1
|
Abad-Contreras DE, Martínez-Ortiz AK, Martínez-López V, Laparra-Escareño H, Martínez-García FD, Pérez-Calixto D, Vazquez-Victorio G, Sepúlveda-Robles O, Rosas-Vargas H, Piña-Barba C, Rodríguez-López LA, Giraldo-Gomez DM, Hinojosa CA. Decellularization of human iliac artery: A vascular scaffold for peripheral repairs with human mesenchymal cells. Tissue Cell 2025; 93:102686. [PMID: 39724840 DOI: 10.1016/j.tice.2024.102686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024]
Abstract
This work presents strong evidence supporting the use of decellularized human iliac arteries combined with adipose tissue-derived stem cells (hASCs) as a promising alternative for vascular tissue engineering, opening the path to future treatments for peripheral artery disease (PAD). PAD is a progressive condition with high rates of amputation and mortality due to ischemic damage and limited graft options. Traditional synthetic grafts often fail due to poor integration, while autologous grafts may be unsuitable for patients with compromised vascular health. This study explores the potential of decellularized human iliac arteries as scaffolds for vascular grafts, focusing on preserving extracellular matrix (ECM) ultrastructure while minimizing immunogenic response. A perfusion-based protocol with enzymatic and detergent agents effectively removed cellular material, resulting in scaffolds with preserved ECM architecture, including organized collagen and elastin fibers. To assess scaffold bioactivity, hASCs were seeded onto the decellularized ECM, demonstrating high viability. Structural assessments, including histological staining and mechanical testing, confirmed that decellularized arteries retained their hierarchical structure and exhibited increased stiffness, suggesting an adaptive realignment of ECM fibers. Thermal and ultrastructural analyses further showed that decellularized scaffolds maintained stability and integrity comparable to native tissue, underscoring their durability for clinical applications. The human iliac artery shows potential as a vascular scaffold due to its accessibility and the ability to support the viability of hASC. Future research will emphasize in vivo validation and strategies for functional recellularization to evaluate the clinical viability of these engineered vascular grafts.
Collapse
Affiliation(s)
- David E Abad-Contreras
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico.
| | - Ana K Martínez-Ortiz
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Valentín Martínez-López
- Unit of Tissue Engineering, Cell Therapy and Regenerative Medicine, Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Coapa, Arenal Tepepan, Calzada México-Xochimilco 289, Tlalpan, Ciudad de México, Mexico
| | - Hugo Laparra-Escareño
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - Francisco Drusso Martínez-García
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, Groningen 9713 GZ, the Netherlands
| | - Daniel Pérez-Calixto
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico; Subdirectorate of Population Genomics. National Institute of Genomic Medicine, Periférico Sur No. 4809, Col. Arenal Tepepan, Alcaldía Tlalpan, CDMX CP 1461, Mexico
| | - Genaro Vazquez-Victorio
- Department of Physics, Faculty of Sciences UNAM, Circuito Exterior s/n Ciudad Universitaria, Av. Universidad 3000, Alcaldía Coyoacán, CDMX CP 04510, Mexico
| | - Omar Sepúlveda-Robles
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, UMAE Pediatric Hospital, "Siglo XXI" National Medical Center, Mexican Social Security Institute (IMSS), CDMX, Mexico
| | - Cristina Piña-Barba
- Laboratory for Biomaterials, Materials Research Institute, National Autonomous University of Mexico (UNAM), Circuito Exterior, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Leonardo A Rodríguez-López
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| | - David M Giraldo-Gomez
- Department of Cell and Tissue Biology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" 3°piso, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico; Microscopy Core Facility, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Circuito Interior, Edificio "A" planta baja, Ciudad Universitaria, Avenida Universidad 3000, Coyoacán, Ciudad de México 04510, Mexico
| | - Carlos A Hinojosa
- National Institute of Medical Sciences and Nutrition of Mexico Salvador Zubirán (INCMNSZ), Vasco de Quiroga 15, Belisario Domínguez Secc. 16, Tlalpan, Ciudad de México 14080, Mexico
| |
Collapse
|
2
|
Che Y, Shimizu Y, Murohara T. Therapeutic Potential of Adipose-Derived Regenerative Cells for Ischemic Diseases. Cells 2025; 14:343. [PMID: 40072072 PMCID: PMC11898683 DOI: 10.3390/cells14050343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/15/2025] Open
Abstract
Adipose-derived regenerative cells (ADRCs) are one of the most promising cell sources that possess significant therapeutic effects. They have now become a main source of cell therapy for the treatment of ischemic diseases due to their easy accessibility, expansion, and differentiation. Additionally, ADRCs can release multiple paracrine factors and extracellular vesicles that contribute to tissue regeneration by promoting angiogenesis, regulating inflammation, alleviating apoptosis, and inhibiting fibrosis. However, ADRCs still have some limitations to realize their full therapeutic potential. To address these issues, protective mechanistic studies and bioengineering studies have been carried out. This review focused on the recently studied mechanisms, such as paracrine factors, cell fusion, and mitochondrial transfer, involving the therapeutic potential of ADRCs in ischemic diseases and discussed some modification techniques of ADRCs.
Collapse
Affiliation(s)
| | - Yuuki Shimizu
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | | |
Collapse
|
3
|
Zhang X, Schipper JAM, Schepers RH, Jansma J, Spijkervet FKL, Harmsen MC. A Versatile Skin-Derived Extracellular Matrix Hydrogel-Based Platform to Investigate the Function of a Mechanically Isolated Adipose Tissue Stromal Vascular Fraction. Biomolecules 2024; 14:1493. [PMID: 39766200 PMCID: PMC11673086 DOI: 10.3390/biom14121493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction: To accelerate cutaneous wound healing and prevent scarring, regenerative approaches such as injecting a mechanically derived tissue stromal vascular fraction (tSVF) are currently under clinical and laboratory investigations. The aim of our study was to investigate a platform to assess the interaction between skin-derived extracellular matrix (ECM) hydrogels and tSVF and their effects on their microenvironment in the first ten days of culture. Material and Methods: A tSVF mixed with ECM hydrogel was cultured for ten days. After 0, 3, 5, and 10 days of culture viability, histology, immunohistochemistry, gene expression, and collagen alignment and organization were assessed. Results: The viability analysis showed that tSVF remained viable during 10 days of culture and seemed to remain within their constitutive ECM. The fiber analysis demonstrated that collagen alignment and organization were not altered. No outgrowth of capillaries was observed in (immuno)histochemical staining. The gene expression analysis revealed that paracrine factors TGFB1 and VEGFA did not change and yet were constitutively expressed. Pro-inflammatory factors IL1B and IL6 were downregulated. Matrix remodeling gene MMP1 was upregulated from day three on, while MMP14 was upregulated at day three and ten. Interestingly, MMP14 was downregulated at day five compared to day three while MMP2 was downregulated after day zero. Conclusions: Skin-derived ECM hydrogels appear to be a versatile platform for investigating the function of a mechanically isolated adipose tissue stromal vascular fraction. In vitro tSVF remained viable for 10 days and sustained the expression of pro-regenerative factors, but is in need of additional triggers to induce vascularization or show signs of remodeling of the surrounding ECM. In the future, ECM-encapsulated tSVF may show promise for clinical administration to improve wound healing.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| | - Jan Aart M. Schipper
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.A.M.S.); (R.H.S.); (J.J.); (F.K.L.S.)
| | - Rutger H. Schepers
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.A.M.S.); (R.H.S.); (J.J.); (F.K.L.S.)
- Department of Oral and Maxillofacial Surgery, Martini Hospital, van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Johan Jansma
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.A.M.S.); (R.H.S.); (J.J.); (F.K.L.S.)
- Department of Oral and Maxillofacial Surgery, Martini Hospital, van Swietenplein 1, 9728 NT Groningen, The Netherlands
| | - Fred K. L. Spijkervet
- Department of Oral and Maxillofacial Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.A.M.S.); (R.H.S.); (J.J.); (F.K.L.S.)
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
4
|
Harary Søndergaard R, Drozd Højgaard L, Haack-Sørensen M, Hoeeg C, Mønsted Johansen E, Follin B, Kastrup J, Ekblond A, Juhl M. Investigating the paracrine and juxtacrine abilities of adipose-derived stromal cells in angiogenesis triple cell co-cultures. Stem Cell Res 2024; 77:103417. [PMID: 38608355 DOI: 10.1016/j.scr.2024.103417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
The pro-angiogenic abilities of adipose-derived stromal cells (ASCs) make them attractive candidates for cellular therapy, especially for ischemic disease indications. However, details regarding the underlying mechanisms remain elusive. Therefore, this study aimed to investigate paracrine and juxtacrine abilities of ASCs in angiogenesis triple cell co-cultures by detailed image analysis of the vascular-like structures. Fibroblast-endothelial cell co-cultures were established, and ASCs were added directly or indirectly through inserts. The cultures were treated with antibodies or subjected to analyses using ELISA and RT2 PCR Arrays. The model consistently generated vascular-like structures. ASCs increased the total branch lengths equally well in paracrine and juxtacrine conditions, by increasing the number of branches and average branch lengths (ABL). In contrast, addition of VEGF to the model increased the number of branches, but not the ABL. Still, ASCs increased the VEGF levels in supernatants of paracrine and juxtacrine co-cultures, and anti-VEGF treatment decreased the sprouting. ASCs themselves up-regulated collagen type V in response to paracrine signals from the co-cultures. The results suggest that ASCs initiate sprouting through secretion of several paracrine factors, among which VEGF is identified, but VEGF alone does not recapitulate the paracrine actions of ASCs. By employing neutralizing antibodies and dismantling common model outputs using image analysis, the triple cell co-culture is an attractive tool for discovery of the paracrine factors in ASCs' secretome which act in concert with VEGF to improve angiogenesis.
Collapse
Affiliation(s)
- Rebekka Harary Søndergaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark.
| | - Lisbeth Drozd Højgaard
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Mandana Haack-Sørensen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Cecilie Hoeeg
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Ellen Mønsted Johansen
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Bjarke Follin
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Jens Kastrup
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Annette Ekblond
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| | - Morten Juhl
- Cardiology Stem Cell Centre, The Heart Centre, Copenhagen University Hospital Rigshospitalet, Henrik Harpestrengs Vej 4C, Dept. 9302, DK-2100 Copenhagen, Denmark
| |
Collapse
|
5
|
Zhang M, Zhao F, Zhang X, Brouwer LA, Burgess JK, Harmsen MC. Fibroblasts alter the physical properties of dermal ECM-derived hydrogels to create a pro-angiogenic microenvironment. Mater Today Bio 2023; 23:100842. [PMID: 37942422 PMCID: PMC10628774 DOI: 10.1016/j.mtbio.2023.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
This study aimed to investigate the impact of fibroblasts (MRC-5) on the extracellular matrix (ECM) microenvironment of endothelial cells (ECs) during the vascularization of skin-derived ECM hydrogel in vitro. Two types of ECs were studied: human dermal microvascular endothelial cells (HMEC) and human pulmonary microvascular endothelial cells (HPMEC). Results showed that the presence of MRC-5 fibroblasts increased the stiffness of the hydrogel and led to larger fiber diameters and increased porosity. Extensive collagen fiber remodeling occurred in the ECM hydrogel with MRC-5 fibroblasts. Additionally, higher levels of fibulin-1 and fibronectin were deposited in the hydrogel when co-cultured with MRC-5 fibroblasts. These findings suggest that MRC-5 fibroblasts play a role in modifying the ECM microenvironment, promoting vascularization through dynamic ECM remodeling.
Collapse
Affiliation(s)
- Meng Zhang
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Fenghua Zhao
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering-FB40, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Xue Zhang
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
| | - Linda A. Brouwer
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713, AV Groningen, the Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713, GZ Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713, AV Groningen, the Netherlands
- University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713, AV Groningen, the Netherlands
| |
Collapse
|
6
|
Chen Y, Schlotterer A, Kurowski L, Li L, Dannehl M, Hammes HP, Lin J. miRNA-124 Prevents Rat Diabetic Retinopathy by Inhibiting the Microglial Inflammatory Response. Int J Mol Sci 2023; 24:ijms24032291. [PMID: 36768614 PMCID: PMC9917205 DOI: 10.3390/ijms24032291] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Diabetic retinopathy (DR) is characterized by vasoregression and glial activation. miRNA-124 (miR-124) reduces retinal microglial activation and alleviates vasoregression in a neurodegenerative rat model. Our aim was to determine whether miR-124 affects vascular and neural damage in the early diabetic retina. Diabetes was induced in 8-week-old Wistar rats by streptozotocin (STZ) injection. At 16 and 20 weeks, the diabetic rats were intravitreally injected with miR-124 mimic, and retinae were analyzed at 24 weeks. Microvascular damage was identified by evaluating pericyte loss and acellular capillary (AC) formation. Müller glial activation was assessed by glial fibrillary acidic protein (GFAP) immunofluorescence staining. Microglial activation was determined by immunofluorescent staining of ionized calcium-binding adaptor molecule 1 (Iba1) in whole mount retinae. The neuroretinal function was assessed by electroretinography. The expression of inflammation-associated genes was evaluated by qRT-PCR. A wound healing assay was performed to quantitate the mobility of microglial cells. The results showed that miR-124 treatment alleviated diabetic vasoregression by reducing AC formation and pericyte loss. miR-124 blunted Müller glial- and microglial activation in diabetic retinae and ameliorated neuroretinal function. The retinal expression of inflammatory factors including Tnf-α, Il-1β, Cd74, Ccl2, Ccl3, Vcam1, Tgf-β1, Arg1, and Il-10 was reduced by miR-124 administration. The elevated mobility of microglia upon high glucose exposure was normalized by miR-124. The expression of the transcription factor PU.1 and lipid raft protein Flot1 was downregulated by miR-124. In rat DR, miR-124 prevents vasoregression and glial activation, improves neuroretinal function, and modulates microglial activation and inflammatory responses.
Collapse
Affiliation(s)
- Ying Chen
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Luke Kurowski
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Lin Li
- Department of Vascular Surgery, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Marcus Dannehl
- Department of Pediatrics, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
- Correspondence: ; Tel.: +49-621-383-3774
| |
Collapse
|
7
|
Säljö K, Apelgren P, Stridh Orrhult L, Li S, Amoroso M, Gatenholm P, Kölby L. Long-term in vivo survival of 3D-bioprinted human lipoaspirate-derived adipose tissue: proteomic signature and cellular content. Adipocyte 2022; 11:34-46. [PMID: 34957918 PMCID: PMC8726626 DOI: 10.1080/21623945.2021.2014179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 11/05/2022] Open
Abstract
Three-dimensional (3D)-bioprinted lipoaspirate-derived adipose tissue (LAT) is a potential alternative to lipo-injection for correcting soft-tissue defects. This study investigated the long-term in vivo survival of 3D-bioprinted LAT and its proteomic signature and cellular composition. We performed proteomic and multicolour flow cytometric analyses on the lipoaspirate and 3D-bioprinted LAT constructs were transplanted into nude mice, followed by explantation after up to 150 days. LAT contained adipose-tissue-derived stem cells (ASCs), pericytes, endothelial progenitor cells (EPCs) and endothelial cells. Proteomic analysis identified 6,067 proteins, including pericyte markers, adipokines, ASC secretome proteins, proangiogenic proteins and proteins involved in adipocyte differentiation and developmental morphogenic signalling, as well as proteins not previously described in human subcutaneous fat. 3D-bioprinted LAT survived for 150 days in vivo with preservation of the construct shape and size. Furthermore, we identified human blood vessels after 30 and 150 days in vivo, indicating angiogenesis from capillaries. These results showed that LAT has a favourable proteomic signature, contains ASCs, EPCs and blood vessels that survive 3D bioprinting and can potentially facilitate angiogenesis and successful autologous fat grafting in soft-tissue reconstruction.
Collapse
Affiliation(s)
- Karin Säljö
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Peter Apelgren
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Linnea Stridh Orrhult
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Susann Li
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Matteo Amoroso
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Paul Gatenholm
- 3D Bioprinting Centre, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lars Kölby
- Department of Plastic Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Plastic Surgery, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
8
|
Zhang M, Getova VE, Martinez-Garcia FD, Borghuis T, Burgess JK, Harmsen MC. From Macro to Micro: Comparison of Imaging Techniques to Detect Vascular Network Formation in Left Ventricle Decellularized Extracellular Matrix Hydrogels. Gels 2022; 8:729. [PMID: 36354636 PMCID: PMC9689814 DOI: 10.3390/gels8110729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2023] Open
Abstract
Background: Angiogenesis is a crucial process in physiological maintenance and tissue regeneration. To understand the contribution of angiogenesis, it is essential to replicate this process in an environment that reproduces the biochemical and physical properties which are largely governed by the extracellular matrix (ECM). We investigated vascularization in cardiac left ventricular ECM hydrogels to mimic post-myocardial repair. We set out to assess and compare different destructive and non-destructive methods, optical as well as non-optical, to visualize angiogenesis and associated matrix remodeling in myocardial ECM hydrogels. Methods: A total of 100,000, 300,000, and 600,000 Human Pulmonary Microvascular Endothelial Cells (HPMEC) were seeded in left ventricular cardiac ECM hydrogel in 48-well plates. After 1, 7, and 14 days of culture, the HPMEC were imaged by inverted fluorescence microscopy and 3D confocal laser scanning microscopy (Zeiss Cell Discoverer 7). In addition, cell-seeded ECM hydrogels were scanned by optical coherence tomography (OCT). Fixed and paraffin-embedded gels were thin-sectioned and assessed for ECM components via H&E, picrosirius red histochemical staining, and immunostaining for collagen type I. ImageJ-based densitometry was used to quantify vascular-like networks and GraphPad was used for statistical analyses. Results: Qualitative analyses were realized through fluoromicrographs obtained by the confocal laser scanning microscope which allowed us to visualize the extensive vascular-like networks that readily appeared at all seeding densities. Quantification of networks was only possible using fluoromicrographs from inverted microscopy. These showed that, after three days, the number of master junctions was seeding density-dependent. The resolution of optical coherence tomography was too low to distinguish between signals caused by the ECM and cells or networks, yet it did show that gels, irrespective of cells, were heterogeneous. Interestingly, (immuno)histochemistry could clearly distinguish between the cast cardiac-derived matrix and newly deposited ECM in the hydrogels. The H&E staining corroborated the presence of vascular-like network structures, albeit that sectioning inevitably led to the loss of 3D structure. Conclusions: Except for OCT, all methods had complementary merit and generated qualitative and quantitative data that allowed us to understand vascular network formation in organ-derived ECM hydrogels.
Collapse
Affiliation(s)
- Meng Zhang
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Research Institute, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Vasilena E. Getova
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Research Institute, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Francisco Drusso Martinez-Garcia
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Research Institute, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Research Institute, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Research Institute, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Hanzeplein 1 (EA11), 9713 AV Groningen, The Netherlands
| |
Collapse
|
9
|
Liu S, Ju Y, Gu P. Experiment-Based Interventions to Diabetic Retinopathy: Present and Advances. Int J Mol Sci 2022; 23:ijms23137005. [PMID: 35806008 PMCID: PMC9267063 DOI: 10.3390/ijms23137005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic retinopathy is the major blinding disease among working-age populations, which is becoming more significant due to the growth of diabetes. The metabolic-induced oxidative and inflammatory stress leads to the insult of neovascular unit, resulting in the core pathophysiology of diabetic retinopathy. Existing therapies focus on the inflammation, oxidation, and angiogenesis phenomena of diabetic retinopathy, without effect to radically cure the disease. This review also summarizes novel therapeutic attempts for diabetic retinopathy along with their advantages and disadvantages, mainly focusing on those using cellular and genetic techniques to achieve remission on a fundamental level of disease.
Collapse
Affiliation(s)
- Siwei Liu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (S.L.); (Y.J.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Yahan Ju
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (S.L.); (Y.J.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; (S.L.); (Y.J.)
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
- Correspondence:
| |
Collapse
|
10
|
Construction of transplantable artificial vascular tissue based on adipose tissue-derived mesenchymal stromal cells by a cell coating and cryopreservation technique. Sci Rep 2021; 11:17989. [PMID: 34504254 PMCID: PMC8429436 DOI: 10.1038/s41598-021-97547-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Prevascularized artificial three-dimensional (3D) tissues are effective biomaterials for regenerative medicine. We have previously established a scaffold-free 3D artificial vascular tissue from normal human dermal fibroblasts (NHDFs) and umbilical vein-derived endothelial cells (HUVECs) by layer-by-layer cell coating technique. In this study, we constructed an artificial vascular tissue constructed by human adipose tissue-derived stromal cells (hASCs) and HUVECs (ASCVT) by a modified technique with cryopreservation. ASCVT showed a higher thickness with more dense vascular networks than the 3D tissue based on NHDFs. Correspondingly, 3D-cultured ASCs showed higher expression of several angiogenesis-related factors, including vascular endothelial growth factor-A and hepatic growth factor, compared to that of NHDFs. Moreover, perivascular cells in ASCVT were detected by pericyte markers, suggesting the differentiation of hASCs into pericyte-like cells. Subcutaneous transplantation of ASCVTs to nude mice resulted in an engraftment with anastomosis of host's vascular structures at 2 weeks after operation. In the engrafted tissue, the vascular network was surrounded by mural-like structure-forming hASCs, in which some parts developed to form vein-like structures at 4 weeks, suggesting the generation of functional vessel networks. These results demonstrated that cryopreserved human cells, including hASCs, could be used directly to construct the artificial transplantable tissue for regenerative medicine.
Collapse
|
11
|
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev Rep 2021; 17:1154-1173. [PMID: 33410097 PMCID: PMC7787584 DOI: 10.1007/s12015-020-10090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) have been studied extensively for the treatment of several retinal diseases. The therapeutic potential of MSCs lies in its ability to differentiate into multiple lineages and secretome enriched with immunomodulatory, anti-angiogenic and neurotrophic factors. Several studies have reported the role of MSCs in repair and regeneration of the damaged retina where the secreted factors from MSCs prevent retinal degeneration, improve retinal morphology and function. MSCs also donate mitochondria to rescue the function of retinal cells and exosomes secreted by MSCs were found to have anti-apoptotic and anti-inflammatory effects. Based on several promising results obtained from the preclinical studies, several clinical trials were initiated to explore the potential advantages of MSCs for the treatment of retinal diseases. This review summarizes the various properties of MSCs that help to repair and restore the damaged retinal cells and its potential for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Sanjucta Adak
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Damaris Magdalene
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Saurabh Deshmukh
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Dipankar Das
- Department of Pathology, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
12
|
Mannino G, Russo C, Longo A, Anfuso CD, Lupo G, Lo Furno D, Giuffrida R, Giurdanella G. Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J Stem Cells 2021; 13:632-644. [PMID: 34249232 PMCID: PMC8246249 DOI: 10.4252/wjsc.v13.i6.632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/07/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell-based treatments have been extensively explored in the last few decades to develop therapeutic strategies aimed at providing effective alternatives for those human pathologies in which surgical or pharmacological therapies produce limited effects. Among stem cells of different sources, mesenchymal stem cells (MSCs) offer several advantages, such as the absence of ethical concerns, easy harvesting, low immunogenicity and reduced tumorigenesis risks. Other than a multipotent differentiation ability, MSCs can release extracellular vesicles conveying proteins, mRNA and microRNA. Thanks to these properties, new therapeutic approaches have been designed for the treatment of various pathologies, including ocular diseases. In this review, the use of different MSCs and different administration strategies are described for the treatment of diabetic retinopathy, glaucoma, and retinitis pigmentosa. In a large number of investigations, positive results have been obtained by in vitro experiments and by MSC administration in animal models. Most authors agree that beneficial effects are likely related to MSC paracrine activity. Based on these considerations, many clinical trials have already been carried out. Overall, although some adverse effects have been described, promising outcomes are reported. It can be assumed that in the near future, safer and more effective protocols will be developed for more numerous clinical applications to improve the quality of life of patients affected by eye diseases.
Collapse
Affiliation(s)
- Giuliana Mannino
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Anna Longo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Gabriella Lupo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy.
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| | - Giovanni Giurdanella
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania 95123, Italy
| |
Collapse
|
13
|
Sun X, Lu Y, Lei T. TPTEP1 suppresses high glucose-induced dysfunction in retinal vascular endothelial cells by interacting with STAT3 and targeting VEGFA. Acta Diabetol 2021; 58:759-769. [PMID: 33576890 DOI: 10.1007/s00592-020-01663-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022]
Abstract
AIMS Diabetic retinopathy (DR) is a vascular complication of diabetes mellitus that causes visual impairment and blindness. Long noncoding RNAs (lncRNAs) have been revealed to be involved in biological processes of several diseases including DR. We designed this study to investigate the specific role of TPTEP1 in DR. METHODS First, we mimicked diabetic conditions with high glucose (HG) stimulation of human retinal vascular endothelial cells (HRVECs) and measured TPTEP1 expression in HG-stimulated HRVECs using RT-qPCR analysis. Then, CCK-8, Transwell, and Matrigel tube formation assays as well as western blot analysis were performed to reveal the biological functions of TPTEP1 in HG-stimulated HRVECs. Subsequently, bioinformatics analysis, RNA pull down, luciferase reporter and ChIP assays as well as western blot analysis evaluated the relationship of TPTEP1, signal transducer and activator of transcription 3 (STAT3) and vascular endothelial growth factor A (VEGFA) in HG-stimulated HRVECs. Finally, to verify the regulation of the TPTEP1/STAT3/VEGFA axis in HG-stimulated HRVECs, rescue experiments were carried out in HG-stimulated HRVECs. RESULTS TPTEP1 presented a significant downregulation in HG-stimulated HRVECs. Additionally, TPTEP1 overexpression reduced viability, migration, and angiogenesis in HG-stimulated HRVECs. Moreover, TPTEP1 suppressed phosphorylation and nuclear translocation of STAT3, and thereby downregulated VEGFA mRNA and protein levels. Furthermore, TPTEP1 overexpression-mediated suppression of HG-induced dysfunction in HRVECs was countervailed by STAT3 upregulation or VEGFA upregulation. CONCLUSIONS TPTEP1 alleviated HG-induced dysfunction in HRVECs via interacting with STAT3 and targeting VEGFA.
Collapse
Affiliation(s)
- Xiaoping Sun
- Department of Ophthalmology, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuebing Lu
- Department of Ophthalmology, Henan Children's Hospital, Children's Hospital Affiliated of Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164, Lanxi Road, Shanghai, 200062, China.
| |
Collapse
|
14
|
Almonacid Suarez AM, Brinker MGL, Brouwer LA, van der Ham I, Harmsen MC, van Rijn P. Topography-Mediated Myotube and Endothelial Alignment, Differentiation, and Extracellular Matrix Organization for Skeletal Muscle Engineering. Polymers (Basel) 2020; 12:polym12091948. [PMID: 32872193 PMCID: PMC7564871 DOI: 10.3390/polym12091948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
Understanding the response of endothelial cells to aligned myotubes is important to create an appropriate environment for tissue-engineered vascularized skeletal muscle. Part of the native tissue environment is the extracellular matrix (ECM). The ECM is a supportive scaffold for cells and allows cellular processes such as proliferation, differentiation, and migration. Interstitial matrix and basal membrane both comprise proteinaceous and polysaccharide components for strength, architecture, and volume retention. Virtually all cells are anchored to their basal lamina. One of the physical factors that affects cell behavior is topography, which plays an important role on cell alignment. We tested the hypothesis that topography-driven aligned human myotubes promote and support vascular network formation as a prelude to in vitro engineered vascularized skeletal muscle. Therefore, we used a PDMS-based topography substrate to investigate the influence of pre-aligned myotubes on the network formation of microvascular endothelial cells. The aligned myotubes produced a network of collagen fibers and laminin. This network supported early stages of endothelial network formation.
Collapse
Affiliation(s)
- Ana Maria Almonacid Suarez
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (A.M.A.S.); (M.G.L.B.); (L.A.B.); (I.v.d.H.)
| | - Marja G. L. Brinker
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (A.M.A.S.); (M.G.L.B.); (L.A.B.); (I.v.d.H.)
| | - Linda A. Brouwer
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (A.M.A.S.); (M.G.L.B.); (L.A.B.); (I.v.d.H.)
| | - Iris van der Ham
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (A.M.A.S.); (M.G.L.B.); (L.A.B.); (I.v.d.H.)
| | - Martin C. Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, Hanzeplein 1 (EA11), 9713 GZ Groningen, The Netherlands; (A.M.A.S.); (M.G.L.B.); (L.A.B.); (I.v.d.H.)
- Correspondence: (M.C.H.); (P.v.R.); Tel.: +31-50361-4776 (M.C.H.); +31-50361-6066 (P.v.R.)
| | - Patrick van Rijn
- Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Correspondence: (M.C.H.); (P.v.R.); Tel.: +31-50361-4776 (M.C.H.); +31-50361-6066 (P.v.R.)
| |
Collapse
|
15
|
Kremer H, Gebauer J, Elvers-Hornung S, Uhlig S, Hammes HP, Beltramo E, Steeb L, Harmsen MC, Sticht C, Klueter H, Bieback K, Fiori A. Pro-angiogenic Activity Discriminates Human Adipose-Derived Stromal Cells From Retinal Pericytes: Considerations for Cell-Based Therapy of Diabetic Retinopathy. Front Cell Dev Biol 2020; 8:387. [PMID: 32582693 PMCID: PMC7295949 DOI: 10.3389/fcell.2020.00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a frequent diabetes-associated complication. Pericyte dropout can cause increased vascular permeability and contribute to vascular occlusion. Adipose-derived stromal cells (ASC) have been suggested to replace pericytes and restore microvascular support as potential therapy of DR. In models of DR, ASC not only generated a cytoprotective and reparative environment by the secretion of trophic factors but also engrafted and integrated into the retina in a pericyte-like fashion. The aim of this study was to compare the pro-angiogenic features of human ASC and human retinal microvascular pericytes (HRMVPC) in vitro. The proliferation and the expression of ASC and HRMVPC markers were compared. Adhesion to high glucose-conditioned endothelial extracellular matrix, mimicking the diabetic microenvironment, was measured. The angiogenesis-promoting features of both cell types and their conditioned media on human retinal endothelial cells (EC) were assessed. To identify a molecular basis for the observed differences, gene expression profiling was performed using whole-genome microarrays, and data were validated using PCR arrays and flow cytometry. Based on multiplex cytokine results, functional studies on selected growth factors were performed to assess their role in angiogenic support. Despite a distinct heterogeneity in ASC and HRMVPC cultures with an overlap of expressed markers, ASC differed functionally from HRMVPC. Most importantly, the pro-angiogenic activity was solely featured by ASC, whereas HRMVPC actively suppressed vascular network formation. HRMVPC, in contrast to ASC, showed impaired adhesion and proliferation on the high glucose-conditioned endothelial extracellular matrix. These data were supported by gene expression profiles with differentially expressed genes. The vessel-stabilizing factors were more highly expressed in HRMVPC, and the angiogenesis-promoting factors were more highly expressed in ASC. The vascular endothelial growth factor receptor-2 inhibition efficiently abolished the ASC angiogenic supportive capacities, whereas the addition of angiopoietin-1 and angiopoietin-2 did not alter these effects. Our results clearly show that ASC are pro-angiogenic, whereas HRMVPC are marked by anti-angiogenic/EC-stabilizing features. These data support ASC as pericyte replacement in DR but also suggest a careful risk-to-benefit analysis to take full advantage of the ASC therapeutic features.
Collapse
Affiliation(s)
- Heiner Kremer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Julian Gebauer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Susanne Elvers-Hornung
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elena Beltramo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Martin C Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Carsten Sticht
- Center for Medical Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Harald Klueter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,FlowCore Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,HEiKA-Heidelberg Karlsruhe Strategic Partnership, Karlsruhe Institute of Technology (KIT), Heidelberg University, Heidelberg, Germany
| | - Agnese Fiori
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Donation Service Baden-Württemberg - Hessen, Mannheim, Germany.,HEiKA-Heidelberg Karlsruhe Strategic Partnership, Karlsruhe Institute of Technology (KIT), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
16
|
Almonacid Suarez AM, van der Ham I, Brinker MG, van Rijn P, Harmsen MC. Topography-driven alterations in endothelial cell phenotype and contact guidance. Heliyon 2020; 6:e04329. [PMID: 32637708 PMCID: PMC7330714 DOI: 10.1016/j.heliyon.2020.e04329] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/18/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Understanding how endothelial cell phenotype is affected by topography could improve the design of new tools for tissue engineering as many tissue engineering approaches make use of topography-mediated cell stimulation. Therefore, we cultured human pulmonary microvascular endothelial cells (ECs) on a directional topographical gradient to screen the EC vascular-like network formation and alignment response to nano to microsized topographies. The cell response was evaluated by microscopy. We found that ECs formed unstable vascular-like networks that aggregated in the smaller topographies and flat parts whereas ECs themselves aligned on the larger topographies. Subsequently, we designed a mixed topography where we could explore the network formation and proliferative properties of these ECs by live imaging for three days. Vascular-like network formation continued to be unstable on the topography and were only produced on the flat areas and a fibronectin coating did not improve the network stability. However, an instructive adipose tissue-derived stromal cell (ASC) coating provided the correct environment to sustain the vascular-like networks, which were still affected by the topography underneath. It was concluded that large microsized topographies inhibit vascular endothelial network formation but not proliferation and flat and nano/microsized topographies allow formation of early networks that can be stabilized by using an ASC instructive layer.
Collapse
Affiliation(s)
- Ana Maria Almonacid Suarez
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| | - Iris van der Ham
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| | - Marja G.L. Brinker
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, A. Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Martin C. Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1 (EA11), 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
17
|
Liguori GR, Liguori TTA, de Moraes SR, Sinkunas V, Terlizzi V, van Dongen JA, Sharma PK, Moreira LFP, Harmsen MC. Molecular and Biomechanical Clues From Cardiac Tissue Decellularized Extracellular Matrix Drive Stromal Cell Plasticity. Front Bioeng Biotechnol 2020; 8:520. [PMID: 32548106 PMCID: PMC7273975 DOI: 10.3389/fbioe.2020.00520] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 05/01/2020] [Indexed: 01/09/2023] Open
Abstract
Decellularized-organ-derived extracellular matrix (dECM) has been used for many years in tissue engineering and regenerative medicine. The manufacturing of hydrogels from dECM allows to make use of the pro-regenerative properties of the ECM and, simultaneously, to shape the material in any necessary way. The objective of the present project was to investigate differences between cardiovascular tissues (left ventricle, mitral valve, and aorta) with respect to generating dECM hydrogels and their interaction with cells in 2D and 3D. The left ventricle, mitral valve, and aorta of porcine hearts were decellularized using a series of detergent treatments (SDS, Triton-X 100 and deoxycholate). Mass spectrometry-based proteomics yielded the ECM proteins composition of the dECM. The dECM was digested with pepsin and resuspended in PBS (pH 7.4). Upon warming to 37°C, the suspension turns into a gel. Hydrogel stiffness was determined for samples with a dECM concentration of 20 mg/mL. Adipose tissue-derived stromal cells (ASC) and a combination of ASC with human pulmonary microvascular endothelial cells (HPMVEC) were cultured, respectively, on and in hydrogels to analyze cellular plasticity in 2D and vascular network formation in 3D. Differentiation of ASC was induced with 10 ng/mL of TGF-β1 and SM22α used as differentiation marker. 3D vascular network formation was evaluated with confocal microscopy after immunofluorescent staining of PECAM-1. In dECM, the most abundant protein was collagen VI for the left ventricle and mitral valve and elastin for the aorta. The stiffness of the hydrogel derived from the aorta (6,998 ± 895 Pa) was significantly higher than those derived from the left ventricle (3,384 ± 698 Pa) and the mitral valve (3,233 ± 323 Pa) (One-way ANOVA, p = 0.0008). Aorta-derived dECM hydrogel drove non-induced (without TGF-β1) differentiation, while hydrogels derived from the left ventricle and mitral valve inhibited TGF-β1-induced differentiation. All hydrogels supported vascular network formation within 7 days of culture, but ventricular dECM hydrogel demonstrated more robust vascular networks, with thicker and longer vascular structures. All the three main cardiovascular tissues, myocardium, valves, and large arteries, could be used to fabricate hydrogels from dECM, and these showed an origin-dependent influence on ASC differentiation and vascular network formation.
Collapse
Affiliation(s)
- Gabriel Romero Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Tácia Tavares Aquinas Liguori
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.,Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio Rodrigues de Moraes
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Viktor Sinkunas
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Vincenzo Terlizzi
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Joris A van Dongen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Prashant K Sharma
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Luiz Felipe Pinho Moreira
- Instituto do Coração (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Conrad Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
18
|
Echeverry-Rendon M, Echeverria F, Harmsen MC. Interaction of different cell types with magnesium modified by plasma electrolytic oxidation. Colloids Surf B Biointerfaces 2020; 193:111153. [PMID: 32505097 DOI: 10.1016/j.colsurfb.2020.111153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 12/16/2022]
Abstract
Magnesium (Mg) is a material widely used in industrial applications due to its low weight, ductility, and excellent mechanical properties. For non-permanent implants, Mg is particularly well-suited because of its biodegradability, while its degradation products are not harmful. However, Mg is chemically reactive, and cytotoxic hydrogen gas is released as part of the degradation. This adverse degradation can be tuned using plasma electrolytic oxidation (PEO). With PEO, a surface layer of MgO/Mg(OH)2 is deposited on the surface of Mg in a controlled way. The electrolytes used during PEO influence the surface's chemistry and topography and thus expectedly the biological response of adhered cells. In this study, thin samples of commercial pure of Mg (c.p Mg) were modified by PEO guided by different electrolytes, and the biological activity was assessed on vascular cells, immune cells, and repair cells (adipose tissue-derived stromal cells, ASCs). Vascular cells were more vulnerable than ASCs for compounds released by surface-coated Mg. All surface coatings supported the proliferation of adhered ASC. Released compounds from surface-coated Mg delayed but did not block in vitro wound closure of fibroblasts monolayers. Preformed endothelial tubes were vulnerable for released compounds, while their supporting ASC was not. We conclude that PEO-based surface-coating of Mg supports adhesion and future delivery of therapeutic vascular repair cells such as ASC, but that the observed vulnerability of vascular cells for coated Mg components warrants investigations in vivo.
Collapse
Affiliation(s)
- Monica Echeverry-Rendon
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ, Groningen, The Netherlands.
| | - Felix Echeverria
- Centro de Investigación, Innovación y Desarrollo de Materiales CIDEMAT, Facultad de Ingeniería, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Hanzeplein 1, EA11, NL-9713 GZ, Groningen, The Netherlands
| |
Collapse
|
19
|
Bertelli PM, Pedrini E, Guduric-Fuchs J, Peixoto E, Pathak V, Stitt AW, Medina RJ. Vascular Regeneration for Ischemic Retinopathies: Hope from Cell Therapies. Curr Eye Res 2020; 45:372-384. [PMID: 31609636 DOI: 10.1080/02713683.2019.1681004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 12/18/2022]
Abstract
Retinal vascular diseases, such as diabetic retinopathy, retinopathy of prematurity, retinal vein occlusion, ocular ischemic syndrome and ischemic optic neuropathy, are leading causes of vision impairment and blindness. Whilst drug, laser or surgery-based treatments for the late stage complications of many of these diseases are available, interventions that target the early vasodegenerative stages are lacking. Progressive vasculopathy and ensuing ischemia is an underpinning pathology in many of these diseases, leading to hypoperfusion, hypoxia, and ultimately pathological neovascularization and/or edema in the retina and other ocular tissues, such as the optic nerve and iris. Therefore, repairing the retinal vasculature may prevent progression of ischemic retinopathies into late stage vascular complications. Various cell types have been explored for their vascular repair potential. Endothelial progenitor cells, mesenchymal stem cells and induced pluripotent stem cells are studied for their potential to integrate with the damaged retinal vasculature and limit ischemic injury. Clinical trials for some of these cell types have confirmed safety and feasibility in the treatment of ischemic diseases, including some retinopathies. Another promising avenue is mobilization of endogenous endothelial progenitors, whereby reparative cells are moved from their niche to circulating blood to target and home into ischemic tissues. Several aspects and properties of these cell types have yet to be elucidated. Nevertheless, we foresee that cell therapy, whether through delivery of exogenous or enhancement of endogenous reparative cells, will become a valuable and beneficial treatment for ischemic retinopathies.
Collapse
Affiliation(s)
- Pietro Maria Bertelli
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Edoardo Pedrini
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Jasenka Guduric-Fuchs
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Elisa Peixoto
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Varun Pathak
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Alan W Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| | - Reinhold J Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast, UK
| |
Collapse
|
20
|
Huang H, Kolibabka M, Eshwaran R, Chatterjee A, Schlotterer A, Willer H, Bieback K, Hammes HP, Feng Y. Intravitreal injection of mesenchymal stem cells evokes retinal vascular damage in rats. FASEB J 2019; 33:14668-14679. [DOI: 10.1096/fj.201901500r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hongpeng Huang
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias Kolibabka
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rachana Eshwaran
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anupriya Chatterjee
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andrea Schlotterer
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hélène Willer
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yuxi Feng
- Experimental Pharmacology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
21
|
Ji H, Yi Q, Chen L, Wong L, Liu Y, Xu G, Zhao J, Huang T, Li B, Yang Y, Li W, Han L, Duan S. Circulating miR-3197 and miR-2116-5p as novel biomarkers for diabetic retinopathy. Clin Chim Acta 2019; 501:147-153. [PMID: 31678272 DOI: 10.1016/j.cca.2019.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among older adults. The goal of this case-control study was to identify circulating miRNAs for the diagnosis of DR. The miRNeasy Serum/Plasma Kit was used to extract serum miRNAs. The μParaflo™ MicroRNA microarray was used to detect the expression levels of the miRNAs. The miRWalk algorithm was applied to predict the target genes of the miRNAs, which were further confirmed by the dual luciferase reporter gene system in HEK293T cells. A microarray was performed between 5 DR cases and 5 age-, sex-, body mass index-, and duration of diabetes-matched type 2 diabetic (T2DM) controls. The quantitative reverse transcription polymerase chain reaction technique was used to validate the differentially expressed circulating miRNAs in 45 DR cases and 45 well-matched controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the circulating miRNAs as diagnostic biomarkers for DR. Our microarray analysis screened out miR-2116-5p and miR-3197 as significantly up-regulated in DR cases compared with the controls. Furthermore, two miRNAs were validated in the 45 DR cases and 45 controls. The ROC analysis suggested that both miR-3197 and miR-2116-5p distinguished DR cases from controls. An additional dual-luciferase reporter gene assay confirmed that notch homolog 2 (NOTCH2) was the target gene of miR-2116-5p. Both miR-3197 and miR-2116-5p were identified as promising diagnostic biomarkers for DR. Future research is still needed to explore the molecular mechanisms of miR-3197 and miR-2116-5p in the pathogenesis of DR.
Collapse
Affiliation(s)
- Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China; Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Quanyong Yi
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Lishuang Chen
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Liping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yanfen Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Guodong Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tianyi Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yong Yang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenxia Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Liyuan Han
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
22
|
Getova VE, van Dongen JA, Brouwer LA, Harmsen MC. Adipose tissue-derived ECM hydrogels and their use as 3D culture scaffold. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1693-1701. [PMID: 31062610 DOI: 10.1080/21691401.2019.1608215] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Adipose tissue has the therapeutic capacity in the form of a fat graft, for example, for treatment of irradiation-induced scars and difficult to heal dermal wounds. For large-scale clinical application, an off-the-shelf product is warranted. In recent years, ECM-derived hydrogels are postulated to harbour therapeutic capacity and might even replicate the beneficial effects of adipose tissue. In normal homeostasis, the natural ECM acts as a deposit of growth factors, that releases them over time. In the healing of lesions, this might promote cell accumulation and proliferation which in turn stimulates angiogenesis and repair. The decellularization of tissue and the generation of hydrogels may leave cytotoxic traces. Therefore, our research assessed the cytotoxic effect of human adipose tissue-derived ECM hydrogels on connective tissue cells i.e. fibroblasts. The results showed no cytotoxicity, meaning the hydrogels caused no cell death. Cell migration and survival were observed when cultured in ECM hydrogels and followed for 7 days. Cell survival in the hydrogel was confirmed with CFDA staining and also cells showed the ability to penetrate and migrate throughout the gel. We conclude that ECM hydrogels are promising to use as innovative therapy for wound healing.
Collapse
Affiliation(s)
- Vasilena E Getova
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Joris A van Dongen
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands.,b Department of Plastic Surgery, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Linda A Brouwer
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| | - Martin C Harmsen
- a Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , the Netherlands
| |
Collapse
|
23
|
van Dongen JA, Getova V, Brouwer LA, Liguori GR, Sharma PK, Stevens HP, van der Lei B, Harmsen MC. Adipose tissue-derived extracellular matrix hydrogels as a release platform for secreted paracrine factors. J Tissue Eng Regen Med 2019; 13:973-985. [PMID: 30808068 PMCID: PMC6593768 DOI: 10.1002/term.2843] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022]
Abstract
Fat grafting is an established clinical intervention to promote tissue repair. The role of the fat's extracellular matrix (ECM) in regeneration is largely neglected. We investigated in vitro the use of human adipose tissue‐derived ECM hydrogels as release platform for factors secreted by adipose‐derived stromal cells (ASCs). Lipoaspirates from nondiabetic and diabetic donors were decellularized. Finely powdered acellular ECM was evaluated for cell remainders and DNA content. Acellular ECM was digested, and hydrogels were formed at 37°C and their viscoelastic relaxation properties investigated. Release of ASC‐released factors from hydrogels was immune assessed, and bio‐activity was determined by fibroblast proliferation and migration and endothelial angiogenesis. Acellular ECM contained no detectable cell remainders and negligible DNA contents. Viscoelastic relaxation measurements yielded no data for diabetic‐derived hydrogels due to gel instability. Hydrogels released several ASC‐released factors concurrently in a sustained fashion. Functionally, released factors stimulated fibroblast proliferation and migration as well as angiogenesis. No difference between nondiabetic and diabetic hydrogels in release of factors was measured. Adipose ECM hydrogels incubated with released factors by ASC are a promising new therapeutic modality to promote several important wound healing‐related processes by releasing factors in a controlled way.
Collapse
Affiliation(s)
- Joris A van Dongen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Vasilena Getova
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Linda A Brouwer
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Gabriel R Liguori
- Laboratory of Cardiovascular Surgery and Circulation Pathophysiology (LIM-11), Heart Institute (InCor), Hospital das Clinicas, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Prashant K Sharma
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Berend van der Lei
- Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Bergman Clinics, Heerenveen, Zwolle, and Groningen, The Netherlands
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Hajmousa G, Przybyt E, Pfister F, Paredes-Juarez GA, Moganti K, Busch S, Kuipers J, Klaassen I, van Luyn MJA, Krenning G, Hammes HP, Harmsen MC. Human adipose tissue-derived stromal cells act as functional pericytes in mice and suppress high-glucose-induced proinflammatory activation of bovine retinal endothelial cells. Diabetologia 2018; 61:2371-2385. [PMID: 30151615 PMCID: PMC6182662 DOI: 10.1007/s00125-018-4713-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The immunomodulatory capacity of adipose tissue-derived stromal cells (ASCs) is relevant for next-generation cell therapies that aim to reverse tissue dysfunction such as that caused by diabetes. Pericyte dropout from retinal capillaries underlies diabetic retinopathy and the subsequent aberrant angiogenesis. METHODS We investigated the pericytic function of ASCs after intravitreal injection of ASCs in mice with retinopathy of prematurity as a model for clinical diabetic retinopathy. In addition, ASCs influence their environment by paracrine signalling. For this, we assessed the immunomodulatory capacity of conditioned medium from cultured ASCs (ASC-Cme) on high glucose (HG)-stimulated bovine retinal endothelial cells (BRECs). RESULTS ASCs augmented and stabilised retinal angiogenesis and co-localised with capillaries at a pericyte-specific position. This indicates that cultured ASCs exert juxtacrine signalling in retinal microvessels. ASC-Cme alleviated HG-induced oxidative stress and its subsequent upregulation of downstream targets in an NF-κB dependent fashion in cultured BRECs. Functionally, monocyte adhesion to the monolayers of activated BRECs was also decreased by treatment with ASC-Cme and correlated with a decline in expression of adhesion-related genes such as SELE, ICAM1 and VCAM1. CONCLUSIONS/INTERPRETATION The ability of ASC-Cme to immunomodulate HG-challenged BRECs is related to the length of time for which ASCs were preconditioned in HG medium. Conditioned medium from ASCs that had been chronically exposed to HG medium was able to normalise the HG-challenged BRECs to normal glucose levels. In contrast, conditioned medium from ASCs that had been exposed to HG medium for a shorter time did not have this effect. Our results show that the manner of HG preconditioning of ASCs dictates their immunoregulatory properties and thus the potential outcome of treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Ghazaleh Hajmousa
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Ewa Przybyt
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Frederick Pfister
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Genaro A Paredes-Juarez
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Kondaiah Moganti
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stephanie Busch
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jeroen Kuipers
- Department of Cell Biology, Molecular Imaging and Electron Microscopy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Departments of Ophthalmology and Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marja J A van Luyn
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Guido Krenning
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin C Harmsen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713, GZ, Groningen, the Netherlands.
| |
Collapse
|
25
|
Blocki A, Beyer S, Jung F, Raghunath M. The controversial origin of pericytes during angiogenesis - Implications for cell-based therapeutic angiogenesis and cell-based therapies. Clin Hemorheol Microcirc 2018; 69:215-232. [PMID: 29758937 DOI: 10.3233/ch-189132] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pericytes reside within the basement membrane of small vessels and are often in direct cellular contact with endothelial cells, fulfilling important functions during blood vessel formation and homeostasis. Recently, these pericytes have been also identified as mesenchymal stem cells. Mesenchymal stem cells, and especially their specialized subpopulation of pericytes, represent promising candidates for therapeutic angiogenesis applications, and have already been widely applied in pre-clinical and clinical trials. However, cell-based therapies of ischemic diseases (especially of myocardial infarction) have not resulted in significant long-term improvement. Interestingly, pericytes from a hematopoietic origin were observed in embryonic skin and a pericyte sub-population expressing leukocyte and monocyte markers was described during adult angiogenesis in vivo. Since mesenchymal stem cells do not express hematopoietic markers, the latter cell type might represent an alternative pericyte population relevant to angiogenesis. Therefore, we sourced blood-derived angiogenic cells (BDACs) from monocytes that closely resembled hematopoietic pericytes, which had only been observed in vivo thus far. BDACs displayed many pericytic features and exhibited enhanced revascularization and functional tissue regeneration in a pre-clinical model of critical limb ischemia. Comparison between BDACs and mesenchymal pericytes indicated that BDACs (while resembling hematopoietic pericytes) enhanced early stages of angiogenesis, such as endothelial cell sprouting. In contrast, mesenchymal pericytes were responsible for blood vessel maturation and homeostasis, while reducing endothelial sprouting.Since the formation of new blood vessels is crucial during therapeutic angiogenesis or during integration of implants into the host tissue, hematopoietic pericytes (and therefore BDACs) might offer an advantageous addition or even an alternative for cell-based therapies.
Collapse
Affiliation(s)
- Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong SAR.,School of Biomedical Science, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR
| | - Sebastian Beyer
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong SAR
| | - Friedrich Jung
- Institute for Clinical Hemostasiology and Transfusion Medicine, University Saarland, Homburg/Saar, Germany
| | - Michael Raghunath
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Wädenswil, Switzerland
| |
Collapse
|