CONCLUSIONS Our findings imply crucial involvement of the complement system and primarily TCC in regulated cell death and phenotypic changes of chondrocytes after cartilage trauma. Inhibition of TCC formation or downstream signaling largely modified serum-induced pathophysiologic effects and might therefore represent a therapeutic target to maintain the survival and chondrogenic character of cartilage cells.
Collapse
Affiliation(s)
- J Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany
| | - M Huber-Lang
- Institute of Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - R E Brenner
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, University of Ulm, Ulm, Germany.
| |
Collapse
|
13
|
Pathomechanisms of Posttraumatic Osteoarthritis: Chondrocyte Behavior and Fate in a Precarious Environment. Int J Mol Sci 2020; 21:ijms21051560. [PMID: 32106481 PMCID: PMC7084733 DOI: 10.3390/ijms21051560] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic injuries of the knee joint result in a wide variety of pathomechanisms, which contribute to the development of so-called posttraumatic osteoarthritis (PTOA). These pathogenetic processes include oxidative stress, excessive expression of catabolic enzymes, release of damage-associated molecular patterns (DAMPs), and synovial inflammation. The present review focuses on the underlying pathomechanisms of PTOA and in particular the behavior and fate of the surviving chondrocytes, comprising chondrocyte metabolism, regulated cell death, and phenotypical changes comprising hypertrophy and senescence. Moreover, possible therapeutic strategies, such as chondroanabolic stimulation, anti-oxidative and anti-inflammatory treatment, as well as novel therapeutic targets are discussed.
Collapse
|
14
|
D'Angelo R, Mangini M, Fonderico J, Fulle S, Mayo E, Aramini A, Mariggiò S. Inhibition of osteoclast activity by complement regulation with DF3016A, a novel small-molecular-weight C5aR inhibitor. Biomed Pharmacother 2019; 123:109764. [PMID: 31901551 DOI: 10.1016/j.biopha.2019.109764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Recent insights have indicated an active role of the complex complement system not only in immunity, but also in bone remodeling. Evidence from knockout mice and observations from skeletal diseases have drawn attention to the C5a/C5aR axis of the complement cascade in the modulation of osteoclast functions and as potential therapeutic targets for treatment of bone pathologies. With the aim to identify novel C5aR regulators, a medicinal chemistry program was initiated, driven by structural information on a minor pocket of C5aR that has been proposed to be a key motif for C5aR intracellular activation. The impact of the peptidomimetic orthosteric C5aR antagonist (PMX-53), of two newly synthesized allosteric C5aR antagonists (DF2593A, DF3016A), and of C5aR down-regulation by specific siRNAs, were examined for regulation of osteoclastogenesis, using a well-validated in-vitro model starting from RAW264.7 precursor cells. Both pharmacological and molecular approaches reduced osteoclast maturation of RAW264.7 cells induced by receptor-activator of nuclear factor kappa-B ligand (RANKL), which limited the transcription of several differentiation markers evaluated by real-time PCR, including nuclear factor of activated T-cell 1, matrix metalloproteinase-9, cathepsin-K, and tartrate-resistant acid phosphatase. These treatments were ineffective on the subsequent step of osteoclast syncytium formation, apparently as a consequence of reduction of C5aR mRNA levels in the course of osteoclastogenesis, as monitored by real-time PCR. Among the C5aR antagonists analyzed, DF3016A inhibited osteoclast degradation activity through inhibition of C5aR signal transduction and transcription. These data confirm the preclinical relevance of this novel therapeutic candidate.
Collapse
Affiliation(s)
- Rosa D'Angelo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Mangini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Jole Fonderico
- Dept Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Italy
| | - Stefania Fulle
- Dept Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University of Chieti-Pescara, Italy
| | - Emilia Mayo
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Andrea Aramini
- Research and Early Development Dompé Farmaceutici S.p.A, Naples, Italy
| | - Stefania Mariggiò
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.
| |
Collapse
|
15
|
Mödinger Y, Löffler B, Huber-Lang M, Ignatius A. Complement involvement in bone homeostasis and bone disorders. Semin Immunol 2018; 37:53-65. [DOI: 10.1016/j.smim.2018.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/12/2022]
|
16
|
Škrabar N, Turner LM, Pallares LF, Harr B, Tautz D. Using the
Mus musculus
hybrid zone to assess covariation and genetic architecture of limb bone lengths. Mol Ecol Resour 2018. [DOI: 10.1111/1755-0998.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Neva Škrabar
- Max‐Planck Institute for Evolutionary Biology Plön Germany
| | - Leslie M. Turner
- Max‐Planck Institute for Evolutionary Biology Plön Germany
- Department of Biology and Biochemistry Milner Centre for Evolution University of Bath Bath UK
| | - Luisa F. Pallares
- Max‐Planck Institute for Evolutionary Biology Plön Germany
- Lewis‐Sigler Institute for Integrative Genomics Princeton University Princeton NJ USA
| | - Bettina Harr
- Max‐Planck Institute for Evolutionary Biology Plön Germany
| | - Diethard Tautz
- Max‐Planck Institute for Evolutionary Biology Plön Germany
| |
Collapse
|
17
|
MacKay DL, Kean TJ, Bernardi KG, Haeberle HS, Ambrose CG, Lin F, Dennis JE. Reduced bone loss in a murine model of postmenopausal osteoporosis lacking complement component 3. J Orthop Res 2018; 36:118-128. [PMID: 28667799 PMCID: PMC5758433 DOI: 10.1002/jor.23643] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/21/2017] [Indexed: 02/04/2023]
Abstract
The growing field of osteoimmunology seeks to unravel the complex interdependence of the skeletal and immune systems. Notably, we and others have demonstrated that complement signaling influences the differentiation of osteoblasts and osteoclasts, the two primary cell types responsible for maintaining bone homeostasis. However, the net effect of complement on bone homeostasis in vivo was unknown. Our published in vitro mechanistic work led us to hypothesize that absence of complement component 3 (C3), a central protein in the complement activation cascade, protects against bone loss in the ovariectomy-based model of postmenopausal osteoporosis. Indeed, we report here that, when compared to their C57BL/6J (WT) counterparts, ovariectomized C3 deficient mice experienced reduced bone loss at multiple sites and increased stiffness at the femoral neck, the latter potentially improving mechanical function. WT and B6;129S4-C3tm1Crr /J (C3-/- ) mice were either ovariectomized or sham-operated at 6 weeks of age and euthanized at 12 weeks. MicroCT on harvested bones revealed that the trabecular bone volume fraction in the metaphyses of both the proximal tibiae and distal femora of ovariectomized C3-/- mice is significantly greater than that of their WT counterparts. Lumbar vertebrae showed significantly greater osteoid content and mineral apposition rates. Mechanical testing demonstrated significantly greater stiffness in the femoral necks of ovariectomized C3-/- mice. These results demonstrate that C3 deficiency reduces bone loss at ovariectomy and may improve mechanical properties. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:118-128, 2018.
Collapse
Affiliation(s)
- Danielle L. MacKay
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX
| | - Thomas J. Kean
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX
| | | | | | | | - Feng Lin
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, OH
| | - James E. Dennis
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX
| |
Collapse
|
18
|
Grajales-Esquivel E, Luz-Madrigal A, Bierly J, Haynes T, Reis ES, Han Z, Gutierrez C, McKinney Z, Tzekou A, Lambris JD, Tsonis PA, Del Rio-Tsonis K. Complement component C3aR constitutes a novel regulator for chick eye morphogenesis. Dev Biol 2017; 428:88-100. [PMID: 28576690 PMCID: PMC5726978 DOI: 10.1016/j.ydbio.2017.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/05/2016] [Accepted: 05/17/2017] [Indexed: 12/22/2022]
Abstract
Complement components have been implicated in a wide variety of functions including neurogenesis, proliferation, cell migration, differentiation, cancer, and more recently early development and regeneration. Following our initial observations indicating that C3a/C3aR signaling induces chick retina regeneration, we analyzed its role in chick eye morphogenesis. During eye development, the optic vesicle (OV) invaginates to generate a bilayer optic cup (OC) that gives rise to the retinal pigmented epithelium (RPE) and neural retina. We show by immunofluorescence staining that C3 and the receptor for C3a (the cleaved and active form of C3), C3aR, are present in chick embryos during eye morphogenesis in the OV and OC. Interestingly, C3aR is mainly localized in the nuclear compartment at the OC stage. Loss of function studies at the OV stage using morpholinos or a blocking antibody targeting the C3aR (anti-C3aR Ab), causes eye defects such as microphthalmia and defects in the ventral portion of the eye that result in coloboma. Such defects were not observed when C3aR was disrupted at the OC stage. Histological analysis demonstrated that microphthalmic eyes were unable to generate a normal optic stalk or a closed OC. The dorsal/ventral patterning defects were accompanied by an expansion of the ventral markers Pax2, cVax and retinoic acid synthesizing enzyme raldh-3 (aldh1a3) domains, an absence of the dorsal expression of Tbx5 and raldh-1 (aldh1a1) and a re-specification of the ventral RPE to neuroepithelium. In addition, the eyes showed overall decreased expression of Gli1 and a change in distribution of nuclear β-catenin, suggesting that Shh and Wnt pathways have been affected. Finally, we observed prominent cell death along with a decrease in proliferating cells, indicating that both processes contribute to the microphthalmic phenotype. Together our results show that C3aR is necessary for the proper morphogenesis of the OC. This is the first report implicating C3aR in eye development, revealing an unsuspected hitherto regulator for proper chick eye morphogenesis.
Collapse
Affiliation(s)
- Erika Grajales-Esquivel
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Agustin Luz-Madrigal
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA; Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Jeffrey Bierly
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Tracy Haynes
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Zeyu Han
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Christian Gutierrez
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Zachary McKinney
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| | - Apostolia Tzekou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Panagiotis A Tsonis
- Department of Biology, University of Dayton and Center for Tissue Regeneration and Engineering at the University of Dayton (TREND), Dayton, OH 45469, USA.
| | - Katia Del Rio-Tsonis
- Department of Biology, Miami University and Center for Visual Sciences at Miami University (CVSMU), Oxford, OH 45056, USA.
| |
Collapse
|
19
|
Bergdolt S, Kovtun A, Hägele Y, Liedert A, Schinke T, Amling M, Huber-Lang M, Ignatius A. Osteoblast-specific overexpression of complement receptor C5aR1 impairs fracture healing. PLoS One 2017; 12:e0179512. [PMID: 28614388 PMCID: PMC5470759 DOI: 10.1371/journal.pone.0179512] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/30/2017] [Indexed: 01/08/2023] Open
Abstract
The anaphylatoxin receptor C5aR1 plays an important role not only in innate immune responses, but also in bone metabolism and fracture healing, being highly expressed on immune and bone cells, including osteoblasts and osteoclasts. C5aR1 induces osteoblast migration, cytokine generation and osteoclastogenesis, however, the exact role of C5aR1-mediated signaling in osteoblasts is not entirely known. Therefore, we hypothesized that osteoblasts are essential target cells for C5a and that fracture healing should be disturbed in mice with an osteoblast-specific C5aR1 overexpression (Col1a1-C5aR1). Osteoblast activity in vitro, bone phenotype and fracture healing after isolated osteotomy and after combined osteotomy with additional thoracic trauma were analyzed. The systemic and local inflammatory reactions were analyzed by determining C5a and IL-6 concentrations in blood, bronchoalveolar lavage fluid and fracture callus and the recruitment of immune cells. In vitro, osteoblast proliferation and differentiation were similar to wildtype cells, and phosphorylation of p38 and expression of IL-6 and RANKL were increased in osteoblasts derived from Col1a1-C5aR1 mice. Bone phenotype and the inflammatory reaction were unaffected in Col1a1-C5aR1 mice. Fracture healing was significantly impaired as demonstrated by significantly reduced bone content, bone mineral density and flexural rigidity, possibly due to significantly increased osteoclast numbers. C5aR1 signaling in osteoblasts might possibly affect RANKL/OPG balance, leading to increased bone resorption. Additional trauma significantly impaired fracture healing, particularly in Col1a1-C5aR1 mice. In conclusion, the data indicate that C5aR1 signaling in osteoblasts plays a detrimental role in bone regeneration after fracture.
Collapse
Affiliation(s)
- Stephanie Bergdolt
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | - Anna Kovtun
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | - Yvonne Hägele
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | - Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Huber-Lang
- Institute of Clinical and Experimental Traumaimmunology, University of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
20
|
Schneider MC, Barnes CA, Bryant SJ. Characterization of the chondrocyte secretome in photoclickable poly(ethylene glycol) hydrogels. Biotechnol Bioeng 2017; 114:2096-2108. [PMID: 28436002 DOI: 10.1002/bit.26320] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 12/28/2016] [Accepted: 04/17/2017] [Indexed: 12/30/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels are highly tunable platforms that are promising cell delivery vehicles for chondrocytes and cartilage tissue engineering. In addition to characterizing the type of extracellular matrix (ECM) that forms, understanding the types of proteins that are secreted by encapsulated cells may be important. Thus, the objectives for this study were to characterize the secretome of chondrocytes encapsulated in PEG hydrogels and determine whether the secretome varies as a function of hydrogel stiffness and culture condition. Bovine chondrocytes were encapsulated in photoclickable PEG hydrogels with a compressive modulus of 8 and 46 kPa and cultured under free swelling or dynamic compressive loading conditions. Cartilage ECM deposition was assessed by biochemical assays and immunohistochemistry. The conditioned medium was analyzed by liquid chromatography-tandem mass spectrometry. Chondrocytes maintained their phenotype within the hydrogels and deposited cartilage-specific ECM that increased over time and included aggrecan and collagens II and VI. Analysis of the secretome revealed a total of 64 proteins, which were largely similar among all experimental conditions. The identified proteins have diverse functions such as biological regulation, response to stress, and collagen fibril organization. Notably, many of the proteins important to the assembly of a collagen-rich cartilage ECM were identified and included collagen types II(α1), VI (α1, α2, and α3), IX (α1), XI (α1 and α2), and biglycan. In addition, many of the other identified proteins have been reported to be present within cell-secreted exosomes. In summary, chondrocytes encapsulated within photoclickable PEG hydrogels secrete many types of proteins that diffuse out of the hydrogel and which have diverse functions, but which are largely preserved across different hydrogel culture environments. Biotechnol. Bioeng. 2017;114: 2096-2108. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Margaret C Schneider
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Campus Box 596, Boulder 80309, Colorado.,Biofrontiers Institute, University of Colorado, Boulder, Colorado
| | | | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Ave, Campus Box 596, Boulder 80309, Colorado.,Biofrontiers Institute, University of Colorado, Boulder, Colorado.,Material Science and Engineering Program, University of Colorado, Boulder, Colorado
| |
Collapse
|
21
|
Sandhu HS, Puri S, Sharma R, Sokhi J, Singh G, Matharoo K, Bhanwer AJS. Associating genetic variation at Perilipin 1, Complement Factor D and Adiponectin loci to the bone health status in North Indian population. Gene 2017; 610:80-89. [DOI: 10.1016/j.gene.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/09/2017] [Accepted: 02/06/2017] [Indexed: 12/20/2022]
|
22
|
Romero-Gavilán F, Gomes NC, Ródenas J, Sánchez A, Azkargorta M, Iloro I, Elortza F, García Arnáez I, Gurruchaga M, Goñi I, Suay J. Proteome analysis of human serum proteins adsorbed onto different titanium surfaces used in dental implants. BIOFOULING 2017; 33:98-111. [PMID: 28005415 DOI: 10.1080/08927014.2016.1259414] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 06/06/2023]
Abstract
Titanium dental implants are commonly used due to their biocompatibility and biochemical properties; blasted acid-etched Ti is used more frequently than smooth Ti surfaces. In this study, physico-chemical characterisation revealed important differences in roughness, chemical composition and hydrophilicity, but no differences were found in cellular in vitro studies (proliferation and mineralization). However, the deposition of proteins onto the implant surface might affect in vivo osseointegration. To test that hypothesis, protein layers formed on discs of both surface type after incubation with human serum were analysed. Using mass spectrometry (LC/MS/MS), 218 proteins were identified, 30 of which were associated with bone metabolism. Interestingly, Apo E, antithrombin and protein C adsorbed mostly onto blasted and acid-etched Ti, whereas the proteins of the complement system (C3) were found predominantly on smooth Ti surfaces. These results suggest that physico-chemical characteristics could be responsible for the differences observed in the adsorbed protein layer.
Collapse
Affiliation(s)
- Francisco Romero-Gavilán
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| | - N C Gomes
- b Department of Medicine , University of Castellón , Castellón de la Plana , Spain
| | - Joaquin Ródenas
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| | - Ana Sánchez
- b Department of Medicine , University of Castellón , Castellón de la Plana , Spain
| | - Mikel Azkargorta
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Ibon Iloro
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Felix Elortza
- c Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII , Derio , Spain
| | - Iñaki García Arnáez
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Mariló Gurruchaga
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Isabel Goñi
- d Department of Polymer Science and Technology , University of Basque Country , San Sebastián , Spain
| | - Julio Suay
- a Department of Industrial Systems and Design Engineering , University of Castellón , Castellón de la Plana , Spain
| |
Collapse
|
23
|
Ehrnthaller C, Huber-Lang M, Kovtun A, Rapp AE, Kemmler J, Gebhard F, Ignatius A. C5aR inhibition in the early inflammatory phase does not affect bone regeneration in a model of uneventful fracture healing. Eur J Med Res 2016; 21:42. [PMID: 27784330 PMCID: PMC5081665 DOI: 10.1186/s40001-016-0236-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/16/2016] [Indexed: 01/06/2023] Open
Abstract
Background Recent studies were able to demonstrate involvement of the complement cascade in bone biology. Further studies analyzed the role of complement in traumatic injuries and demonstrated negative effects after excessive systemic activation of the inflammatory response with early abrogation of complement activation after application of a C5aR-antagonist exerting beneficial effects upon bone regeneration. In contrast, own fracture healing experiments with complement-deficient animals implied a crucial role of the complement cascade for sufficient fracture healing. Methods To analyze the effect of a short abrogation of the complement system in the local process of fracture healing, a fracture healing experiment with wild-type mice (C57BL6), femoral osteotomy, consecutive external fixation for 21 days and blockade of the early complement activation (C5aRA) directly after trauma and after 12 h was performed. Control animals received a peptide without any biological effects. After 1–3 days, the inflammatory response was monitored with IL-6 immunostaining, serum analyses of C5a and after 3 days with histological evaluation of PMN. Fracture healing was examined with biomechanical, radiological and histological methods after 21 days. Results While a decrease of the early inflammatory response was seen on day 1 of the C5aRA-treated group regarding immunostaining for IL-6 and after 3 days in the histological evaluation of PMN, no significant differences were demonstrated between both experimental groups after 21 days in the biomechanical, radiological and histological evaluation. Conclusions The present results demonstrate that the short-term inhibition of complement activation immediately after fracture does not significantly affect bone regeneration in an experimental model of regular fracture healing. Whereas other studies demonstrated that the early posttraumatic blockade of the C5aR improves fracture healing in a scenario of combined trauma, the present findings implicate that the same treatment has no effect in uneventful bone healing.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Albert-Einstein Allee 23, 89081, Ulm, Germany.
| | - Markus Huber-Lang
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Albert-Einstein Allee 23, 89081, Ulm, Germany
| | - Anna Kovtun
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Anna Elise Rapp
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Julia Kemmler
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Albert-Einstein Allee 23, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| |
Collapse
|
24
|
Bloom AC, Collins FL, Van't Hof RJ, Ryan ES, Jones E, Hughes TR, Morgan BP, Erlandsson M, Bokarewa M, Aeschlimann D, Evans BAJ, Williams AS. Deletion of the membrane complement inhibitor CD59a drives age and gender-dependent alterations to bone phenotype in mice. Bone 2016; 84:253-261. [PMID: 26721735 PMCID: PMC4764651 DOI: 10.1016/j.bone.2015.12.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/11/2015] [Accepted: 12/21/2015] [Indexed: 11/28/2022]
Abstract
Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specific bone formation and abnormal bone mineral content. A recent study suggested a role for the complement membrane attack complex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attack complex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture. In vivo bone morphology analysis revealed that male CD59a-deficient mice have increased femur length and cortical bone volume, albeit with reduced bone mineral density. However, this phenomenon was not observed in female mice. Histomorphometric analysis of the trabecular bone showed increased rates of bone homeostasis, with both increased bone resorption and mineral apposition rate in CD59a-deficient male mice. When bone cells were studied in isolation, in vitro osteoclastogenesis was significantly increased in male CD59a-deficient mice, although osteoblast formation was not altered. Our data reveal, for the first time, that CD59a is a regulator of bone growth and homeostasis. CD59a ablation in male mice results in longer and wider bones, but with less density, which is likely a major contributing factor for their susceptibility to osteoarthritis. These findings increase our understanding of the role of complement regulation in degenerative arthritis.
Collapse
Affiliation(s)
- Anja C Bloom
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Fraser L Collins
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Rob J Van't Hof
- Bone Research Group, Institute of Ageing & Chronic Disease, University ofLiverpool, Liverpool, UK
| | - Elizabeth S Ryan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Emma Jones
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - B Paul Morgan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Malin Erlandsson
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Göteborg, Gothenburg, Sweden
| | - Maria Bokarewa
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, University of Göteborg, Gothenburg, Sweden
| | - Daniel Aeschlimann
- Matrix Biology and Tissue Repair, Dental School, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK
| | - Bronwen A J Evans
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK
| | - Anwen S Williams
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Arthritis Research UK Centre for Biomechanics and Bioengineering, Cardiff University, Cardiff, UK.
| |
Collapse
|
25
|
Schraufstatter IU, Khaldoyanidi SK, DiScipio RG. Complement activation in the context of stem cells and tissue repair. World J Stem Cells 2015; 7:1090-1108. [PMID: 26435769 PMCID: PMC4591784 DOI: 10.4252/wjsc.v7.i8.1090] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 07/27/2015] [Indexed: 02/06/2023] Open
Abstract
The complement pathway is best known for its role in immune surveillance and inflammation. However, its ability of opsonizing and removing not only pathogens, but also necrotic and apoptotic cells, is a phylogenetically ancient means of initiating tissue repair. The means and mechanisms of complement-mediated tissue repair are discussed in this review. There is increasing evidence that complement activation contributes to tissue repair at several levels. These range from the chemo-attraction of stem and progenitor cells to areas of complement activation, to increased survival of various cell types in the presence of split products of complement, and to the production of trophic factors by cells activated by the anaphylatoxins C3a and C5a. This repair aspect of complement biology has not found sufficient appreciation until recently. The following will examine this aspect of complement biology with an emphasis on the anaphylatoxins C3a and C5a.
Collapse
|
26
|
Bouwens TAM, Trouw LA, Veerhuis R, Dirven CMF, Lamfers MLM, Al-Khawaja H. Complement activation in Glioblastoma multiforme pathophysiology: evidence from serum levels and presence of complement activation products in tumor tissue. J Neuroimmunol 2014; 278:271-6. [PMID: 25468776 DOI: 10.1016/j.jneuroim.2014.11.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/01/2023]
Abstract
Inflammation plays a key role in the pathophysiology of Glioblastoma Multiforme (GBM). Here we focus on the contribution of the so far largely ignored complement system. ELISA and immunohistochemistry were combined to assess levels and localization of critical components of the initiation- and effector pathways of the complement cascade in sera and tumor tissue from GBM patients and matched controls. Serum levels of factor-B were decreased in GBM patients whereas C1q levels were increased. C1q and factor-B deposited in the tumor tissue. Deposition of C3 and C5b-9 suggests local complement activation.MBL deficiency, based on serum levels, was significantly less frequent among GBM patients compared to controls (14% vs. 33%). Therefore low levels of MBL may protect against the initiation/progression of GBM.
Collapse
Affiliation(s)
- T A M Bouwens
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - L A Trouw
- Leiden University Medical Center, Department of Rheumatology, PO Box 9600, 2300 RC Leiden, Netherlands
| | - R Veerhuis
- Vrije University Medical Center, Departments of Clinical Chemistry and Psychiatry, PO Box 7057, 1007 MB Amsterdam, Netherlands
| | - C M F Dirven
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - M L M Lamfers
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands
| | - H Al-Khawaja
- Erasmus University Medical Center, Brain Tumor Center, Department of Neurosurgery, Dr. Molewaterplein 50, 3015 GE Rotterdam, Netherlands.
| |
Collapse
|
27
|
Mikelonis D, Jorcyk CL, Tawara K, Oxford JT. Stüve-Wiedemann syndrome: LIFR and associated cytokines in clinical course and etiology. Orphanet J Rare Dis 2014; 9:34. [PMID: 24618404 PMCID: PMC3995696 DOI: 10.1186/1750-1172-9-34] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/06/2014] [Indexed: 12/14/2022] Open
Abstract
Stüve-Wiedemann syndrome (STWS; OMIM #610559) is a rare bent-bone dysplasia that includes radiologic bone anomalies, respiratory distress, feeding difficulties, and hyperthermic episodes. STWS usually results in infant mortality, yet some STWS patients survive into and, in some cases, beyond adolescence. STWS is caused by a mutation in the leukemia inhibitory factor receptor (LIFR) gene, which is inherited in an autosomally recessive pattern. Most LIFR mutations resulting in STWS are null mutations which cause instability of the mRNA and prevent the formation of LIFR, impairing the signaling pathway. LIFR signaling usually follows the JAK/STAT3 pathway, and is initiated by several interleukin-6-type cytokines. STWS is managed on a symptomatic basis since there is no treatment currently available.
Collapse
Affiliation(s)
| | | | | | - Julia Thom Oxford
- Boise State University, Department of Biological Sciences, Biomolecular Research Center, 1910 University Drive, Boise State University, Boise ID 83725, USA.
| |
Collapse
|
28
|
Ehrnthaller C, Huber-Lang M, Nilsson P, Bindl R, Redeker S, Recknagel S, Rapp A, Mollnes T, Amling M, Gebhard F, Ignatius A. Complement C3 and C5 deficiency affects fracture healing. PLoS One 2013; 8:e81341. [PMID: 24260573 PMCID: PMC3832439 DOI: 10.1371/journal.pone.0081341] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/19/2013] [Indexed: 12/16/2022] Open
Abstract
There is increasing evidence that complement may play a role in bone development. Our previous studies demonstrated that the key complement receptor C5aR was strongly expressed in the fracture callus not only by immune cells but also by bone cells and chondroblasts, indicating a function in bone repair. To further elucidate the role of complement in bone healing, this study investigated fracture healing in mice in the absence of the key complement molecules C3 and C5. C3-/- and C5-/- as well as the corresponding wildtype mice received a standardized femur osteotomy, which was stabilized using an external fixator. Fracture healing was investigated after 7 and 21 days using histological, micro-computed tomography and biomechanical measurements. In the early phase of fracture healing, reduced callus area (C3-/-: -25%, p=0.02; C5-/-: -20% p=0.052) and newly formed bone (C3-/-: -38%, p=0.01; C5-/-: -52%, p=0.009) was found in both C3- and C5-deficient mice. After 21 days, healing was successful in the absence of C3, whereas in C5-deficient mice fracture repair was significantly reduced, which was confirmed by a reduced bending stiffness (-45%; p=0.029) and a smaller callus volume (-17%; p=0.039). We further demonstrated that C5a was activated in C3-/- mice, suggesting cleavage via extrinsic pathways. Our results suggest that the activation of the terminal complement cascade in particular may be crucial for successful fracture healing.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
- * E-mail:
| | - Markus Huber-Lang
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Per Nilsson
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ronny Bindl
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Simon Redeker
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Stefan Recknagel
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Anna Rapp
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| | - Tom Mollnes
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Gebhard
- Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany
| |
Collapse
|
29
|
The role of complement in trauma and fracture healing. Semin Immunol 2013; 25:73-8. [PMID: 23768898 DOI: 10.1016/j.smim.2013.05.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022]
Abstract
The complement system, as part of innate immunity, is activated immediately after trauma in response to various pathogen- and danger-associated molecular patterns (PAMPs and DAMPs), and helps to eliminate microorganisms and damaged cells. However, recent data indicate an extended role of complement far beyond pure "killing", which includes regulation of the cytokine/chemokine network, influencing physiological barriers, interaction with the coagulation cascade, and even involvement with bone metabolism and repair. Complement-induced hyper-activation and dysfunction reveal the dark side of this system, leading to complications such as sepsis, multiple-organ dysfunction, delayed fracture healing, and unfavorable outcome. Thus, the present review focuses on less known regulatory roles of the complement system after trauma and during fracture healing, rather than on its bacterial and cellular "killing functions". In particular, various complement crosstalks after trauma, including the coagulation cascade and apoptosis system, appear to be crucially involved early after trauma. Long-term effects of complement on tissue regeneration after fracture and bone turnover are also considered, providing new insights into innate immunity in local and systemic complement-driven effects after trauma.
Collapse
|
30
|
Kouser L, Abdul-Aziz M, Nayak A, Stover CM, Sim RB, Kishore U. Properdin and factor h: opposing players on the alternative complement pathway "see-saw". Front Immunol 2013; 4:93. [PMID: 23630525 PMCID: PMC3632793 DOI: 10.3389/fimmu.2013.00093] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/05/2013] [Indexed: 12/16/2022] Open
Abstract
Properdin and factor H are two key regulatory proteins having opposite functions in the alternative complement pathway. Properdin up-regulates the alternative pathway by stabilizing the C3bBb complex, whereas factor H downregulates the pathway by promoting proteolytic degradation of C3b. While factor H is mainly produced in the liver, there are several extrahepatic sources. In addition to the liver, factor H is also synthesized in fetal tubuli, keratinocytes, skin fibroblasts, ocular tissue, adipose tissue, brain, lungs, heart, spleen, pancreas, kidney, muscle, and placenta. Neutrophils are the major source of properdin, and it is also produced by monocytes, T cells and bone marrow progenitor cell line. Properdin is released by neutrophils from intracellular stores following stimulation by N-formyl-methionine-leucine-phenylalanine (fMLP) and tumor necrosis factor alpha (TNF-α). The HEP G2 cells derived from human liver has been found to produce functional properdin. Endothelial cells also produce properdin when induced by shear stress, thus is a physiological source for plasma properdin. The diverse range of extrahepatic sites for synthesis of these two complement regulators suggests the importance and need for local availability of the proteins. Here, we discuss the significance of the local synthesis of properdin and factor H. This assumes greater importance in view of recently identified unexpected and novel roles of properdin and factor H that are potentially independent of their involvement in complement regulation.
Collapse
Affiliation(s)
- Lubna Kouser
- Centre for Infection, Immunity and Disease Mechanisms, Biosciences, School of Health Sciences and Social Care, Brunel University London, UK
| | | | | | | | | | | |
Collapse
|
31
|
Gambling on putative biomarkers of osteoarthritis and osteochondrosis by equine synovial fluid proteomics. J Proteomics 2012; 75:4478-93. [DOI: 10.1016/j.jprot.2012.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 02/03/2012] [Accepted: 02/05/2012] [Indexed: 12/18/2022]
|
32
|
Schoengraf P, Lambris JD, Recknagel S, Kreja L, Liedert A, Brenner RE, Huber-Lang M, Ignatius A. Does complement play a role in bone development and regeneration? Immunobiology 2012; 218:1-9. [PMID: 22464814 DOI: 10.1016/j.imbio.2012.01.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 12/16/2022]
Abstract
The skeletal and the immune system are not two independent systems, rather, there are multifaceted and complex interactions between the different cell types of both systems and there are several shared cytokines. As a part of the innate immunity, the complement system was found to be an important link between bone and immunity. Complement proteins appear to be involved in bone development and homeostasis, and specifically influence osteoblast and osteoclast activity. This review describes the complex mutual regulation of the two systems, and indicates some of the negative side effects as a result of inappropriate or excessive complement activation.
Collapse
Affiliation(s)
- Philipp Schoengraf
- Institute of Orthopaedic Research and Biomechanics, Centre of Muskuloskelettal Research, University of Ulm, Helmholtzstrasse 14, 89081 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Neher MD, Weckbach S, Flierl MA, Huber-Lang MS, Stahel PF. Molecular mechanisms of inflammation and tissue injury after major trauma--is complement the "bad guy"? J Biomed Sci 2011; 18:90. [PMID: 22129197 PMCID: PMC3247859 DOI: 10.1186/1423-0127-18-90] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 11/30/2011] [Indexed: 02/07/2023] Open
Abstract
Trauma represents the leading cause of death among young people in industrialized countries. Recent clinical and experimental studies have brought increasing evidence for activation of the innate immune system in contributing to the pathogenesis of trauma-induced sequelae and adverse outcome. As the "first line of defense", the complement system represents a potent effector arm of innate immunity, and has been implicated in mediating the early posttraumatic inflammatory response. Despite its generic beneficial functions, including pathogen elimination and immediate response to danger signals, complement activation may exert detrimental effects after trauma, in terms of mounting an "innocent bystander" attack on host tissue. Posttraumatic ischemia/reperfusion injuries represent the classic entity of complement-mediated tissue damage, adding to the "antigenic load" by exacerbation of local and systemic inflammation and release of toxic mediators. These pathophysiological sequelae have been shown to sustain the systemic inflammatory response syndrome after major trauma, and can ultimately contribute to remote organ injury and death. Numerous experimental models have been designed in recent years with the aim of mimicking the inflammatory reaction after trauma and to allow the testing of new pharmacological approaches, including the emergent concept of site-targeted complement inhibition. The present review provides an overview on the current understanding of the cellular and molecular mechanisms of complement activation after major trauma, with an emphasis of emerging therapeutic concepts which may provide the rationale for a "bench-to-bedside" approach in the design of future pharmacological strategies.
Collapse
Affiliation(s)
- Miriam D Neher
- Department of Orthopaedic Surgery, University of Colorado Denver, School of Medicine, Denver Health Medical Center, 777 Bannock Street, Denver, CO 80204, USA
| | | | | | | | | |
Collapse
|
34
|
Ignatius A, Ehrnthaller C, Brenner RE, Kreja L, Schoengraf P, Lisson P, Blakytny R, Recknagel S, Claes L, Gebhard F, Lambris JD, Huber-Lang M. The anaphylatoxin receptor C5aR is present during fracture healing in rats and mediates osteoblast migration in vitro. THE JOURNAL OF TRAUMA 2011; 71:952-60. [PMID: 21460748 PMCID: PMC3186845 DOI: 10.1097/ta.0b013e3181f8aa2d] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND There is evidence that complement components regulate cytokine production in osteoblastic cells, induce cell migration in mesenchymal stem cells, and play a regulatory role in normal enchondral bone formation. We proved the hypothesis that complement might be involved in bone healing after fracture. METHODS We investigated the expression of the key anaphylatoxin receptor C5aR during fracture healing in rats by immunostaining after 1, 3, 7, 14, and 28 days. C5aR expression was additionally analyzed in human mesenchymal stem cells (hMSC) during osteogenic differentiation, in human primary osteoblasts, and osteoclasts by reverse transcriptase polymerase chain reaction and immunostaining. Receptor functionality was proven by the migratory response of cells to C5a in a Boyden chamber. RESULTS C5aR was expressed in a distinct spatial and temporal pattern in the fracture callus by differentiated osteoblast, chondroblast-like cells in cartilaginous regions, and osteoclasts. In vitro C5aR was expressed by osteoblasts, osteoclasts, and hMSC undergoing osteogenic differentiation. C5aR was barely expressed by undifferentiated hMSC but was significantly induced after osteogenic differentiation. C5aR activation by C5a induced strong chemotactic activity in osteoblasts, and in hMSC, which had undergone osteogenic differentiation, being abolished by a specific C5aR antagonist. In hMSC, C5a induced less migration reflecting their low level of C5aR expression. CONCLUSIONS Our in vitro and in vivo results demonstrated the presence of C5aR in bone forming osteoblasts and bone resorbing osteoclasts. It is suggested that C5aR might play a regulatory role in fracture healing in intramembranous and in enchondral ossification, one possible function being the regulation of cell recruitment.
Collapse
Affiliation(s)
- Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Department of Traumatology, Hand-, Plastic-, and Reconstructive Surgery, Center of Surgery, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ignatius A, Schoengraf P, Kreja L, Liedert A, Recknagel S, Kandert S, Brenner RE, Schneider M, Lambris JD, Huber-Lang M. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J Cell Biochem 2011; 112:2594-605. [PMID: 21598302 PMCID: PMC3158833 DOI: 10.1002/jcb.23186] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
There is a tight interaction of the bone and the immune system. However, little is known about the relevance of the complement system, an important part of innate immunity and a crucial trigger for inflammation. The aim of this study was, therefore, to investigate the presence and function of complement in bone cells including osteoblasts, mesenchymal stem cells (MSC), and osteoclasts. qRT-PCR and immunostaining revealed that the central complement receptors C3aR and C5aR, complement C3 and C5, and membrane-bound regulatory proteins CD46, CD55, and CD59 were expressed in human MSC, osteoblasts, and osteoclasts. Furthermore, osteoblasts and particularly osteoclasts were able to activate complement by cleaving C5 to its active form C5a as measured by ELISA. Both C3a and C5a alone were unable to trigger the release of inflammatory cytokines interleukin (IL)-6 and IL-8 from osteoblasts. However, co-stimulation with the pro-inflammatory cytokine IL-1β significantly induced IL-6 and IL-8 expression as well as the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and osteoprotegerin (OPG) indicating that complement may modulate the inflammatory response of osteoblastic cells in a pro-inflammatory environment as well as osteoblast-osteoclast interaction. While C3a and C5a did not affect osteogenic differentiation, osteoclastogenesis was significantly induced even in the absence of RANKL and macrophage-colony stimulating factor (M-CSF) suggesting that complement could directly regulate osteoclast formation. It can therefore be proposed that complement may enhance the inflammatory response of osteoblasts and increase osteoclast formation, particularly in a pro-inflammatory environment, for example, during bone healing or in inflammatory bone disorders.
Collapse
Affiliation(s)
- Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, Center of Musculoskeletal Research Ulm, University of Ulm, Ulm, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Growth of the acetabular lateral cartilage in relation to congenital and developmental dysplasia of the hip. An histological study. Hip Int 2011; 21:9-13. [PMID: 21279969 DOI: 10.5301/hip.2011.6310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 02/04/2023]
Abstract
There are no clear explanations for the spectrum of hip dysplasia nor for the observation that in normal and dysplastic hips, final development may be unpredictable with or without treatment. Immunohistochemical and histological studies of a three month old child's acetabulae were performed. Multiple inclusions were found in the lateral ring epiphysis and in the three flanges of the triradiate cartilage. These inclusions may represent cartilage vessel systems pre-destined to form the secondary centres of ossification. Damage to the primary acetabular growth plates may occur congenitally and help to explain the spectrum of acetabular dysplasia. Damage to one or more of these centres, whether due to instability, displacement or iatrogenic injury, may cause failure of late acetabular development. Hips at risk of damage to the acetabular cartilages should be followed up longer.
Collapse
|
37
|
Ehrnthaller C, Ignatius A, Gebhard F, Huber-Lang M. New insights of an old defense system: structure, function, and clinical relevance of the complement system. Mol Med 2010; 17:317-29. [PMID: 21046060 PMCID: PMC3060978 DOI: 10.2119/molmed.2010.00149] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/28/2010] [Indexed: 12/14/2022] Open
Abstract
The complement system was discovered a century ago as a potent defense cascade of innate immunity. After its first description, continuous experimental and clinical research was performed, and three canonical pathways of activation were established. Upon activation by traumatic or surgical tissue damage, complement reveals beneficial functions of pathogen and danger defense by sensing and clearing injured cells. However, the latest research efforts have provided a more distinct insight into the complement system and its clinical subsequences. Complement has been shown to play a significant role in the pathogenesis of various inflammatory processes such as sepsis, multiorgan dysfunction, ischemia/reperfusion, cardiovascular diseases and many others. The three well-known activation pathways of the complement system have been challenged by newer findings that demonstrate direct production of central complement effectors (for example, C5a) by serine proteases of the coagulation cascade. In particular, thrombin is capable of producing C5a, which not only plays a decisive role on pathogens and infected/damaged tissues, but also acts systemically. In the case of uncontrolled complement activation, “friendly fire” is generated, resulting in the destruction of healthy host tissue. Therefore, the traditional research that focuses on a mainly positive-acting cascade has now shifted to the negative effects and how tissue damage originated by the activation of the complement can be contained. In a translational approach including structure-function relations of this ancient defense system, this review provides new insights of complement-mediated clinical relevant diseases and the development of complement modulation strategies and current research aspects.
Collapse
Affiliation(s)
- Christian Ehrnthaller
- Department of Traumatology, Hand, Plastic, and Reconstructive Surgery, Center of Surgery, Center of Musculoskeletal Research, University of Ulm, Ulm, Germany.
| | | | | | | |
Collapse
|
38
|
Abstract
Despite significant research on the role of inflammation and immunosurveillance in the immunologic microenvironment of tumors, little attention has been given to the oncogenic capabilities of the complement cascade. The recent finding that complement may contribute to tumor growth suggests an insidious relationship between complement and cancer, especially in light of evidence that complement facilitates cellular proliferation and regeneration. We address the hypothesis that complement proteins promote carcinogenesis and suggest mechanisms by which complement can drive the fundamental features of cancer. Evidence shows that this diverse family of innate immune proteins facilitates dysregulation of mitogenic signaling pathways, sustained cellular proliferation, angiogenesis, insensitivity to apoptosis, invasion and migration, and escape from immunosurveillance. Given that the traditionally held functions for the complement system include innate immunity and cancer defense, our review suggests a new way of thinking about the role of complement proteins in neoplasia.
Collapse
Affiliation(s)
- Martin J Rutkowski
- Department of Neurological Surgery, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
39
|
Atala A, Irvine DJ, Moses M, Shaunak S. Wound Healing Versus Regeneration: Role of the Tissue Environment in Regenerative Medicine. MRS BULLETIN 2010; 35:10.1557/mrs2010.528. [PMID: 24241586 PMCID: PMC3826556 DOI: 10.1557/mrs2010.528] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
One of the major challenges in the field of regenerative medicine is how to optimize tissue regeneration in the body by therapeutically manipulating its natural ability to form scar at the time of injury or disease. It is often the balance between tissue regeneration, a process that is activated at the onset of disease, and scar formation, which develops as a result of the disease process that determines the ability of the tissue or organ to be functional. Using biomaterials as scaffolds often can provide a "bridge" for normal tissue edges to regenerate over small distances, usually up to 1 cm. Larger tissue defect gaps typically require both scaffolds and cells for normal tissue regeneration to occur without scar formation. Various strategies can help to modulate the scar response and can potentially enhance tissue regeneration. Understanding the mechanistic basis of such multivariate interactions as the scar microenvironment, the immune system, extracellular matrix, and inflammatory cytokines may enable the design of tissue engineering and wound healing strategies that directly modulate the healing response in a manner favorable to regeneration.
Collapse
|
40
|
Rutkowski MJ, Sughrue ME, Kane AJ, Ahn BJ, Fang S, Parsa AT. The complement cascade as a mediator of tissue growth and regeneration. Inflamm Res 2010; 59:897-905. [PMID: 20517706 PMCID: PMC2945462 DOI: 10.1007/s00011-010-0220-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/02/2010] [Accepted: 05/11/2010] [Indexed: 12/16/2022] Open
Abstract
Recent evidence has demonstrated that the complement cascade is involved in a variety of physiologic and pathophysiologic processes in addition to its role as an immune effector. Research in a variety of organ systems has shown that complement proteins are direct participants in maintenance of cellular turnover, healing, proliferation and regeneration. As a physiologic housekeeper, complement proteins maintain tissue integrity in the absence of inflammation by disposing of cellular debris and waste, a process critical to the prevention of autoimmune disease. Developmentally, complement proteins influence pathways including hematopoietic stem cell engraftment, bone growth, and angiogenesis. They also provide a potent stimulus for cellular proliferation including regeneration of the limb and eye in animal models, and liver proliferation following injury. Here, we describe the complement cascade as a mediator of tissue growth and regeneration.
Collapse
Affiliation(s)
- Martin J Rutkowski
- Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
41
|
Complement and the central nervous system: emerging roles in development, protection and regeneration. Immunol Cell Biol 2010; 88:781-6. [PMID: 20404838 DOI: 10.1038/icb.2010.48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As expanding research reveals the novel ability of complement proteins to promote proliferation and regeneration of tissues throughout the body, the concept of the complement cascade as an innate immune effector has changed rapidly. In particular, its interactions with the central nervous system have provided a wealth of information regarding the ability of complement proteins to mediate neurogenesis, synaptogenesis, cell migration, neuroprotection, proliferation and regeneration. At numerous phases of the neuronal and glial cell cycle, complement proteins exert direct or indirect influence over their behavior and fate. Neuronal stem cells differentiate and migrate in response to complement, and it prevents injury and death in adult cells in response to toxic agents. Furthermore, complement proteins promote survival via anti-apoptotic actions, and can facilitate clearance and regeneration of injured tissues in various models of CNS disease. In summary, we highlight the protean abilities of complement proteins in the central nervous system, underscoring an exciting avenue of research that has yielded greater understanding of complement's role in central nervous system health and disease.
Collapse
|
42
|
Løvoll M, Johnsen H, Boshra H, Bøgwald J, Sunyer JO, Dalmo RA. The ontogeny and extrahepatic expression of complement factor C3 in Atlantic salmon (Salmo salar). FISH & SHELLFISH IMMUNOLOGY 2007; 23:542-52. [PMID: 17449276 DOI: 10.1016/j.fsi.2007.01.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/03/2007] [Accepted: 01/15/2007] [Indexed: 05/15/2023]
Abstract
Fish embryos and hatchlings are exposed to pathogens long before maturation of their lymphoid organs. Little is known about defence mechanisms during the earliest stages of life, but innate mechanisms may be essential for survival. The complement system in fish is well developed and represents a major part of innate immunity. Complement factor 3 (C3) is central subsequent to activation of all pathways of the complement system, leading to inflammatory reactions, such as chemotaxis, opsonisation and lysis of pathogens. Hepatocytes represent the major source of C3, but modern molecular biological methods have confirmed that C3 is synthesised at multiple sites. Our main objective was to study the ontogeny of C3 in Atlantic salmon by mapping the commencement of synthesis and localisation of proteins. Eggs, embryos, hatchlings and adult fish were analysed for the presence of C3 mRNA and proteins. From immunohistochemical studies, C3 proteins were detected at several extrahepatic sites, such as the skeletal muscle, developing notochord and chondrocytes of the gill arch. Immunoblotting revealed presence of C3 proteins in the unfertilised egg, but C3 mRNA was only detected after fertilisation by real-time RT-PCR. Taken together, the results implicated the maternal transfer of C3 proteins as well as novel non-immunological functions during development.
Collapse
Affiliation(s)
- Marie Løvoll
- Department of Marine Biotechnology, Norwegian College of Fishery Science, University of Tromsø, Breivika, N-9037 Tromsø, Norway.
| | | | | | | | | | | |
Collapse
|
43
|
Lange S, Bambir SH, Dodds AW, Bowden T, Bricknell I, Espelid S, Magnadóttir B. Complement component C3 transcription in Atlantic halibut (Hippoglossus hippoglossus L.) larvae. FISH & SHELLFISH IMMUNOLOGY 2006; 20:285-94. [PMID: 16039879 DOI: 10.1016/j.fsi.2005.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 04/08/2005] [Accepted: 05/01/2005] [Indexed: 05/03/2023]
Abstract
The complement systems of fish are well developed and play an important role in the innate immune response. Complement C3 is the central protein of all three activation pathways and is the major opsonin of the complement system and essential for the generation of the membrane attack complex. A 1548 bp part of complement component C3 was isolated from a halibut liver cDNA library by immunoscreening. The deduced amino acid sequence showed that this part of halibut C3 contained key amino acids for factor H, I and properdin binding as well as two N-glycosylation sites. Digoxigenine labelled mRNA probes were synthesised and the transcription of C3 was monitored in three larval stages at 206, 430 and 1000 degrees d (30, 50 and 99 days post hatching), by in situ hybridisation. C3 mRNA was detected in muscle, liver, brain, chondrocytes, spinal cord, eye, intestines, oesophagus and kidney. These findings are in accordance with a former immunohistochemical study on halibut C3 protein ontogeny, indicating that C3 is indeed locally expressed in many organs from the youngest stages on. Complement may thus be linked to the formation and generation of different organs during development and play an important role in the early immune response of halibut larvae.
Collapse
Affiliation(s)
- Sigrun Lange
- Institute for Experimental Pathology, University of Iceland, Keldur, IS-112 Reykjavík, Iceland.
| | | | | | | | | | | | | |
Collapse
|
44
|
Lange S, Dodds AW, Gudmundsdóttir S, Bambir SH, Magnadóttir B. The ontogenic transcription of complement component C3 and Apolipoprotein A-I tRNA in Atlantic cod (Gadus morhua L.)--a role in development and homeostasis? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2005; 29:1065-77. [PMID: 15936076 DOI: 10.1016/j.dci.2005.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Revised: 03/15/2005] [Accepted: 03/21/2005] [Indexed: 05/02/2023]
Abstract
The complement system is important both in the innate and adaptive immune response, with C3 as the central protein of all three activation pathways. Apolipoprotein A-I (ApoLP A-I), a high-density lipoprotein (HDL), has been shown to have a regulatory role in the complement system by inhibiting the formation of the membrane attack complex (MAC). Complement has been associated with apoptotic functions, which are important in the immune response and are involved in organ formation and homeostasis. mRNA probes for cod C3 and ApoLP A-I were synthesized and in situ hybridisation used to monitor the ontogenic development of cod from fertilised eggs until 57 days after hatching. Both C3 and ApoLP A-I transcription was detected in the central nervous system (CNS), eye, kidney, liver, muscle, intestines, skin and chondrocytes at different stages of development. Using TUNEL staining, apoptotic cells were identified within the same areas from 4 to 57 days posthatching. The present findings may suggest a role for C3 and ApoLP A-I during larval development and a possible role in the homeostasis of various organs in cod.
Collapse
Affiliation(s)
- Sigrun Lange
- Institute for Experimental Pathology, University of Iceland, Keldur v. Vesturlandsveg, Reykjavik IS-112, Iceland.
| | | | | | | | | |
Collapse
|
45
|
Kim AHJ, Dimitriou ID, Holland MCH, Mastellos D, Mueller YM, Altman JD, Lambris JD, Katsikis PD. Complement C5a receptor is essential for the optimal generation of antiviral CD8+ T cell responses. THE JOURNAL OF IMMUNOLOGY 2004; 173:2524-9. [PMID: 15294968 DOI: 10.4049/jimmunol.173.4.2524] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The complement system has been long regarded as an important effector of the innate immune response. Furthermore, complement contributes to various aspects of B and T cell immunity. Nevertheless, the role of complement in CD8(+) T cell antiviral responses has yet to be fully delineated. We examined the CD8(+) T cell response in influenza type A virus-infected mice treated with a peptide antagonist to C5aR to test the potential role of complement components in CD8(+) T cell responses. We show that both the frequency and absolute numbers of flu-specific CD8(+) T cells are greatly reduced in C5aR antagonist-treated mice compared with untreated mice. This reduction in flu-specific CD8(+) T cells is accompanied by attenuated antiviral cytolytic activity in the lungs. These results demonstrate that the binding of the C5a component of complement to the C5a receptor plays an important role in CD8(+) T cell responses.
Collapse
Affiliation(s)
- Alfred H J Kim
- Department of Microbiology and Immunology and Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lange S, Bambir S, Dodds AW, Magnadóttir B. The ontogeny of complement component C3 in Atlantic cod (Gadus morhua L.)--an immunohistochemical study. FISH & SHELLFISH IMMUNOLOGY 2004; 16:359-367. [PMID: 15123303 DOI: 10.1016/j.fsi.2003.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2003] [Revised: 06/16/2003] [Accepted: 06/27/2003] [Indexed: 05/24/2023]
Abstract
The complement system in fish is well developed and plays an important role in the immune response. Very little is known about the ontogeny of C3 in fish and no study has previously been done on the development of C3 in teleosts. In this study we have detected the presence of C3 in cod larvae from the age of 1 day post hatching (p.h.) till 57 days p.h., using immunohistochemistry. The specific primary antibodies used, were produced against the beta-chain of cod C3. Immunostaining on cod larvae sections revealed that C3 is detectable in the yolksac membrane from day 1 p.h., and in liver, brain, kidney and muscle from day 2 p.h. C3 was also detected in other organs such as eye, notochord, stomach, intestines, pancreas, heart and gills at different stages of cod larval development. These findings suggest that complement is not only important in immune defence against invading pathogens but may also play a role in the formation and generation of different organs.
Collapse
Affiliation(s)
- Sigrun Lange
- Institute for Experimental Pathology, University of Iceland, Keldur, IS-112 Reykjavík, Iceland.
| | | | | | | |
Collapse
|
47
|
Roman-Roman S, Garcia T, Jackson A, Theilhaber J, Rawadi G, Connolly T, Spinella-Jaegle S, Kawai S, Courtois B, Bushnell S, Auberval M, Call K, Baron R. Identification of genes regulated during osteoblastic differentiation by genome-wide expression analysis of mouse calvaria primary osteoblasts in vitro. Bone 2003; 32:474-82. [PMID: 12753863 DOI: 10.1016/s8756-3282(03)00052-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although several independent studies of gene expression patterns during osteoblast differentiation in cultures from calvaria and other in vitro models have been reported, only a small portion of the mRNAs expressed in osteoblasts have been characterized. We have previously analyzed the behavior of several known markers in osteoblasts, using Affymetrix GeneChip murine probe arrays (27,000 genes). In the present study we report larger groups of transcripts displaying significant expression modulation during the culture of osteoblasts isolated from mice calvaria. The expression profiles of 601 such regulated genes, classified in distinct functional families, are presented and analyzed here. Although some of these genes have previously been shown to play important roles in bone biology, the large majority of them have never been demonstrated to be regulated during osteoblast differentiation. Despite the fact that the precise involvement of these genes in osteoblast differentiation and function needs to be evaluated, the data presented herein will aid in the identification of genes that play a significant role in osteoblasts. This will provide a better understanding of the regulation of osteoblast differentiation and maturation.
Collapse
|
48
|
Abstract
Recent studies have indicated that complement proteins might exert novel functions that are distinct from their well-established inflammatory role, by modulating cellular responses and cell-cell interactions that are crucial to early development and cell differentiation. Accumulating evidence suggests that complement might have important roles in diverse biologic processes, ranging from early hematopoiesis to skeletal and vascular development and normal reproduction. Furthermore, it is now becoming evident that complement-regulated pathways interact with other signaling networks and influence the outcome of complex developmental programs, such as limb regeneration in lower vertebrates and organ regeneration in mammals. These findings highlight a previously under-appreciated role of complement and might have important implications in the context of normal development by helping to elucidate the rather obscure role of innate immunity in such cell modulatory pathways.
Collapse
Affiliation(s)
- Dimitrios Mastellos
- The Protein Chemistry Laboratory, Department of Pathology and Laboratory Medicine, University of Pennsylvania, 401 Stellar-Chance Laboratories, Philadelphia, PA 19104, USA
| | | |
Collapse
|
49
|
Kumar S, Connor JR, Dodds RA, Halsey W, Van Horn M, Mao J, Sathe G, Mui P, Agarwal P, Badger AM, Lee JC, Gowen M, Lark MW. Identification and initial characterization of 5000 expressed sequenced tags (ESTs) each from adult human normal and osteoarthritic cartilage cDNA libraries. Osteoarthritis Cartilage 2001; 9:641-53. [PMID: 11597177 DOI: 10.1053/joca.2001.0421] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To prepare, sequence and analyse adult human cartilage cDNA libraries to study the gene expression pattern between normal and osteoarthritic cartilage. METHODS Poly A(+)RNA from adult human normal and osteoarthritic articular cartilage was isolated and used to prepare cDNA libraries. Approximately 5000 ESTs from each library were sequenced and analysed using bioinformatic tools. The expression of select genes was confirmed by Northern blot and in situ hybridization analysis. RESULTS Multiple gene families including several classical cartilage matrix protein encoding genes were identified. Approximately 28-40% of the genes sequenced from these libraries were novel, while half of the genes encoded known proteins and 4-6% of the genes encoded novel homologs of known proteins. Several known genes, whose expression has not been reported previously in cartilage, were also identified. We have confirmed the cartilage expression of three known (CTGF, CTGF-L and clusterin) and two novel homologs of known genes (PCPE-2 and Gal-Nac transferase) by Northern blot and in situ hybridization analysis. CONCLUSION This is the first report of the preparation and sequencing of cDNA libraries from adult human normal and osteoarthritic articular cartilage. Further analysis of genes identified from these libraries may provide molecular targets for diagnosis and/or treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- S Kumar
- Department of Musculoskeletal Diseases, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Rd, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Down's syndrome (DS), a human genetic abnormality usually caused by an extra chromosome 21, presents a wide range of major and minor anomalies, the most significant of which are mental retardation and congenital heart defects. The anomalous phenotype also includes short stature and neck, thin calvaria, and cartilage hypoplasia. The genesis of these skeletal features is unknown. Histopathologic sections of fetal cartilage from skull, vertebra, rib, and femur were studied in 16 fetuses with DS (17-22 wk old) and 13 control non-DS fetuses (19-22 wk old) with other pathologies not directly affecting skeletal growth. Rib growth cartilage morphology showed a previously unreported structural anomaly in DS, an increase in the hypertrophic portion with a concomitant decrease in proliferative and resting zones. The hypertrophic chondrocytic zone was markedly increased in DS compared with non-DS (149 +/- 68 microm versus 36 +/- 20 microm, and 26 +/- 12 versus 7 +/- 3 expressed in percent of the total length; p < 0.0001), whereas the proliferative zone (114 +/- 58 microm versus 165 +/- 43 microm, 20 +/- 10 versus 33 +/- 4 in percent of the total length; p < 0.001) and the resting zone (53 +/- 4 versus 59 +/- 6 in %, p < 0.009) were decreased. These features were not found in the femoral epiphyseal growth plate or in cartilage from vertebra and skull. Our results demonstrate an imbalance toward the hypertrophic phenotype. This abnormality, found in DS fetuses 17-22 wk old, may represent an early manifestation of an abnormal growth cartilage maturation pattern, which manifests postnatally in long bones, leading to diminished growth rates.
Collapse
Affiliation(s)
- M Garcia-Ramírez
- Department of Pediatrics, Hospitals Vall d'Hebron, Barcelona, Spain
| | | | | | | |
Collapse
|