1
|
Carroll E, Scaber J, Huber KVM, Brennan PE, Thompson AG, Turner MR, Talbot K. Drug repurposing in amyotrophic lateral sclerosis (ALS). Expert Opin Drug Discov 2025; 20:447-464. [PMID: 40029669 PMCID: PMC11974926 DOI: 10.1080/17460441.2025.2474661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Identifying treatments that can alter the natural history of amyotrophic lateral sclerosis (ALS) is challenging. For years, drug discovery in ALS has relied upon traditional approaches with limited success. Drug repurposing, where clinically approved drugs are reevaluated for other indications, offers an alternative strategy that overcomes some of the challenges associated with de novo drug discovery. AREAS COVERED In this review, the authors discuss the challenge of drug discovery in ALS and examine the potential of drug repurposing for the identification of new effective treatments. The authors consider a range of approaches, from screening in experimental models to computational approaches, and outline some general principles for preclinical and clinical research to help bridge the translational gap. Literature was reviewed from original publications, press releases and clinical trials. EXPERT OPINION Despite remaining challenges, drug repurposing offers the opportunity to improve therapeutic options for ALS patients. Nevertheless, stringent preclinical research will be necessary to identify the most promising compounds together with innovative experimental medicine studies to bridge the translational gap. The authors further highlight the importance of combining expertise across academia, industry and wider stakeholders, which will be key in the successful delivery of repurposed therapies to the clinic.
Collapse
Affiliation(s)
- Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kilian V. M. Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul E. Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Ciucci G, Braga L, Zacchigna S. Discovery platforms for RNA therapeutics. Br J Pharmacol 2025; 182:281-295. [PMID: 38760893 DOI: 10.1111/bph.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/20/2024] Open
Abstract
RNA therapeutics are emerging as a unique opportunity to drug currently "undruggable" molecules and diseases. While their advantages over conventional, small molecule drugs, their therapeutic implications and the tools for their effective in vivo delivery have been extensively reviewed, little attention has been so far paid to the technological platforms exploited for the discovery of RNA therapeutics. Here, we provide an overview of the existing platforms and ex vivo assays for RNA discovery, their advantages and disadvantages, as well as their main fields of application, with specific focus on RNA therapies that have reached either phase 3 or market approval. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Affiliation(s)
- Giulio Ciucci
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
3
|
Kremer LPM, Cerrizuela S, El-Sammak H, Al Shukairi ME, Ellinger T, Straub J, Korkmaz A, Volk K, Brunken J, Kleber S, Anders S, Martin-Villalba A. DNA methylation controls stemness of astrocytes in health and ischaemia. Nature 2024; 634:415-423. [PMID: 39232166 PMCID: PMC11464379 DOI: 10.1038/s41586-024-07898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/01/2024] [Indexed: 09/06/2024]
Abstract
Astrocytes are the most abundant cell type in the mammalian brain and provide structural and metabolic support to neurons, regulate synapses and become reactive after injury and disease. However, a small subset of astrocytes settles in specialized areas of the adult brain where these astrocytes instead actively generate differentiated neuronal and glial progeny and are therefore referred to as neural stem cells1-3. Common parenchymal astrocytes and quiescent neural stem cells share similar transcriptomes despite their very distinct functions4-6. Thus, how stem cell activity is molecularly encoded remains unknown. Here we examine the transcriptome, chromatin accessibility and methylome of neural stem cells and their progeny, and of astrocytes from the striatum and cortex in the healthy and ischaemic adult mouse brain. We identify distinct methylation profiles associated with either astrocyte or stem cell function. Stem cell function is mediated by methylation of astrocyte genes and demethylation of stem cell genes that are expressed later. Ischaemic injury to the brain induces gain of stemness in striatal astrocytes7. We show that this response involves reprogramming the astrocyte methylome to a stem cell methylome and is absent if the de novo methyltransferase DNMT3A is missing. Overall, we unveil DNA methylation as a promising target for regenerative medicine.
Collapse
Affiliation(s)
- Lukas P M Kremer
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- BioQuant Centre, University of Heidelberg, Heidelberg, Germany
| | - Santiago Cerrizuela
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hadil El-Sammak
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Tobias Ellinger
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jannes Straub
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aylin Korkmaz
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Volk
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Brunken
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Kleber
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Anders
- BioQuant Centre, University of Heidelberg, Heidelberg, Germany.
| | - Ana Martin-Villalba
- Division of Molecular Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
4
|
Akter M, Sepehrimanesh M, Xu W, Ding B. Assembling a Coculture System to Prepare Highly Pure Induced Pluripotent Stem Cell-Derived Neurons at Late Maturation Stages. eNeuro 2024; 11:ENEURO.0165-24.2024. [PMID: 39009447 PMCID: PMC11289586 DOI: 10.1523/eneuro.0165-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/17/2024] Open
Abstract
Generation of human induced pluripotent stem cell (hiPSC)-derived motor neurons (MNs) offers an unprecedented approach to modeling movement disorders such as dystonia and amyotrophic lateral sclerosis. However, achieving survival poses a significant challenge when culturing induced MNs, especially when aiming to reach late maturation stages. Utilizing hiPSC-derived motor neurons and primary mouse astrocytes, we assembled two types of coculture systems: direct coculturing of neurons with astrocytes and indirect coculture using culture inserts that physically separate neurons and astrocytes. Both systems significantly enhance neuron survival. Compared with these two systems, no significant differences in neurodevelopment, maturation, and survival within 3 weeks, allowing to prepare neurons at maturation stages. Using the indirect coculture system, we obtained highly pure MNs at the late mature stage from hiPSCs. Transcriptomic studies of hiPSC-derived MNs showed a typical neurodevelopmental switch in gene expression from the early immature stage to late maturation stages. Mature genes associated with neurodevelopment and synaptogenesis are highly enriched in MNs at late stages, demonstrating that these neurons achieve maturation. This study introduces a novel tool for the preparation of highly pure hiPSC-derived neurons, enabling the determination of neurological disease pathogenesis in neurons at late disease onset stages through biochemical approaches, which typically necessitate highly pure neurons. This advancement is particularly significant in modeling age-related neurodegeneration.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| | - Masood Sepehrimanesh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette Louisiana 70504
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport Louisiana 71130-3932
| |
Collapse
|
5
|
Lee DH, Lee EC, Lee JY, Lee MR, Shim JW, Oh JS. Neuronal Cell Differentiation of iPSCs for the Clinical Treatment of Neurological Diseases. Biomedicines 2024; 12:1350. [PMID: 38927557 PMCID: PMC11201423 DOI: 10.3390/biomedicines12061350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Current chemical treatments for cerebrovascular disease and neurological disorders have limited efficacy in tissue repair and functional restoration. Induced pluripotent stem cells (iPSCs) present a promising avenue in regenerative medicine for addressing neurological conditions. iPSCs, which are capable of reprogramming adult cells to regain pluripotency, offer the potential for patient-specific, personalized therapies. The modulation of molecular mechanisms through specific growth factor inhibition and signaling pathways can direct iPSCs' differentiation into neural stem cells (NSCs). These include employing bone morphogenetic protein-4 (BMP-4), transforming growth factor-beta (TGFβ), and Sma-and Mad-related protein (SMAD) signaling. iPSC-derived NSCs can subsequently differentiate into various neuron types, each performing distinct functions. Cell transplantation underscores the potential of iPSC-derived NSCs to treat neurodegenerative diseases such as Parkinson's disease and points to future research directions for optimizing differentiation protocols and enhancing clinical applications.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Industry-Academic Cooperation Foundation, The Catholic University of Korea, 222, Banpo-daro, Seocho-gu, Seoul 06591, Republic of Korea
| | - Eun Chae Lee
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Ji young Lee
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Man Ryul Lee
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Jae-won Shim
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-si 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si 31151, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
6
|
Danačíková Š, Straka B, Daněk J, Kořínek V, Otáhal J. In vitro human cell culture models in a bench-to-bedside approach to epilepsy. Epilepsia Open 2024; 9:865-890. [PMID: 38637998 PMCID: PMC11145627 DOI: 10.1002/epi4.12941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 04/20/2024] Open
Abstract
Epilepsy is the most common chronic neurological disease, affecting nearly 1%-2% of the world's population. Current pharmacological treatment and regimen adjustments are aimed at controlling seizures; however, they are ineffective in one-third of the patients. Although neuronal hyperexcitability was previously thought to be mainly due to ion channel alterations, current research has revealed other contributing molecular pathways, including processes involved in cellular signaling, energy metabolism, protein synthesis, axon guidance, inflammation, and others. Some forms of drug-resistant epilepsy are caused by genetic defects that constitute potential targets for precision therapy. Although such approaches are increasingly important, they are still in the early stages of development. This review aims to provide a summary of practical aspects of the employment of in vitro human cell culture models in epilepsy diagnosis, treatment, and research. First, we briefly summarize the genetic testing that may result in the detection of candidate pathogenic variants in genes involved in epilepsy pathogenesis. Consequently, we review existing in vitro cell models, including induced pluripotent stem cells and differentiated neuronal cells, providing their specific properties, validity, and employment in research pipelines. We cover two methodological approaches. The first approach involves the utilization of somatic cells directly obtained from individual patients, while the second approach entails the utilization of characterized cell lines. The models are evaluated in terms of their research and clinical benefits, relevance to the in vivo conditions, legal and ethical aspects, time and cost demands, and available published data. Despite the methodological, temporal, and financial demands of the reviewed models they possess high potential to be used as robust systems in routine testing of pathogenicity of detected variants in the near future and provide a solid experimental background for personalized therapy of genetic epilepsies. PLAIN LANGUAGE SUMMARY: Epilepsy affects millions worldwide, but current treatments fail for many patients. Beyond traditional ion channel alterations, various genetic factors contribute to the disorder's complexity. This review explores how in vitro human cell models, either from patients or from cell lines, can aid in understanding epilepsy's genetic roots and developing personalized therapies. While these models require further investigation, they offer hope for improved diagnosis and treatment of genetic forms of epilepsy.
Collapse
Affiliation(s)
- Šárka Danačíková
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
- Department of Physiology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Barbora Straka
- Neurogenetics Laboratory of the Department of Paediatric Neurology, Second Faculty of MedicineCharles University and Motol University Hospital, Full Member of the ERN EpiCAREPragueCzech Republic
| | - Jan Daněk
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
| | - Vladimír Kořínek
- Laboratory of Cell and Developmental BiologyInstitute of Molecular Genetics of the Czech Academy of SciencesPragueCzech Republic
| | - Jakub Otáhal
- Laboratory of Developmental EpileptologyInstitute of Physiology of the Czech Academy of SciencesPragueCzech Republic
- Department of Pathophysiology, Second Faculty of MedicineCharles UniversityPragueCzech Republic
| |
Collapse
|
7
|
Sibgatullina G, Ramazanova I, Salnikov V, Stepanov A, Voloshina A, Sapunova A, Mustafina A, Petrov K, Samigullin D. Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons. Histochem Cell Biol 2024; 161:507-519. [PMID: 38597938 DOI: 10.1007/s00418-024-02283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
The unique properties of superparamagnetic iron oxide nanoparticles (SPIONs) enable their use as magnetic biosensors, targeted drug delivery, magnetothermia, magnetic resonance imaging, etc. Today, SPIONs are the only type of metal oxide nanoparticles approved for biomedical application. In this work, we analyzed the cellular response to the previously reported luminescent silica coated SPIONs of the two cell types: M-HeLa cells and primary motor neuron culture. Both internalization pathways and intracellular fate of SPIONs have been compared for these cell lines using fluorescence and transmission electron microscopy. We also applied a pharmacological approach to analyze the endocytosis pathways of SPIONs into the investigated cell lines. The penetration of SPIONs into M-HeLa cells is already noticeable within 30 s of incubation through both caveolin-dependent endocytosis and micropinocytosis. However, incubation for a longer time (1 h at least) is required for the internalization of SPIONs into motor neuron culture cells provided by dynamin-dependent endocytosis and macropinocytosis. The intracellular colocalization assay reveals that the lysosomal internalization pathway of SPIONs is also dependent on the cell type. The lysosomal pathway is much more pronounced for M-HeLa cells compared with motor neurons. The emphasized differences in cellular responses of the two cell lines open up new opportunities in the application of SPIONs in the diagnostics and therapy of cancer cells.
Collapse
Affiliation(s)
- Guzel Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Iliza Ramazanova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Vadim Salnikov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Anastasiia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Konstantin Petrov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str., 8, 420088, Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, P.O. box 261, Kazan, 420111, Russia.
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University Named After A.N. Tupolev-KAI, 10 K. Marx St., Kazan, 420111, Russia.
| |
Collapse
|
8
|
Kim NY, Choi YY, Kim TH, Ha JH, Kim TH, Kang T, Chung BG. Synergistic Effect of Electrical and Biochemical Stimulation on Human iPSC-Derived Neural Differentiation in a Microfluidic Electrode Array Chip. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15730-15740. [PMID: 38527279 DOI: 10.1021/acsami.3c17108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Neural differentiation is crucial for advancing our understanding of the nervous system and developing treatments for neurological disorders. The advanced methods and the ability to manipulate the alignment, proliferation, and differentiation of stem cells are essential for studying neuronal development and synaptic interactions. However, the utilization of human induced pluripotent stem cells (iPSCs) for disease modeling of neurodegenerative conditions may be constrained by the prolonged duration and uncontrolled cell differentiation required for functional neural cell differentiation. Here, we developed a microfluidic chip to enhance the differentiation and maturation of specific neural lineages by placing aligned microelectrodes on the glass surface to regulate the neural differentiation of human iPSCs. The utilization of electrical stimulation (ES) in conjunction with neurotrophic factors (NF) significantly enhanced the efficiency in generating functional neurons from human iPSCs. We also observed that the simultaneous application of NF and ES to human iPSCs promoted their differentiation and maturation into functional neurons while increasing synaptic interactions. Our research demonstrated the effect of combining NF and ES on human iPSC-derived neural differentiation.
Collapse
Affiliation(s)
- Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
| | - Yoon Young Choi
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
| | - Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Jang Ho Ha
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
| | - Tae-Hyung Kim
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Korea
| | - Taewook Kang
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea
| | - Bong Geun Chung
- Department of Biomedical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Integrated Biotechnology, Sogang University, Seoul 04107, Korea
- Department of Mechanical Engineering, Sogang University, Seoul 04107, Korea
- Institute of Smart Biosensor, Sogang University, Seoul 04107, Korea
| |
Collapse
|
9
|
Nie L, Yao D, Chen S, Wang J, Pan C, Wu D, Liu N, Tang Z. Directional induction of neural stem cells, a new therapy for neurodegenerative diseases and ischemic stroke. Cell Death Discov 2023; 9:215. [PMID: 37393356 DOI: 10.1038/s41420-023-01532-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Due to the limited capacity of the adult mammalian brain to self-repair and regenerate, neurological diseases, especially neurodegenerative disorders and stroke, characterized by irreversible cellular damage are often considered as refractory diseases. Neural stem cells (NSCs) play a unique role in the treatment of neurological diseases for their abilities to self-renew and form different neural lineage cells, such as neurons and glial cells. With the increasing understanding of neurodevelopment and advances in stem cell technology, NSCs can be obtained from different sources and directed to differentiate into a specific neural lineage cell phenotype purposefully, making it possible to replace specific cells lost in some neurological diseases, which provides new approaches to treat neurodegenerative diseases as well as stroke. In this review, we outline the advances in generating several neuronal lineage subtypes from different sources of NSCs. We further summarize the therapeutic effects and possible therapeutic mechanisms of these fated specific NSCs in neurological disease models, with special emphasis on Parkinson's disease and ischemic stroke. Finally, from the perspective of clinical translation, we compare the strengths and weaknesses of different sources of NSCs and different methods of directed differentiation, and propose future research directions for directed differentiation of NSCs in regenerative medicine.
Collapse
Affiliation(s)
- Luwei Nie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dabao Yao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jingyi Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Dongcheng Wu
- Department of Biochemistry and Molecular Biology, Wuhan University School of Basic Medical Sciences, Wuhan, 430030, China
- Wuhan Hamilton Biotechnology Co., Ltd., Wuhan, 430030, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Buchner F, Dokuzluoglu Z, Grass T, Rodriguez-Muela N. Spinal Cord Organoids to Study Motor Neuron Development and Disease. Life (Basel) 2023; 13:1254. [PMID: 37374039 PMCID: PMC10303776 DOI: 10.3390/life13061254] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of disorders that affect the cranial and/or spinal motor neurons (spMNs), spinal sensory neurons and the muscular system. Although they have been investigated for decades, we still lack a comprehensive understanding of the underlying molecular mechanisms; and therefore, efficacious therapies are scarce. Model organisms and relatively simple two-dimensional cell culture systems have been instrumental in our current knowledge of neuromuscular disease pathology; however, in the recent years, human 3D in vitro models have transformed the disease-modeling landscape. While cerebral organoids have been pursued the most, interest in spinal cord organoids (SCOs) is now also increasing. Pluripotent stem cell (PSC)-based protocols to generate SpC-like structures, sometimes including the adjacent mesoderm and derived skeletal muscle, are constantly being refined and applied to study early human neuromuscular development and disease. In this review, we outline the evolution of human PSC-derived models for generating spMN and recapitulating SpC development. We also discuss how these models have been applied to exploring the basis of human neurodevelopmental and neurodegenerative diseases. Finally, we provide an overview of the main challenges to overcome in order to generate more physiologically relevant human SpC models and propose some exciting new perspectives.
Collapse
Affiliation(s)
- Felix Buchner
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Tobias Grass
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases, 01307 Dresden, Germany; (F.B.); (Z.D.); (T.G.)
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Max Planck Institute for Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
11
|
Castillo Bautista CM, Sterneckert J. Progress and challenges in directing the differentiation of human iPSCs into spinal motor neurons. Front Cell Dev Biol 2023; 10:1089970. [PMID: 36684437 PMCID: PMC9849822 DOI: 10.3389/fcell.2022.1089970] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 01/07/2023] Open
Abstract
Motor neuron (MN) diseases, including amyotrophic lateral sclerosis, progressive bulbar palsy, primary lateral sclerosis and spinal muscular atrophy, cause progressive paralysis and, in many cases, death. A better understanding of the molecular mechanisms of pathogenesis is urgently needed to identify more effective therapies. However, studying MNs has been extremely difficult because they are inaccessible in the spinal cord. Induced pluripotent stem cells (iPSCs) can generate a theoretically limitless number of MNs from a specific patient, making them powerful tools for studying MN diseases. However, to reach their potential, iPSCs need to be directed to efficiently differentiate into functional MNs. Here, we review the reported differentiation protocols for spinal MNs, including induction with small molecules, expression of lineage-specific transcription factors, 2-dimensional and 3-dimensional cultures, as well as the implementation of microfluidics devices and co-cultures with other cell types, including skeletal muscle. We will summarize the advantages and disadvantages of each strategy. In addition, we will provide insights into how to address some of the remaining challenges, including reproducibly obtaining mature and aged MNs.
Collapse
Affiliation(s)
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität (TU) Dresden, Dresden, Germany,Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany,*Correspondence: Jared Sterneckert,
| |
Collapse
|
12
|
Uniparental parthenogenetic embryonic stem cell derivatives adaptable for bone and cartilage regeneration. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119379. [PMID: 36228838 DOI: 10.1016/j.bbamcr.2022.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
Cells with the desired phenotype and number are critical for regenerative medicine and tissue engineering. Uniparental parthenogenetic embryonic stem cells (pESCs) share fundamental properties with embryonic stem cells. This study aims to determine the viability of pESC-based tissue engineering for bone and cartilage reconstruction. The mouse pESCs were cultured in suspension to form embryoid bodies. An adherent cultivation approach was employed to obtain parthenogenetic embryonic mesenchymal stem cells (pMSCs) from the embryoid bodies. Then, the pMSCs were cultured in conditional media to differentiate into osteogenic and chondrogenic lineages. The pESC-derived osteoblasts and chondroblasts were seeded into coral and sodium alginate scaffolds, respectively. The cell-seeded scaffolds were implanted into dorsal subcutaneous pockets of nude mice to evaluate ectopic reconstruction of bone and cartilage. We demonstrated that pESCs display the capacity to differentiate into all three germ layers. The generated pMSCs were able to differentiate into osteogenic and chondrogenic lineages, which survived well after seeding into coral and alginate acid scaffolds. Six weeks after cell-scaffold implantation, gross inspection and histological examination revealed that ectopic bone and cartilage tissues had successfully regenerated in the specimen. According to the findings of this study, pESC derivatives have a high potential for bone and cartilage regeneration.
Collapse
|
13
|
Zhu W, Xu L, Li X, Hu H, Lou S, Liu Y. iPSCs-Derived Neurons and Brain Organoids from Patients. Handb Exp Pharmacol 2023; 281:59-81. [PMID: 37306818 DOI: 10.1007/164_2023_657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into specific neurons and brain organoids by adding induction factors and small molecules in vitro, which carry human genetic information and recapitulate the development process of human brain as well as physiological, pathological, and pharmacological characteristics. Hence, iPSC-derived neurons and organoids hold great promise for studying human brain development and related nervous system diseases in vitro, and provide a platform for drug screening. In this chapter, we summarize the development of the differentiation techniques for neurons and brain organoids from iPSCs, and their applications in studying brain disease, drug screening, and transplantation.
Collapse
Affiliation(s)
- Wanying Zhu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Lei Xu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xinrui Li
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Hao Hu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shuning Lou
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Behl T, Kaur I, Sehgal A, Singh S, Sharma N, Chigurupati S, Felemban SG, Alsubayiel AM, Iqbal MS, Bhatia S, Al-Harrasi A, Bungau S, Mostafavi E. "Cutting the Mustard" with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Rev Rep 2022; 18:2757-2780. [PMID: 35793037 DOI: 10.1007/s12015-022-10390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 12/09/2022]
Abstract
Treatment of numerous ailments has been made accessible by the advent of genetic engineering, where the self-renewal property has unfolded the mysteries of regeneration, i.e., stem cells. This is narrowed down to pluripotency, the cell property of differentiating into other adult cells. The generation of induced pluripotent stem cells (iPSCs) was a major breakthrough in 2006, which was generated by a cocktail of 4 Yamanaka Factors, following which significant advancements have been reported in medical science and therapeutics. The iPSCs are reprogrammed from somatic cells, and the fascinating results focused on developing authentic techniques for their generation via molecular reprogramming mechanisms, with a plethora of molecules, like NANOG, miRNAs, and DNA modifying agents, etc. The iPSCs have exhibited reliable results in assessing the etiology and molecular mechanisms of diseases, followed by the development of possible treatments and the elimination of risks of immune rejection. The authors formulate a comprehensive review to develop a clear understanding of iPSC generation, their advantages and limitations, with potential challenges associated with their medical utility. In addition, a wide compendium of applications of iPSCs in regenerative medicine and disease modeling has been discussed, alongside bioengineering technologies for iPSC reprogramming, expansion, isolation, and differentiation. The manuscript aims to provide a holistic picture of the booming advancement of iPSC therapy, to attract the attention of global researchers, to investigate this versatile approach in treatment of multiple disorders, subsequently overcoming the challenges, in order to effectively expand its therapeutic window.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sridevi Chigurupati
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Shatha Ghazi Felemban
- Department of Medical Laboratory Science, Fakeeh College for Medical Sciences, Jeddah, Kingdom of Saudi Arabia
| | - Amal M Alsubayiel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Darwish T, Al-Khulaifi A, Ali M, Mowafy R, Arredouani A, Doi SA, Emara MM. Assessing the consistency of iPSC and animal models in cystic fibrosis modelling: A meta-analysis. PLoS One 2022; 17:e0272091. [PMID: 35944004 PMCID: PMC9362911 DOI: 10.1371/journal.pone.0272091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 07/12/2022] [Indexed: 12/09/2022] Open
Abstract
INTRODUCTION Cystic fibrosis (CF) is a hereditary autosomal recessive disorder caused by a range of mutations in the CF Transmembrane Conductance Regulator (CFTR) gene. This gene encodes the CFTR protein, which acts as a chloride channel activated by cyclic AMP (cAMP). This meta-analysis aimed to compare the responsiveness of induced pluripotent stem cells (iPSCs) to cAMP analogues to that of commonly used animal models. METHODS Databases searched included PubMed, Scopus, and Medline from inception to January 2020. A total of 8 and 3 studies, respectively, for animal models and iPSCs, were analyzed. Studies were extracted for investigating cAMP-stimulated anion transport by measuring the short circuit current (Isc) of chloride channels in different animal models and iPSC systems We utilized an inverse variance heterogeneity model for synthesis. RESULTS Our analysis showed considerable heterogeneity in the mean Isc value in both animal models and iPSCs studies (compared to their WT counterparts), and both suffer from variable responsiveness based on the nature of the underlying model. There was no clear advantage of one over the other. CONCLUSIONS Studies on both animal and iPSCs models generated considerable heterogeneity. Given the potential of iPSC-derived models to study different diseases, we recommend paying more attention to developing reproducible models of iPSC as it has potential if adequately developed.
Collapse
Affiliation(s)
- Toqa Darwish
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Azhar Al-Khulaifi
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Menatalla Ali
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Rana Mowafy
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| | - Abdelilah Arredouani
- Diabetes Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation, Doha, Qatar
| | - Suhail A. Doi
- Department of Population Medicine, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Mohamed M. Emara
- Basic Medical Sciences Department, College of Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
16
|
Human Brain Models of Intellectual Disability: Experimental Advances and Novelties. Int J Mol Sci 2022; 23:ijms23126476. [PMID: 35742919 PMCID: PMC9224308 DOI: 10.3390/ijms23126476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Intellectual disability (ID) is characterized by deficits in conceptual, social and practical domains. ID can be caused by both genetic defects and environmental factors and is extremely heterogeneous, which complicates the diagnosis as well as the deciphering of the underlying pathways. Multiple scientific breakthroughs during the past decades have enabled the development of novel ID models. The advent of induced pluripotent stem cells (iPSCs) enables the study of patient-derived human neurons in 2D or in 3D organoids during development. Gene-editing tools, such as CRISPR/Cas9, provide isogenic controls and opportunities to design personalized gene therapies. In practice this has contributed significantly to the understanding of ID and opened doors to identify novel therapeutic targets. Despite these advances, a number of areas of improvement remain for which novel technologies might entail a solution in the near future. The purpose of this review is to provide an overview of the existing literature on scientific breakthroughs that have been advancing the way ID can be studied in the human brain. The here described human brain models for ID have the potential to accelerate the identification of underlying pathophysiological mechanisms and the development of therapies.
Collapse
|
17
|
Rejano-Gordillo C, Ordiales-Talavero A, Nacarino-Palma A, Merino JM, González-Rico FJ, Fernández-Salguero PM. Aryl Hydrocarbon Receptor: From Homeostasis to Tumor Progression. Front Cell Dev Biol 2022; 10:884004. [PMID: 35465323 PMCID: PMC9022225 DOI: 10.3389/fcell.2022.884004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Transcription factor aryl hydrocarbon receptor (AHR) has emerged as one of the main regulators involved both in different homeostatic cell functions and tumor progression. Being a member of the family of basic-helix-loop-helix (bHLH) transcriptional regulators, this intracellular receptor has become a key member in differentiation, pluripotency, chromatin dynamics and cell reprogramming processes, with plenty of new targets identified in the last decade. Besides this role in tissue homeostasis, one enthralling feature of AHR is its capacity of acting as an oncogene or tumor suppressor depending on the specific organ, tissue and cell type. Together with its well-known modulation of cell adhesion and migration in a cell-type specific manner in epithelial-mesenchymal transition (EMT), this duality has also contributed to the arise of its clinical interest, highlighting a new potential as therapeutic tool, diagnosis and prognosis marker. Therefore, a deregulation of AHR-controlled pathways may have a causal role in contributing to physiological and homeostatic failures, tumor progression and dissemination. With that firmly in mind, this review will address the remarkable capability of AHR to exert a different function influenced by the phenotype of the target cell and its potential consequences.
Collapse
Affiliation(s)
- Claudia Rejano-Gordillo
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Ordiales-Talavero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Ana Nacarino-Palma
- Chronic Diseases Research Centre (CEDOC), Rua Do Instituto Bacteriológico, Lisboa, Portugal
| | - Jaime M. Merino
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | - Francisco J. González-Rico
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| | - Pedro M. Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
- *Correspondence: Francisco J. González-Rico, ; Pedro M. Fernández-Salguero,
| |
Collapse
|
18
|
Rahman MM, Islam MR, Islam MT, Harun-Or-Rashid M, Islam M, Abdullah S, Uddin MB, Das S, Rahaman MS, Ahmed M, Alhumaydhi FA, Emran TB, Mohamed AAR, Faruque MRI, Khandaker MU, Mostafa-Hedeab G. Stem Cell Transplantation Therapy and Neurological Disorders: Current Status and Future Perspectives. BIOLOGY 2022; 11:147. [PMID: 35053145 PMCID: PMC8772847 DOI: 10.3390/biology11010147] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases are a global health issue with inadequate therapeutic options and an inability to restore the damaged nervous system. With advances in technology, health scientists continue to identify new approaches to the treatment of neurodegenerative diseases. Lost or injured neurons and glial cells can lead to the development of several neurological diseases, including Parkinson's disease, stroke, and multiple sclerosis. In recent years, neurons and glial cells have successfully been generated from stem cells in the laboratory utilizing cell culture technologies, fueling efforts to develop stem cell-based transplantation therapies for human patients. When a stem cell divides, each new cell has the potential to either remain a stem cell or differentiate into a germ cell with specialized characteristics, such as muscle cells, red blood cells, or brain cells. Although several obstacles remain before stem cells can be used for clinical applications, including some potential disadvantages that must be overcome, this cellular development represents a potential pathway through which patients may eventually achieve the ability to live more normal lives. In this review, we summarize the stem cell-based therapies that have been explored for various neurological disorders, discuss the potential advantages and drawbacks of these therapies, and examine future directions for this field.
Collapse
Affiliation(s)
- Mohammad Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Touhidul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Harun-Or-Rashid
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mahfuzul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sabirin Abdullah
- Space Science Center, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Mohammad Borhan Uddin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Sumit Das
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Mohammad Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.R.I.); (M.T.I.); (M.H.-O.-R.); (M.I.); (M.B.U.); (S.D.); (M.S.R.); (M.A.)
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | | | | | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Sciences Research Unit, Medical College, Jouf University, Sakaka 72446, Saudi Arabia;
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef 62521, Egypt
| |
Collapse
|
19
|
Giacomelli E, Vahsen BF, Calder EL, Xu Y, Scaber J, Gray E, Dafinca R, Talbot K, Studer L. Human stem cell models of neurodegeneration: From basic science of amyotrophic lateral sclerosis to clinical translation. Cell Stem Cell 2022; 29:11-35. [PMID: 34995492 PMCID: PMC8785905 DOI: 10.1016/j.stem.2021.12.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative diseases are characterized by progressive cell loss leading to disruption of the structure and function of the central nervous system. Amyotrophic lateral sclerosis (ALS) was among the first of these disorders modeled in patient-specific iPSCs, and recent findings have translated into some of the earliest iPSC-inspired clinical trials. Focusing on ALS as an example, we evaluate the status of modeling neurodegenerative diseases using iPSCs, including methods for deriving and using disease-relevant neuronal and glial lineages. We further highlight the remaining challenges in exploiting the full potential of iPSC technology for understanding and potentially treating neurodegenerative diseases such as ALS.
Collapse
Affiliation(s)
- Elisa Giacomelli
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Björn F Vahsen
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth L Calder
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Yinyan Xu
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK; Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford OX3 7FZ, UK
| | - Jakub Scaber
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Elizabeth Gray
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Ruxandra Dafinca
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Kevin Talbot
- Oxford Motor Neuron Disease Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Lorenz Studer
- The Center for Stem Cell Biology, Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA.
| |
Collapse
|
20
|
Kuruş M, Akbari S, Eskier D, Bursalı A, Ergin K, Erdal E, Karakülah G. Transcriptome Dynamics of Human Neuronal Differentiation From iPSC. Front Cell Dev Biol 2022; 9:727747. [PMID: 34970540 PMCID: PMC8712770 DOI: 10.3389/fcell.2021.727747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The generation and use of induced pluripotent stem cells (iPSCs) in order to obtain all differentiated adult cell morphologies without requiring embryonic stem cells is one of the most important discoveries in molecular biology. Among the uses of iPSCs is the generation of neuron cells and organoids to study the biological cues underlying neuronal and brain development, in addition to neurological diseases. These iPSC-derived neuronal differentiation models allow us to examine the gene regulatory factors involved in such processes. Among these regulatory factors are long non-coding RNAs (lncRNAs), genes that are transcribed from the genome and have key biological functions in establishing phenotypes, but are frequently not included in studies focusing on protein coding genes. Here, we provide a comprehensive analysis and overview of the coding and non-coding transcriptome during multiple stages of the iPSC-derived neuronal differentiation process using RNA-seq. We identify previously unannotated lncRNAs via genome-guided de novo transcriptome assembly, and the distinct characteristics of the transcriptome during each stage, including differentially expressed and stage specific genes. We further identify key genes of the human neuronal differentiation network, representing novel candidates likely to have critical roles in neurogenesis using coexpression network analysis. Our findings provide a valuable resource for future studies on neuronal differentiation.
Collapse
Affiliation(s)
- Meltem Kuruş
- Department of Histology and Embryology, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | | | - Doğa Eskier
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| | | | - Kemal Ergin
- Department of Histology and Embryology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Esra Erdal
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir Biomedicine and Genome Center, İzmir, Turkey.,İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
21
|
Directly Reprogrammed Human Neurons to Understand Age-Related Energy Metabolism Impairment and Mitochondrial Dysfunction in Healthy Aging and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5586052. [PMID: 34950417 PMCID: PMC8691983 DOI: 10.1155/2021/5586052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 01/10/2023]
Abstract
Brain aging is characterized by several molecular and cellular changes grouped as the hallmarks or pillars of aging, including organelle dysfunction, metabolic and nutrition-sensor changes, stem cell attrition, and macromolecular damages. Separately and collectively, these features degrade the most critical neuronal function: transmission of information in the brain. It is widely accepted that aging is the leading risk factor contributing to the onset of the most prevalent pathological conditions that affect brain functions, such as Alzheimer's, Parkinson's, and Huntington's disease. One of the limitations in understanding the molecular mechanisms involved in those diseases is the lack of an appropriate cellular model that recapitulates the “aged” context in human neurons. The advent of the cellular reprogramming of somatic cells, i.e., dermal fibroblasts, to obtain directly induced neurons (iNs) and induced pluripotent stem cell- (iPSC-) derived neurons is technical sound advances that could open the avenues to understand better the contribution of aging toward neurodegeneration. In this review, we will summarize the commonalities and singularities of these two approaches for the study of brain aging, with an emphasis on the role of mitochondrial dysfunction and redox biology. We will address the evidence showing that iNs retain age-related features in contrast to iPSC-derived neurons that lose the aging signatures during the reprogramming to pluripotency, rendering iNs a powerful strategy to deepen our knowledge of the processes driving normal cellular function decline and neurodegeneration in a human adult model. We will finally discuss the potential utilization of these novel technologies to understand the differential contribution of genetic and epigenetic factors toward neuronal aging, to identify and develop new drugs and therapeutic strategies.
Collapse
|
22
|
Hulme AJ, Maksour S, St-Clair Glover M, Miellet S, Dottori M. Making neurons, made easy: The use of Neurogenin-2 in neuronal differentiation. Stem Cell Reports 2021; 17:14-34. [PMID: 34971564 PMCID: PMC8758946 DOI: 10.1016/j.stemcr.2021.11.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 01/01/2023] Open
Abstract
Directed neuronal differentiation of human pluripotent stem cells (hPSCs), neural progenitors, or fibroblasts using transcription factors has allowed for the rapid and highly reproducible differentiation of mature and functional neurons. Exogenous expression of the transcription factor Neurogenin-2 (NGN2) has been widely used to generate different populations of neurons, which have been used in neurodevelopment studies, disease modeling, drug screening, and neuronal replacement therapies. Could NGN2 be a “one-glove-fits-all” approach for neuronal differentiations? This review summarizes the cellular roles of NGN2 and describes the applications and limitations of using NGN2 for the rapid and directed differentiation of neurons.
Collapse
Affiliation(s)
- Amy J Hulme
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Simon Maksour
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mitchell St-Clair Glover
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Mirella Dottori
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; School of Medicine, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
23
|
Tadokoro S, Tokuyama-Toda R, Tatehara S, Ide S, Umeki H, Miyoshi K, Noma T, Satomura K. A New Induction Method for the Controlled Differentiation of Human-Induced Pluripotent Stem Cells Using Frozen Sections. Cells 2021; 10:2827. [PMID: 34831050 PMCID: PMC8616214 DOI: 10.3390/cells10112827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 02/04/2023] Open
Abstract
Considering that every tissue/organ has the most suitable microenvironment for its functional cells, controlling induced pluripotent stem cell (iPSC) differentiation by culture on frozen sections having a suitable microenvironment is possible. Induced PSCs were cultured on frozen sections of the liver, the brain, the spinal cord, and cover glasses (control) for 9 days. The iPSCs cultured on the sections of the liver resembled hepatocytes, whereas those on sections of the brain and the spinal cord resembled neuronal cells. The percentage of hepatocytic marker-positive cells in the iPSCs cultured on the sections of the liver was statistically higher than that of those in the iPSCs cultured on the sections of the brain and the spinal cord or on cover glasses. In contrast, the iPSCs cultured on the sections of the brain and the spinal cord revealed a high percentage of neural marker-positive cells. Thus, iPSCs can be differentiated into a specific cell lineage in response to specific factors within frozen sections of tissues/organs. Differentiation efficacy of the frozen sections markedly differed between the iPSC clones. Therefore, our induction method could be simple and effective for evaluating the iPSC quality.
Collapse
Affiliation(s)
- Susumu Tadokoro
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Reiko Tokuyama-Toda
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Seiko Tatehara
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Shinji Ide
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Hirochika Umeki
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| | - Keiko Miyoshi
- Department of Oral Bioscience, Tokushima University Graduate School of Biomedical Sciences, 3-18-15, Kuramoto, Tokushima 770-8504, Japan;
| | - Takafumi Noma
- Department of Nutrition and Health Promotion, Hiroshima Jogakuin University, 4-13-1, Ushitahigashi, Higashiku, Hiroshima 732-0063, Japan;
| | - Kazuhito Satomura
- Department of Oral Medicine and Stomatology, Tsurumi University School of Dental Medicine, 2-1-3, Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan; (S.T.); (R.T.-T.); (S.T.); (S.I.); (H.U.)
| |
Collapse
|
24
|
Approaches to Optimize Stem Cell-Derived Cardiomyocyte Maturation and Function. CURRENT STEM CELL REPORTS 2021. [DOI: 10.1007/s40778-021-00197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Gupta S, Butler SJ. Getting in touch with your senses: Mechanisms specifying sensory interneurons in the dorsal spinal cord. WIREs Mech Dis 2021; 13:e1520. [PMID: 34730293 PMCID: PMC8459260 DOI: 10.1002/wsbm.1520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/18/2022]
Abstract
The spinal cord is functionally and anatomically divided into ventrally derived motor circuits and dorsally derived somatosensory circuits. Sensory stimuli originating either at the periphery of the body, or internally, are relayed to the dorsal spinal cord where they are processed by distinct classes of sensory dorsal interneurons (dIs). dIs convey sensory information, such as pain, heat or itch, either to the brain, and/or to the motor circuits to initiate the appropriate response. They also regulate the intensity of sensory information and are the major target for the opioid analgesics. While the developmental mechanisms directing ventral and dorsal cell fates have been hypothesized to be similar, more recent research has suggested that dI fates are specified by novel mechanisms. In this review, we will discuss the molecular events that specify dorsal neuronal patterning in the spinal cord, thereby generating diverse dI identities. We will then discuss how this molecular understanding has led to the development of robust stem cell methods to derive multiple spinal cell types, including the dIs, and the implication of these studies for treating spinal cord injuries and neurodegenerative diseases. This article is categorized under: Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Sandeep Gupta
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Samantha J. Butler
- Department of NeurobiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Intellectual and Developmental Disabilities Research CenterUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
26
|
Zhao A, Pan Y, Cai S. Patient-Specific Cells for Modeling and Decoding Amyotrophic Lateral Sclerosis: Advances and Challenges. Stem Cell Rev Rep 2021; 16:482-502. [PMID: 31916190 DOI: 10.1007/s12015-019-09946-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Motor neuron loss or degeneration is the typical characteristic of amyotrophic lateral sclerosis (ALS), which often leads to weakness, paralysis, or even death. The underlying mechanisms of motor neuron degeneration and ALS progression remain elusive, and there is no effective treatment for ALS. The advances of stem cells and reprogramming techniques has made it possible to generate patient-specific motor neurons as cell models for studying disease mechanisms and drug discovery. This review comprehensively discusses recent approaches to generate motor neurons from stem cells and somatic cells and highlights the application of induced motor neurons to modeling ALS diseases, dissecting the pathogenesis, and screening new drugs. New perspectives are also discussed on generating patient-specific motor neuron subtypes that are affected by ALS or creating 3D spinal cord organoid models for better recapitulating and understanding ALS.
Collapse
Affiliation(s)
- Andong Zhao
- Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yu Pan
- Department of Trauma and Orthopedics, The 2nd Affiliated Hospital of Shenzhen University, The Affiliated Baoan Hospital of Southern Medical University, Shenzhen, 518101, China.
| | - Sa Cai
- Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
27
|
Human Pluripotent Stem-Cell-Derived Models as a Missing Link in Drug Discovery and Development. Pharmaceuticals (Basel) 2021; 14:ph14060525. [PMID: 34070895 PMCID: PMC8230131 DOI: 10.3390/ph14060525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), have the potential to accelerate the drug discovery and development process. In this review, by analyzing each stage of the drug discovery and development process, we identified the active role of hPSC-derived in vitro models in phenotypic screening, target-based screening, target validation, toxicology evaluation, precision medicine, clinical trial in a dish, and post-clinical studies. Patient-derived or genome-edited PSCs can generate valid in vitro models for dissecting disease mechanisms, discovering novel drug targets, screening drug candidates, and preclinically and post-clinically evaluating drug safety and efficacy. With the advances in modern biotechnologies and developmental biology, hPSC-derived in vitro models will hopefully improve the cost-effectiveness and the success rate of drug discovery and development.
Collapse
|
28
|
Reconstruction of Alzheimer's Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient. Stem Cells Int 2020; 2020:8897494. [PMID: 33381193 PMCID: PMC7762651 DOI: 10.1155/2020/8897494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
The establishment of human-induced pluripotent stem cell (iPSC) models from sporadic Alzheimer's disease (sAD) patients is necessary and could potentially benefit research into disease etiology and therapeutic strategies. However, the development of sAD iPSC models is still limited due to the multifactorial nature of the disease. Here, we extracted peripheral blood mononuclear cells (PBMCs) from a patient with sAD and induced them into iPSC by introducing the Sendai virus expressing Oct3/4, Sox2, c-Myc, and Klf4, which were subsequently induced into neural cells to build the cell model of AD. Using alkaline phosphatase staining, immunofluorescence staining, karyotype analysis, reverse transcription-polymerase chain reaction (RT-PCR), and teratoma formation in vitro, we demonstrated that the iPSC derived from PMBCs (PBMC-iPSC) had a normal karyotype and potential to differentiate into three embryonic layers. Immunofluorescence staining and quantitative real-time polymerase chain reaction (qPCR) suggested that PBMC-iPSCs were successfully differentiated into neural cells. Detection of beta-amyloid protein oligomer (AβO), beta-amyloid protein 1-40 (Aβ 1-40), and beta-amyloid protein 1-42 (Aβ 1-42) indicated that the AD cell model was satisfactorily constructed in vitro. In conclusion, this study has successfully generated an AD cell model with pathological features of beta-amyloid peptide deposition using PBMC from a patient with sAD.
Collapse
|
29
|
Farzaneh M, Anbiyaiee A, Khoshnam SE. Human Pluripotent Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2020; 15:135-143. [PMID: 31656156 DOI: 10.2174/1574362414666191018121658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) as a serious public health issue and neurological insult is one of the most severe cause of long-term disability. To date, a variety of techniques have been widely developed to treat central nervous system injury. Currently, clinical treatments are limited to surgical decompression and pharmacotherapy. Because of their negative effects and inefficiency, novel therapeutic approaches are required in the management of SCI. Improvement and innovation of stem cell-based therapies have a huge potential for biological and future clinical applications. Human pluripotent stem cells (hPSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are defined by their abilities to divide asymmetrically, self-renew and ultimately differentiate into various cell lineages. There are considerable research efforts to use various types of stem cells, such as ESCs, neural stem cells (NSCs), and mesenchymal stem cells (MSCs) in the treatment of patients with SCI. Moreover, the use of patient-specific iPSCs holds great potential as an unlimited cell source for generating in vivo models of SCI. In this review, we focused on the potential of hPSCs in treating SCI.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
30
|
Carter JL, Halmai JANM, Fink KD. The iNs and Outs of Direct Reprogramming to Induced Neurons. Front Genome Ed 2020; 2:7. [PMID: 34713216 PMCID: PMC8525349 DOI: 10.3389/fgeed.2020.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding of cell-type specific transcription factors has promoted progress in methods for cellular reprogramming, such as directly reprogramming somatic cells to induced neurons (iN). Methods for direct reprogramming require neuronal-fate determining gene activation via neuron-specific microRNAs, chemical modulation of key neuronal signaling pathways or overexpression via viral vectors, with some reprogramming strategies requiring a combination of these methods to induce the neuronal-cell fate. These methods have been employed in a multitude of cell types, including fibroblasts, hepatocytes, peripheral blood mononuclear, and T cells. The ability to create iN from skin biopsies and blood samples coupled with recent advancements in artificially inducing age- and disease-associated phenotypes are accelerating the development of disease models for late-onset neurodegenerative disorders. Here, we review how activation of the neuronal transcriptome alters the epigenetic landscape of the donor cell to facilitate reprogramming to neurons. We also discuss the advantages of using DNA binding domains such as CRISPR/dCas9 to overcome epigenetic barriers to induce neuronal-cell fate by activating endogenous neuronal cell-fate determining genes.
Collapse
|
31
|
Morales Pantoja IE, Smith MD, Rajbhandari L, Cheng L, Gao Y, Mahairaki V, Venkatesan A, Calabresi PA, Fitzgerald KC, Whartenby KA. iPSCs from people with MS can differentiate into oligodendrocytes in a homeostatic but not an inflammatory milieu. PLoS One 2020; 15:e0233980. [PMID: 32511247 PMCID: PMC7279569 DOI: 10.1371/journal.pone.0233980] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 05/15/2020] [Indexed: 11/19/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the central nervous system (CNS) that results in variable severities of neurodegeneration. The understanding of MS has been limited by the inaccessibility of the affected cells and the lengthy timeframe of disease development. However, recent advances in stem cell technology have facilitated the bypassing of some of these challenges. Towards gaining a greater understanding of the innate potential of stem cells from people with varying degrees of disability, we generated induced pluripotent stem cells (iPSCs) from peripheral blood mononuclear cells derived from stable and progressive MS patients, and then further differentiated them into oligodendrocyte (OL) lineage cells. We analyzed differentiation under both homeostatic and inflammatory conditions via sustained exposure to low-dose interferon gamma (IFNγ), a prominent cytokine in MS. We found that all iPSC lines differentiated into mature myelinating OLs, but chronic exposure to IFNγ dramatically inhibited differentiation in both MS groups, particularly if exposure was initiated during the pre-progenitor stage. Low-dose IFNγ was not toxic but led to an early upregulation of interferon response genes in OPCs followed by an apparent redirection in lineage commitment from OL to a neuron-like phenotype in a significant portion of the treated cells. Our results reveal that a chronic low-grade inflammatory environment may have profound effects on the efficacy of regenerative therapies.
Collapse
Affiliation(s)
- Itzy E. Morales Pantoja
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew D. Smith
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Labchan Rajbhandari
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Linzhao Cheng
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yongxing Gao
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Vasiliki Mahairaki
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
| | - Peter A. Calabresi
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kathryn C. Fitzgerald
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Epidemiology Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Katharine A. Whartenby
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, United States of America
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
32
|
Kim Y, Jeong J, Choi D. Small-molecule-mediated reprogramming: a silver lining for regenerative medicine. Exp Mol Med 2020; 52:213-226. [PMID: 32080339 PMCID: PMC7062739 DOI: 10.1038/s12276-020-0383-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/01/2019] [Accepted: 12/27/2019] [Indexed: 12/25/2022] Open
Abstract
Techniques for reprogramming somatic cells create new opportunities for drug screening, disease modeling, artificial organ development, and cell therapy. The development of reprogramming techniques has grown exponentially since the discovery of induced pluripotent stem cells (iPSCs) by the transduction of four factors (OCT3/4, SOX2, c-MYC, and KLF4) in mouse embryonic fibroblasts. Initial studies on iPSCs led to direct-conversion techniques using transcription factors expressed mainly in target cells. However, reprogramming transcription factors with a virus risks integrating viral DNA and can be complicated by oncogenes. To address these problems, many researchers are developing reprogramming methods that use clinically applicable small molecules and growth factors. This review summarizes research trends in reprogramming cells using small molecules and growth factors, including their modes of action. The reprogramming of cells using small molecules to generate viable, safe stem-cell populations could transform stem-cell therapies, disease modeling and artificial organ development. Existing ways of reprogramming cells to generate stem cells carry risks, because the methods used often involve using viral DNA components or oncogenes, genes with the potential to turn cells into tumour cells. Safer, inexpensive alternatives are sought by scientists, and the efficient reprogramming of cells using small molecules and growth factors shows promise. Dongho Choi and co-workers at Hanyang University College of Medicine in Seoul, South Korea, reviewed recent research highlighting how small molecules including chemical compounds, plant derivatives and certain approved drugs are being used effectively to create different stem-cell populations. Recent successes are also contributing valuable insights into how stem cells differentiate into different cell types.
Collapse
Affiliation(s)
- Yohan Kim
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea
| | - Jaemin Jeong
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea.,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea
| | - Dongho Choi
- Department of Surgery, Hanyang University College of Medicine, Seoul, 04763, Korea. .,HY Indang Center of Regenerative Medicine and Stem Cell Research, Hanyang University, Seoul, 04763, Korea.
| |
Collapse
|
33
|
Zhao D, Li YH, Yang ZY, Cai T, Wu XY, Xia Y, Zhou Z. [Effect of the local application of stem cells on repairing facial nerve defects: a systematic review]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:59-68. [PMID: 32037768 DOI: 10.7518/hxkq.2020.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
OBJECTIVE To systematically evaluate the repairing effect of stem cells on facial nerve defects. METHODS Articles regarding the regenerating effect of stem cells on facial nerves in animals were collected from the databases of Pubmed, Cochrane Library, Web of Science, Embase, Scopus, and CBM. Two professionals independently completed the article screening, data extraction, and bias risk assessment. RevMan 5.3 and random-effects models were used for the statistical analysis, and the results were presented in the form of mean differences (MD) with a 95%CI. The results of functional evaluation (vibrissae movement, facial paralysis) and histological evaluation (density of myelinated fibers, diameter of fibers, thickness of myelin sheath, G ratio) of facial nerve were Meta-analyzed. RESULTS A total of 4 614 articles were retrieved from the 6 databases, and 15 of these articles were included in the Meta-analysis. For vibrissae movement and facial paralysis, the stem cell group scored significantly higher than the non-stem cell group (P<0.05). The density of myelinated fibers and thickness of the myelin sheath in the stem cell group were higher than those in the non-stem cell group (P<0.05). The G ratio in the stem cell group was smaller than that in the non-stem cell group (P=0.001). There was no significant difference in fiber diameter (P=0.08). CONCLUSIONS Stem cells have potential in promoting facial nerve regeneration.
Collapse
Affiliation(s)
- Dan Zhao
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yue-Heng Li
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Zheng-Yan Yang
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Ting Cai
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Xiao-Yan Wu
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Yu Xia
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| | - Zhi Zhou
- Dept. of Preventive Stomatology, Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Muni-cipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401120, China
| |
Collapse
|
34
|
Liu G, David BT, Trawczynski M, Fessler RG. Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Rev Rep 2020; 16:3-32. [PMID: 31760627 PMCID: PMC6987053 DOI: 10.1007/s12015-019-09935-x] [Citation(s) in RCA: 296] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past 20 years, and particularly in the last decade, significant developmental milestones have driven basic, translational, and clinical advances in the field of stem cell and regenerative medicine. In this article, we provide a systemic overview of the major recent discoveries in this exciting and rapidly developing field. We begin by discussing experimental advances in the generation and differentiation of pluripotent stem cells (PSCs), next moving to the maintenance of stem cells in different culture types, and finishing with a discussion of three-dimensional (3D) cell technology and future stem cell applications. Specifically, we highlight the following crucial domains: 1) sources of pluripotent cells; 2) next-generation in vivo direct reprogramming technology; 3) cell types derived from PSCs and the influence of genetic memory; 4) induction of pluripotency with genomic modifications; 5) construction of vectors with reprogramming factor combinations; 6) enhancing pluripotency with small molecules and genetic signaling pathways; 7) induction of cell reprogramming by RNA signaling; 8) induction and enhancement of pluripotency with chemicals; 9) maintenance of pluripotency and genomic stability in induced pluripotent stem cells (iPSCs); 10) feeder-free and xenon-free culture environments; 11) biomaterial applications in stem cell biology; 12) three-dimensional (3D) cell technology; 13) 3D bioprinting; 14) downstream stem cell applications; and 15) current ethical issues in stem cell and regenerative medicine. This review, encompassing the fundamental concepts of regenerative medicine, is intended to provide a comprehensive portrait of important progress in stem cell research and development. Innovative technologies and real-world applications are emphasized for readers interested in the exciting, promising, and challenging field of stem cells and those seeking guidance in planning future research direction.
Collapse
Affiliation(s)
- Gele Liu
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA.
| | - Brian T David
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical College, 1725 W. Harrison St., Suite 855, Chicago, IL, 60612, USA
| |
Collapse
|
35
|
Zhu Q, Lu P. Stem Cell Transplantation for Amyotrophic Lateral Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:71-97. [PMID: 33105496 DOI: 10.1007/978-981-15-4370-8_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a motor neuronal degeneration disease, in which the death of motor neurons causes lost control of voluntary muscles. The consequence is weakness of muscles with a wide range of disabilities and eventually death. Most patients died within 5 years after diagnosis, and there is no cure for this devastating neurodegenerative disease up to date. Stem cells, including non-neural stem cells and neural stem cells (NSCs) or neural progenitor cells (NPCs), are very attractive cell sources for potential neuroprotection and motor neuron replacement therapy which bases on the idea that transplant-derived and newly differentiated motor neurons can replace lost motor neurons to re-establish voluntary motor control of muscles in ALS. Our recent studies show that transplanted NSCs or NPCs not only survive well in injured spinal cord, but also function as neuronal relays to receive regenerated host axonal connection and extend their own axons to host for connectivity, including motor axons in ventral root. This reciprocal connection between host neurons and transplanted neurons provides a strong rationale for neuronal replacement therapy for ALS to re-establish voluntary motor control of muscles. In addition, a variety of new stem cell resources and the new methodologies to generate NSCs or motor neuron-specific progenitor cells have been discovered and developed. Together, it provides the basis for motor neuron replacement therapy with NSCs or NPCs in ALS.
Collapse
Affiliation(s)
- Qiang Zhu
- Ludwig Institute, University of California - San Diego, La Jolla, CA, USA
| | - Paul Lu
- Veterans Administration San Diego Healthcare System, San Diego, CA, USA. .,Department of Neurosciences, University of California - San Diego, La Jolla, CA, USA.
| |
Collapse
|
36
|
CSF transplantation of a specific iPSC-derived neural stem cell subpopulation ameliorates the disease phenotype in a mouse model of spinal muscular atrophy with respiratory distress type 1. Exp Neurol 2019; 321:113041. [DOI: 10.1016/j.expneurol.2019.113041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/21/2019] [Accepted: 08/20/2019] [Indexed: 12/14/2022]
|
37
|
Single-cell multimodal transcriptomics to study neuronal diversity in human stem cell-derived brain tissue and organoid models. J Neurosci Methods 2019; 325:108350. [DOI: 10.1016/j.jneumeth.2019.108350] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/24/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
|
38
|
Trawczynski M, Liu G, David BT, Fessler RG. Restoring Motor Neurons in Spinal Cord Injury With Induced Pluripotent Stem Cells. Front Cell Neurosci 2019; 13:369. [PMID: 31474833 PMCID: PMC6707336 DOI: 10.3389/fncel.2019.00369] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating neurological disorder that damages motor, sensory, and autonomic pathways. Recent advances in stem cell therapy have allowed for the in vitro generation of motor neurons (MNs) showing electrophysiological and synaptic activity, expression of canonical MN biomarkers, and the ability to graft into spinal lesions. Clinical translation, especially the transplantation of MN precursors in spinal lesions, has thus far been elusive because of stem cell heterogeneity and protocol variability, as well as a hostile microenvironment such as inflammation and scarring, which yield inconsistent pre-clinical results without a consensus best-practice therapeutic strategy. Induced pluripotent stem cells (iPSCs) in particular have lower ethical and immunogenic concerns than other stem cells, which could make them more clinically applicable. In this review, we focus on the differentiation of iPSCs into neural precursors, MN progenitors, mature MNs, and MN subtype fates. Previous reviews have summarized MN development and differentiation, but an up-to-date summary of technological and experimental advances holding promise for bench-to-bedside translation, especially those targeting individual MN subtypes in SCI, is currently lacking. We discuss biological mechanisms of MN lineage, recent experimental protocols and techniques for MN differentiation from iPSCs, and transplantation of neural precursors and MN lineage cells in spinal cord lesions to restore motor function. We emphasize efficient, clinically safe, and personalized strategies for the application of MN and their subtypes as therapy in spinal lesions.
Collapse
Affiliation(s)
- Matthew Trawczynski
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gele Liu
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Brian T David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Richard G Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| |
Collapse
|
39
|
Advances in Human Induced Pluripotent Stem Cell-Derived Hepatocytes for Use in Toxicity Testing. Ann Biomed Eng 2019; 48:1045-1057. [PMID: 31372857 DOI: 10.1007/s10439-019-02331-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be differentiated into multiple cell types in the body while maintaining proliferative capabilities. The generation of hepatocyte-like cells (HLCs) from iPSCs has resulted in a new source for liver cells. Since healthy primary human hepatocytes and hepatic cells are difficult to obtain, HLCs are gaining attention. HLCs can be obtained from a continuous, stable source while maintaining their original donor genotype, which opens new avenues into patient-specific testing and therapeutics. Studies have utilized HLCs for toxicity testing to further understand their drug metabolizing capabilities. This review focuses on advances being made to achieve hepatic functions from HLCs, their current use in hepatotoxicity testing, and their potential for future liver-related toxicity evaluations.
Collapse
|
40
|
Niu W, Parent JM. Modeling genetic epilepsies in a dish. Dev Dyn 2019; 249:56-75. [DOI: 10.1002/dvdy.79] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Wei Niu
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| | - Jack M. Parent
- Department of Neurology and Neuroscience Graduate ProgramUniversity of Michigan Medical Center and VA Ann Arbor Healthcare System Ann Arbor Michigan
| |
Collapse
|
41
|
Dehqan Niri A, Karimi Zarchi AA, Ghadiri Harati P, Salimi A, Mujokoro B. Tissue engineering scaffolds in the treatment of brain disorders in geriatric patients. Artif Organs 2019; 43:947-960. [DOI: 10.1111/aor.13485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Alireza Dehqan Niri
- Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | | | - Parisa Ghadiri Harati
- Department of Physiotherapy, School of Rehabilitation Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Salimi
- Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Basil Mujokoro
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
42
|
One-Step Formation of Chondrocytes through Direct Reprogramming via Polysaccharide-Based Gene Delivery. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/7632873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An innovative strategy for the generation of chondrocytes was thoroughly studied in this paper. Polyetherimide-modified polysaccharides of Porphyra yezoensis (pmPPY) served as a nonviral gene vector and delivered Sox9 plasmid to directly reprogram mouse embryonic fibroblasts into chondrocytes. The gene transfer efficiency was evaluated through ELISA, RT-PCR, and Western blot. The induced chondrocytes were identified through toluidine blue, Safranin O, and the immunostaining. The expression level of collagen II was finally evaluated through western blot. The pSox9/pmPPY nanoparticles (1:50) showed lower cytotoxicity as well as greater gene transfection efficiency than Lipofectamine 2000 and polyetherimide (PEI) (p<0.05). The results of toluidine blue, Safranin O, and the immunostaining of collagen II further showed that the normal MEFs were successfully reprogrammed into chondrocytes. These findings indicate that pmPPY could be a promising gene vector for the generation of chondrocytes via single-gene delivery strategy, which might provide abundant chondrocytes for cartilage repair.
Collapse
|
43
|
Hu J, Wang J. From embryonic stem cells to induced pluripotent stem cells-Ready for clinical therapy? Clin Transplant 2019; 33:e13573. [PMID: 31013374 DOI: 10.1111/ctr.13573] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells and induced pluripotent stem cells have increasingly important roles in many different fields of research and medicine. Major areas of impact include improved in vitro disease models, drug screening, and the development of cell-based clinical therapies. Here, we review the generation and uses of embryonic stem cells compared to induced pluripotent stem cells and discuss their advantages and limitations. We also evaluate the feasibility of clinical therapies and the future prospects for induced pluripotent cell-based treatments.
Collapse
Affiliation(s)
- Jing Hu
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jimei Wang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
44
|
Andrews MG, Kong J, Novitch BG, Butler SJ. New perspectives on the mechanisms establishing the dorsal-ventral axis of the spinal cord. Curr Top Dev Biol 2018; 132:417-450. [PMID: 30797516 DOI: 10.1016/bs.ctdb.2018.12.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Distinct classes of neurons arise at different positions along the dorsal-ventral axis of the spinal cord leading to spinal neurons being segregated along this axis according to their physiological properties and functions. Thus, the neurons associated with motor control are generally located in, or adjacent to, the ventral horn whereas the interneurons (INs) that mediate sensory activities are present within the dorsal horn. Here, we review classic and recent studies examining the developmental mechanisms that establish the dorsal-ventral axis in the embryonic spinal cord. Intriguingly, while the cellular organization of the dorsal and ventral halves of the spinal cord looks superficially similar during early development, the underlying molecular mechanisms that establish dorsal vs ventral patterning are markedly distinct. For example, the ventral spinal cord is patterned by the actions of a single growth factor, sonic hedgehog (Shh) acting as a morphogen, i.e., concentration-dependent signal. Recent studies have shed light on the mechanisms by which the spatial and temporal gradient of Shh is transduced by cells to elicit the generation of different classes of ventral INs, and motor neurons (MNs). In contrast, the dorsal spinal cord is patterned by the action of multiple factors, most notably by members of the bone morphogenetic protein (BMP) and Wnt families. While less is known about dorsal patterning, recent studies have suggested that the BMPs do not act as morphogens to specify dorsal IN identities as previously proposed, rather each BMP has signal-specific activities. Finally, we consider the promise that elucidation of these mechanisms holds for neural repair.
Collapse
Affiliation(s)
- Madeline G Andrews
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Jennifer Kong
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Neuroscience Graduate Program, University of California, Los Angeles, CA, United States
| | - Bennett G Novitch
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States
| | - Samantha J Butler
- Department of Neurobiology, University of California, Los Angeles, CA, United States; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, United States.
| |
Collapse
|
45
|
Apáti Á, Varga N, Berecz T, Erdei Z, Homolya L, Sarkadi B. Application of human pluripotent stem cells and pluripotent stem cell-derived cellular models for assessing drug toxicity. Expert Opin Drug Metab Toxicol 2018; 15:61-75. [PMID: 30526128 DOI: 10.1080/17425255.2019.1558207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Human pluripotent stem cells (hPSCs) are capable of differentiating into all types of cells in the body and so provide suitable toxicology screening systems even for hard-to-obtain human tissues. Since hPSCs can also be generated from differentiated cells and current gene editing technologies allow targeted genome modifications, hPSCs can be applied for drug toxicity screening both in normal and disease-specific models. Targeted hPSC differentiation is still a challenge but cardiac, neuronal or liver cells, and complex cellular models are already available for practical applications. Areas covered: The authors review new gene-editing and cell-biology technologies to generate sensitive toxicity screening systems based on hPSCs. Then the authors present the use of undifferentiated hPSCs for examining embryonic toxicity and discuss drug screening possibilities in hPSC-derived models. The authors focus on the application of human cardiomyocytes, hepatocytes, and neural cultures in toxicity testing, and discuss the recent possibilities for drug screening in a 'body-on-a-chip' model system. Expert opinion: hPSCs and their genetically engineered derivatives provide new possibilities to investigate drug toxicity in human tissues. The key issues in this regard are still the selection and generation of proper model systems, and the interpretation of the results in understanding in vivo drug effects.
Collapse
Affiliation(s)
- Ágota Apáti
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Nóra Varga
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Tünde Berecz
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Zsuzsa Erdei
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - László Homolya
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| | - Balázs Sarkadi
- a Institute of Enzymology , Research Centre for Natural Sciences , Budapest , Hungary
| |
Collapse
|
46
|
Sung JH, Wang YI, Kim JH, Lee JM, Shuler ML. Application of chemical reaction engineering principles to 'body-on-a-chip' systems. AIChE J 2018; 64:4351-4360. [PMID: 31402795 DOI: 10.1002/aic.16448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The combination of cell culture models with microscale technology has fostered emergence of in vitro cell-based microphysiological models, also known as organ-on-a-chip systems. Body-on-a-chip systems, which are multi-organ systems on a chip to mimic physiological relations, enable recapitulation of organ-organ interactions and potentially whole-body response to drugs, as well as serve as models of diseases. Chemical reaction engineering principles can be applied to understanding complex reactions inside the cell or human body, which can be treated as a multi-reactor system. These systems use physiologically-based pharmacokinetic (PBPK) models to guide the development of microscale systems of the body where organs or tissues are represented by living cells or tissues, and integrated into body-on-a-chip systems. Here, we provide a brief overview on the concept of chemical reaction engineering and how its principles can be applied to understanding and predicting the behavior of body-on-a-chip systems.
Collapse
Affiliation(s)
- Jong Hwan Sung
- Dept. of Chemical Engineering; Hongik University; Seoul Republic of Korea
| | - Ying I. Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853
| | - Jung Hun Kim
- School of Chemical and Biological Engineering, Seoul National University; Seoul Republic of Korea
| | - Jong Min Lee
- School of Chemical and Biological Engineering, Seoul National University; Seoul Republic of Korea
| | - Michael L. Shuler
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University; Ithaca NY 14853
| |
Collapse
|
47
|
Ma K, Deng X, Xia X, Fan Z, Qi X, Wang Y, Li Y, Ma Y, Chen Q, Peng H, Ding J, Li C, Huang Y, Tian C, Zheng JC. Direct conversion of mouse astrocytes into neural progenitor cells and specific lineages of neurons. Transl Neurodegener 2018; 7:29. [PMID: 30410751 PMCID: PMC6217767 DOI: 10.1186/s40035-018-0132-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cell replacement therapy has been envisioned as a promising treatment for neurodegenerative diseases. Due to the ethical concerns of ESCs-derived neural progenitor cells (NPCs) and tumorigenic potential of iPSCs, reprogramming of somatic cells directly into multipotent NPCs has emerged as a preferred approach for cell transplantation. METHODS Mouse astrocytes were reprogrammed into NPCs by the overexpression of transcription factors (TFs) Foxg1, Sox2, and Brn2. The generation of subtypes of neurons was directed by the force expression of cell-type specific TFs Lhx8 or Foxa2/Lmx1a. RESULTS Astrocyte-derived induced NPCs (AiNPCs) share high similarities, including the expression of NPC-specific genes, DNA methylation patterns, the ability to proliferate and differentiate, with the wild type NPCs. The AiNPCs are committed to the forebrain identity and predominantly differentiated into glutamatergic and GABAergic neuronal subtypes. Interestingly, additional overexpression of TFs Lhx8 and Foxa2/Lmx1a in AiNPCs promoted cholinergic and dopaminergic neuronal differentiation, respectively. CONCLUSIONS Our studies suggest that astrocytes can be converted into AiNPCs and lineage-committed AiNPCs can acquire differentiation potential of other lineages through forced expression of specific TFs. Understanding the impact of the TF sets on the reprogramming and differentiation into specific lineages of neurons will provide valuable strategies for astrocyte-based cell therapy in neurodegenerative diseases.
Collapse
Affiliation(s)
- Kangmu Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Xiaobei Deng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Zhaohuan Fan
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Xinrui Qi
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yongxiang Wang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Yuju Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Yizhao Ma
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Qiang Chen
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Hui Peng
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jianqing Ding
- Department of Neurology & Institute of Neurology, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Chunhong Li
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Changhai Tian
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital affiliated to Tongji University School of Medicine, Shanghai, 200072 China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, 200092 China
- Departments of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198-5930 USA
| |
Collapse
|
48
|
Lau E, Paik DT, Wu JC. Systems-Wide Approaches in Induced Pluripotent Stem Cell Models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:395-419. [PMID: 30379619 DOI: 10.1146/annurev-pathmechdis-012418-013046] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) provide a renewable supply of patient-specific and tissue-specific cells for cellular and molecular studies of disease mechanisms. Combined with advances in various omics technologies, iPSC models can be used to profile the expression of genes, transcripts, proteins, and metabolites in relevant tissues. In the past 2 years, large panels of iPSC lines have been derived from hundreds of genetically heterogeneous individuals, further enabling genome-wide mapping to identify coexpression networks and elucidate gene regulatory networks. Here, we review recent developments in omics profiling of various molecular phenotypes and the emergence of human iPSCs as a systems biology model of human diseases.
Collapse
Affiliation(s)
- Edward Lau
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - David T Paik
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA;
| | - Joseph C Wu
- Stanford Cardiovascular Institute, and Department of Medicine, Division of Cardiology, Stanford University, Stanford, California 94305, USA; .,Department of Radiology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
49
|
Ma G, Abbasi F, Koch WT, Mostowski H, Varadkar P, Mccright B. Evaluation of the differentiation status of neural stem cells based on cell morphology and the expression of Notch and Sox2. Cytotherapy 2018; 20:1472-1485. [PMID: 30523789 DOI: 10.1016/j.jcyt.2018.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 12/14/2022]
Abstract
Neural stem cells (NSCs) isolated from a variety of sources are being developed as cellular therapies aimed at treating neurodegenerative diseases. During NSC culture and expansion it is important the cells do not differentiate prematurely because this may have an unfavorable effect on product quality and yield. In our study, we evaluated the use of Notch and Sox2 as markers for undifferentiated human and mouse NSCs. The expression of Notch2 and Sox2 during extensive-passage, low-oxygen culture and differentiation conditions were analyzed to confirm that the presence of these signature proteins directly correlates with the ability of NSCs to form new neurospheres and differentiate into multiple cell types. Using expression of Notch1, Notch2 and Sox2 as a reference, we then used flow cytometry to identify a specific morphological profile for undifferentiated murine and human NSCs. Our studies show that Notch and Sox2 expression, along with flow cytometry analysis, can be used to monitor the differentiation status of NSCs grown in culture for use in cellular therapies.
Collapse
Affiliation(s)
- Ge Ma
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Fatima Abbasi
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - William T Koch
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Howard Mostowski
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Prajakta Varadkar
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA
| | - Brent Mccright
- US Food & Drug Administration, Center for Biologics Evaluation and Research, Office of Tissues and Advanced Therapies, Division of Cellular and Gene Therapies, Silver Spring, Maryland, USA.
| |
Collapse
|
50
|
Bianchi F, Malboubi M, Li Y, George JH, Jerusalem A, Szele F, Thompson MS, Ye H. Rapid and efficient differentiation of functional motor neurons from human iPSC for neural injury modelling. Stem Cell Res 2018; 32:126-134. [PMID: 30278374 DOI: 10.1016/j.scr.2018.09.006] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 12/14/2022] Open
Abstract
Primary rodent neurons and immortalised cell lines have overwhelmingly been used for in vitro studies of traumatic injury to peripheral and central neurons, but have some limitations of physiological accuracy. Motor neurons (MN) derived from human induced pluripotent stem cells (iPSCs) enable the generation of cell models with features relevant to human physiology. To facilitate this, it is desirable that MN protocols both rapidly and efficiently differentiate human iPSCs into electrophysiologically active MNs. In this study, we present a simple, rapid protocol for differentiation of human iPSCs into functional spinal (lower) MNs, involving only adherent culture and use of small molecules for directed differentiation, with the ultimate aim of rapid production of electrophysiologically functional cells for short-term neural injury experiments. We show successful differentiation in two unrelated iPSC lines, by quantifying neural-specific marker expression, and by evaluating cell functionality at different maturation stages by calcium imaging and patch clamping. Differentiated neurons were shown to be electrophysiologically altered by uniaxial mechanical deformation. Spontaneous network activity decreased with applied stretch, indicating aberrant network connectivity. These results demonstrate the feasibility of this rapid, simple protocol for differentiating iPSC-derived MNs, suitable for in vitro neural injury studies focussing on electrophysiological alterations caused by mechanical deformation or trauma.
Collapse
Affiliation(s)
- Fabio Bianchi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Majid Malboubi
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Yichen Li
- Department Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, UK
| | - Julian H George
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Antoine Jerusalem
- Department of Engineering Science, University of Oxford, OX1 3PJ, UK
| | - Francis Szele
- Department Physiology, Anatomy and Genetics, University of Oxford, OX1 3QX, UK
| | - Mark S Thompson
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK.
| |
Collapse
|