1
|
Mahmoud YS, Hassanin IA, Sabra SA, Shehat MG, Abdel-Mohsen MA, Khattab SN, Hussein AA. Lipopolysaccharide nanomedicine-based reversion of chemotherapy-induced metastatic potential of breast cancer via hampering tumoral TLR4/SIRT2 axis and IL6 secretion from tumor-associated macrophages. Int J Biol Macromol 2025; 306:141396. [PMID: 39993692 DOI: 10.1016/j.ijbiomac.2025.141396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/17/2025] [Accepted: 02/20/2025] [Indexed: 02/26/2025]
Abstract
Triple-negative breast cancer (TNBC) is a metastatic disease. Targeted approaches, as implementing nanoliposomes, e.g., liposomal doxorubicin (DOX), did not exhibit significantly improved survival. Therefore, we aimed at reducing the metastatic potential of TNBC through a double punch to cancer cells and tumor-associated macrophages (TAMs). Databases' analyses showed that targeting TLR4/SIRT2 axis might be a possible option. Inspired by the emergence of lipopolysaccharide (LPS) in clinical trials, we developed bioactive copolymeric nanomicelles, originating from the self-assembly of our synthesized LPS-pectin conjugate (LPS-PEC) for the delivery of DOX (DOX@LPS-PEC). Targeting TLR4 via DOX@LPS-PEC micelles enhanced cellular uptake, however, it failed to significantly improve the cytotoxic potential of DOX. Alternatively, co-targeting SIRT2 via Sirtinol at a specific ratio (DOX@LPS-PEC: Sirtinol 1:5 w/w) elevated cellular oxidative stress, improved cytotoxic potential on 2D-monolayer and 3D-spheroid models, and significantly reduced migratory potential of MDA-MB-231 cells compared to DOX@LPS-PEC alone. Finally, DOX@LPS-PEC plus Sirtinol at the same ratio exhibited an ability to hamper TAM-secreted IL6, which contribute to the metastatic potential of TNBC. In conclusion, targeting TLR4/SIRT2 axis in TNBC synergizes with the effect of chemotherapeutics, e.g. DOX, reduce the metastatic potential of TNBC cells via down-regulating TLR4 and hampering tumor-microenvironment IL6.
Collapse
Affiliation(s)
- Yosra S Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| | - Islam A Hassanin
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed A Abdel-Mohsen
- Applied Medical Chemistry Department, Medical Research Institute, Alexandria University, Alexandria 21526, Egypt
| | - Sherine N Khattab
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research (IGSR), Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
2
|
Dagher DM, Zaghloul MS, Suddek GM. Modulation of AMPK/mTOR Autophagic Pathway Using Dapagliflozin Protects Against Cadmium-Induced Testicular and Renal Injury in Rats. J Biochem Mol Toxicol 2025; 39:e70257. [PMID: 40233265 DOI: 10.1002/jbt.70257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/03/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Cadmium is a widely distributed heavy metal found in the environment that poses serious hazards to human health. Dapagliflozin (DAPA), a sodium-glucose co-transporter 2 (SGLT-2) inhibitor, exhibited antioxidant, antiapoptotic, and anti-inflammatory properties. Our data assessed the effect of DAPA against Cd-triggered renal and testicular impairment in rats, as well as the underlying mechanisms. Cd (30 mg/kg) and DAPA (5 and 10 mg/kg) were administrated by oral gavage to rats and continued for 21 days. DAPA attenuated Cd-triggered renal and testicular injury as shown by diminishing serum creatinine, BUN, and urinary total protein concentration in addition to increasing creatinine clearance, urinary creatinine, and serum testosterone. Moreover, it diminished renal and testicular histopathological alterations induced by Cd. DAPA stimulated the impaired autophagy flux as seen by significantly elevating the p-AMPK/total AMPK, decreasing p-mTOR/total mTOR ratios, and diminishing p62 & LC3 protein levels. Additionally, DAPA significantly lowered MDA content, increased GSH level and SOD activity. Moreover, it augmented the cytoprotective Nrf2/HO-1 signaling pathway. Furthermore, it attenuated renal and testicular apoptotic cell death via decreasing caspase-3 expression. Conclusion: Boosting autophagic events and combating oxidative stress and apoptosis by DAPA were engaged in alleviating Cd-induced renal and testicular impairment. This was accomplished by modulating the AMPK/mTOR and enhancing the Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Doha M Dagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Marwa S Zaghloul
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura National University, Gamasa, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Shi XN, Liu CY, Li L, Yao ML, Zhong Z, Jiang YM. The role and therapeutic potential of mitophagy in major depressive disorder. Front Pharmacol 2025; 16:1564276. [PMID: 40206060 PMCID: PMC11979158 DOI: 10.3389/fphar.2025.1564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/05/2025] [Indexed: 04/11/2025] Open
Abstract
Major depressive disorder, also known as MDD, affects more than 264 million people globally, making it a prevalent and critical health challenge. Traditional treatments show limited efficacy in many patients. Therefore, exploring new treatment methods is particularly crucial. Mitophagy, as a regulatory process, can help understand and treat MDD. This paper focuses on the molecular mechanisms of mitophagy, starting from proteins and related pathways, and its role in MDD. The study also explores the associations between mitophagy and neuroinflammation, oxidative stress, neurotransmitter synthesis, and neuroplasticity in MDD and discusses the progress of clinical research on the role of mitophagy in MDD. In addition, the article describes the current pharmaceutical and non-pharmaceutical interventions that can regulate mitophagy in MDD and unravels the potential and challenges of these therapeutic strategies in clinical settings. This article offers a deeper insight into the pathogenesis of MDD and offers a scientific basis for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin-Nuan Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Chen-Yue Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Li
- Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing, China
| | - Ming-Li Yao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Zhong
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - You-Ming Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
4
|
Sang P, Ma Y, Zhang X, Chen B, He F, Shen N, Zhao J. BMAL1 attenuates intervertebral disc degeneration by activating the SIRT1/PGC-1α pathway: evidence from vitro studies. Sci Rep 2025; 15:9651. [PMID: 40113885 PMCID: PMC11926130 DOI: 10.1038/s41598-025-94029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
To explore the potential effects and the corresponding mechanisms of brain and muscle arnt-like protein-1 (BMAL1) on the progression of intervertebral disc degeneration (IVDD) in vitro studies. The expression of BMAL1, SIRT1 and PINK1 were evaluated by the method of siRNA/pcDNA in the immortalized nucleus pulposus (NP) cells. The expression of SIRT1/PGC-1α pathway was assessed. The characteristics of NP cell, containing the activity and density, the level of apoptosis, inflammatory response, reactive oxygen species (ROS), senescence, and mitophagy were evaluated. The overexpression of BMAL1 was achieved with the pcDNA3.1, the expression of SIRT1 and PGC-1α were increased, the inflammatory response, the ROS, the level of apoptosis and senescence were decreased, however, the level of mitophagy, the activity and density of NP cell were enhanced. The BMAL1 inhibites the progression of IVDD by activating the SIRT1/PGC-1α pathway in the vitro studies.
Collapse
Affiliation(s)
- Peiming Sang
- Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, People's Republic of China
- The Affiliated LiHuiLi Hospital of Ningbo University, #57, Xingning Road, Yinzhou District, Ningbo, Zhejiang, People's Republic of China
| | - Yanyan Ma
- Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, People's Republic of China.
- The Affiliated LiHuiLi Hospital of Ningbo University, #57, Xingning Road, Yinzhou District, Ningbo, Zhejiang, People's Republic of China.
| | - Xie Zhang
- Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, People's Republic of China
- The Affiliated LiHuiLi Hospital of Ningbo University, #57, Xingning Road, Yinzhou District, Ningbo, Zhejiang, People's Republic of China
| | - Binhui Chen
- Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, People's Republic of China
- The Affiliated LiHuiLi Hospital of Ningbo University, #57, Xingning Road, Yinzhou District, Ningbo, Zhejiang, People's Republic of China
| | - Fan He
- Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, People's Republic of China
- The Affiliated LiHuiLi Hospital of Ningbo University, #57, Xingning Road, Yinzhou District, Ningbo, Zhejiang, People's Republic of China
| | - Neng Shen
- The NO. 3 Hospital of Yinzhou District, Ningbo, Zhejiang, People's Republic of China
| | - Jiangang Zhao
- The NO. 4 Hospital of Yuyao District, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
5
|
Ponce-Mora A, Salazar NA, Domenech-Bendaña A, Locascio A, Bejarano E, Gimeno-Mallench L. Interplay Between Polyphenols and Autophagy: Insights From an Aging Perspective. FRONT BIOSCI-LANDMRK 2025; 30:25728. [PMID: 40152368 DOI: 10.31083/fbl25728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 03/29/2025]
Abstract
The relationship between polyphenols and autophagy, particularly in the context of aging, presents a promising avenue for therapeutic interventions in age-related diseases. A decline in autophagy is associated with aging-related affections, and an increasing number of studies suggest that this enhancement is linked to cellular resilience and longevity. This review delves into the multifaceted roles of autophagy in cellular homeostasis and the potential of polyphenols to modulate autophagic pathways. We revised the most updated literature regarding the modulatory effects of polyphenols on autophagy in cardiovascular, liver, and kidney diseases, highlighting their therapeutic potential. We highlight the role of polyphenols as modulators of autophagy to combat age-related diseases, thus contributing to improving the quality of life in aging populations. A better understanding of the interplay of autophagy between autophagy and polyphenols will help pave the way for future research and clinical applications in the field of longevity medicine.
Collapse
Affiliation(s)
- Alejandro Ponce-Mora
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Nicolle Andrea Salazar
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Alicia Domenech-Bendaña
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Antonella Locascio
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Eloy Bejarano
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| | - Lucia Gimeno-Mallench
- School of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, 46115 Alfara del Patriarca, Spain
| |
Collapse
|
6
|
Wang Z, Liang G, Peng J, Gu Y, Zhang X, Ding C, Yu T, Li Z. Sirtuin 7 Promotes Alcohol-Associated Liver Injury via Modulating Myeloid Cell Chemokine (C-C Motif) Ligand 2 Secretion through the NF-κB Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:575-588. [PMID: 39746506 DOI: 10.1016/j.ajpath.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/07/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
The pathogenesis of alcohol-associated liver disease (ALD) involves ethanol-induced enhancement of gut permeability, bacterial products released from intestine and intrahepatic inflammation, and liver damage. Hepatic macrophages play a crucial role in mediating inflammatory response by alcohol. Sirtuin 7 (SIRT7), a NAD+-dependent type III histone deacetylase, is being recognized as a therapeutic target in various human diseases. Emerging evidence shows that SIRT7 participates in immune regulation, but whether it is involved in ALD remains elusive. In the present study, myeloid cell-specific Sirt7 knockout mice (Lyz2-Sirt7-/-) were used to show that knockout Sirt7 in myeloid cells significantly ameliorated alcohol-induced liver injury, inflammation, and cell infiltration, while only mildly affecting lipid metabolism pathways. Chemokine (C-C motif) ligand 2 (CCL2) was identified as the main target impaired by Sirt7 knockout after alcohol. In vitro studies confirmed that Sirt7 knockout impaired macrophages' ability of CCL2 secretion and monocyte recruiting, and exogenous CCL2 reversed this impairment. At the molecular level, knockout of Sirt7 significantly impaired lipopolysaccharide-induced p65 phosphorylation and nuclear localization. More importantly, the SIRT7 inhibitor 40569 sufficiently decreased alcohol-induced liver injury and hepatic inflammation via preventing CCL2 in vivo. The current data thus uncovered a previously undescribed role of myeloid SIRT7 in mediating ALD via promoting CCL2 secretion through the NF-κB signaling pathway. Targeting SIRT7 might offer novel mechanism-based therapeutic options for ALD.
Collapse
Affiliation(s)
- Zhiqiang Wang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China; Human Anatomy Teaching and Experimental Center, School of Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Gaoshuang Liang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Jinying Peng
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Yiying Gu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Xiangwen Zhang
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Cong Ding
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Tingzi Yu
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China
| | - Zhuan Li
- The Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, The Key Laboratory of Model Animals and Stem Cell Biology of Hunan Province, Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University School of Pharmaceutical Science, Changsha, China.
| |
Collapse
|
7
|
Luo Y, An C, Zhong K, Zhou P, Li D, Liu H, Guo Q, Wei W, Pan H, Min Z, Li R, Yu Y, Fan Y. Exploring the impacts of senescence on implantation and early embryonic development using totipotent cell-derived blastoids. J Adv Res 2025; 68:115-129. [PMID: 38402947 PMCID: PMC11785586 DOI: 10.1016/j.jare.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Advanced maternal age is associated with reduced implantation and pregnancy rates, yet the underlying mechanisms remain poorly understood, and research models are limited. OBJECTIVES Here, we aim to elucidate the impacts of senescence on implantation ability by employing blastoids to construct a novel research model. METHODS We used a novel three-dimensional system with totipotent blastomere-like cells (TBLCs) to construct TBL-blastoids and established senescence-related embryo models derived from oxidative stress-induced TBLCs. RESULTS Morphological and transcriptomic analyses revealed that TBL-blastoids exhibited characteristic blastocyst morphology, cell lineages, and a higher consistency in developmental rate. TBL-blastoids demonstrated the ability to develop into postimplantation structures in vitro and successfully implanted into mouse uteri, inducing decidualization and forming embryonic tissues. Importantly, senescence impaired the implantation potential of TBL-blastoids, effectively mimicking the impaired implantation ability and reduced pregnancy rates associated with advanced age. Furthermore, analysis of differentially expressed genes (DEGs) in human homologous deciduae revealed enrichment in multiple fertility-related diseases and other complications of pregnancy. The genes implicated in these diseases and the common DEGs identified in the lineage-like cells of the two types of TBL-blastoids and deciduae may represent potential targets for addressing impaired implantation potential. CONCLUSION These results unveiled that TBL blastoids are an improved model for investigating implantation and early postimplantation, offering valuable insights into pregnancy-related disorders in women with advanced age and potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yuxin Luo
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Chenrui An
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ke Zhong
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ping Zhou
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Dan Li
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hui Liu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Qing Guo
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Wei Wei
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Hen Pan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China
| | - Zheying Min
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | - Rong Li
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China.
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University Third Hospital, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing 100191, China; Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| |
Collapse
|
8
|
Zhang X, Liu S, Su Y, Zhang L, Guo T, Wang X. Sirtuin-1 Regulates Mitochondrial Calcium Uptake Through Mitochondrial Calcium Uptake 1 (MICU1). Life (Basel) 2025; 15:174. [PMID: 40003583 PMCID: PMC11856031 DOI: 10.3390/life15020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
Mitochondria play a central role in cell biological processes, functioning not only as producers of ATP but also as regulators of Ca2+ signaling. Mitochondrial calcium uptake occurs primarily through the mitochondrial calcium uniporter channel (mtCU), with the mitochondrial calcium uptake subunits 1, 2, and 3 (MICU1, MICU2, and MICU3) serving as the main regulatory components. Dysregulated mitochondrial calcium uptake is a hallmark of cellular degeneration. Sirtuin 1 (SIRT1), a key regulator of cellular metabolism, plays a critical role in aging and various neurodegenerative conditions. By blocking SIRT1 using EX527 or shSIRT1, we observed mitochondrial structural fragmentation as well as intensified and prolonged mitochondrial calcium overload. Our study revealed a direct interaction between SIRT1 and MICU1. Notably, SIRT1 inhibition resulted in reduced MICU1 expression, hence led to mitochondrial calcium overload, illustrating the unconventional role of SIRT1 in governing mitochondrial function.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuemin Wang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong Joint Laboratory for Psychiatric Disorders, Guangdong Provincial Key Laboratory of Psychiatric Disorders, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (X.Z.); (S.L.); (Y.S.); (L.Z.); (T.G.)
| |
Collapse
|
9
|
Kumar A, Choudhary A, Munshi A. Epigenetic reprogramming of mtDNA and its etiology in mitochondrial diseases. J Physiol Biochem 2024; 80:727-741. [PMID: 38865050 DOI: 10.1007/s13105-024-01032-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Mitochondrial functionality and its regulation are tightly controlled through a balanced crosstalk between the nuclear and mitochondrial DNA interactions. Epigenetic signatures like methylation, hydroxymethylation and miRNAs have been reported in mitochondria. In addition, epigenetic signatures encoded by nuclear DNA are also imported to mitochondria and regulate the gene expression dynamics of the mitochondrial genome. Alteration in the interplay of these epigenetic modifications results in the pathogenesis of various disorders like neurodegenerative, cardiovascular, metabolic disorders, cancer, aging and senescence. These modifications result in higher ROS production, increased mitochondrial copy number and disruption in the replication process. In addition, various miRNAs are associated with regulating and expressing important mitochondrial gene families like COX, OXPHOS, ND and DNMT. Epigenetic changes are reversible and therefore therapeutic interventions like changing the target modifications can be utilized to repair or prevent mitochondrial insufficiency by reversing the changed gene expression. Identifying these mitochondrial-specific epigenetic signatures has the potential for early diagnosis and treatment responses for many diseases caused by mitochondrial dysfunction. In the present review, different mitoepigenetic modifications have been discussed in association with the development of various diseases by focusing on alteration in gene expression and dysregulation of specific signaling pathways. However, this area is still in its infancy and future research is warranted to draw better conclusions.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anita Choudhary
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicines, Central University of Punjab, Bathinda, India.
| |
Collapse
|
10
|
Mo C, Wei N, Li T, Ahmed Bhat M, Mohammadi M, Kuang C. CDK9 inhibitors for the treatment of solid tumors. Biochem Pharmacol 2024; 229:116470. [PMID: 39127153 DOI: 10.1016/j.bcp.2024.116470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Cyclin-dependent kinase 9 (CDK9) regulates mRNA transcription by promoting RNA Pol II elongation. CDK9 is now emerging as a potential therapeutic target for cancer, since its overexpression has been found to correlate with cancer development and worse clinical outcomes. While much work on CDK9 inhibition has focused on hematologic malignancies, the role of this cancer driver in solid tumors is starting to come into focus. Many solid cancers also overexpress CDK9 and depend on its activity to promote downstream oncogenic signaling pathways. In this review, we summarize the latest knowledge of CDK9 biology in solid tumors and the studies of small molecule CDK9 inhibitors. We discuss the results of the latest clinical trials of CDK9 inhibitors in solid tumors, with a focus on key issues to consider for improving the therapeutic impact of this drug class.
Collapse
Affiliation(s)
- Christiana Mo
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Ning Wei
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Terence Li
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Muzaffer Ahmed Bhat
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Mahshid Mohammadi
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology, Montefiore Einstein, Bronx, NY, USA; Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA; Department of Molecular Pharmacology, Montefiore Einstein, Bronx, NY, USA.
| |
Collapse
|
11
|
Deng S, Zhao Q, Liu D, Xiong Z, Zhang S, Zhang X, Wu F, Xing B. Black phosphorus nanosheets induce autophagy dysfunction by a size- and surface modification-related impairment of lysosomes in macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117073. [PMID: 39332199 DOI: 10.1016/j.ecoenv.2024.117073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
The widespread application of black phosphorus nanosheets (BPNSs) raises concerns about their potential impact on human health. Although that the autophagy-inducing properties of BPNSs in cancer cells are documented, their effects on macrophages-key components of the immune system and the mechanisms involved remain obscure, especially in terms of the influences of BPNS the size and surface modifications on the autophagic process. This study investigated the effects of bare BPNSs and PEGylated BPNSs (BP-PEG) on macrophage autophagy and its underlying mechanisms by comprehensive biochemical analyses. The results indicated that both BPNSs and BP-PEG are internalized by RAW264.7 cells through phagocytosis and caveolin-dependent endocytosis, leading to lysosomal accumulation. The internalized BPNSs induced mitochondrial dysfunction, which subsequently elevated the NAD+/NADH ratio and activated the SIRT-1 pathway, initiating autophagy. However, BPNSs disrupted the autophagic flux by impairing autolysosome formation, leading to apoptosis in a size-dependent manner. In contrast, BP-PEG preserved lysosomal integrity, maintaining autophagic activity and cell viability. These findings deepen our understanding of the influence of nanosheet size and surface modifications on macrophage autophagy, contributing to the formulation of regulatory guidelines to minimize the potential adverse effects and health risks associated with BPNS utilization in various applications.
Collapse
Affiliation(s)
- Shuo Deng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Zhao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Daxu Liu
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqiang Xiong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Shirani Asl V, Rafieemehr H, Tamaddon G. The impact of Trifolium pratense extract on apoptosis and autophagy in NALM-6 cells: implications for B-ALL intervention. Med Oncol 2024; 41:257. [PMID: 39352436 DOI: 10.1007/s12032-024-02485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/21/2024] [Indexed: 11/14/2024]
Abstract
B-cell acute lymphoblastic leukemia (B-ALL), a prevalent malignancy predominantly affecting children, poses challenges such as drug resistance and cytotoxicity despite available treatment methods. The persistence of these challenges underscores the necessity for innovative therapeutic approaches to enhance efficacy. Natural compounds derived from plants, recognized for their potential to inhibit cancer cell growth, have drawn attention. Trifolium pratense extract, known for its significant anticancer properties in previous studies, was the focus of this investigation. This experimental study aimed to explore the impact of T. pratense extract on apoptosis and autophagy in NALM-6 cells. The cells were exposed to varying concentrations of the extract at specific time intervals, with viability and metabolic activity assessed using Trypan blue exclusion and MTT assays. Flow cytometry was employed to evaluate apoptosis using Annexin V/PI staining and ROS production using DCFH-DA staining. Real-time PCR was used to quantify gene expression related to apoptosis, autophagy, and oxidative stress, with data analysis performed using GraphPad PRISM software. Trifolium pratense extract demonstrated the capacity to induce apoptosis, autophagy, and significantly increase ROS production in NALM-6 cells. These effects were facilitated by the upregulation of corresponding genes. The MTT assay revealed an IC50 of 231 μg/mL at 48 h, and Flow cytometry analysis showed a 51.8% increase in apoptosis in this cell line. Overall, this study emphasizes the effectiveness of T. pratense extract in inducing autophagy and apoptosis pathways in NALM-6 cells derived from B-cell acute lymphoblastic leukemia, suggesting its potential as a candidate for further investigation as a supplement in ALL treatment.
Collapse
Affiliation(s)
- Vida Shirani Asl
- Division of Hematology and Blood Bank, Department of Laboratory Science, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Rafieemehr
- Department of Medical Laboratory Sciences, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamhossein Tamaddon
- Division of Hematology and Blood Bank, Department of Laboratory Science, School of Paramedical Science, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Lou Y, Luan YT, Rong WQ, Gai Y. Corilagin alleviates podocyte injury in diabetic nephropathy by regulating autophagy via the SIRT1-AMPK pathway. World J Diabetes 2024; 15:1916-1931. [PMID: 39280180 PMCID: PMC11372637 DOI: 10.4239/wjd.v15.i9.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the most frequent chronic microvascular consequence of diabetes, and podocyte injury and malfunction are closely related to the development of DN. Studies have shown that corilagin (Cor) has hepatoprotective, anti-inflammatory, antibacterial, antioxidant, anti-hypertensive, anti-diabetic, and anti-tumor activities. AIM To explore the protective effect of Cor against podocyte injury in DN mice and the underlying mechanisms. METHODS Streptozotocin and a high-fat diet were combined to generate DN mice models, which were then divided into either a Cor group or a DN group (n = 8 in each group). Mice in the Cor group were intraperitoneally injected with Cor (30 mg/kg/d) for 12 wk, and mice in the DN group were treated with saline. Biochemical analysis was used to measure the blood lipid profiles. Hematoxylin and eosin staining was used to detect pathological changes in kidney tissue. Immunohistochemistry and Western blotting were used to assess the protein expression of nephrin and podocin. Mouse podocyte cells (MPC5) were cultured and treated with glucose (5 mmol/L), Cor (50 μM), high glucose (HG) (30 mmol/L), and HG (30 mmol/L) plus Cor (50 μM). Real-time quantitative PCR and Western blotting were performed to examine the effects of Cor on podocyte autophagy. RESULTS Compared with the control group, the DN mice models had increased fasting blood glucose, glycosylated hemoglobin, triglycerides, and total cholesterol, decreased nephrin and podocin expression, increased apoptosis rate, elevated inflammatory cytokines, and enhanced oxidative stress. All of the conditions mentioned above were alleviated after intervention with Cor. In addition, Cor therapy improved SIRT1 and AMPK expression (P < 0.001), inhibited reactive oxygen species and oxidative stress, and elevated autophagy in HG-induced podocytes (P < 0.01). CONCLUSION Cor alleviates podocyte injury by regulating autophagy via the SIRT1-AMPK pathway, thereby exerting its protective impact on renal function in DN mice.
Collapse
Affiliation(s)
- Yu Lou
- Department of Preventive Treatment of Disease, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yu-Ting Luan
- Department of Infectious Diseases, Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Wen-Qing Rong
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yun Gai
- Department of General Practice (Including Medical Oncology), Seventh People's Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| |
Collapse
|
14
|
Wei X, Xiong X, Wang P, Zhang S, Peng D. SIRT1-mediated deacetylation of FOXO3 enhances mitophagy and drives hormone resistance in endometrial cancer. Mol Med 2024; 30:147. [PMID: 39266959 PMCID: PMC11391609 DOI: 10.1186/s10020-024-00915-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND The complex interplay between Sirtuin 1 (SIRT1) and FOXO3 in endometrial cancer (EC) remains understudied. This research aims to unravel the interactions of deacetylase SIRT1 and transcription factor FOXO3 in EC, focusing on their impact on mitophagy and hormone resistance. METHODS High-throughput sequencing, cell experiments, and bioinformatics tools were employed to investigate the roles and interactions of SIRT1 and FOXO3 in EC. Co-immunoprecipitation (Co-IP) assay was used to assess the interaction between SIRT1 and FOXO3 in RL95-2 cells. Functional assays were used to assess cell viability, proliferation, migration, invasion, apoptosis, and the expression of related genes and proteins. A mouse model of EC was established to evaluate tumor growth and hormone resistance under different interventions. Immunohistochemistry and TUNEL assays were used to assess protein expression and apoptosis in tumor tissues. RESULTS High-throughput transcriptome sequencing revealed a close association between SIRT1, FOXO3, and EC development. Co-IP showed a protein-protein interaction between SIRT1 and FOXO3. Overexpression of SIRT1 enhanced FOXO3 deacetylation and activity, promoting BNIP3 transcription and PINK1/Parkin-mediated mitophagy, which in turn promoted cell proliferation, migration, invasion, and inhibited apoptosis in vitro, as well as increased tumor growth and hormone resistance in vivo. These findings highlighted SIRT1 as an upstream regulator and potential therapeutic target in EC. CONCLUSION This study reveals a novel molecular mechanism underlying the functional relevance of SIRT1 in regulating mitophagy and hormone resistance through the deacetylation of FOXO3 in EC, thereby providing valuable insights for new therapeutic strategies.
Collapse
Affiliation(s)
- Xuehua Wei
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Xiangpeng Xiong
- Department of Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang, 336000, China
| | - Pingping Wang
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China
| | - Shufang Zhang
- Department of Gynecology, Southern University of Science and Technology Hospital, Shenzhen, 518000, China
| | - Dongxian Peng
- Obstetrics and Gynecology Center, Department of Gynecology, Zhujiang Hospital, Southern Medical University, No. 253, Industry Avenue, Haizhu District, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
15
|
Vázquez-Lizarraga R, Mendoza-Viveros L, Cid-Castro C, Ruiz-Montoya S, Carreño-Vázquez E, Orozco-Solis R. Hypothalamic circuits and aging: keeping the circadian clock updated. Neural Regen Res 2024; 19:1919-1928. [PMID: 38227516 PMCID: PMC11040316 DOI: 10.4103/1673-5374.389624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 01/17/2024] Open
Abstract
Over the past century, age-related diseases, such as cancer, type-2 diabetes, obesity, and mental illness, have shown a significant increase, negatively impacting overall quality of life. Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels, including transcriptional, translational, and post-translational processes, resulting from cellular stress and circadian derangements. The circadian clock emerges as a key regulator, sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes, such as stem-cell function, cellular stress responses, and inter-tissue communication, which become disrupted during aging. Given the crucial role of hypothalamic circuits in regulating organismal physiology, metabolic control, sleep homeostasis, and circadian rhythms, and their dependence on these processes, strategies aimed at enhancing hypothalamic and circadian function, including pharmacological and non-pharmacological approaches, offer systemic benefits for healthy aging. Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions, like the hypothalamus, while reducing side effects associated with systemic drug delivery, thereby presenting new therapeutic possibilities for diverse age-related conditions.
Collapse
Affiliation(s)
| | - Lucia Mendoza-Viveros
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | - Carolina Cid-Castro
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México City, México
| | | | | | - Ricardo Orozco-Solis
- Instituto Nacional de Medicina Genómica (INMEGEN), México City, México
- Centro de Investigacíon sobre el Envejecimiento, Centro de Investigacíon y de Estudios Avanzados (CIE-CINVESTAV), México City, México
| |
Collapse
|
16
|
Mahmoud SA, Elkhoely A, El-Sayed EK, Ahmed AAE. Enhanced upregulation of SIRT1 via pioglitazone and ligustrazine confers protection against ethanol-induced gastric ulcer in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6177-6195. [PMID: 38441571 PMCID: PMC11329587 DOI: 10.1007/s00210-024-03026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/23/2024] [Indexed: 08/18/2024]
Abstract
Gastric ulcer is a disturbing disease that impacts many people worldwide. Pioglitazone (Piog), a thiazolidinedione, and ligustrazine (Ligu), a natural component of Ligusticum chuanxiong possess gastroprotective properties. However, the underlying mechanism is not well elucidated. The present study aimed to investigate the gastroprotective effects of Piog (15 mg/kg, p.o.), Ligu (15 mg/kg, p.o.), and their combination against ethanol-induced gastric ulcer in rats. Omeprazole (10 mg/kg) was used as a standard. Pre-treatment for 7 days with Piog, Ligu, and (Piog+Ligu) effectively alleviated ethanol-predisposed oxidative stress and inflammation through restoring HO-1, GSH, and SOD tissue levels and decreasing elevated MDA, TNF-α, ICAM, I-NOS, and IL-1β contents. Moreover, Piog, Ligu, and (Piog+Ligu) markedly inhibited the ethanol-induced increase of gastric NF-KB and BAX. In contrast, this pre-treatment regimen significantly accelerated protein expression of SIRT1, Nrf2, and Bcl-2, along with autophagic proteins, ATG5 and Beclin. Interestingly, macroscopic, histopathological examination and mucin content were in harmony with previous results, where pre-treatment with Piog, Ligu, and (Piog+Ligu) showed a declined mucosal injury as evidenced by the remarkable decrease of the ulcer area percentage by 62.3%, 38.7%, and 91.2%, respectively, compared to the ethanol-ulcerated group. In conclusion, Piog and Ligu exhibited remarkable gastroprotective properties. Our study was the first to show that Piog, Ligu, and (Piog+Ligu) ameliorated oxidative stress, inflammation, and apoptosis and accelerated the autophagic process via the upregulation of the upstream SIRT1 protein. It is worth mentioning that future studies are needed to pave the way for the clinical use of Piog and Ligu as gastro-protective agents.
Collapse
Affiliation(s)
- Sara A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Abeer Elkhoely
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt.
| | - Elsayed K El-Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Amany A E Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| |
Collapse
|
17
|
Sakata S, Kunimatsu R, Tanimoto K. Protective Effect of Ergothioneine against Oxidative Stress-Induced Chondrocyte Death. Antioxidants (Basel) 2024; 13:800. [PMID: 39061869 PMCID: PMC11274255 DOI: 10.3390/antiox13070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Reactive oxygen species (ROS) induce oxidative stress in cells and are associated with various diseases, including autoimmune diseases. Ergothioneine (EGT) is a natural amino acid derivative derived from the ergot fungus and has been reported to exhibit an effective antioxidant function in many models of oxidative stress-related diseases. Recently, mutations in OCTN1, a membrane transporter of EGT, have been reported to be associated with rheumatoid arthritis. Therefore, we investigated the chondrocyte-protective function of EGT using a model of oxidative stress-induced injury of chondrocytes by hydrogen peroxide (H2O2). Human chondrocytes were subjected to oxidative stress induced by H2O2 treatment, and cell viability, the activity of lactate dehydrogenase (LDH) released into the medium, dead cell ratio, intracellular ROS production, and mitochondrial morphology were assessed. EGT improved chondrocyte viability and LDH activity in the medium and strongly suppressed the dead cell ratio. EGT also exerted protective effects on intracellular ROS production and mitochondrial morphology. These results provide evidence to support the protective effects of EGT on chondrocytes induced by oxidative stress.
Collapse
Affiliation(s)
- Shuzo Sakata
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| |
Collapse
|
18
|
Abu-Baih RH, Abu-Baih DH, Abdel-Hafez SMN, Fathy M. Activation of SIRT1/Nrf2/HO-1 and Beclin-1/AMPK/mTOR autophagy pathways by eprosartan ameliorates testicular dysfunction induced by testicular torsion in rats. Sci Rep 2024; 14:12566. [PMID: 38822026 PMCID: PMC11143266 DOI: 10.1038/s41598-024-62740-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Testicular torsion carries the ominous prospect of inducing acute scrotal distress and the perilous consequence of testicular atrophy, necessitating immediate surgical intervention to reinstate vital testicular perfusion, notwithstanding the paradoxical detrimental impact of reperfusion. Although no drugs have secured approval for this urgent circumstance, antioxidants emerge as promising candidates. This study aspires to illustrate the influence of eprosartan, an AT1R antagonist, on testicular torsion in rats. Wistar albino rats were meticulously separated into five groups, (n = 6): sham group, eprosartan group, testicular torsion-detorsion (T/D) group, and two groups of T/D treated with two oral doses of eprosartan (30 or 60 mg/kg). Serum testosterone, sperm analysis and histopathological examination were done to evaluate spermatogenesis. Oxidative stress markers were assessed. Bax, BCL-2, SIRT1, Nrf2, HO-1 besides cleaved caspase-3 testicular contents were estimated using ELISA or qRT-PCR. As autophagy markers, SQSTM-1/p62, Beclin-1, mTOR and AMPK were investigated. Our findings highlight that eprosartan effectively improved serum testosterone levels, testicular weight, and sperm count/motility/viability, while mitigating histological irregularities and sperm abnormalities induced by T/D. This recovery in testicular function was underpinned by the activation of the cytoprotective SIRT1/Nrf2/HO-1 axis, which curtailed testicular oxidative stress, indicated by lowering the MDA content and increasing GSH content. In terms of apoptosis, eprosartan effectively countered apoptotic processes by decreasing cleaved caspase-3 content, suppressing Bax and stimulating Bcl-2 gene expression. Simultaneously, it reactivated impaired autophagy by increasing Beclin-1 expression, decreasing the expression of SQSTM-1/p62 and modulate the phosphorylation of AMPK and mTOR proteins. Eprosartan hold promise for managing testicular dysfunction arising from testicular torsion exerting antioxidant, pro-autophagic and anti-apoptotic effect via the activation of SIRT1/Nrf2/HO-1 as well as Beclin-1/AMPK/mTOR pathways.
Collapse
Affiliation(s)
- Rania H Abu-Baih
- Faculty of Pharmacy, Drug Information Center, Minia University, Minia, 61519, Egypt
| | - Dalia H Abu-Baih
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Deraya University, Minia, 61111, Egypt
- Deraya Center for Scientific Research, Deraya University, Minia, 61111, Egypt
| | | | - Moustafa Fathy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.
| |
Collapse
|
19
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
20
|
Tang W, Guo R, Hu C, Yang Y, Yang D, Chen X, Liu Y. BMAL1 alleviates myocardial damage in sepsis by activating SIRT1 signaling and promoting mitochondrial autophagy. Int Immunopharmacol 2024; 133:112111. [PMID: 38678672 DOI: 10.1016/j.intimp.2024.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Brain and muscle arnt-like protein-1 (BMAL1) deficiency is associated with myocardial dysfunction and suppressed sirtuin 1 (SIRT1). However, whether BMAL1 promotes mitophagy via SIRT1 to alleviate myocardial injury in sepsis remains unknown. METHODS An in vitro myocardial injury model was established using lipopolysaccharide (LPS)-treated H9C2 cells. Knockdown or overexpression of genes was performed using plasmid transfection. Gene and protein expression was assessed by qRT-PCR and Western blot, respectively. Cell proliferation was evaluated using cell counting kit-8, and cellular apoptosis and reactive oxygen species (ROS) levels were analyzed using flow cytometry. An in vivo myocardial injury model of sepsis was established by cecal ligation and puncture in rats. Myocardial function was characterized by analyzing the damage-associated proteins, inflammatory factors, ejection fraction, and fraction shortening. RESULTS sgBMAL1 significantly decreased BMAL1 levels and remarkably increased the sensitivity of H9C2 cells to LPS stimulation, consequently enhancing LPS-induced apoptosis, inflammation, and ROS levels. These effects were further attenuated by BMAL1 overexpression. BMAL1 knockdown inhibited the expression of SIRT1 and mitophagy-associated proteins. SIRT1 overexpression reversed the enhancement of shBMAL1 on cell proliferation and inflammation. In the rat model of sepsis, BMAL1 overexpression decreased the myocardial injury-associated proteins to recover the myocardial function and suppressed inflammatory activities by promoting mitophagy via SIRT1. CONCLUSION BMAL1 enhances mitophagy dependent on SIRT1, thereby alleviating myocardial injury in sepsis.
Collapse
Affiliation(s)
- Wen Tang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Rennan Guo
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Congyu Hu
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Yang Yang
- Graduate School of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Danping Yang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Xiaxia Chen
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China
| | - Yan Liu
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, No. 91 Tianchi Road, Urumqi, Xinjiang Uygur Autonomous Region 830001, China.
| |
Collapse
|
21
|
Zhang K, Li J, Dong W, Huang Q, Wang X, Deng K, Ali W, Song R, Zou H, Ran D, Liu G, Liu Z. Luteolin Alleviates Cadmium-Induced Kidney Injury by Inhibiting Oxidative DNA Damage and Repairing Autophagic Flux Blockade in Chickens. Antioxidants (Basel) 2024; 13:525. [PMID: 38790630 PMCID: PMC11117664 DOI: 10.3390/antiox13050525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Chickens are a major source of meat and eggs in human food and have significant economic value. Cadmium (Cd) is a common environmental pollutant that can contaminate feed and drinking water, leading to kidney injury in livestock and poultry, primarily by inducing the generation of free radicals. It is necessary to develop potential medicines to prevent and treat Cd-induced nephrotoxicity in poultry. Luteolin (Lut) is a natural flavonoid compound mainly extracted from peanut shells and has a variety of biological functions to defend against oxidative damage. In this study, we aimed to demonstrate whether Lut can alleviate kidney injury under Cd exposure and elucidate the underlying molecular mechanisms. Renal histopathology and cell morphology were observed. The indicators of renal function, oxidative stress, DNA damage and repair, NAD+ content, SIRT1 activity, and autophagy were analyzed. In vitro data showed that Cd exposure increased ROS levels and induced oxidative DNA damage and repair, as indicated by increased 8-OHdG content, increased γ-H2AX protein expression, and the over-activation of the DNA repair enzyme PARP-1. Cd exposure decreased NAD+ content and SIRT1 activity and increased LC3 II, ATG5, and particularly p62 protein expression. In addition, Cd-induced oxidative DNA damage resulted in PARP-1 over-activation, reduced SIRT1 activity, and autophagic flux blockade, as evidenced by reactive oxygen species scavenger NAC application. The inhibition of PARP-1 activation with the pharmacological inhibitor PJ34 restored NAD+ content and SIRT1 activity. The activation of SIRT1 with the pharmacological activator RSV reversed Cd-induced autophagic flux blockade and cell injury. In vivo data demonstrated that Cd treatment caused the microstructural disruption of renal tissues, reduced creatinine, and urea nitrogen clearance, raised MDA content, and decreased the activities or contents of antioxidants (GSH, T-SOD, CAT, and T-AOC). Cd treatment caused oxidative DNA damage and PARP-1 activation, decreased NAD+ content, decreased SIRT1 activity, and impaired autophagic flux. Notably, the dietary Lut supplement observably alleviated these alterations in chicken kidney tissues induced by Cd. In conclusion, the dietary Lut supplement alleviated Cd-induced chicken kidney injury through its potent antioxidant properties by relieving the oxidative DNA damage-activated PARP-1-mediated reduction in SIRT1 activity and repairing autophagic flux blockade.
Collapse
Affiliation(s)
- Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenxuan Dong
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266000, China;
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China;
- College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (K.Z.); (J.L.); (Q.H.); (X.W.); (K.D.); (W.A.); (R.S.); (H.Z.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
22
|
D'Incal C, Van Dijck A, Ibrahim J, De Man K, Bastini L, Konings A, Elinck E, Theys C, Gozes I, Marusic Z, Anicic M, Vukovic J, Van der Aa N, Mateiu L, Vanden Berghe W, Kooy RF. ADNP dysregulates methylation and mitochondrial gene expression in the cerebellum of a Helsmoortel-Van der Aa syndrome autopsy case. Acta Neuropathol Commun 2024; 12:62. [PMID: 38637827 PMCID: PMC11027339 DOI: 10.1186/s40478-024-01743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.
Collapse
Affiliation(s)
- Claudio D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Family Medicine and Population Health (FAMPOP), Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Kevin De Man
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Lina Bastini
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Ellen Elinck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zlatko Marusic
- Clinical Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirna Anicic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jurica Vukovic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nathalie Van der Aa
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Ligia Mateiu
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium.
| |
Collapse
|
23
|
Ni F, Wang F, Li J, Liu Y, Sun X, Chen J, Li J, Zhang Y, Jin J, Ye X, Tu M, Chen J, Chen C, Zhang D. BNC1 deficiency induces mitochondrial dysfunction-triggered spermatogonia apoptosis through the CREB/SIRT1/FOXO3 pathway: the therapeutic potential of nicotinamide riboside and metformin†. Biol Reprod 2024; 110:615-631. [PMID: 38079523 DOI: 10.1093/biolre/ioad168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 02/06/2023] [Indexed: 03/16/2024] Open
Abstract
Male infertility is a global health problem that disturbs numerous couples worldwide. Basonuclin 1 (BNC1) is a transcription factor mainly expressed in proliferative keratinocytes and germ cells. A frameshift mutation of BNC1 was identified in a large Chinese primary ovarian insufficiency pedigree. The expression of BNC1 was significantly decreased in the testis biopsies of infertile patients with nonobstructive azoospermia. Previous studies have revealed that mice with BNC1 deficiency are generally subfertile and undergo gradual spermatogenic failure. We observed that apoptosis of spermatogonia is tightly related to spermatogenic failure in mice with a Bnc1 truncation mutation. Such impairment is related to mitochondrial dysfunction causing lower mitochondrial membrane potential and higher reactive oxygen species. We showed that downregulation of CREB/SIRT1/FOXO3 signaling participates in the above impairment. Administration of nicotinamide riboside or metformin reversed mitochondrial dysfunction and inhibited apoptosis in Bnc1-knockdown spermatogonia by stimulating CREB/SIRT1/FOXO3 signaling. Dietary supplementation with nicotinamide riboside or metformin in mutated mice increased SIRT1 signaling, improved the architecture of spermatogenic tubules, inhibited apoptosis of the testis, and improved the fertility of mice with a Bnc1 truncation mutation. Our data establish that oral nicotinamide riboside or metformin can be useful for the treatment of spermatogenic failure induced by Bnc1 mutation.
Collapse
Affiliation(s)
- Feida Ni
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Feixia Wang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingyi Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifeng Liu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiao Sun
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianpeng Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiaqun Li
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanye Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiani Jin
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohang Ye
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mixue Tu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuan Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Zhang Y, Wang Q, Xue H, Guo Y, Wei S, Li F, Gong L, Pan W, Jiang P. Epigenetic Regulation of Autophagy in Bone Metabolism. FUNCTION 2024; 5:zqae004. [PMID: 38486976 PMCID: PMC10935486 DOI: 10.1093/function/zqae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 03/17/2024] Open
Abstract
The skeletal system is crucial for supporting bodily functions, protecting vital organs, facilitating hematopoiesis, and storing essential minerals. Skeletal homeostasis, which includes aspects such as bone density, structural integrity, and regenerative processes, is essential for normal skeletal function. Autophagy, an intricate intracellular mechanism for degrading and recycling cellular components, plays a multifaceted role in bone metabolism. It involves sequestering cellular waste, damaged proteins, and organelles within autophagosomes, which are then degraded and recycled. Autophagy's impact on bone health varies depending on factors such as regulation, cell type, environmental cues, and physiological context. Despite being traditionally considered a cytoplasmic process, autophagy is subject to transcriptional and epigenetic regulation within the nucleus. However, the precise influence of epigenetic regulation, including DNA methylation, histone modifications, and non-coding RNA expression, on cellular fate remains incompletely understood. The interplay between autophagy and epigenetic modifications adds complexity to bone cell regulation. This article provides an in-depth exploration of the intricate interplay between these two regulatory paradigms, with a focus on the epigenetic control of autophagy in bone metabolism. Such an understanding enhances our knowledge of bone metabolism-related disorders and offers insights for the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yazhou Zhang
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Qianqian Wang
- Department of Pediatric Intensive Care Unit, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Hongjia Xue
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Yujin Guo
- Institute of Clinical Pharmacy & Pharmacology, Jining First People’s Hospital, Jining 272000, China
| | - Shanshan Wei
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250000, China
- Department of Graduate, Shandong Academy of Medical Sciences, Shandong First Medical University, Jinan 250000, China
| | - Fengfeng Li
- Department of Neurosurgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Linqiang Gong
- Department of Gastroenterology, Tengzhou Central People's Hospital, Tengzhou 277500, China
| | - Weiliang Pan
- Department of Foot and Ankle Surgery, Tengzhou Central People’s Hospital, Tengzhou 277500, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining First People’s Hospital, Shandong First Medical University, Jining 272000, China
- Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| |
Collapse
|
25
|
Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int J Mol Sci 2024; 25:718. [PMID: 38255792 PMCID: PMC10815409 DOI: 10.3390/ijms25020718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| |
Collapse
|
26
|
Culibrk RA, Ebbert KA, Yeisley DJ, Chen R, Qureshi FA, Hahn J, Hahn MS. Impact of Suramin on Key Pathological Features of Sporadic Alzheimer's Disease-Derived Forebrain Neurons. J Alzheimers Dis 2024; 98:301-318. [PMID: 38427475 DOI: 10.3233/jad-230600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) is characterized by disrupted proteostasis and macroautophagy (hereafter "autophagy"). The pharmacological agent suramin has known autophagy modulation properties with potential efficacy in mitigating AD neuronal pathology. Objective In the present work, we investigate the impact of forebrain neuron exposure to suramin on the Akt/mTOR signaling pathway, a major regulator of autophagy, in comparison with rapamycin and chloroquine. We further investigate the effect of suramin on several AD-related biomarkers in sporadic AD (sAD)-derived forebrain neurons. Methods Neurons differentiated from ReNcell neural progenitors were used to assess the impact of suramin on the Akt/mTOR signaling pathway relative to the autophagy inducer rapamycin and autophagy inhibitor chloroquine. Mature forebrain neurons were differentiated from induced pluripotent stem cells (iPSCs) sourced from a late-onset sAD patient and treated with 100μM suramin for 72 h, followed by assessments for amyloid-β, phosphorylated tau, oxidative/nitrosative stress, and synaptic puncta density. Results Suramin treatment of sAD-derived neurons partially ameliorated the increased p-Tau(S199)/Tau ratio, and fully remediated the increased glutathione to oxidized nitric oxide ratio, observed in untreated sAD-derived neurons relative to healthy controls. These positive results may be due in part to the distinct increases in Akt/mTOR pathway mediator p-p70S6K noted with suramin treatment of both ReNcell-derived and iPSC-derived neurons. Longer term neuronal markers, such as synaptic puncta density, were unaffected by suramin treatment. Conclusions These findings provide initial evidence supporting the potential of suramin to reduce the degree of dysregulation in sAD-derived forebrain neurons in part via the modulation of autophagy.
Collapse
Affiliation(s)
- Robert A Culibrk
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Katherine A Ebbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Daniel J Yeisley
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Rui Chen
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Fatir A Qureshi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Juergen Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mariah S Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
27
|
Jobst M, Hossain M, Kiss E, Bergen J, Marko D, Del Favero G. Autophagy modulation changes mechano-chemical sensitivity of T24 bladder cancer cells. Biomed Pharmacother 2024; 170:115942. [PMID: 38042111 DOI: 10.1016/j.biopha.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Bladder cancer cells possess unique adaptive capabilities: shaped by their environment, cells face a complex chemical mixture of metabolites and xenobiotics accompanied by physiological mechanical cues. These responses might translate into resistance to chemotherapeutical regimens and can largely rely on autophagy. Considering molecules capable of rewiring tumor plasticity, compounds of natural origin promise to offer valuable options. Fungal derived metabolites, such as bafilomycin and wortmannin are widely acknowledged as autophagy inhibitors. Here, their potential to tune bladder cancer cells´ adaptability to chemical and physical stimuli was assessed. Additionally, dietary occurring mycotoxins were also investigated, namely deoxynivalenol (DON, 0.1-10 µM) and fusaric acid (FA, 0.1-1 mM). Endowing a Janus' face behavior, DON and FA are on the one side described as toxins with detrimental health effects. Concomitantly, they are also explored experimentally for selective pharmacological applications including anticancer activities. In non-cytotoxic concentrations, bafilomycin (BAFI, 1-10 nM) and wortmannin (WORT, 1 µM) modified cell morphology and reduced cancer cell migration. Application of shear stress and inhibition of mechano-gated PIEZO channels reduced cellular sensitivity to BAFI treatment (1 nM). Similarly, for FA (0.5 mM) PIEZO1 expression and inhibition largely aligned with the modulatory potential on cancer cells motility. Additionally, this study highlighted that the activity profile of compounds with similar cytotoxic potential (e.g. co-incubation DON with BAFI or FA with WORT) can diverge substantially in the regulation of cell mechanotransduction. Considering the interdependence between tumor progression and response to mechanical cues, these data promise to provide a novel viewpoint for the study of chemoresistance and associated pathways.
Collapse
Affiliation(s)
- Maximilian Jobst
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Maliha Hossain
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Endre Kiss
- Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Janice Bergen
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Str. 42, 1090 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria; Core Facility Multimodal Imaging, University of Vienna Faculty of Chemistry, Währinger Str. 38-40, 1090 Vienna, Austria.
| |
Collapse
|
28
|
Jaikumkao K, Thongnak L, Htun KT, Pengrattanachot N, Phengpol N, Sutthasupha P, Promsan S, Montha N, Sriburee S, Kothan S, Lungkaphin A. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166912. [PMID: 37816397 DOI: 10.1016/j.bbadis.2023.166912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Considering the effects of sodium-glucose cotransporter inhibitors and metformin on the kidneys, a combination of both agents is postulated to provide protection against diabetic nephropathy (DN). We examined the potential protective effects of dapagliflozin, metformin, and their combination on kidney injury in rats with type 2 diabetes. Diabetic (DM) rats were administered dapagliflozin (1.0 mg/kg/day), metformin (100 mg/kg/day), or a combination (dapagliflozin 0.5 mg/kg/day plus metformin 50 mg/kg/day) by oral gavage for 4 weeks. Dapagliflozin monotherapy or in combination with metformin was more effective than metformin monotherapy in attenuating renal dysfunction, improving renal organic anion transporter 3 expression, and activating renal autophagy by modulating the AMPK/mTOR/SIRT1 axis in DM rats. Interestingly, dapagliflozin monotherapy exhibited greater efficacy in suppressing renal oxidative stress in DM rats than metformin or the combination treatment. Renal and pancreatic injury scores decreased in all treatment groups. Apoptotic markers were predominantly reduced in dapagliflozin monotherapy and combination treatment groups. The low-dose combination treatment, through synergistic coordination, appeared to modulate oxidative, autophagic, and apoptotic signaling and confer significant renoprotective effects against DM-induced complications. In addition, a low dose of the combination might be beneficial to patients by avoiding the risk of side effects of the medication. Future clinical trials are necessary to study the nephroprotective effects of the combined treatment at a low dosage in patients with diabetes.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Montha
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Sompong Sriburee
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Foods for Health and Disease, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
29
|
Zamani M, Mokarram P, Jamshidi M, Siri M, Ghasemi H. Molecular Modelling of Resveratrol Derivatives with SIRT1 for the Stimulation of Deacetylase Activity. Curr Comput Aided Drug Des 2024; 20:943-954. [PMID: 37842901 DOI: 10.2174/0115734099258321231003161602] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Resveratrol is a polyphenol that is found in plants and has been proposed to have a potential therapeutic effect through the activation of SIRT1, which is a crucial member of the mammalian NAD+ -dependent deacetylases. However, how its activity is enhanced toward specific substrates by resveratrol derivatives has not been studied. This study aimed to evaluate the types of interaction of resveratrol and its derivatives with SIRT1 as the target protein, as well as to find out the best ligand with the strangest interaction with SIRT1. MATERIALS AND METHODS In this study, we employed the extensive molecular docking analysis using AutoDock Vina to comparatively evaluate the interactions of resveratrol derivatives (22 molecules from the ZINC database) as ligands with SIRT1 (PDB ID: 5BTR) as a receptor. The ChemDraw and Chem3D tools were used to prepare 3D structures of all ligands and energetically minimize them by the MM2 force field. RESULTS The molecular docking and visualizations showed that conformational change in resveratrol derivatives significantly influenced the parameter for docking results. Several types of interactions, including conventional hydrogen bonds, carbon-hydrogen bonds, Pi-donor hydrogen bonds, and Pi-Alkyl, were found via docking analysis of resveratrol derivatives and SIRT1 receptors. The possible activation effect of resveratrol 4'-(6-galloylglucoside) with ZINC ID: ZINC230079516 with higher binding energy score (-46.8608 kJ/mol) to the catalytic domain (CD) of SIRT1 was achieved at the maximum value for SIRT1, as compared to resveratrol and its other derivatives. CONCLUSION Finally, resveratrol 4'-(6-galloylglucoside), as a derivative for resveratrol, has stably interacted with the CD of SIRT1 and might be a potential effective activator for SIRT1.
Collapse
Affiliation(s)
- Mozhdeh Zamani
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Jamshidi
- Institute für Chemie, Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11,26129 Oldenburg, Germany
| | - Morvarid Siri
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Ghasemi
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Alghamdi M, Braidy N. Supplementation with NAD+ Precursors for Treating Alzheimer's Disease: A Metabolic Approach. J Alzheimers Dis 2024; 101:S467-S477. [PMID: 39422945 DOI: 10.3233/jad-231277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurocognitive disorder. There is no cure for AD. Maintenance on intracellular levels of nicotinamide adenine dinucleotide (NAD+) has been reported to be a promising therapeutic strategy for the treatment of AD. NAD+ precursors that represent candidate targets include nicotinamide mononucleotide (NMN) and nicotinamide riboside (NR). Objective This systematic review provides insights into the potential therapeutic value of NAD+ precursors including NMN and NR, for the treatment of AD using preclinical and clinical studies published in the last 5 years. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was followed to systematically search the literature using two databases. Results We found 3 studies that used NMN to treat AD in preclinical murine models. However, human clinical trials using NMN as a therapeutic intervention in AD was not available in the current literature. We also found 4 studies that investigated the potential benefits of NR for the treatment of AD in preclinical models. We also found 2 human clinical trials that showed marked improvements in plasma and neuroimaging biomarkers, and cognitive measures following supplementation with NR. Conclusions Results of preclinical and clinical studies confirm the potential benefits of NAD+ precursors for the treatment of AD. However, further clinical studies are required to confirm the increasingly important value of NAD+ precursors as effective pharmacological interventions in the clinic.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
31
|
Cai J, Wang R, Chen Y, Zhang C, Fu L, Fan C. LncRNA FIRRE regulated endometrial cancer radiotherapy sensitivity via the miR-199b-5p/SIRT1/BECN1 axis-mediated autophagy. Genomics 2024; 116:110750. [PMID: 38052260 DOI: 10.1016/j.ygeno.2023.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Endometrial cancer (EC) poses a serious threat to women's health. Radiotherapy has been widely used for EC treatment. However, the mechanism of FIRRE in EC development and radioresistance remains unknown. METHODS MTT and colony formation assays determined cell proliferation. The degree of autophagy was tested by the measurement of autophagy-related genes and immunofluorescence staining of LC3. Molecular interactions were demonstrated via luciferase reporter assay, RIP, and Co-IP. The FIRRE role's was analyzed by in vivo xenograft tumor model. RESULTS FIRRE and SIRT1 were upregulated in EC tumor tissues, whereas miR-199b-5p was reduced. FIRRE knockdown increased EC cell radiotherapy sensitivity by sponging miR-199b-5p and inhibiting autophagy. SIRT1 was targeted and negatively regulated by miR-199b-5p. SIRT1 could otherwise deacetylate BECN1 protein and participate in FIRRE-mediated autophagy. Silencing FIRRE increased sensitivity of EC radiotherapy in vivo. CONCLUSION FIRRE reduced EC cell radiotherapy sensitivity by stimulating autophagy via miR-199b-5p/SIRT1/BECN1 axis.
Collapse
Affiliation(s)
- Junhong Cai
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, PR China.
| | - Ru Wang
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Yaxiong Chen
- Department of Radiotherapy Center, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Chen Zhang
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Lanyan Fu
- Department of Gynecology, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| | - Cunfu Fan
- Department of Pathology, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou 570311, Hainan Province, PR China
| |
Collapse
|
32
|
Ünal İ, Cansız D, Beler M, Sezer Z, Güzel E, Emekli-Alturfan E. Sodium-dependent glucose co-transporter-2 inhibitor empagliflozin exerts neuroprotective effects in rotenone-induced Parkinson's disease model in zebrafish; mechanism involving ketogenesis and autophagy. Brain Res 2023; 1820:148536. [PMID: 37591458 DOI: 10.1016/j.brainres.2023.148536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Sodium-dependent glucose co-transporter-2 (SGLT2) inhibitor empagliflozin (EMP), is the new class of oral hypoglycemic agent approved as a treatment for Type 2 diabetes. SGLT2 inhibitors may induce ketogenesis through inhibiting the renal reabsorption of glucose. In recent years, positive effects of ketogenic diets on neurodegenerative diseases such as Parkinson's disease (PD) have been reported by improving autophagy. We aimed to evaluate the effects of EMP treatment as a SGLT2 inhibitor that can mimic the effects of ketogenic diet, in rotenone induced PD model in zebrafish focusing on ketogenesis, autophagy, and molecular pathways related with PD progression including oxidative stress and inflammation. Adult zebrafish were exposed to rotenone and EMP for 30 days. Y-Maze task and locomotor analysis were performed. Neurotransmitter levels were determined by liquid chromatography tandem- mass spectrometry (LC-MS/MS). Lipid peroxidation (LPO), nitric oxide (No), alkaline phosphatase, superoxide dismutase, glutathione, glutathione S-transferase (GST), sialic acid, acetylcholinesterase, and the expressions of autophagy, ketogenesis and PD-related genes were determined. Immunohistochemical staining was performed for the microglial marker L-plastin (Lcp1) and tyrosine hydroxylase (Th). EMP treatment improved DOPAC/DA ratio, Y-Maze task, locomotor activity, expressions of Th and Lcp-1, autophagy and inflammation related (mTor, atg5, tnfα, sirt1, il6, tnfα); PD-related (lrrk2, park2, park7, pink1), and ketone metabolism-related genes (slc16a1b, pparag, and pparab), and oxidant-damage in brain in the rotenone group as evidenced by decreased LPO, No, and improved antioxidant molecules. Our results showed benefical effects of EMP as a SGLT2 inhibitor in neurotoxin-induced PD model in zebrafish. We believe our study, will shed light on the mechanism of the effects of SGLT2 inhibitors, ketogenesis and autopahgy in PD.
Collapse
Affiliation(s)
- İsmail Ünal
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Derya Cansız
- Department Medipol University, Faculty of Medicine, Medical Biochemistry, Istanbul, Turkey
| | - Merih Beler
- Marmara University, Institute of Health Sciences, Faculty of Pharmacy, Department of Biochemistry, Istanbul, Turkey
| | - Zehra Sezer
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - Elif Güzel
- Department of Histology and Embryology, Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Istanbul 34098, Turkey
| | - Ebru Emekli-Alturfan
- Marmara University, Faculty of Dentistry, Department of Basic Medical Sciences, Istanbul, Turkey.
| |
Collapse
|
33
|
Maiese K. The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk. Front Immunol 2023; 14:1273570. [PMID: 38022638 PMCID: PMC10663950 DOI: 10.3389/fimmu.2023.1273570] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Life expectancy is increasing throughout the world and coincides with a rise in non-communicable diseases (NCDs), especially for metabolic disease that includes diabetes mellitus (DM) and neurodegenerative disorders. The debilitating effects of metabolic disorders influence the entire body and significantly affect the nervous system impacting greater than one billion people with disability in the peripheral nervous system as well as with cognitive loss, now the seventh leading cause of death worldwide. Metabolic disorders, such as DM, and neurologic disease remain a significant challenge for the treatment and care of individuals since present therapies may limit symptoms but do not halt overall disease progression. These clinical challenges to address the interplay between metabolic and neurodegenerative disorders warrant innovative strategies that can focus upon the underlying mechanisms of aging-related disorders, oxidative stress, cell senescence, and cell death. Programmed cell death pathways that involve autophagy, apoptosis, ferroptosis, and pyroptosis can play a critical role in metabolic and neurodegenerative disorders and oversee processes that include insulin resistance, β-cell function, mitochondrial integrity, reactive oxygen species release, and inflammatory cell activation. The silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), AMP activated protein kinase (AMPK), and Wnt1 inducible signaling pathway protein 1 (WISP1) are novel targets that can oversee programmed cell death pathways tied to β-nicotinamide adenine dinucleotide (NAD+), nicotinamide, apolipoprotein E (APOE), severe acute respiratory syndrome (SARS-CoV-2) exposure with coronavirus disease 2019 (COVID-19), and trophic factors, such as erythropoietin (EPO). The pathways of programmed cell death, SIRT1, AMPK, and WISP1 offer exciting prospects for maintaining metabolic homeostasis and nervous system function that can be compromised during aging-related disorders and lead to cognitive impairment, but these pathways have dual roles in determining the ultimate fate of cells and organ systems that warrant thoughtful insight into complex autofeedback mechanisms.
Collapse
Affiliation(s)
- Kenneth Maiese
- Innovation and Commercialization, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Chen F, Zhang X, Chen S, Wu Y, Wei Q, Chu X, Zhang Z. 5-(3',4'-dihydroxyphenyl)-γ-valerolactone, a microbiota metabolite of flavan-3-ols, activates SIRT1-mediated autophagy to attenuate H₂O₂-induced inhibition of osteoblast differentiation in MC3T3-E1 cells. Free Radic Biol Med 2023; 208:309-318. [PMID: 37611644 DOI: 10.1016/j.freeradbiomed.2023.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Phenolic compounds are promising agents for the prevention of osteoporosis. 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (DHPV) is the major microbiota metabolite of the flavan-3-ols phenolic compound. Herein, we aimed to investigate the potential mechanisms underlying the effects of DHPV on an osteoblast cell model with H2O2-induced oxidative injury. The MC3T3-E1 cell cultured with H2O2 was used as an oxidative injury model after pretreating with DHPV. Pretreatment with DHPV significantly attenuated cell viability decline, enhanced the activity of alkaline phosphatase and mineralization capacity in MC3T3-E1 cells. Reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels as well as increased in mitochondrial membrane potential and superoxide dismutase (SOD) activities indicated that DHPV affected both the oxidative and antioxidative processes in the cells. DHPV administration increased the LC3-II/I ratio and Beclin-1 protein levels, thereby promoting autophagy, which perhaps contributes to ROS elimination. However, the inhibition of Sirtuin 1 (SIRT1) by SIRT1 small interfering RNA reduced the protective effect of DHPV or SRT1720, as revealed by the increased ROS and MDA levels and decreased SOD, LC3-II/I ratio and Beclin-1 levels. DHPV may promote autophagy and reduce oxidative stress through the SIRT1-mediated pathway, thereby protecting MC3T3-E1 cells from H2O2-induced oxidative damage.
Collapse
Affiliation(s)
- Fengyan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xuanrui Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shanshan Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Yulin Wu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Qinzhi Wei
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinwei Chu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Zheqing Zhang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
35
|
Afshari H, Noori S, Zarghi A. A novel combination of metformin and resveratrol alleviates hepatic steatosis by activating autophagy through the cAMP/AMPK/SIRT1 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3135-3148. [PMID: 37209153 DOI: 10.1007/s00210-023-02520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/03/2023] [Indexed: 05/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disorder that is associated with the accumulation of triglycerides (TG) in hepatocytes. Resveratrol (RSV), as a natural product, and metformin have been reported to have potential lipid-lowering effects for the treatment of NAFLD via autophagy, but the combined effects of both have not yet been studied. The current study aimed to investigate the role of autophagy in the lipid-lowering effects of RSV, alone and in combination with metformin, on the hepatic steatosis model of HepG2 cells and elucidate the mechanism of action. Triglyceride measurement and real-time PCR showed that RSV-metformin reduced lipid accumulation and the expression of lipogenic genes in palmitic acid (PA)-induced HepG2 cells. Additionally, the LDH release assay indicated that this combination protected HepG2 cells against PA-induced cell death through autophagy. The western blotting analysis revealed that RSV-metformin induced autophagy by reducing the expression of p62 and increasing LC3-I and LC3-II proteins. This combination also enhanced cAMP, phosphorylated AMP-activated protein kinase (p-AMPK), and Beclin-1 levels in HepG2 cells. Furthermore, SIRT1 inhibitor treatment inhibited autophagy induced by RSV-metformin, which indicated the autophagy induction is SIRT1-dependent. This study demonstrated for the first time that RSV-metformin reduced hepatic steatosis by triggering autophagy via the cAMP/AMPK/SIRT1 signaling pathway.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
El-Kafoury BMA, Abdel-Hady EA, El Bakly W, Elayat WM, Hamam GG, Abd El Rahman SMM, Lasheen NN. Lipoic acid inhibits cognitive impairment induced by multiple cell phones in young male rats: role of Sirt1 and Atg7 pathway. Sci Rep 2023; 13:18486. [PMID: 37898621 PMCID: PMC10613255 DOI: 10.1038/s41598-023-44134-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023] Open
Abstract
The utilization of digital technology has grown rapidly in the past three decades. With this rapid increase, cell phones emit electromagnetic radiation; that is why electromagnetic field (EMF) has become a substantial new pollution source in modern civilization, mainly having adverse effects on the brain. While such a topic attracted many researchers' scopes, there are still minimal discoveries made regarding chronic exposure to EMF. The extensive use of cell phones may affect children's cognition even indirectly if parents and guardians used their phones repeatedly near them. This study aims to investigate possible lipoic acid (LA) effects on cognitive functions and hippocampal structure in young male rats exposed to electromagnetic fields (EMF) emitted from multiple cell phones. Forty young male Wistar rats were randomly allocated into three groups: control, multiple cell phones-exposed and lipoic acid-treated rats. By the end of the experimental period, the Morris water maze was used as a cognitive test. The rats were sacrificed for the collection of serum and hippocampal tissue. These serum samples were then utilized for assessment of Liver function tests. The level ofglutamate, acetylcholine (Ach) and malondialdehyde (MDA) was estimated, in addition to evaluating the expression of autophagy-related protein-7 (Atg7) and Sirt1 genes. The left hippocampal specimens were used for histopathological studies. Results showed that multiple cell phone-exposed rats exhibited shorter latency time to reach the platform by the fifth day of training; additionally, there was a reduction in consolidation of spatial long-term memory. Correspondingly, there was an elevation of hippocampal Ach, glutamate, and MDA levels; accompanied by up-regulation of hippocampal Sirt1 and Atg7 gene expression. Compared to the EMF-exposed group, LA administration improved both learning and memory, this was proved by the significant decline in hippocampal MDA and Ach levels, the higher hippocampal glutamate, the downregulated hippocampal Sirt1 gene expression and the upregulated Atg7 gene expression. In conclusion, EMF exposure could enhance learning ability; however, it interfered with long-term memory consolidation shown by higher hippocampal Ach levels. Lipoic acid treatment improved both learning and memory by enhancing autophagy and hippocampal glutamate level and by the reduced Ach levels and Sirt1 gene expression.
Collapse
Affiliation(s)
- Bataa M A El-Kafoury
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas A Abdel-Hady
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wesam El Bakly
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, AFCM, Cairo, Egypt
| | - Wael M Elayat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Egypt
| | - Ghada Galal Hamam
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Noha N Lasheen
- Department of Medical Physiology, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
- Department of Basic Medical Sciences, Faculty of Medicine, Galala University, Galala City, Egypt.
| |
Collapse
|
37
|
Li Q, Zhang Q, Kim YR, Gaddam RR, Jacobs JS, Bachschmid MM, Younis T, Zhu Z, Zingman L, London B, Rauckhorst AJ, Taylor EB, Norris AW, Vikram A, Irani K. Deficiency of endothelial sirtuin1 in mice stimulates skeletal muscle insulin sensitivity by modifying the secretome. Nat Commun 2023; 14:5595. [PMID: 37696839 PMCID: PMC10495425 DOI: 10.1038/s41467-023-41351-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Downregulation of endothelial Sirtuin1 (Sirt1) in insulin resistant states contributes to vascular dysfunction. Furthermore, Sirt1 deficiency in skeletal myocytes promotes insulin resistance. Here, we show that deletion of endothelial Sirt1, while impairing endothelial function, paradoxically improves skeletal muscle insulin sensitivity. Compared to wild-type mice, male mice lacking endothelial Sirt1 (E-Sirt1-KO) preferentially utilize glucose over fat, and have higher insulin sensitivity, glucose uptake, and Akt signaling in fast-twitch skeletal muscle. Enhanced insulin sensitivity of E-Sirt1-KO mice is transferrable to wild-type mice via the systemic circulation. Endothelial Sirt1 deficiency, by inhibiting autophagy and activating nuclear factor-kappa B signaling, augments expression and secretion of thymosin beta-4 (Tβ4) that promotes insulin signaling in skeletal myotubes. Thus, unlike in skeletal myocytes, Sirt1 deficiency in the endothelium promotes glucose homeostasis by stimulating skeletal muscle insulin sensitivity through a blood-borne mechanism, and augmented secretion of Tβ4 by Sirt1-deficient endothelial cells boosts insulin signaling in skeletal muscle cells.
Collapse
Affiliation(s)
- Qiuxia Li
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA.
| | - Quanjiang Zhang
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Young-Rae Kim
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Ravinder Reddy Gaddam
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Julia S Jacobs
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | | | - Tsneem Younis
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Zhiyong Zhu
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| | - Leonid Zingman
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| | - Barry London
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Adam J Rauckhorst
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- FOEDRC Metabolomics Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Eric B Taylor
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- FOEDRC Metabolomics Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Andrew W Norris
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- FOEDRC Metabolic Phenotyping Core Facility, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Ajit Vikram
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Kaikobad Irani
- Division of Cardiovascular Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Veterans Affairs Medical Center, Iowa City, IA, 52242, USA.
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
38
|
Deng Y, Adam V, Nepovimova E, Heger Z, Valko M, Wu Q, Wei W, Kuca K. c-Jun N-terminal kinase signaling in cellular senescence. Arch Toxicol 2023; 97:2089-2109. [PMID: 37335314 DOI: 10.1007/s00204-023-03540-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Cellular senescence leads to decreased tissue regeneration and inflammation and is associated with diabetes, neurodegenerative diseases, and tumorigenesis. However, the mechanisms of cellular senescence are not fully understood. Emerging evidence has indicated that c-Jun N-terminal kinase (JNK) signaling is involved in the regulation of cellular senescence. JNK can downregulate hypoxia inducible factor-1α to accelerate hypoxia-induced neuronal cell senescence. The activation of JNK inhibits mTOR activity and triggers autophagy, which promotes cellular senescence. JNK can upregulate the expression of p53 and Bcl-2 and accelerates cancer cell senescence; however, this signaling also mediates the expression of amphiregulin and PD-LI to achieve cancer cell immune evasion and prevents their senescence. The activation of JNK further triggers forkhead box O expression and its target gene Jafrac1 to extend the lifespan of Drosophila. JNK can also upregulate the expression of DNA repair protein poly ADP-ribose polymerase 1 and heat shock protein to delay cellular senescence. This review discusses recent advances in understanding the function of JNK signaling in cellular senescence and includes a comprehensive analysis of the molecular mechanisms underlying JNK-mediated senescence evasion and oncogene-induced cellular senescence. We also summarize the research progress in anti-aging agents that target JNK signaling. This study will contribute to a better understanding of the molecular targets of cellular senescence and provides insights into anti-aging, which may be used to develop drugs for the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
39
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
40
|
Sareen N, Srivastava A, Alagarsamy KN, Lionetti V, Dhingra S. Stem cells derived exosomes and biomaterials to modulate autophagy and mend broken hearts. Biochim Biophys Acta Mol Basis Dis 2023:166806. [PMID: 37437748 DOI: 10.1016/j.bbadis.2023.166806] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Autophagy maintains cellular homeostasis and plays a crucial role in managing pathological conditions including ischemic myocardial injury leading to heart failure (HF). Despite treatments, no intervention can replace lost cardiomyocytes. Stem cell therapy offers potential for post-myocardial infarction repair but struggles with poor cell retention due to immune rejection. In the search for effective therapies, stem cell-derived extracellular vesicles (EVs), especially exosomes, have emerged as promising tools. These tiny bioactive molecule carriers play vital roles in intercellular communication and tissue engineering. They offer numerous therapeutic benefits including modulating immune responses, promoting tissue repair, and boosting angiogenesis. Additionally, biomaterials provide a conducive 3D microenvironment for cell, exosome, and biomolecule delivery, and enhance heart muscle strength, making it a comprehensive cardiac repair strategy. In this regard, the current review delves into the intricate application of extracellular vesicles (EVs) and biomaterials for managing autophagy in the heart muscle during cardiac injury. Central to our investigation is the exploration of how these elements interact within the context of cardiac repair and regeneration. Additionally, this review also casts light on the formidable challenges that plague this field, such as the issues of safety, efficacy, controlled delivery, and acceptance of these therapeutic strategies for effective clinical translation. Addressing these challenges is crucial for unlocking the full therapeutic potential of EV and biomaterial-based therapies and ensuring their successful translation from bench to bedside.
Collapse
Affiliation(s)
- Niketa Sareen
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada; Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Abhay Srivastava
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada
| | - Vincenzo Lionetti
- Unit of Translational Critical Care Medicine, Institute of Life Sciences, Scuola Superiore Sant'Anna, 56124 Pisa, Italy
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Science, University of Manitoba, Winnipeg R2H2A6, MB, Canada.
| |
Collapse
|
41
|
Wu W, Yuan S, Tang Y, Meng X, Peng M, Hu Z, Liu W. Effect of Exercise and Oral Niacinamide Mononucleotide on Improving Mitochondrial Autophagy in Alzheimer's Disease. Nutrients 2023; 15:2851. [PMID: 37447179 DOI: 10.3390/nu15132851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Oral niacinamide mononucleotide (NMN) and aerobic exercise have been shown to enhance niacinamide adenine dinucleotide (NAD+) in the body. NAD+ plays a critical role in the body and can directly and indirectly affect many key cellular functions, including metabolic pathways, DNA repair, chromatin remodeling, cell aging, and immune cell function. It is noteworthy that the level of NAD+ decreases gradually with increasing age. Decreased levels of NAD+ have been causally associated with a number of diseases associated with aging, including cognitive decline, cancer, metabolic diseases, sarcopenia, and frailty. Many diseases related to aging can be slowed down or even reversed by restoring NAD+ levels. For example, oral NMN or exercise to increase NAD+ levels in APP/PS1 mice have been proven to improve mitochondrial autophagy, but currently, there is no regimen combining oral NMN with exercise. This review summarizes recent studies on the effect of oral NMN on the enhancement of NAD+ in vivo and the improvements in mitochondrial autophagy abnormalities in AD through aerobic exercise, focusing on (1) how oral NMN improves the internal NAD+ level; (2) how exercise regulates the content of NAD+ in the body; (3) the relationship between exercise activation of NAD+ and AMPK; (4) how SIRT1 is regulated by NAD+ and AMPK and activates PGC-1α to mediate mitochondrial autophagy through changes in mitochondrial dynamics. By summarizing the results of the above four aspects, and combined with the synthesis of NAD+ in vivo, we can infer how exercise elevates the level of NAD+ in vivo to mediate mitochondrial autophagy, so as to propose a new hypothesis that exercise interferes with Alzheimer's disease (AD).
Collapse
Affiliation(s)
- Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Mei Peng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
42
|
Xie K, Yang Q, Yan Z, Gao X, Huang X, Wang P, Li J, Li J, Wang Z, Gao Y, Gun S. Overexpression of SIRT1 alleviates oxidative damage and barrier dysfunction in CPB2 toxin-infected IPEC-J2 cells. Microb Pathog 2023:106181. [PMID: 37276895 DOI: 10.1016/j.micpath.2023.106181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Clostridium perfringens (C. perfringens) beta2 (CPB2) toxin may induce necrotizing enteritis (NE) in pigs. Sirtuin1 (SIRT1) is involved in inflammatory intestinal diseases and affects intestinal barrier function. However, the effects of SIRT1 on piglet intestinal disease caused by CPB2 toxin are unclear. This study revealed the role of pig SIRT1 in CPB2 toxin-exposed intestinal porcine epithelial cells (IPEC-J2). Herein, we manifested that SIRT1 was dramatically decreased in IPEC-J2 cells infected with CPB2 toxin. Subsequently, we silenced and overexpressed SIRT1 using siRNA and a overexpression vector in CPB2 toxin-treated IPEC-J2 cells. The results indicated that overexpression of SIRT1 suppressed reactive oxygen species (ROS) generates, the expression tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and Bax, nuclear factor-kappa B (NF-κB p65), phospho (p)-NF-kB p65 and lactate dehydrogenase (LDH) activity and apoptosis in CPB2 toxin-treated IPEC-J2 cells, and increased IL-10, mitochondrial membrane potential (ΔΨm), Bcl-2, Claudin1 and Occludin levels and cell viability. These results indicated that SIRT1 protects IPEC-J2 cells against CPB2 toxin-induced oxidative damage and tight junction (TJ) disruption, which provides a theoretical basis for further study of the molecular regulatory mechanism of SIRT1 in C. perfringens-infected NE in piglets.
Collapse
Affiliation(s)
- Kaihui Xie
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiyou Li
- Gansu General Station of Animal Husbandry Technology Extension, Lanzhou, 730070, China
| | - Zike Wang
- Gansu General Station of Animal Husbandry Technology Extension, Lanzhou, 730070, China
| | - Yi Gao
- Jilin Rongtai Agricultural Development Co, Ltd, Changchun, Jilin, 130507, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; Gansu Research Center for Swine Production Engineering and Technology, Lanzhou, 730070, China.
| |
Collapse
|
43
|
Ben Salem I, Boussabbeh M, Pires Da Silva J, Saidi NE, Abid-Essefi S, Lemaire C. Effects of Dichlorvos on cardiac cells: Toxicity and molecular mechanism of action. CHEMOSPHERE 2023; 330:138714. [PMID: 37080471 DOI: 10.1016/j.chemosphere.2023.138714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
In this study we aimed to understand the underlying mechanism of Dichlorvos-induced toxicity in cardiac cells. For this end, cells were treated by 170 μM of Dichlorvos (DDVP) (corresponding to the IC50) and molecular events were monitored by flow cytometry and western blotting. We have first demonstrated that cell exposure to DDVP for 24 h induced cell death by necroptosis. In fact, cell treatment with DDVP upregulated RIP1 expression and we have shown that chemical inhibition of RIP1 kinase activity by necrostatin-1 (Nec-1) greatly prevented from the induced cell death. Besides, we have demonstrated that, while there was no observed cell death following short exposure to DDVP (6 h), autophagy was enhanced, as proven by the increase in the level of both Beclin-1 and LC3-II and the accumulation of the CytoID® autophagy detection probe. Besides, when autophagy was inhibited by chloroquine (CQ) the percentage of necroptosis was significantly increased, suggesting that autophagy acts to protect cardiac cells against the toxicity induced by this pesticide. Concurrently, we have shown that the inhibition of the deacetylase sirtuin 1 (SIRT1) by EX527 or its knockdown by siRNA significantly increased DDVP-induced necroptosis, whereas when SIRT1 was activated by resveratrol (RSV) a significant decrease in DDVP-induced cell death was observed. In addition, we revealed that when the autophagy was inhibited by CQ, we can't reveal the protective effect of RSV anymore. Altogether, these results suggest that activation of SIRT1 protects cardiac cells from the toxicity of DDVP through an autophagy-dependent pathway.
Collapse
Affiliation(s)
- Intidhar Ben Salem
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia; Université de Sousse, Faculté de Médecine de Sousse, 4000, Sousse, Tunisia.
| | - Manel Boussabbeh
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia; Reproductive Biology Department of the Center of Maternity and Neonatology of Monastir, Fattouma Bourguiba University Hospital, Monastir, Tunisia
| | | | - Nour Elhouda Saidi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, Rue Avicenne, 5019, Monastir, Tunisia
| | - Christophe Lemaire
- Université Versailles St-Quentin, Université Paris-Saclay, Inserm, UMR-S 1180, 91400, Orsay, France
| |
Collapse
|
44
|
Patel J, Chen S, Katzmeyer T, Pei YA, Pei M. Sex-dependent variation in cartilage adaptation: from degeneration to regeneration. Biol Sex Differ 2023; 14:17. [PMID: 37024929 PMCID: PMC10077643 DOI: 10.1186/s13293-023-00500-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
Despite acknowledgement in the scientific community of sex-based differences in cartilage biology, the implications for study design remain unclear, with many studies continuing to arbitrarily assign demographics. Clinically, it has been well-established that males and females differ in cartilage degeneration, and accumulating evidence points to the importance of sex differences in the field of cartilage repair. However, a comprehensive review of the mechanisms behind this trend and the influence of sex on cartilage regeneration has not yet been presented. This paper aims to summarize current findings regarding sex-dependent variation in knee anatomy, sex hormones' effect on cartilage, and cartilaginous degeneration and regeneration, with a focus on stem cell therapies. Findings suggest that the stem cells themselves, as well as their surrounding microenvironment, contribute to sex-based differences. Accordingly, this paper underscores the contribution of both stem cell donor and recipient sex to sex-related differences in treatment efficacy. Cartilage regeneration is a field that needs more research to optimize strategies for better clinical results; taking sex into account could be a big factor in developing more effective and personalized treatments. The compilation of this information emphasizes the importance of investing further research in sex differences in cartilage biology.
Collapse
Affiliation(s)
- Jhanvee Patel
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Song Chen
- Department of Orthopaedics, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Torey Katzmeyer
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
| | - Yixuan Amy Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, 64 Medical Center Drive, PO Box 9196, Morgantown, WV, 26506-9196, USA.
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
45
|
Sandonà M, Cavioli G, Renzini A, Cedola A, Gigli G, Coletti D, McKinsey TA, Moresi V, Saccone V. Histone Deacetylases: Molecular Mechanisms and Therapeutic Implications for Muscular Dystrophies. Int J Mol Sci 2023; 24:4306. [PMID: 36901738 PMCID: PMC10002075 DOI: 10.3390/ijms24054306] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes.
Collapse
Affiliation(s)
| | - Giorgia Cavioli
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Alessia Cedola
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), 73100 Lecce, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Human Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome “La Sapienza”, 00161 Rome, Italy
- CNRS UMR 8256, INSERM ERL U1164, Biological Adaptation and Aging B2A, Sorbonne Université, 75005 Paris, France
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Viviana Moresi
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), University of Rome “La Sapienza”, 00181 Rome, Italy
| | - Valentina Saccone
- IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
46
|
Gao D, Ma T, Gao L, Zhang J, Zhang H, Zhang L, Dong H, Li Y, Zhao L, Liu W, Zhao H, Li D, Zhou D, Wang A, Jin Y, Chen H. Autophagy activation attenuates the circadian clock oscillators in U2OS cells via the ATG5 pathway. Cell Signal 2023; 101:110502. [PMID: 36280090 DOI: 10.1016/j.cellsig.2022.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/30/2022] [Accepted: 10/17/2022] [Indexed: 11/28/2022]
Abstract
The circadian clock and autophagy are essential biological mechanisms involved in regulating many physiological processes. Accumulating evidence has revealed that autophagic activity is regulated by the circadian clock system. However, whether autophagy regulates the circadian clock system remains unclear. In this study, rapamycin and AICAR, two classical activators of autophagy, were used to create autophagy activation models in BMAL1-dLuc U2OS cell line. The results showed that the mRNA expression of MAP1LC3B and ATG5 were significantly upregulated after autophagy activation, whereas the mRNA expression of circadian clock genes (BMAL1, PER2, REV-ERBα, and DBP) were significantly decreased. Consistent with these data, the relative ratio of LC3-II/LC3-I and the protein level of ATG5 were increased after rapamycin or AICAR treatment. In contrast, BMAL1 and REV-ERBα levels were decreased. Notably, the mRNA expression of circadian clock genes (BMAL1, PER2, REV-ERBα, and DBP) and autophagy-related genes (MAP1LC3B and ATG5) showed rhythmic expression patterns in both untreated and rapamycin/AICAR-treated U2OS cells. Moreover, the autophagy inhibitor 3-methyladenine partially reversed the inhibitory effects of autophagy on circadian clock genes expression and BMAL1-Luc oscillations. Another critical finding was that ATG5 knockout alleviates the inhibitory effect of rapamycin-mediated autophagy activation on the circadian clock oscillators in U2OS cells. Collectively, our data indicate that autophagy activation attenuates the circadian clock oscillators in U2OS cells via the ATG5 pathway.
Collapse
Affiliation(s)
- Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; College of Agriculture and Animal Husbandry, Qing Hai University, Xining, Qinghai, China
| | - Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Linlin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wei Liu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hongcong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dan Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Dong Zhou
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
47
|
Barzegari A, Omidi Y, Gueguen V, Meddahi-Pellé A, Letourneur D, Pavon-Djavid G. Nesting and fate of transplanted stem cells in hypoxic/ischemic injured tissues: The role of HIF1α/sirtuins and downstream molecular interactions. Biofactors 2023; 49:6-20. [PMID: 32939878 DOI: 10.1002/biof.1674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
The nesting mechanisms and programming for the fate of implanted stem cells in the damaged tissue have been critical issues in designing and achieving cell therapies. The fracture site can induce senescence or apoptosis based on the surrounding harsh conditions, hypoxia, and oxidative stress (OS). Respiration deficiency, disruption in energy metabolism, and consequently OS induction change the biophysical, biochemical, and cellular components of the native tissue. Additionally, the homeostatic molecular players and cell signaling might be changed. Despite all aforementioned issues, in the native stem cell niche, physiological hypoxia is not toxic; rather, it is vitally required for homing, self-renewal, and differentiation. Hence, the key macromolecular players involved in the support of stem cell survival and re-adaptation to a new dysfunctional niche must be understood for managing the cell therapy outcome. Hypoxia-inducible factor 1-alpha is the master transcriptional regulator, involved in the cell response to hypoxia and the adaptation of stem cells to a new niche. This protein is regulated by interaction with sirtuins. Sirtuins are highly conserved NAD+-dependent enzymes that monitor the cellular energy status and modulate gene transcription, genome stability, and energy metabolism in response to environmental signals to modulate the homing and fate of stem cells. Herein, new insights into the nesting of stem cells in hypoxic-ischemic injured tissues were provided and their programming in a new dysfunctional niche along with the involved complex macromolecular players were critically discussed.
Collapse
Affiliation(s)
- Abolfazl Barzegari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida
| | - Virginie Gueguen
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Anne Meddahi-Pellé
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Didier Letourneur
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| | - Graciela Pavon-Djavid
- INSERM U1148, Laboratory for Vascular Translational Science, Cardiovascular Bioengineering, Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
48
|
Afshari H, Noori S, Zarghi A. Hepatic Steatosis Alleviated by a Novel Metformin and Quercetin Combination Activating Autophagy Through the cAMP/AMPK/SIRT1 Pathway. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e136952. [PMID: 38116565 PMCID: PMC10728872 DOI: 10.5812/ijpr-136952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/28/2023] [Indexed: 12/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) incidence and prevalence are rapidly increasing globally. The combined effects of metformin and quercetin (Que) have yet to be investigated. However, both have demonstrated the potential to reduce triglyceride (TG) levels and treat NAFLD by promoting autophagy. The objective of the present study was to elucidate the mechanism of action and assess the role of autophagy in the lipid-lowering effects of Que, both individually and in combination with metformin, in a HepG2 cell model of hepatic steatosis. Triglyceride levels and lipogenic gene expression were reduced in HepG2 cells exposed to palmitic acid (PA) when treated with Que-metformin, as evidenced by triglyceride measurements and real-time PCR. The LDH release assay also showed that this combination induced autophagy to protect HepG2 cells from PA-induced cell death. According to the Western blot analysis outcomes, Que-metformin increased LC3-I and LC3-II protein levels while decreasing p62 expression to induce autophagy. In HepG2 cells, the co-administration of Que-metformin elevated cAMP, phosphorylated AMP-activated protein kinase (p-AMPK), and Beclin-1 levels. Additionally, the inhibition of SIRT1 reversed the autophagy induced by Que-metformin. The findings of this study demonstrated for the first time that Que-metformin reduced hepatosteatosis by stimulating autophagy through the cAMP/AMPK/SIRT1 signaling pathway and diminishing inflammatory cytokines.
Collapse
Affiliation(s)
- Havva Afshari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shokoofe Noori
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Grzeczka A, Kordowitzki P. Resveratrol and SIRT1: Antiaging Cornerstones for Oocytes? Nutrients 2022; 14:5101. [PMID: 36501130 PMCID: PMC9736670 DOI: 10.3390/nu14235101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
It is well-known that there is an enormous variability in the aging-related decline of oocytes' quantity and their developmental competence among mammalian species. The implication of female germline aging is profound from the perspective of evolutionary conservation of the aging mechanism, a topic of continuous and widespread interest that has yet to be fully addressed for the mammalian oocyte. There is a certain need to develop novel antiaging strategies to delay or slow down aging, or even to reverse the aging phenotype in the oocyte. In the past two decades, several antioxidants have been tested for this purpose. Resveratrol is one of these latter-mentioned compounds, which has shown anti-inflammatory and antiaging properties in a dose-dependent manner. Interestingly, resveratrol appears to enhance the activity of so-called Sirtuin 1, too. Therefore, the aim of this review is to summarize and discuss the latest findings related to resveratrol, Sirtuin 1, and their crosstalk and influence on the mammalian oocyte to elucidate the question of whether these factors can delay or slow down reproductive aging.
Collapse
Affiliation(s)
| | - Paweł Kordowitzki
- Department of Preclinical and Basic Sciences, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Gagarina Street 1, 87-100 Torun, Poland
| |
Collapse
|
50
|
Elaiophylin Inhibits Tumorigenesis of Human Lung Adenocarcinoma by Inhibiting Mitophagy via Suppression of SIRT1/Nrf2 Signaling. Cancers (Basel) 2022; 14:cancers14235812. [PMID: 36497294 PMCID: PMC9737501 DOI: 10.3390/cancers14235812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Lung adenocarcinoma (LADC), the most common type of lung cancer, is still one of the most aggressive and rapidly fatal tumor types, even though achievements in new therapeutic approaches have been developed. Elaiophylin as a C2 symmetrically glycosylated 16 macrolides has been reported to be a late-stage autophagy inhibitor with a potent anti-tumor effect on various cancers. This study investigated the anti-tumor effect of elaiophylin on human LADC for the first time in in vitro and in vivo models. The in vitro study in LADC A549 cells showed that elaiophylin significantly inhibited cell viability and induced cell apoptosis through the suppression of mitophagy and induction of cellular and mitochondrial oxidative stress. Proteomic analysis and molecular docking assay implicated that SIRT1 was likely the direct target of elaiophylin in A549 cells. Further mechanistic study verified that elaiophylin reduced Nrf2 deacetylation, expression, and transcriptional activity as well as cytoplasm translocation by downregulating SIRT1 expression and deacetylase activity. Additionally, SIRT1/Nrf2 activation could attenuate elaiophylin-induced mitophagy inhibition and oxidative stress. The in vivo study in the A549-xenograft mice model showed that the anti-tumor effect of elaiophylin was accompanied by the decreased expressions of SIRT1, Nrf2, Parkin, and PINK1. Thus, the present study reports that elaiophylin has potent anti-tumor properties in LADC, which effect is likely mediated through suppressing the SIRT1/Nrf2 signaling. In conclusion, elaiophylin may be a novel drug candidate for LADC and SIRT1 may be a new therapeutic target for such devastating malignancy.
Collapse
|