1
|
Del Castillo Falconi VM, Godinez Rodriguez JA, Fragoso-Ontiveros V, Contreras-Espinosa L, Pedroza-Torres A, Díaz-Chávez J, Herrera LA. Role of DNA methylation and non‑coding RNAs expression in pathogenesis, detection, prognosis, and therapy‑resistant ovarian carcinoma (Review). Mol Med Rep 2025; 31:144. [PMID: 40183399 PMCID: PMC11979574 DOI: 10.3892/mmr.2025.13509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/17/2024] [Indexed: 04/05/2025] Open
Abstract
Ovarian cancer is the deadliest gynecological cancer globally, with epithelial ovarian cancer (EOC) comprising up to 90% of cases. A molecular characterization linking the histological subtypes with tumor grade in EOC has been suggested. Variations in genetic biomarkers such as BRCA1/2, MSH2, MLH1/6, BRIP1, and RAD51C/D have been studied in EOC. In addition, molecular characteristics, including DNA methylation and RNA transcription, are being explored as potential new biomarkers for the diagnosis and prognosis of this type of neoplasia. The present review focused on the role of DNA methylation and non‑coding RNA expression in the development of ovarian carcinomas and their association with diagnosis, prognosis, and the resistance of cancer cells to radiotherapy and chemotherapy. The present review considered the transition from the DNA structure to the RNA expression in ovarian carcinoma.
Collapse
Affiliation(s)
- Victor M. Del Castillo Falconi
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
| | | | - Verónica Fragoso-Ontiveros
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
| | - Laura Contreras-Espinosa
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
- Biological Sciences Postgrade, UNAM, Mexico City 04510, Mexico
| | - Abraham Pedroza-Torres
- Investigadores por México Program - SECIHTI, Hereditary Cancer Clinic, INCan, Mexico City 14080, Mexico
| | - José Díaz-Chávez
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
- School of Medicine and Health Sciences, Mexico-Monterrey Institute of Technology, Mexico City 14380, Mexico
| | - Luis A. Herrera
- Carcinogenesis Laboratory, Biomedical Cancer Research Unit of Biomedicine - National Autonomous University of Mexico (UNAM), National Cancer Institute (INCan), Mexico City 14080, Mexico
- School of Medicine and Health Sciences, Mexico-Monterrey Institute of Technology, Mexico City 14380, Mexico
| |
Collapse
|
2
|
Aquino A, Franzese O. Reciprocal Modulation of Tumour and Immune Cell Motility: Uncovering Dynamic Interplays and Therapeutic Approaches. Cancers (Basel) 2025; 17:1547. [PMID: 40361472 PMCID: PMC12072109 DOI: 10.3390/cancers17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
Dysregulated cell movement is a hallmark of cancer progression and metastasis, the leading cause of cancer-related mortality. The metastatic cascade involves tumour cell migration, invasion, intravasation, dissemination, and colonisation of distant organs. These processes are influenced by reciprocal interactions between cancer cells and the tumour microenvironment (TME), including immune cells, stromal components, and extracellular matrix proteins. The epithelial-mesenchymal transition (EMT) plays a crucial role in providing cancer cells with invasive and stem-like properties, promoting dissemination and resistance to apoptosis. Conversely, the mesenchymal-epithelial transition (MET) facilitates metastatic colonisation and tumour re-initiation. Immune cells within the TME contribute to either anti-tumour response or immune evasion. These cells secrete cytokines, chemokines, and growth factors that shape the immune landscape and influence responses to immunotherapy. Notably, immune checkpoint blockade (ICB) has transformed cancer treatment, yet its efficacy is often dictated by the immune composition of the tumour site. Elucidating the molecular cross-talk between immune and cancer cells, identifying predictive biomarkers for ICB response, and developing strategies to convert cold tumours into immune-active environments is critical to overcoming resistance to immunotherapy and improving patient survival.
Collapse
Affiliation(s)
| | - Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| |
Collapse
|
3
|
Sarlak S, Pagès G, Luciano F. Enhancing radiotherapy techniques for Triple-Negative breast cancer treatment. Cancer Treat Rev 2025; 136:102939. [PMID: 40286498 DOI: 10.1016/j.ctrv.2025.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Breast cancer is the most prevalent cancer among women worldwide, with various subtypes that require distinct treatment approaches. Among these, Triple-Negative Breast Bancer (TNBC) is recognized as the most aggressive form, often associated with poor prognosis due to its lack of targeted therapeutic options. This review specifically focuses on Radiotherapy (RT) as a treatment modality for TNBC, evaluating recent advancements and ongoing challenges, particularly the issue of radioresistance. RT remains an essential part in the management of breast cancer, including TNBC. Over the years, multiple improvements have been made to enhance RT effectiveness and minimize resistance. The introduction of advanced techniques such as Stereotactic Body Radiation Therapy (SBRT) and Stereotactic Radiosurgery (SRS) has significantly improved precision and reduced toxicity. More recently, proton radiation therapy, a novel RT modality, has been introduced, offering enhanced dose distribution and reducing damage to surrounding healthy tissues. Despite these technological advancements, a subset of TNBC patients continues to exhibit resistance to RT, leading to recurrence and poor treatment outcomes. To overcome radioresistance, there is an increasing interest in combining RT with targeted therapeutic agents that sensitize cancer cells to radiation. Radiosensitizing drugs have been explored to enhance the efficacy of RT by making cancer cells more susceptible to radiation-induced damage. Potential candidates include DNA damage repair inhibitors, immune checkpoint inhibitors, and small-molecule targeted therapies that interfere with key survival pathways in TNBC cells. In conclusion, while RT remains a crucial modality for TNBC treatment, radioresistance remains a significant challenge. Future research should focus on optimizing RT techniques while integrating radiosensitizing agents to improve treatment efficacy. By combining RT with targeted drug therapy, a more effective and personalized treatment approach can be developed, ultimately improving patient outcomes and reducing recurrence rates in TNBC.
Collapse
Affiliation(s)
- Saharnaz Sarlak
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Gilles Pagès
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| | - Frédéric Luciano
- Cote d'Azur University (UCA), Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, CNRS UMR 7284; INSERM U1081, Centre Antoine Lacassagne, France.
| |
Collapse
|
4
|
Sahin G, Doğanlar ZB. Extended sub-chronic exposure to heavy metal mixture induced multidrug resistance against chemotherapy agents in ovarian cancer cells. Toxicol Lett 2025; 407:50-62. [PMID: 40158757 DOI: 10.1016/j.toxlet.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Recent scientific findings suggest that persistent, minimal quantity exposure to heavy metals combinations can instigate negative reactions across various cell types, tissues, and organs. However, the interplay between heavy metals present in blood and cancerous cells remains largely unclear. We aimed to examine the capability of a Pb, Cd, and Co at very low concentrations blend to trigger multidrug resistance against chemotherapeutic remedies such as cisplatin, 5-fluorouracil, and doxorubicin in the NIH-Ovcar3 human ovarian cancer cell line. Additionally, we sought to dissect the molecular mechanisms bolstering this resistance. Our results illustrate that consistent administration of the heavy metal mixture at extraordinarily low concentrations fosters pronounced chemotherapy resistance in Ovcar3 cells via cross resistance. This resistance endured and was propagated through ensuing cell generations. We observed that ATP-binding cassette (ABC) membrane transporters, specifically P-gp/ABCB1, BRCP/ABCG2, and ABCC1-type cellular detoxification functions, were markedly overexpressed, playing a crucial role in multidrug resistance. This finding supports the molecular evidence of the acquired multidrug resistance phenotype and provides preliminary insights into the potential resistance mechanism. We also found decreased mortality rates in the resistant ovarian cancer cells, with the mitochondrial apoptosis pathway activating at a reduced rate post-chemotherapy relative to the non-resistant control cells. Furthermore, multidrug-resistant cells exhibited increased motility and enhanced wound-healing abilities, hinting at a higher metastatic potential. These findings suggest that analysing P-gp, BRCP, and ABCC1 multidrug resistance gene expression and/or protein levels within biopsy samples from ovarian cancer patients at risk of heavy metal exposure could prove advantageous in determining chemotherapy dosage and prolonging patient lifespan.
Collapse
Affiliation(s)
- Gözde Sahin
- Department of Gynecologic Oncology,Basaksehir Çam and Sakura City Hospital, İstanbul 34480, Turkey.
| | - Zeynep Banu Doğanlar
- Department of Medical Biology, Faculty of Medicine, Trakya University, Edirne 22030, Turkey
| |
Collapse
|
5
|
Khalili-Tanha G, Radisky ES, Radisky DC, Shoari A. Matrix metalloproteinase-driven epithelial-mesenchymal transition: implications in health and disease. J Transl Med 2025; 23:436. [PMID: 40217300 PMCID: PMC11992850 DOI: 10.1186/s12967-025-06447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 03/30/2025] [Indexed: 04/14/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which epithelial cells, defined by apical-basal polarity and tight intercellular junctions, acquire migratory and invasive properties characteristic of mesenchymal cells. Under normal conditions, EMT directs essential morphogenetic events in embryogenesis and supports tissue repair. When dysregulated, EMT contributes to pathological processes such as organ fibrosis, chronic inflammation, and cancer progression and metastasis. Matrix metalloproteinases (MMPs)-a family of zinc-dependent proteases that degrade structural components of the extracellular matrix-sit at the nexus of this transition by dismantling basement membranes, activating pro-EMT signaling pathways, and cleaving adhesion molecules. When normally regulated, MMPs promote balanced ECM turnover and support the cyclical remodeling necessary for proper development, wound healing, and tissue homeostasis. When abnormally regulated, MMPs drive excessive ECM turnover, thereby promoting EMT-related pathologies, including tumor progression and fibrotic disease. This review provides an integrated overview of the molecular mechanisms by which MMPs both initiate and sustain EMT under physiological and disease conditions. It discusses how MMPs can potentiate EMT through TGF-β and Wnt/β-catenin signaling, disrupt cell-cell junction proteins, and potentiate the action of hypoxia-inducible factors in the tumor microenvironment. It discusses how these pathologic processes remodel tissues during fibrosis, and fuel cancer cell invasion, metastasis, and resistance to therapy. Finally, the review explores emerging therapeutic strategies that selectively target MMPs and EMT, ranging from CRISPR/Cas-mediated interventions to engineered tissue inhibitors of metalloproteinases (TIMPs), and demonstrates how such approaches may suppress pathological EMT without compromising its indispensable roles in normal biology.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alireza Shoari
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
6
|
Yadav P, Rajendrasozhan S, Lajimi RH, Patel RR, Heymann D, Prasad NR. Circulating tumor cell markers for early detection and drug resistance assessment through liquid biopsy. Front Oncol 2025; 15:1494723. [PMID: 40260304 PMCID: PMC12009936 DOI: 10.3389/fonc.2025.1494723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Circulating tumor cells (CTCs) are cancerous cells that extravasate from the primary tumor or metastatic foci and travel through the bloodstream to distant organs. CTCs provide crucial insights into cancer metastasis, the evolution of tumor genotypes during treatment, and the development of chemo- and/or radio-resistance during disease progression. The process of Epithelial-to-mesenchymal transition (EMT) plays a key role in CTCs formation, as this process enhances cell's migration properties and is often associated with increased invasiveness thereby leading to chemotherapy resistance. During the EMT process, tumor cells lose epithelial markers like EpCAM and acquire mesenchymal markers such as vimentin driven by transcription factors like Snail and Twist. CTCs are typically identified using specific cell surface markers, which vary depending on the cancer type. Common markers include EpCAM, used for epithelial cancers; CD44 and CD24, which are associated with cancer stem cells; and cytokeratins, such as CK8 and CK18. Other markers like HER2/neu and vimentin can also be used to target CTCs in specific cancer types and stages. Commonly, immune-based isolation techniques are being implemented for the isolation and enrichment of CTCs. This review emphasizes the clinical relevance of CTCs, particularly in understanding drug resistance mechanisms, and underscores the importance of EMT-derived CTCs in multidrug resistance (MDR). Moreover, the review also discusses CTCs-specific surface markers that are crucial for their isolation and enrichment. Ultimately, the EMT-specific markers found in CTCs could provide significant information to halt the disease progression and enable personalized therapies.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| | - Saravanan Rajendrasozhan
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Ramzi Hadj Lajimi
- Department of Chemistry, College of Science, University of Ha’il, Ha’il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
| | - Raja Ramadevi Patel
- Medical and Diagnostic Research Centre, University of Ha’il, Ha’il, Saudi Arabia
- Department of Biology, College of Science, University of Ha’il, Ha’il, Saudi Arabia
| | - Dominique Heymann
- Nantes Université, CNRS, US2B, UMR 6286, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medecine Laboratory, Saint-Herblain, France
- Medical School, University of Sheffield, Sheffield, United Kingdom
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram, Tamil Nadu, India
| |
Collapse
|
7
|
Bangarh R, Saini RV, Saini AK, Singh T, Joshi H, Ramniwas S, Shahwan M, Tuli HS. Dynamics of epithelial-mesenchymal plasticity driving cancer drug resistance. CANCER PATHOGENESIS AND THERAPY 2025; 3:120-128. [PMID: 40182126 PMCID: PMC11963173 DOI: 10.1016/j.cpt.2024.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 04/05/2025]
Abstract
Epithelial-mesenchymal transition (EMT) promotes several cancers by increasing tumor cell motility, disrupting epithelial cell phenotypes, apical-basal polarity, and intracellular connections, and enhancing tumor resistance to immunotherapy and chemotherapy. Mesenchymal-epithelial transition (MET), the opposite of EMT, causes tumor metastasis. EMT drives primary tumor cells, whereas MET inhibits them. Importantly, the complex network of EMT includes cell-cell interactions in the tumor microenvironment. Transcription factors, post-translational regulation, cytokine-mediated signaling, and microRNAs control EMT. In this review, we discussed how molecular mechanisms, signaling networks, and epithelial/mesenchymal states affect cancer treatment resistance and the tumor microenvironment. Research on immunotherapy and chemotherapy problems associated with EMT suggests that targeting EMT might be a potential cancer treatment resistance strategy.
Collapse
Affiliation(s)
- Rashmi Bangarh
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| | - Reena V. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| | - Adesh K. Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi 110007, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Mohali 140413, India
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133207, India
| |
Collapse
|
8
|
Perumal N, Gopalakrishnan P, Burkovetskaya M, Doss D, Dukkipati SS, Kanchan RK, Mahapatra S. Nuclear factor I/B: Duality in action in cancer pathophysiology. Cancer Lett 2025; 609:217349. [PMID: 39581218 DOI: 10.1016/j.canlet.2024.217349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
The nuclear factor I (NFI) family of transcription factors plays a decisive role in organ development and maturation. Their deregulation has been linked with various diseases, most notably cancer. NFIB stands apart from the other NFI family members given its unique ability to drive both tumor suppressive and oncogenic programs. Thus, the ultimate impact of deregulated NFIB signaling is cancer-specific and strongly influenced by an intricate network of upstream regulators and downstream effectors. Deciphering the events that drive NFIB's paradoxical roles within these networks will enable us to not only understand how this critical transcription factor enacts its dual roles but also drive innovations to help us effectively target NFIB in different cancers. Here, we provide an in-depth review of NFIB. Starting with its defining role in the development of various organs, most notably the central nervous system, we highlight critical signaling pathways and the impact of deregulation on neoplastic transformation, contrasting it with the effect of silencing alone. We then provide examples of its dual roles in various cancers, identifying specific signaling networks associated with oncogenesis versus tumor suppression. We incorporate an example of a cancer type, osteosarcoma, wherein NFIB enacts its dual functions and explore which pathways influence each function. In this manner, we suggest plausible mechanisms for its role-switching from cancers sharing common triggering events in the setting of NFIB deregulation. We also review how NFIB enhances aggressiveness by driving metastasis, stemness, and chemoresistance. We conclude with a discussion on efficacious ways to target NFIB and pose some unanswered questions that may further help solidify our understanding of NFIB and facilitate clinical translation of NFIB targeting.
Collapse
Affiliation(s)
- Naveenkumar Perumal
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Center for Translational Vision Research, Gavin Herbert Eye Institute, University of California, Irvine, CA, USA
| | - Maria Burkovetskaya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Doss
- School of Medicine, Creighton University, Omaha, NE, USA
| | - S Shekar Dukkipati
- Department of Pediatrics, Columbia University Irving Medical Center, New York City, NY, USA
| | - Ranjana K Kanchan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sidharth Mahapatra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
9
|
Glaviano A, Lau HSH, Carter LM, Lee EHC, Lam HY, Okina E, Tan DJJ, Tan W, Ang HL, Carbone D, Yee MYH, Shanmugam MK, Huang XZ, Sethi G, Tan TZ, Lim LHK, Huang RYJ, Ungefroren H, Giovannetti E, Tang DG, Bruno TC, Luo P, Andersen MH, Qian BZ, Ishihara J, Radisky DC, Elias S, Yadav S, Kim M, Robert C, Diana P, Schalper KA, Shi T, Merghoub T, Krebs S, Kusumbe AP, Davids MS, Brown JR, Kumar AP. Harnessing the tumor microenvironment: targeted cancer therapies through modulation of epithelial-mesenchymal transition. J Hematol Oncol 2025; 18:6. [PMID: 39806516 PMCID: PMC11733683 DOI: 10.1186/s13045-024-01634-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
The tumor microenvironment (TME) is integral to cancer progression, impacting metastasis and treatment response. It consists of diverse cell types, extracellular matrix components, and signaling molecules that interact to promote tumor growth and therapeutic resistance. Elucidating the intricate interactions between cancer cells and the TME is crucial in understanding cancer progression and therapeutic challenges. A critical process induced by TME signaling is the epithelial-mesenchymal transition (EMT), wherein epithelial cells acquire mesenchymal traits, which enhance their motility and invasiveness and promote metastasis and cancer progression. By targeting various components of the TME, novel investigational strategies aim to disrupt the TME's contribution to the EMT, thereby improving treatment efficacy, addressing therapeutic resistance, and offering a nuanced approach to cancer therapy. This review scrutinizes the key players in the TME and the TME's contribution to the EMT, emphasizing avenues to therapeutically disrupt the interactions between the various TME components. Moreover, the article discusses the TME's implications for resistance mechanisms and highlights the current therapeutic strategies toward TME modulation along with potential caveats.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Hannah Si-Hui Lau
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Donavan Jia Jie Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Wency Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- School of Chemical and Life Sciences, Singapore Polytechnic, Singapore, 139651, Singapore
| | - Hui Li Ang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Michelle Yi-Hui Yee
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore
| | - Lina H K Lim
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, 169610, Singapore
- Immunology Program, Life Sciences Institute, National University of Singapore, Singapore, 117456, Singapore
- Immunology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Ruby Yun-Ju Huang
- School of Medicine and Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| | - Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein (UKSH), Campus Lübeck, 23538, Lübeck, Germany
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, UMC, Vrije Universiteit, HV Amsterdam, 1081, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana Per La Scienza, 56017, San Giuliano, Italy
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- Experimental Therapeutics (ET) Graduate Program, University at Buffalo & Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Tullia C Bruno
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Mads Hald Andersen
- National Center for Cancer Immune Therapy, Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, W12 0BZ, UK
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Salem Elias
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Saurabh Yadav
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Minah Kim
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Caroline Robert
- Department of Cancer Medicine, Inserm U981, Gustave Roussy Cancer Center, Université Paris-Saclay, Villejuif, France
- Faculty of Medicine, University Paris-Saclay, Kremlin Bicêtre, Paris, France
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Tao Shi
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironment Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore.
| |
Collapse
|
10
|
de Bakker T, Maes A, Dragan T, Martinive P, Penninckx S, Van Gestel D. Strategies to Overcome Intrinsic and Acquired Resistance to Chemoradiotherapy in Head and Neck Cancer. Cells 2024; 14:18. [PMID: 39791719 PMCID: PMC11719474 DOI: 10.3390/cells14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025] Open
Abstract
Definitive chemoradiotherapy (CRT) is a cornerstone of treatment for locoregionally advanced head and neck cancer (HNC). Research is ongoing on how to improve the tumor response to treatment and limit normal tissue toxicity. A major limitation in that regard is the growing occurrence of intrinsic or acquired treatment resistance in advanced cases. In this review, we will discuss how overexpression of efflux pumps, perturbation of apoptosis-related factors, increased expression of antioxidants, glucose metabolism, metallotheionein expression, increased DNA repair, cancer stem cells, epithelial-mesenchymal transition, non-coding RNA and the tumour microenvironment contribute towards resistance of HNC to chemotherapy and/or radiotherapy. These mechanisms have been investigated for years and been exploited for therapeutic gain in resistant patients, paving the way to the development of new promising drugs. Since in vitro studies on resistance requires a suitable model, we will also summarize published techniques and treatment schedules that have been shown to generate acquired resistance to chemo- and/or radiotherapy that most closely mimics the clinical scenario.
Collapse
Affiliation(s)
- Tycho de Bakker
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Anouk Maes
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Tatiana Dragan
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Philippe Martinive
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| | - Sébastien Penninckx
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Radiotherapy Department, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium (S.P.)
| |
Collapse
|
11
|
Jacob S, Ahluwalia C, Chintamani C. Expression of EMT Markers Snail, Slug, and Twist and their Association with Known Prognostic Indicators of Breast Cancer. Indian J Surg Oncol 2024; 15:706-712. [PMID: 39555342 PMCID: PMC11564478 DOI: 10.1007/s13193-024-01975-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/22/2024] [Indexed: 11/19/2024] Open
Abstract
Breast cancer is trending its way as the most common cancer globally. Surgery remains the mainstream treatment modality. The gene expression signatures predict the prognosis in cancer patients. However, they are a limitation in resource-poor settings. India is predicted to see a rise in breast cancer patients in the years to come. New therapeutic target and prognostic indicators feasible to use are the need of the hour. Our study aims to evaluate the immunohistochemical expression of epithelial mesenchymal transition (EMT) markers, Snail + Slug and Twist, in breast cancer and their association with known prognostic indicators. The study was conducted on 60 patients of breast cancer who were primarily treated by surgery. IHC expression of Snail + Slug and Twist was evaluated and scored. They were categorized into high and low expression based on the median obtained on statistical analysis. Increased expression of EMT markers showed statistically significant association with the higher grade of the tumor and triple-negative and luminal B molecular subtype. Immunohistochemical expression of EMT markers Snail + Slug and Twist proves to be a reliable, efficient, and feasible in predicting the prognosis of breast cancer, and they should be targeted for novel therapeutic intervention.
Collapse
Affiliation(s)
- Sherrin Jacob
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Charanjeet Ahluwalia
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Chintamani Chintamani
- Department of Surgery, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
12
|
Dakal TC, Bhushan R, Xu C, Gadi BR, Cameotra SS, Yadav V, Maciaczyk J, Schmidt‐Wolf IGH, Kumar A, Sharma A. Intricate relationship between cancer stemness, metastasis, and drug resistance. MedComm (Beijing) 2024; 5:e710. [PMID: 39309691 PMCID: PMC11416093 DOI: 10.1002/mco2.710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/25/2024] Open
Abstract
Cancer stem cells (CSCs) are widely acknowledged as the drivers of tumor initiation, epithelial-mesenchymal transition (EMT) progression, and metastasis. Originating from both hematologic and solid malignancies, CSCs exhibit quiescence, pluripotency, and self-renewal akin to normal stem cells, thus orchestrating tumor heterogeneity and growth. Through a dynamic interplay with the tumor microenvironment (TME) and intricate signaling cascades, CSCs undergo transitions from differentiated cancer cells, culminating in therapy resistance and disease recurrence. This review undertakes an in-depth analysis of the multifaceted mechanisms underlying cancer stemness and CSC-mediated resistance to therapy. Intrinsic factors encompassing the TME, hypoxic conditions, and oxidative stress, alongside extrinsic processes such as drug efflux mechanisms, collectively contribute to therapeutic resistance. An exploration into key signaling pathways, including JAK/STAT, WNT, NOTCH, and HEDGEHOG, sheds light on their pivotal roles in sustaining CSCs phenotypes. Insights gleaned from preclinical and clinical studies hold promise in refining drug discovery efforts and optimizing therapeutic interventions, especially chimeric antigen receptor (CAR)-T cell therapy, cytokine-induced killer (CIK) cell therapy, natural killer (NK) cell-mediated CSC-targeting and others. Ultimately use of cell sorting and single cell sequencing approaches for elucidating the fundamental characteristics and resistance mechanisms inherent in CSCs will enhance our comprehension of CSC and intratumor heterogeneity, which ultimately would inform about tailored and personalized interventions.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology LabDepartment of BiotechnologyMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Ravi Bhushan
- Department of ZoologyM.S. CollegeMotihariBiharIndia
| | - Caiming Xu
- Department of General SurgeryThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research InstituteCity of HopeMonroviaCaliforniaUSA
| | - Bhana Ram Gadi
- Stress Physiology and Molecular Biology LaboratoryDepartment of BotanyJai Narain Vyas UniversityJodhpurRajasthanIndia
| | | | - Vikas Yadav
- School of Life SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of BioinformaticsInternational Technology ParkBangaloreIndia
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Center for Integrated Oncology (CIO)Department of Integrated OncologyUniversity Hospital BonnBonnGermany
| |
Collapse
|
13
|
Hariri A, Mirian M, Khosravi A, Zarepour A, Iravani S, Zarrabi A. Intersecting pathways: The role of hybrid E/M cells and circulating tumor cells in cancer metastasis and drug resistance. Drug Resist Updat 2024; 76:101119. [PMID: 39111134 DOI: 10.1016/j.drup.2024.101119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/17/2024]
Abstract
Cancer metastasis and therapy resistance are intricately linked with the dynamics of Epithelial-Mesenchymal Transition (EMT) and Circulating Tumor Cells (CTCs). EMT hybrid cells, characterized by a blend of epithelial and mesenchymal traits, have emerged as pivotal in metastasis and demonstrate remarkable plasticity, enabling transitions across cellular states crucial for intravasation, survival in circulation, and extravasation at distal sites. Concurrently, CTCs, which are detached from primary tumors and travel through the bloodstream, are crucial as potential biomarkers for cancer prognosis and therapeutic response. There is a significant interplay between EMT hybrid cells and CTCs, revealing a complex, bidirectional relationship that significantly influences metastatic progression and has a critical role in cancer drug resistance. This resistance is further influenced by the tumor microenvironment, with factors such as tumor-associated macrophages, cancer-associated fibroblasts, and hypoxic conditions driving EMT and contributing to therapeutic resistance. It is important to understand the molecular mechanisms of EMT, characteristics of EMT hybrid cells and CTCs, and their roles in both metastasis and drug resistance. This comprehensive understanding sheds light on the complexities of cancer metastasis and opens avenues for novel diagnostic approaches and targeted therapies and has significant advancements in combating cancer metastasis and overcoming drug resistance.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran.
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkiye
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan.
| |
Collapse
|
14
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
15
|
Singh D, Qiu Z, Jonathan SM, Fa P, Thomas H, Prasad CB, Cai S, Wang JJ, Yan C, Zhang X, Venere M, Li Z, Sizemore ST, Wang QE, Zhang J. PP2A B55α inhibits epithelial-mesenchymal transition via regulation of Slug expression in non-small cell lung cancer. Cancer Lett 2024; 598:217110. [PMID: 38986733 PMCID: PMC11670312 DOI: 10.1016/j.canlet.2024.217110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
PP2A B55α, encoded by PPP2R2A, acts as a regulatory subunit of the serine/threonine phosphatase PP2A. Despite a frequent loss of heterozygosity of PPP2R2A in cases of non-small cell lung cancer (NSCLC), research on PP2A B55α's functions remains limited and controversial. To investigate the biological roles of PP2A B55α, we conducted bulk RNA-sequencing to assess the impact of PPP2R2A knockdown using two shRNAs in a NSCLC cell line. Gene set enrichment analysis (GSEA) of the RNA-sequencing data revealed significant enrichment of the epithelial-mesenchymal transition (EMT) pathway, with SNAI2 (the gene encoding Slug) emerging as one of the top candidates. Our findings demonstrate that PP2A B55α suppresses EMT, as PPP2R2A deficiency through knockdown or homozygous or hemizygous depletion promotes EMT and metastatic behavior in NSCLC cells, as evidenced by changes in EMT biomarkers, invasion and migration abilities, as well as metastasis in a tail vein assay. Mechanistically, PP2A B55α inhibits EMT by downregulating SNAI2 expression via the GSK3β-β-catenin pathway. Importantly, PPP2R2A deficiency also slows cell proliferation by disrupting DNA replication, particularly in PPP2R2A-/- cells. Furthermore, PPP2R2A deficiency, especially PPP2R2A-/- cells, leads to an increase in the cancer stem cell population, which correlates with enhanced resistance to chemotherapy. Overall, the decrease in PP2A B55α levels due to hemizygous/homozygous depletion heightens EMT and the metastatic or stemness/drug resistance potential of NSCLC cells despite their proliferation disadvantage. Our study highlights the significance of PP2A B55α in EMT and metastasis and suggests that targeting EMT/stemness could be a potential therapeutic strategy for treating PPP2R2A-deficient NSCLC.
Collapse
Affiliation(s)
- Deepika Singh
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Zhaojun Qiu
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Spehar M Jonathan
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Pengyan Fa
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Hannah Thomas
- The Ohio State University, Columbus, OH, United States
| | - Chandra Bhushan Prasad
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Shurui Cai
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Jing J Wang
- The Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, United States
| | - Xiaoli Zhang
- Center for Biostatistics, The Ohio State University, United States; Department of Biomedical Informatics, College of Medicine, The Ohio State University, United States
| | - Monica Venere
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States; The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Zaibo Li
- Department of Pathology, The Ohio State University Wexner Medical Center, College of Medicine, Columbus, OH, 43210, United States
| | - Steven T Sizemore
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Qi-En Wang
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States
| | - Junran Zhang
- The Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center and College of Medicine, Columbus, OH, United States; The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States; The James Comprehensive Cancer Center, Center for Metabolism, United States.
| |
Collapse
|
16
|
Zhang Y, Wang J, Zhang M, Li X, Zhang F, Zhou M, Yang K, Chen W, Ding H, Tan X, Zhang Q, Qiao Z. Study on the Regulatory Mechanism of the PDK1-Mediated TGF-β/Smad Signaling Pathway in Hypoxia-Induced Yak Lungs. Animals (Basel) 2024; 14:2422. [PMID: 39199957 PMCID: PMC11350703 DOI: 10.3390/ani14162422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
The aim of this study was to investigate the effects of hypoxia-induced phenotype, glucose metabolism, ROS levels, and the PDK1-mediated regulation of TGF-β/Smad signaling in yellow cattles, yaks, and those overexpressing PDK1 PASMCs using growth curves, flow cytometry, scratch experiments, glucose and lactic acid assays, RT-qPCR, and Western blotting. The results showed that hypoxia significantly promoted proliferation, migration, antiapoptosis, ROS levels, glucose consumption, and lactate production in yellow cattle PASMCs (p < 0.05), and the cells were dedifferentiated from the contractile phenotype; conversely, hypoxia had no significant effect on yak PASMCs (p > 0.05). PDK1 overexpression significantly promoted proliferation, antiapoptosis, glucose consumption, and lactate production in yak PASMCs under normoxia and hypoxia (p < 0.05), decreased their migration levels under hypoxia (p < 0.05), and dedifferentiated the contractile phenotype of the cells. Overexpression of PDK1 in yak PASMCs is detrimental to their adaptation to hypoxic environments. Yak PASMCs adapted to the effects of hypoxia on lung tissue by downregulating the expression of genes related to the PDK1 and TGF-β/Smad signaling pathways. Taken together, the regulation of PDK1-mediated TGF-β/Smad signaling may be involved in the process of yaks' adaptation to the hypoxic environment of the plateau, reflecting the good adaptive ability of yaks. The present study provides basic information to further elucidate the mechanism of PDK1-mediated TGF-β/Smad signaling induced by hypoxia in the lungs of yaks, as well as target genes for the treatment of plateau diseases in humans and animals.
Collapse
Affiliation(s)
- Yiyang Zhang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (X.L.); (F.Z.); (M.Z.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Jun Wang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Meng Zhang
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Xiaoyun Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (X.L.); (F.Z.); (M.Z.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Fan Zhang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (X.L.); (F.Z.); (M.Z.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Manlin Zhou
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (X.L.); (F.Z.); (M.Z.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Kun Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (X.L.); (F.Z.); (M.Z.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Weiji Chen
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Haie Ding
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Xiao Tan
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| | - Qian Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China;
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou 730030, China; (Y.Z.); (X.L.); (F.Z.); (M.Z.); (Z.Q.)
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou 730030, China
- Life Science and Engineering College, Northwest Minzu University, Lanzhou 730030, China; (J.W.); (M.Z.); (W.C.); (H.D.); (X.T.)
| |
Collapse
|
17
|
Cao Y. Lack of basic rationale in epithelial-mesenchymal transition and its related concepts. Cell Biosci 2024; 14:104. [PMID: 39164745 PMCID: PMC11334496 DOI: 10.1186/s13578-024-01282-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/05/2024] [Indexed: 08/22/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is defined as a cellular process during which epithelial cells acquire mesenchymal phenotypes and behavior following the downregulation of epithelial features. EMT and its reversed process, the mesenchymal-epithelial transition (MET), and the special form of EMT, the endothelial-mesenchymal transition (EndMT), have been considered as mainstream concepts and general rules driving developmental and pathological processes, particularly cancer. However, discrepancies and disputes over EMT and EMT research have also grown over time. EMT is defined as transition between two cellular states, but it is unanimously agreed by EMT researchers that (1) neither the epithelial and mesenchymal states nor their regulatory networks have been clearly defined, (2) no EMT markers or factors can represent universally epithelial and mesenchymal states, and thus (3) EMT cannot be assessed on the basis of one or a few EMT markers. In contrast to definition and proposed roles of EMT, loss of epithelial feature does not cause mesenchymal phenotype, and EMT does not contribute to embryonic mesenchyme and neural crest formation, the key developmental events from which the EMT concept was derived. EMT and MET, represented by change in cell shapes or adhesiveness, or symbolized by EMT factors, are biased interpretation of the overall change in cellular property and regulatory networks during development and cancer progression. Moreover, EMT and MET are consequences rather than driving factors of developmental and pathological processes. The true meaning of EMT in some developmental and pathological processes, such as fibrosis, needs re-evaluation. EMT is believed to endow malignant features, such as migration, stemness, etc., to cancer cells. However, the core property of cancer (tumorigenic) cells is neural stemness, and the core EMT factors are components of the regulatory networks of neural stemness. Thus, EMT in cancer progression is misattribution of the roles of neural stemness to the unknown mesenchymal state. Similarly, neural crest EMT is misattribution of intrinsic property of neural crest cells to the unknown mesenchymal state. Lack of basic rationale in EMT and related concepts urges re-evaluation of their significance as general rules for understanding developmental and pathological processes, and re-evaluation of their significance in scientific research.
Collapse
Affiliation(s)
- Ying Cao
- The MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Pukou High-Tech Zone, Nanjing, 210061, China.
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Shenzhen Research Institute of Nanjing University, Shenzhen, China.
| |
Collapse
|
18
|
Ge A, Chan C, Yang X. Exploring the Dark Matter of Human Proteome: The Emerging Role of Non-Canonical Open Reading Frame (ncORF) in Cancer Diagnosis, Biology, and Therapy. Cancers (Basel) 2024; 16:2660. [PMID: 39123386 PMCID: PMC11311765 DOI: 10.3390/cancers16152660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Cancer develops from abnormal cell growth in the body, causing significant mortalities every year. To date, potent therapeutic approaches have been developed to eradicate tumor cells, but intolerable toxicity and drug resistance can occur in treated patients, limiting the efficiency of existing treatment strategies. Therefore, searching for novel genes critical for cancer progression and therapeutic response is urgently needed for successful cancer therapy. Recent advances in bioinformatics and proteomic techniques have allowed the identification of a novel category of peptides encoded by non-canonical open reading frames (ncORFs) from historically non-coding genomic regions. Surprisingly, many ncORFs express functional microproteins that play a vital role in human cancers. In this review, we provide a comprehensive description of different ncORF types with coding capacity and technological methods in discovering ncORFs among human genomes. We also summarize the carcinogenic role of ncORFs such as pTINCR and HOXB-AS3 in regulating hallmarks of cancer, as well as the roles of ncORFs such as HOXB-AS3 and CIP2A-BP in cancer diagnosis and prognosis. We also discuss how ncORFs such as AKT-174aa and DDUP are involved in anti-cancer drug response and the underestimated potential of ncORFs as therapeutic targets.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (A.G.); (C.C.)
| |
Collapse
|
19
|
Gancedo SN, Sahores A, Gómez N, Di Siervi N, May M, Yaneff A, de Sousa Serro MG, Fraunhoffer N, Dusetti N, Iovanna J, Shayo C, Davio CA, González B. The xenobiotic transporter ABCC4/MRP4 promotes epithelial mesenchymal transition in pancreatic cancer. Front Pharmacol 2024; 15:1432851. [PMID: 39114357 PMCID: PMC11303182 DOI: 10.3389/fphar.2024.1432851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
The xenobiotic transporter ABCC4/MRP4 is highly expressed in pancreatic ductal adenocarcinoma (PDAC) and correlates with a more aggressive phenotype and metastatic propensity. Here, we show that ABCC4 promotes epithelial-mesenchymal transition (EMT) in PDAC, a hallmark process involving the acquisition of mesenchymal traits by epithelial cells, enhanced cell motility, and chemoresistance. Modulation of ABCC4 levels in PANC-1 and BxPC-3 cell lines resulted in the dysregulation of genes present in the EMT signature. Bioinformatic analysis on several cohorts including tumor samples, primary patient-derived cultured cells, patient-derived xenografts, and cell lines, revealed a positive correlation between ABCC4 expression and EMT markers. We also characterized the ABCC4 cistrome and identified four candidate clusters in the distal promoter and intron one that showed differential binding of pro-epithelial FOXA1 and pro-mesenchymal GATA2 transcription factors in low ABCC4-expressing HPAF-II and high ABCC4-expressing PANC-1 xenografts. HPAF-II xenografts showed exclusive binding of FOXA1, and PANC-1 xenografts exclusive binding of GATA2, at ABCC4 clusters, consistent with their low and high EMT phenotype respectively. Our results underscore ABCC4/MRP4 as a valuable prognostic marker and a potential therapeutic target to treat PDAC subtypes with prominent EMT features, such as the basal-like/squamous subtype, characterized by worse prognosis and no effective therapies.
Collapse
Affiliation(s)
- S. N. Gancedo
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Sahores
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - N. Gómez
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Di Siervi
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - M. May
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - A. Yaneff
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - M. G. de Sousa Serro
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - N. Fraunhoffer
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - N. Dusetti
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
| | - J. Iovanna
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, CNRS UMR, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
- Equipe Labellisée La Ligue, Marseille, France
- Hospital de Alta Complejidad El Cruce, Argentina. Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - C. Shayo
- Instituto de Biología y Medicina Experimental (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - C. A. Davio
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| | - B. González
- Instituto de Investigaciones Farmacológicas (Universidad de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Programa Franco-argentino de Estudio del Cáncer de Páncreas, Buenos Aires, Argentina
| |
Collapse
|
20
|
Wang J, Gu Q, Liu Y, Huang X, Zhang J, Liu B, Li R, Linghu H. Low PDE4A expression promoted the progression of ovarian cancer by inducing Snail nuclear translocation. Exp Cell Res 2024; 439:114100. [PMID: 38797258 DOI: 10.1016/j.yexcr.2024.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Widespread metastasis is the primary reason for the high mortality associated with ovarian cancer (OC), and effective targeted therapy for tumor aggressiveness is still insufficient in clinical practice. Therefore, it is urgent to find new targets to improve prognosis of patients. PDE4A is a cyclic nucleotide phosphodiesterase that plays a crucial role in the occurrence and development in various malignancies. Our study firstly reported the function of PDE4A in OC. Expression of PDE4A was validated through bioinformatics analysis, RT-qPCR, Western blot, and immunohistochemistry. Additionally, its impact on cell growth and motility was assessed via in vitro and in vivo experiments. PDE4A was downregulated in OC tissues compared with normal tissues and low PDE4A expression was correlated with poor clinical outcomes in OC patients. The knockdown of PDE4A significantly promoted the proliferation, migration and invasion of OC cells while overexpression of PDE4A resulted in the opposite effect. Furthermore, smaller and fewer tumor metastatic foci were observed in mice bearing PDE4A-overexpressing OVCAR3 cells. Mechanistically, downregulation of PDE4A expression can induce epithelial-mesenchymal transition (EMT) and nuclear translocation of Snail, which suggests that PDE4A plays a pivotal role in suppressing OC progression. Notably, Rolipram, the PDE4 inhibitor, mirrored the effects observed with PDE4A deletion. In summary, the downregulation of PDE4A appears to facilitate OC progression by modulating the Snail/EMT pathway, underscoring the potential of PDE4A as a therapeutic target against ovarian cancer metastasis.
Collapse
Affiliation(s)
- Jinlong Wang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qiuying Gu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuexi Liu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaolan Huang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiajing Zhang
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Bin Liu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, Molecular Medicine Diagnostic and Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ruonan Li
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Hua Linghu
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
22
|
Kielbik M, Szulc-Kielbik I, Klink M. Snail transcription factors - Characteristics, regulation and molecular targets relevant in vital cellular activities of ovarian cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119705. [PMID: 38513918 DOI: 10.1016/j.bbamcr.2024.119705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Snail transcription factors play essential roles in embryonic development and participate in many physiological processes. However, these genes have been implicated in the development and progression of various types of cancer. In epithelial ovarian cancer, high expression of these transcription factors is usually associated with the acquisition of a more aggressive phenotype and thus, considered to be a poor prognostic factor. Numerous molecular signals create a complex network of signaling pathways regulating the expression and stability of Snails, which in turn control genes involved in vital cellular functions of ovarian cancer cells, such as invasion, survival, proliferation and chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland.
| | | | - Magdalena Klink
- Institute of Medical Biology Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
23
|
Wang D, Du G, Chen X, Wang J, Liu K, Zhao H, Cheng C, He Y, Jing N, Xu P, Bao W, Xi X, Zhang Y, Wang N, Liu Y, Sun Y, Zhang K, Zhang P, Gao WQ, Zhu HH. Zeb1-controlled metabolic plasticity enables remodeling of chromatin accessibility in the development of neuroendocrine prostate cancer. Cell Death Differ 2024; 31:779-791. [PMID: 38654072 PMCID: PMC11164927 DOI: 10.1038/s41418-024-01295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Cell plasticity has been found to play a critical role in tumor progression and therapy resistance. However, our understanding of the characteristics and markers of plastic cellular states during cancer cell lineage transition remains limited. In this study, multi-omics analyses show that prostate cancer cells undergo an intermediate state marked by Zeb1 expression with epithelial-mesenchymal transition (EMT), stemness, and neuroendocrine features during the development of neuroendocrine prostate cancer (NEPC). Organoid-formation assays and in vivo lineage tracing experiments demonstrate that Zeb1+ epithelioid cells are putative cells of origin for NEPC. Mechanistically, Zeb1 transcriptionally regulates the expression of several key glycolytic enzymes, thereby predisposing tumor cells to utilize glycolysis for energy metabolism. During this process, lactate accumulation-mediated histone lactylation enhances chromatin accessibility and cellular plasticity including induction of neuro-gene expression, which promotes NEPC development. Collectively, Zeb1-driven metabolic rewiring enables the epigenetic reprogramming of prostate cancer cells to license the adeno-to-neuroendocrine lineage transition.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Genyu Du
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Xinyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Jinming Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Kaiyuan Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Huifang Zhao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Chaping Cheng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yuman He
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Na Jing
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Penghui Xu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wei Bao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Xialian Xi
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yingchao Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Nan Wang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yiyun Liu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Yujiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Kai Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China
| | - Pengcheng Zhang
- School of Biomedical Engineering, Shanghai Tech University, Shanghai, 201210, China
| | - Wei-Qiang Gao
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China.
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center & Department of Urology, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine and School of Biomedical Engineering, Shanghai, 200127, China.
| |
Collapse
|
24
|
Rahmati A, Mafi A, Vakili O, Soleymani F, Alishahi Z, Yahyazadeh S, Gholinezhad Y, Rezaee M, Johnston TP, Sahebkar A. Non-coding RNAs in leukemia drug resistance: new perspectives on molecular mechanisms and signaling pathways. Ann Hematol 2024; 103:1455-1482. [PMID: 37526673 DOI: 10.1007/s00277-023-05383-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/22/2023] [Indexed: 08/02/2023]
Abstract
Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.
Collapse
Affiliation(s)
- Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, Autophagy Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Firooze Soleymani
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alishahi
- Department of Basic Sciences, Faculty of Medicine, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Yasaman Gholinezhad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Malihe Rezaee
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, the, Islamic Republic of Iran.
| |
Collapse
|
25
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
26
|
Suzuki T, Conant A, Jung Y, Bax R, Antonissen A, Chen W, Yu G, Ioffe YJ, Wang C, Unternaehrer JJ. A Stem-like Patient-Derived Ovarian Cancer Model of Platinum Resistance Reveals Dissociation of Stemness and Resistance. Int J Mol Sci 2024; 25:3843. [PMID: 38612653 PMCID: PMC11011340 DOI: 10.3390/ijms25073843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
To understand chemoresistance in the context of cancer stem cells (CSC), a cisplatin resistance model was developed using a high-grade serous ovarian cancer patient-derived, cisplatin-sensitive sample, PDX4. As a molecular subtype-specific stem-like cell line, PDX4 was selected for its representative features, including its histopathological and BRCA2 mutation status, and exposed to cisplatin in vitro. In the cisplatin-resistant cells, transcriptomics were carried out, and cell morphology, protein expression, and functional status were characterized. Additionally, potential signaling pathways involved in cisplatin resistance were explored. Our findings reveal the presence of distinct molecular signatures and phenotypic changes in cisplatin-resistant PDX4 compared to their sensitive counterparts. Surprisingly, we observed that chemoresistance was not inherently linked with increased stemness. In fact, although resistant cells expressed a combination of EMT and stemness markers, functional assays revealed that they were less proliferative, migratory, and clonogenic-features indicative of an underlying complex mechanism for cell survival. Furthermore, DNA damage tolerance and cellular stress management pathways were enriched. This novel, syngeneic model provides a valuable platform for investigating the underlying mechanisms of cisplatin resistance in a clinically relevant context, contributing to the development of targeted therapies tailored to combat resistance in stem-like ovarian cancer.
Collapse
Affiliation(s)
- Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ashlyn Conant
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Yeonkyu Jung
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA
| | - Ryan Bax
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
| | - Ashley Antonissen
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Department of Biology, California State University San Bernardino, San Bernardino, CA 92407, USA
| | - Wanqiu Chen
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Gary Yu
- Department of Population and Family Health, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Yevgeniya J Ioffe
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| | - Charles Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Center for Genomics, Loma Linda University, Loma Linda, CA 92354, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, USA
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University Medical Center, Loma Linda, CA 92354, USA
| |
Collapse
|
27
|
BharathwajChetty B, Sajeev A, Vishwa R, Aswani BS, Alqahtani MS, Abbas M, Kunnumakkara AB. Dynamic interplay of nuclear receptors in tumor cell plasticity and drug resistance: Shifting gears in malignant transformations and applications in cancer therapeutics. Cancer Metastasis Rev 2024; 43:321-362. [PMID: 38517618 DOI: 10.1007/s10555-024-10171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/19/2024] [Indexed: 03/24/2024]
Abstract
Recent advances have brought forth the complex interplay between tumor cell plasticity and its consequential impact on drug resistance and tumor recurrence, both of which are critical determinants of neoplastic progression and therapeutic efficacy. Various forms of tumor cell plasticity, instrumental in facilitating neoplastic cells to develop drug resistance, include epithelial-mesenchymal transition (EMT) alternatively termed epithelial-mesenchymal plasticity, the acquisition of cancer stem cell (CSC) attributes, and transdifferentiation into diverse cell lineages. Nuclear receptors (NRs) are a superfamily of transcription factors (TFs) that play an essential role in regulating a multitude of cellular processes, including cell proliferation, differentiation, and apoptosis. NRs have been implicated to play a critical role in modulating gene expression associated with tumor cell plasticity and drug resistance. This review aims to provide a comprehensive overview of the current understanding of how NRs regulate these key aspects of cancer biology. We discuss the diverse mechanisms through which NRs influence tumor cell plasticity, including EMT, stemness, and metastasis. Further, we explore the intricate relationship between NRs and drug resistance, highlighting the impact of NR signaling on chemotherapy, radiotherapy and targeted therapies. We also discuss the emerging therapeutic strategies targeting NRs to overcome tumor cell plasticity and drug resistance. This review also provides valuable insights into the current clinical trials that involve agonists or antagonists of NRs modulating various aspects of tumor cell plasticity, thereby delineating the potential of NRs as therapeutic targets for improved cancer treatment outcomes.
Collapse
Affiliation(s)
- Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
28
|
Goncharov AP, Vashakidze N, Kharaishvili G. Epithelial-Mesenchymal Transition: A Fundamental Cellular and Microenvironmental Process in Benign and Malignant Prostate Pathologies. Biomedicines 2024; 12:418. [PMID: 38398019 PMCID: PMC10886988 DOI: 10.3390/biomedicines12020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial and fundamental mechanism in many cellular processes, beginning with embryogenesis via tissue remodulation and wound healing, and plays a vital role in tumorigenesis and metastasis formation. EMT is a complex process that involves many transcription factors and genes that enable the tumor cell to leave the primary location, invade the basement membrane, and send metastasis to other tissues. Moreover, it may help the tumor avoid the immune system and establish radioresistance and chemoresistance. It may also change the normal microenvironment, thus promoting other key factors for tumor survival, such as hypoxia-induced factor-1 (HIF-1) and promoting neoangiogenesis. In this review, we will focus mainly on the role of EMT in benign prostate disease and especially in the process of establishment of malignant prostate tumors, their invasiveness, and aggressive behavior. We will discuss relevant study methods for EMT evaluation and possible clinical implications. We will also introduce clinical trials conducted according to CONSORT 2010 that try to harness EMT properties in the form of circulating tumor cells to predict aggressive patterns of prostate cancer. This review will provide the most up-to-date information to establish a keen understanding of the cellular and microenvironmental processes for developing novel treatment lines by modifying or blocking the pathways.
Collapse
Affiliation(s)
- Aviv Philip Goncharov
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
| | - Nino Vashakidze
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
| | - Gvantsa Kharaishvili
- Department of Clinical and Molecular Pathology, Palacky University, University Hospital, 779 00 Olomouc, Czech Republic; (A.P.G.); (N.V.)
- Department of Human Morphology and Pathology, Medical Faculty, David Tvildiani Medical University, Tbilisi 0159, Georgia
| |
Collapse
|
29
|
Xia X, Ge Y, Ge F, Gu P, Liu Y, Li P, Xu P. MAP4 acts as an oncogene and prognostic marker and affects radioresistance by mediating epithelial-mesenchymal transition in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:88. [PMID: 38341398 PMCID: PMC10858930 DOI: 10.1007/s00432-024-05614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
PURPOSE To explore the effect of microtubule-associated protein 4 (MAP4) on lung adenocarcinoma cells in vitro and evaluate its prognostic value. Radioresistance, indicated by reduced efficiency of radiotherapy, is a key factor in treatment failure in lung adenocarcinoma (LADC). This study aims to explore the primary mechanism underlying the relationship between MAP4 and radiation resistance in lung adenocarcinoma. METHODS We analysed the expression of MAP4 in lung adenocarcinoma by real-time quantitative polymerase chain reaction (RT‒qPCR), immunohistochemistry (IHC) and bioinformatics online databases, evaluated the prognostic value of MAP4 in lung adenocarcinoma and studied its relationship with clinicopathological parameters. Cox regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis identified independent prognostic factors associated with lung adenocarcinoma that were used to construct a nomogram, internal validation was performed. We then evaluated the accuracy and clinical validity of the model using a receiver operating characteristic (ROC) curve, time-dependent C-index analysis, a calibration curve, and decision curve analysis (DCA). Scratch assays and transwell assays were used to explore the effect of MAP4 on the migration and invasion of lung adenocarcinoma cells. Bioinformatics analysis, RT‒qPCR, Cell Counting Kit-8 (CCK-8) assays and Western blot experiments were used to study the relationship between MAP4, epithelial-mesenchymal transition (EMT) and radiation resistance in lung adenocarcinoma. RESULTS MAP4 expression in lung adenocarcinoma tissues was significantly higher than that in adjacent normal lung tissues. High expression of MAP4 is associated with poorer overall survival (OS) in patients with lung adenocarcinoma. Univariate Cox regression analysis showed that pT stage, pN stage, TNM stage and MAP4 expression level were significantly associated with poorer OS in LADC patients. Multivariate Cox regression analysis and LASSO regression analysis showed that only the pT stage and MAP4 expression level were associated with LADC prognosis. The nomogram constructed based on the pT stage and MAP4 expression showed good predictive accuracy. ROC curves, corrected C-index values, calibration curves, and DCA results showed that the nomogram performed well in both the training and validation cohorts and had strong clinical applicability. The results of in vitro experiments showed that the downregulation of MAP4 significantly affected the migration and invasion of lung adenocarcinoma cells. MAP4 was strongly correlated with EMT-related markers. Further studies suggested that the downregulation of MAP4 can affect the viability of lung adenocarcinoma cells after irradiation and participate in the radiation resistance of lung adenocarcinoma cells by affecting EMT. CONCLUSION MAP4 is highly expressed in lung adenocarcinoma; it may affect prognosis by promoting the migration and invasion of cancer cells. We developed a nomogram including clinical factors and MAP4 expression that can be used for prognosis prediction in patients with lung adenocarcinoma. MAP4 participates in radiation resistance in lung adenocarcinoma by regulating the radiation-induced EMT process. MAP4 may serve as a biomarker for lung adenocarcinoma prognosis evaluation and as a new target for improving radiosensitivity.
Collapse
Affiliation(s)
- Xiaochun Xia
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yangyang Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Fanghong Ge
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Pei Gu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Yuanyuan Liu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Peng Li
- Department of Radiation Oncology, Huaian Hospital of Huaian City, Huaian Cancer Hospital, Huaian, China.
| | - Pengqin Xu
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China.
| |
Collapse
|
30
|
El-Tanani M, Nsairat H, Aljabali AA, Matalka II, Alkilany AM, Tambuwala MM. Dual-loaded liposomal carriers to combat chemotherapeutic resistance in breast cancer. Expert Opin Drug Deliv 2024; 21:309-324. [PMID: 38284386 DOI: 10.1080/17425247.2024.2311812] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/25/2024] [Indexed: 01/30/2024]
Abstract
INTRODUCTION The resistance to chemotherapy is a significant hurdle in breast cancer treatment, prompting the exploration of innovative strategies. This review discusses the potential of dual-loaded liposomal carriers to combat chemoresistance and improve outcomes for breast cancer patients. AREAS COVERED This review discusses breast cancer chemotherapy resistance and dual-loaded liposomal carriers. Drug efflux pumps, DNA repair pathways, and signaling alterations are discussed as chemoresistance mechanisms. Liposomes can encapsulate several medicines and cargo kinds, according to the review. It examines how these carriers improve medication delivery, cancer cell targeting, and tumor microenvironment regulation. Also examined are dual-loaded liposomal carrier improvement challenges and techniques. EXPERT OPINION The use of dual-loaded liposomal carriers represents a promising and innovative strategy in the battle against chemotherapy resistance in breast cancer. This article has explored the various mechanisms of chemoresistance in breast cancer, emphasizing the potential of dual-loaded liposomal carriers to overcome these challenges. These carriers offer versatility, enabling the encapsulation and precise targeting of multiple drugs with different modes of action, a crucial advantage when dealing with the complexity of breast cancer treatment.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, RAK Medical & Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Pharmacy, Yarmouk University, Irbid, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Department of Pathology and Microbiology, Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | |
Collapse
|
31
|
Zhu R, Chen M, Luo Y, Cheng H, Zhao Z, Zhang M. The role of N-acetyltransferases in cancers. Gene 2024; 892:147866. [PMID: 37783298 DOI: 10.1016/j.gene.2023.147866] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Cancer is a major global health problem that disrupts the balance of normal cellular growth and behavior. Mounting evidence has shown that epigenetic modification, specifically N-terminal acetylation, play a crucial role in the regulation of cell growth and function. Acetylation is a co- or post-translational modification to regulate important cellular progresses such as cell proliferation, cell cycle progress, and energy metabolism. Recently, N-acetyltransferases (NATs), enzymes responsible for acetylation, regulate signal transduction pathway in various cancers including hepatocellular carcinoma, breast cancer, lung cancer, colorectal cancer and prostate cancer. In this review, we clarify the regulatory role of NATs in cancer progression, such as cell proliferation, metastasis, cell apoptosis, autophagy, cell cycle arrest and energy metabolism. Furthermore, the mechanism of NATs on cancer remains to be further studied, and few drugs have been developed. This provides us with a new idea that targeting acetylation, especially NAT-mediated acetylation, may be an attractive way for inhibiting cancer progression.
Collapse
Affiliation(s)
- Rongrong Zhu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Mengjiao Chen
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yongjia Luo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Department of Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Haipeng Cheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China
| | - Zhenwang Zhao
- Department of Pathology and Pathophysiology, School of Basic Medicine, Health Science Center, Hubei University of Arts and Science, Xiangyang, Hubei 441053, PR China.
| | - Min Zhang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Department of Bioinformatics and Medical Big Data, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| |
Collapse
|
32
|
den Hollander P, Maddela JJ, Mani SA. Spatial and Temporal Relationship between Epithelial-Mesenchymal Transition (EMT) and Stem Cells in Cancer. Clin Chem 2024; 70:190-205. [PMID: 38175600 PMCID: PMC11246550 DOI: 10.1093/clinchem/hvad197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is often linked with carcinogenesis. However, EMT is also important for embryo development and only reactivates in cancer. Connecting how EMT occurs during embryonic development and in cancer could help us further understand the root mechanisms of cancer diseases. CONTENT There are key regulatory elements that contribute to EMT and the induction and maintenance of stem cell properties during embryogenesis, tissue regeneration, and carcinogenesis. Here, we explore the implications of EMT in the different stages of embryogenesis and tissue development. We especially highlight the necessity of EMT in the mesodermal formation and in neural crest cells. Through EMT, these cells gain epithelial-mesenchymal plasticity (EMP). With this transition, crucial morphological changes occur to progress through the metastatic cascade as well as tissue regeneration after an injury. Stem-like cells, including cancer stem cells, are generated from EMT and during this process upregulate factors necessary for stem cell maintenance. Hence, it is important to understand the key regulators allowing stem cell awakening in cancer, which increases plasticity and promotes treatment resistance, to develop strategies targeting this cell population and improve patient outcomes. SUMMARY EMT involves multifaceted regulation to allow the fluidity needed to facilitate adaptation. This regulatory mechanism, plasticity, involves many cooperating transcription factors. Additionally, posttranslational modifications, such as splicing, activate the correct isoforms for either epithelial or mesenchymal specificity. Moreover, epigenetic regulation also occurs, such as acetylation and methylation. Downstream signaling ultimately results in the EMT which promotes tissue generation/regeneration and cancer progression.
Collapse
Affiliation(s)
- Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
33
|
Rostami SP, Dehkordi NM, Asgari Y, Bolouri MR, Shayanfar N, Falak R, Kardar GA. Competitive Effect of Overexpressed C-terminal of Snail-1 (CSnail) in Control of the Growth and Metastasis of Melanoma Cells. Recent Pat Anticancer Drug Discov 2024; 19:342-353. [PMID: 37005514 DOI: 10.2174/1574892818666230330105016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) plays a role in the invasion and metastasis of cancer cells. During this phenomenon, Snail can promote tumor progression by upregulating mesenchymal factors and downregulating the expression of pro-apoptotic proteins. OBJECTIVE Therefore, interventions on the expression rate of Snails may show beneficial therapeutic applications. METHODS In this study, the C-terminal region of Snail1, capable of binding to E-box genomic sequences, was subcloned into the pAAV-IRES-EGFP backbone to make complete AAV-CSnail viral particles. B16F10 as a metastatic melanoma cell line, with a null expression of wild type TP53 was transduced by AAV-CSnail. Moreover, the transduced cells were analyzed for in vitro expression of apoptosis, migration, and EMT-related genes, and in vivo inhibition of metastasis. RESULTS In more than 80% of the AAV-CSnail transduced cells, the CSnail gene expression competitively reduced the wild-type Snail functionality and consequently lowered the mRNA expression level of EMT-related genes. Furthermore, the transcription level of cell cycle inhibitory factor p21 and pro-apoptotic factors were promoted. The scratch test showed a decrease in the migration ability of AAV-CSnail transduced group compared to control. Finally, metastasis of cancer cells to lung tissue in the AAV-CSnail-treated B16F10 melanoma mouse model was significantly reduced, pointing out to prevention of EMT by the competitive inhibitory effect of CSnail on Snail1 and increased apoptosis of B16F10 cells. CONCLUSION The capability of this successful competition in reducing the growth, invasion, and metastasis of melanoma cells indicates that gene therapy is a promising strategy for the control of the growth and metastasis of cancer cells.
Collapse
Affiliation(s)
- Sadegh Paydari Rostami
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Moghare Dehkordi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Asgari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Bolouri
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasrin Shayanfar
- Department of Pathology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholam Ali Kardar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Asthma & Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Segura-Quezada LA, Hernández-Velázquez ED, Corrales-Escobosa AR, de León-Solis C, Solorio-Alvarado CR. Ningalins, Pyrrole-Bearing Metabolites Isolated from Didemnum spp. Synthesis and MDR-Reversion Activity in Cancer Therapy. Chem Biodivers 2024; 21:e202300883. [PMID: 38010267 DOI: 10.1002/cbdv.202300883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Multi-Drug Resistance (MDR) is one of the most frequent problems observed in the course of cancer chemotherapy. Cells under treatment, tend to develop survival mechanisms to drug-action thus generating drug-resistance. One of the most important mechanism to get it is the over expression of P-gp glycoprotein, which acts as an efflux-pump releasing the drug outside of the cancer cell. A strategy for a succesfull treatment consists in the co-administration of one compound that acts against P-gp and another which acts against the cell during chemotherapy. Ningalins are pyrrole-containing naturally occurring compounds isolated mainly from the marine tunicate Didemnum spp and also they are some of the top reversing agents in MDR treatment acting on P-gp. Considering the relevance displayed for some of these isolated alkaloids or their core as a drug for co-administration in cancer therapy, all the total synthesis described to date for the members of ningalins family are reviewed herein.
Collapse
Affiliation(s)
- Luis A Segura-Quezada
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Edson D Hernández-Velázquez
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Alma R Corrales-Escobosa
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| | - Claudia de León-Solis
- Instituto de Investigaciones Químicas, Biológicas, Biomédicas y Biofísicas., Universidad Mariano Gálvez, Guatemala, Guatemala
| | - César R Solorio-Alvarado
- Universidad de Guanajuato, Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato., Noria Alta S/N, 36050, Guanajuato, Gto., México
| |
Collapse
|
35
|
Lo HC, Hua WJ, Yeh H, Lin ZH, Huang LC, Ciou YR, Ruan R, Lin KF, Tseng AJ, Wu ATH, Hsu WH, Chao CH, Lin TY. GMI, a Ganoderma microsporum protein, abolishes focal adhesion network to reduce cell migration and metastasis of lung cancer. Life Sci 2023; 335:122255. [PMID: 37967792 DOI: 10.1016/j.lfs.2023.122255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Cancer metastasis is a major cause of cancer-related deaths, emphasizing the urgent need for effective therapies. Although it has been shown that GMI, a fungal protein from Ganoderma microsporum, could suppress primary tumor growth in a wide spectrum of cancer types, it is still unclear whether GMI exhibits anti-metastasis properties, particularly in lung cancers. Further investigation is needed. AIMS AND OBJECTIVES The objective of this study is to investigate the potential inhibitory effects of GMI on lung cancer metastasis in vivo. Utilizing systematic and comprehensive approaches, our research aims to elucidate the underlying molecular mechanisms responsible for the anti-metastatic effects. MATERIALS AND METHODS In vitro migration and cell adhesion assays addressed the epithelial-to-mesenchymal transition (EMT)-related phenotype. Proteomic and bioinformatic analyses identified the GMI-regulated proteins and cellular responses. GMI-treated LLC1-bearing mice were analyzed using IVIS Spectrum to assess the anti-metastatic effect. KEY FINDINGS GMI inhibits EMT as well as cell migration. GMI disrupts cell adhesion and downregulates integrin, resulting in inhibition of phosphorylated FAK. GMI induces macropinocytosis and lysosome-mediated degradation of integrin αv, α5, α6 and β1. GMI downregulates Slug via inhibition of FAK activity, which in turn enhances expressions of epithelial-related markers and decreases cell mobility. Mechanistically, GMI-induced FAK inhibition engenders MDM2 expression and enhances MDM2/p21/Slug complex formation, leading to Slug degradation. GMI treatment reduces the metastatic pulmonary lesion and prolongs the survival of LLC1-bearing mice. SIGNIFICANCE Our findings highlight GMI as a promising therapeutic candidate for metastatic lung cancers, offering potential avenues for further research and drug development.
Collapse
Affiliation(s)
- Hung-Chih Lo
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Hsin Yeh
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Zhi-Hu Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Chen Huang
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ciou
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Runcheng Ruan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kai-Fan Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ai-Jung Tseng
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science & Technology, Taipei Medical University, Taipei Taiwan
| | - Wei-Hung Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; LO-Sheng Hospital Ministry of Health and Welfare, Taipei, Taiwan; School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Hong Chao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; Center For Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan; Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
36
|
Schuhwerk H, Brabletz T. Mutual regulation of TGFβ-induced oncogenic EMT, cell cycle progression and the DDR. Semin Cancer Biol 2023; 97:86-103. [PMID: 38029866 DOI: 10.1016/j.semcancer.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
TGFβ signaling and the DNA damage response (DDR) are two cellular toolboxes with a strong impact on cancer biology. While TGFβ as a pleiotropic cytokine affects essentially all hallmarks of cancer, the multifunctional DDR mostly orchestrates cell cycle progression, DNA repair, chromatin remodeling and cell death. One oncogenic effect of TGFβ is the partial activation of epithelial-to-mesenchymal transition (EMT), conferring invasiveness, cellular plasticity and resistance to various noxae. Several reports show that both individual networks as well as their interface affect chemo-/radiotherapies. However, the underlying mechanisms remain poorly resolved. EMT often correlates with TGFβ-induced slowing of proliferation, yet numerous studies demonstrate that particularly the co-activated EMT transcription factors counteract anti-proliferative signaling in a partially non-redundant manner. Collectively, evidence piled up over decades underscore a multifaceted, reciprocal inter-connection of TGFβ signaling / EMT with the DDR / cell cycle progression, which we will discuss here. Altogether, we conclude that full cell cycle arrest is barely compatible with the propagation of oncogenic EMT traits and further propose that 'EMT-linked DDR plasticity' is a crucial, yet intricate facet of malignancy, decisively affecting metastasis formation and therapy resistance.
Collapse
Affiliation(s)
- Harald Schuhwerk
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen University Hospital, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
37
|
Suzuki T, Sakai S, Ota K, Yoshida M, Uchida C, Niida H, Suda T, Kitagawa M, Ohhata T. Expression of Tumor Suppressor FHIT Is Regulated by the LINC00173-SNAIL Axis in Human Lung Adenocarcinoma. Int J Mol Sci 2023; 24:17011. [PMID: 38069335 PMCID: PMC10707390 DOI: 10.3390/ijms242317011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.
Collapse
Grants
- 19H03501 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22H02901 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 20K07569 Ministry of Education, Culture, Sports, Science and Technology of Japan
- NA Project Mirai Cancer Research Grants, the Princes Takamatsu Cancer Research Foundation
- NA The Smoking Research Foundation
- NA Hamamatsu University School of Medicine Grant-in-Aid
Collapse
Affiliation(s)
- Takahito Suzuki
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Kosuke Ota
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Mika Yoshida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| |
Collapse
|
38
|
Kielbik M, Przygodzka P, Szulc-Kielbik I, Klink M. Snail transcription factors as key regulators of chemoresistance, stemness and metastasis of ovarian cancer cells. Biochim Biophys Acta Rev Cancer 2023; 1878:189003. [PMID: 37863122 DOI: 10.1016/j.bbcan.2023.189003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Ovarian cancer is one of the deadliest gynecological malignancies among women. The reason for this outcome is the frequent acquisition of cancer cell resistance to platinum-based drugs and unresponsiveness to standard therapy. It has been increasingly recognized that the ability of ovarian cancer cells to adopt more aggressive behavior (mainly through the epithelial-to-mesenchymal transition, EMT), as well as dedifferentiation into cancer stem cells, significantly affects drug resistance acquisition. Transcription factors in the Snail family have been implicated in ovarian cancer chemoresistance and metastasis. In this article, we summarize published data that reveal Snail proteins not only as key inducers of the EMT in ovarian cancer but also as crucial links between the acquisition of ovarian cancer stem properties and spheroid formation. These Snail-related characteristics significantly affect the ovarian cancer cell response to treatment and are related to the acquisition of chemoresistance.
Collapse
Affiliation(s)
- Michal Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Izabela Szulc-Kielbik
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland.
| |
Collapse
|
39
|
Ge Y, Ma S, Zhang J, Xiong Z, Li B, Ma S, Liu B, Yao X, Wang Z. Integrating bioinformatic analysis and detailed experiments reveal an EMT-related biomarker for clear cell renal cell carcinoma. Cancer Med 2023; 12:19320-19336. [PMID: 37676078 PMCID: PMC10557903 DOI: 10.1002/cam4.6504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is associated with early recurrence and a poor prognosis in clear cell renal cell carcinoma (ccRCC). Studies have shown that EMT-related genes play an important regulatory role in tumor invasion, metastasis, and drug resistance, but the biological functions of EMT-related genes in ccRCC have not been specifically described. METHODS The mRNA and clinicopathological data of 532 ccRCC and 72 normal samples were downloaded from The Cancer Genome Atlas as a training set. The gene expression matrix and survival data of 91 and 101 ccRCC samples were obtained from the International Cancer Genome Consortium and the ArrayExpress databases as validation sets, respectively. Univariate Cox analysis was used to identify and cluster prognostic genes, and multivariate Cox was performed to construct a prognostic signature. Moreover, CIBERSORT and CellMiner were used to assess immune cell infiltration and prognostic gene-drug sensitivity of the signature, respectively. Most importantly, we performed detailed experiments to verify the oncogenic function of a significant gene, OLFML2B, in vitro and in vivo. RESULTS We constructed a prognostic signature including seven genes and divided patients into high-risk and low-risk groups. The prognosis of the high-risk group was significantly worse than that of the low-risk group through Kaplan-Meier survival analysis. Interestingly, significant differences were observed in clinical characteristics and immune cell infiltration between the two groups. In addition, a significant correlation was found between the expression of prognostic genes and the sensitivity of tumor cells to chemotherapeutics. Most importantly, OLFML2B was proved to contribute to the proliferation and metastasis of ccRCC through detailed functional experiments in vitro and in vivo, and its prognostic efficacy for ccRCC patients was affirmed. CONCLUSION We identified the prognostic signature of seven genes based on EMT-related genes as prognostic biomarkers for ccRCC. Besides, OLFML2B was validated as a potential diagnostic and therapeutic target for ccRCC by our detailed experiments.
Collapse
Affiliation(s)
- Yue Ge
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Sheng Ma
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junbiao Zhang
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zezhong Xiong
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Siquan Ma
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiangyang Yao
- Department of UrologyZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
40
|
Zhang H, Wang X, Ma Y, Zhang Q, Liu R, Luo H, Wang Z. Review of possible mechanisms of radiotherapy resistance in cervical cancer. Front Oncol 2023; 13:1164985. [PMID: 37692844 PMCID: PMC10484717 DOI: 10.3389/fonc.2023.1164985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Radiotherapy is one of the main treatments for cervical cancer. Early cervical cancer is usually considered postoperative radiotherapy alone. Radiotherapy combined with cisplatin is the standard treatment for locally advanced cervical cancer (LACC), but sometimes the disease will relapse within a short time after the end of treatment. Tumor recurrence is usually related to the inherent radiation resistance of the tumor, mainly involving cell proliferation, apoptosis, DNA repair, tumor microenvironment, tumor metabolism, and stem cells. In the past few decades, the mechanism of radiotherapy resistance of cervical cancer has been extensively studied, but due to its complex process, the specific mechanism of radiotherapy resistance of cervical cancer is still not fully understood. In this review, we discuss the current status of radiotherapy resistance in cervical cancer and the possible mechanisms of radiotherapy resistance, and provide favorable therapeutic targets for improving radiotherapy sensitivity. In conclusion, this article describes the importance of understanding the pathway and target of radioresistance for cervical cancer to promote the development of effective radiotherapy sensitizers.
Collapse
Affiliation(s)
- Hanqun Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| | - Xiaohu Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Yan Ma
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qiuning Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Ruifeng Liu
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Hongtao Luo
- University of Chinese Academy of Sciences, Beijing, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Lanzhou Heavy Ion Hospital, Lanzhou, China
| | - Zi Wang
- Department of Oncology, Guizhou Provincial People's Hospital, Guizhou, China
| |
Collapse
|
41
|
Liu L, Deng P, Liu S, Hong JH, Xiao R, Guan P, Wang Y, Wang P, Gao J, Chen J, Sun Y, Chen J, Mai HQ, Tan J. Enhancer remodeling activates NOTCH3 signaling to confer chemoresistance in advanced nasopharyngeal carcinoma. Cell Death Dis 2023; 14:513. [PMID: 37563118 PMCID: PMC10415329 DOI: 10.1038/s41419-023-06028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
Acquired resistance to chemotherapy is one of the major causes of mortality in advanced nasopharyngeal carcinoma (NPC). However, effective strategies are limited and the underlying molecular mechanisms remain elusive. In this study, through transcriptomic profiling analysis of 23 tumor tissues, we found that NOTCH3 was aberrantly highly expressed in chemoresistance NPC patients, with NOTCH3 overexpression being positively associated with poor clinical outcome. Mechanistically, using an established NPC cellular model, we demonstrated that enhancer remodeling driven aberrant hyperactivation of NOTCH3 in chemoresistance NPC. We further showed that NOTCH3 upregulates SLUG to induce chemo-resistance of NPC cells and higher expression of SLUG have poorer prognosis. Genetic or pharmacological perturbation of NOTCH3 conferred chemosensitivity of NPC in vitro and overexpression of NOTCH3 enhanced chemoresistance of NPC in vivo. Together, these data indicated that genome-wide enhancer reprogramming activates NOTCH3 to confer chemoresistance of NPC, suggesting that targeting NOTCH3 may provide a potential therapeutic strategy to effectively treat advanced chemoresistant NPC.
Collapse
Affiliation(s)
- Lizhen Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Peng Deng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Sailan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Han Hong
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Republic of Singapore
| | - Rong Xiao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peiyong Guan
- Genome Institute of Singapore, A*STAR, Singapore, Republic of Singapore
| | - Yali Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peili Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiuping Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinghong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yichen Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-Qiang Mai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing Tan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
- Laboratory of Cancer Epigenome, Division of Medical Sciences, National Cancer Centre Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
42
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
43
|
Yin L, Li W, Chen X, Wang R, Zhang T, Meng J, Li Z, Xu L, Yin R, Cheng B, Yang H. HOOK1 Inhibits the Progression of Renal Cell Carcinoma via TGF-β and TNFSF13B/VEGF-A Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206955. [PMID: 37085921 PMCID: PMC10265082 DOI: 10.1002/advs.202206955] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Accumulating evidence shows HOOK1 disordered in human malignancies. However, the clinicopathological and biological significance of HOOK1 in renal cell carcinoma (RCC) remains rarely studied. In this study, the authors demonstrate that HOOK1 is downregulated in RCC samples with predicted poorer clinical prognosis. Mechanistically, HOOK1 inhibits tumor growth and metastasis via canonical TGF-β/ALK5/p-Smad3 and non-canonical TGF-β/MEK/ERK/c-Myc pathway. At the same time, HOOK1 inhibits RCC angiogenesis and sunitinib resistance by promoting degradation of TNFSF13B through the ubiquitin-proteasome pathway. In addition, HOOK1 is transcriptionally regulated by nuclear factor E2F3 in VHL dependent manner. Notably, an agonist of HOOK1, meletin, is screened and it shows antitumor activity more effectively when combined with sunitinib or nivolumab than it is used alone. The findings reveal a pivotal role of HOOK1 in anti-cancer treatment, and identify a novel therapeutic strategy for renal cell carcinoma.
Collapse
Affiliation(s)
- Lei Yin
- Department of UrologyPutuo People's HospitalTongji UniversityShanghai200060P. R. China
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Wenjia Li
- Department of Cardiovascular MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Xuxiao Chen
- Department of General SurgeryHepatobiliary SurgeryShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025P. R. China
| | - Ronghao Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthwest Medical UniversityLuzhou646000P. R. China
| | - Tao Zhang
- Department of UrologyPutuo People's HospitalTongji UniversityShanghai200060P. R. China
| | - Jialin Meng
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityAnhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefei230032P. R. China
| | - Zhao Li
- Department of AnesthesiologyXiangya Hospital Central South UniversityChangsha410008P. R. China
| | - Li Xu
- Department of AnesthesiologyThe First People's Hospital of ChangdeChangde415000P. R. China
| | - Rui Yin
- Center for Reproductive MedicineShandong UniversityJinan250012P. R. China
| | - Bo Cheng
- Department of UrologyThe Affiliated Hospital of Southwest Medical UniversityLuzhou646000P. R. China
| | - Huan Yang
- Department of UrologyTongji HospitalTongji Medical College of Huazhong University of Science and TechnologyWuhan430030P. R. China
| |
Collapse
|
44
|
Wang W, Jin J, Zhou Z, Wang Y, Min K, Zuo X, Jiang J, Zhou Y, Shi J. Snail inhibits metastasis via regulation of E‑cadherin and is associated with prognosis in colorectal cancer. Oncol Lett 2023; 25:271. [PMID: 37216162 PMCID: PMC10193364 DOI: 10.3892/ol.2023.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
The overall survival (OS) rate of patients with colorectal cancer (CRC) remains low due to the lack of clear prognostic markers. Therefore, the identification of valuable prognostic markers is urgently required. Snail and E-Cadherin (E-Cad) are important protein molecules in the EMT process and play a crucial role in tumor invasion and metastasis. The present study investigated the clinical significance of Snail and E-cad expression in CRC. Compared with those in adjacent tissue, the expression levels of Snail and E-cad were significantly increased and decreased, respectively, in CRC. Moreover, low Snail and high E-cad expression were associated with clinicopathological features and longer OS time. Furthermore, Snail and E-cad could predict the prognosis of patients with CRC. Reverse transcription-qPCR, Western blotting, Wound scratch assay, High content cell migration experiment, which showed that low Snail or high E-cad expression inhibited invasion and metastasis of CRC. In conclusion, Snail can promote CRC invasion and metastasis by regulating E-cad. Snail and E-cad expression constitute a novel prognostic marker for CRC, and the present study revealed a greater combined effect of Snail and E-cad as effective prognostic markers in CRC for the first time.
Collapse
Affiliation(s)
- Weimin Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jun Jin
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Zhen Zhou
- Department of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Yunfan Wang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Ke Min
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Xin Zuo
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Jiaping Jiang
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| | - Yan Zhou
- Department of Oncology, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yixing, Jiangsu 214200, P.R. China
- Institute of Combining Chinese Traditional and Western Medicine, Medical College, Yangzhou University, Yangzhou, Jiangsu 225001, P.R. China
| | - Jun Shi
- Department of General Surgery, Yixing Hospital Affiliated to Medical College of Yangzhou University, Yangzhou University, Yixing, Jiangsu 214200, P.R. China
| |
Collapse
|
45
|
Mehus AA, Jones M, Trahan M, Kinnunen K, Berwald K, Lindner B, Al-Marsoummi S, Zhou XD, Garrett SH, Sens DA, Sens MA, Somji S. Pevonedistat Inhibits SOX2 Expression and Sphere Formation but Also Drives the Induction of Terminal Differentiation Markers and Apoptosis within Arsenite-Transformed Urothelial Cells. Int J Mol Sci 2023; 24:9149. [PMID: 37298099 PMCID: PMC10252886 DOI: 10.3390/ijms24119149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Urothelial cancer (UC) is a common malignancy and its development is associated with arsenic exposure. Around 25% of diagnosed UC cases are muscle invasive (MIUC) and are frequently associated with squamous differentiation. These patients commonly develop cisplatin (CIS) resistance and have poor prognosis. SOX2 expression is correlated to reduced overall and disease-free survival in UC. SOX2 drives malignant stemness and proliferation in UC cells and is associated with development of CIS resistance. Using quantitative proteomics, we identified that SOX2 was overexpressed in three arsenite (As3+)-transformed UROtsa cell lines. We hypothesized that inhibition of SOX2 would reduce stemness and increase sensitivity to CIS in the As3+-transformed cells. Pevonedistat (PVD) is a neddylation inhibitor and is a potent inhibitor of SOX2. We treated non-transformed parent and As3+-transformed cells with PVD, CIS, or in combination and monitored cell growth, sphere forming abilities, apoptosis, and gene/protein expression. PVD treatment alone caused morphological changes, reduced cell growth, attenuated sphere formation, induced apoptosis, and elevated the expression of terminal differentiation markers. However, the combined treatment of PVD with CIS significantly elevated the expression of terminal differentiation markers and eventually led to more cell death than either solo treatment. Aside from a reduced proliferation rate, these effects were not seen in the parent. Further research is needed to explore the potential use of PVD with CIS as a differentiation therapy or alternative treatment for MIUC tumors that may have become resistant to CIS.
Collapse
Affiliation(s)
- Aaron A. Mehus
- Department of Pathology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (M.J.); (M.T.); (K.K.); (K.B.); (B.L.); (S.A.-M.); (X.D.Z.); (S.H.G.); (D.A.S.); (M.A.S.); (S.S.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cao Y. Neural induction drives body axis formation during embryogenesis, but a neural induction-like process drives tumorigenesis in postnatal animals. Front Cell Dev Biol 2023; 11:1092667. [PMID: 37228646 PMCID: PMC10203556 DOI: 10.3389/fcell.2023.1092667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/17/2023] [Indexed: 05/27/2023] Open
Abstract
Characterization of cancer cells and neural stem cells indicates that tumorigenicity and pluripotency are coupled cell properties determined by neural stemness, and tumorigenesis represents a process of progressive loss of original cell identity and gain of neural stemness. This reminds of a most fundamental process required for the development of the nervous system and body axis during embryogenesis, i.e., embryonic neural induction. Neural induction is that, in response to extracellular signals that are secreted by the Spemann-Mangold organizer in amphibians or the node in mammals and inhibit epidermal fate in ectoderm, the ectodermal cells lose their epidermal fate and assume the neural default fate and consequently, turn into neuroectodermal cells. They further differentiate into the nervous system and also some non-neural cells via interaction with adjacent tissues. Failure in neural induction leads to failure of embryogenesis, and ectopic neural induction due to ectopic organizer or node activity or activation of embryonic neural genes causes a formation of secondary body axis or a conjoined twin. During tumorigenesis, cells progressively lose their original cell identity and gain of neural stemness, and consequently, gain of tumorigenicity and pluripotency, due to various intra-/extracellular insults in cells of a postnatal animal. Tumorigenic cells can be induced to differentiation into normal cells and integrate into normal embryonic development within an embryo. However, they form tumors and cannot integrate into animal tissues/organs in a postnatal animal because of lack of embryonic inducing signals. Combination of studies of developmental and cancer biology indicates that neural induction drives embryogenesis in gastrulating embryos but a similar process drives tumorigenesis in a postnatal animal. Tumorigenicity is by nature the manifestation of aberrant occurrence of pluripotent state in a postnatal animal. Pluripotency and tumorigenicity are both but different manifestations of neural stemness in pre- and postnatal stages of animal life, respectively. Based on these findings, I discuss about some confusion in cancer research, propose to distinguish the causality and associations and discriminate causal and supporting factors involved in tumorigenesis, and suggest revisiting the focus of cancer research.
Collapse
Affiliation(s)
- Ying Cao
- Shenzhen Research Institute of Nanjing University, Shenzhen, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
47
|
Liu C, Kuang S, Wu L, Cheng Q, Gong X, Wu J, Zhang L. Radiotherapy and radio-sensitization in H3 K27M -mutated diffuse midline gliomas. CNS Neurosci Ther 2023. [PMID: 37157237 DOI: 10.1111/cns.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND H3K27M mutated diffuse midline gliomas (DMGs) are extremely aggressive and the leading cause of cancer-related deaths in pediatric brain tumors with 5-year survival <1%. Radiotherapy is the only established adjuvant treatment of H3K27M DMGs; however, the radio-resistance is commonly observed. METHODS We summarized current understandings of the molecular responses of H3K27M DMGs to radiotherapy and provide crucial insights into current advances in radiosensitivity enhancement. RESULTS Ionizing radiation (IR) can mainly inhibit tumor cell growth by inducing DNA damage regulated by the cell cycle checkpoints and DNA damage repair (DDR) system. In H3K27M DMGs, the aberrant genetic and epigenetic changes, stemness genotype, and epithelial-mesenchymal transition (EMT) disrupt the cell cycle checkpoints and DDR system by altering the associated regulatory signaling pathways, which leads to the development of radio-resistance. CONCLUSIONS The advances in mechanisms of radio-resistance in H3K27M DMGs promote the potential targets to enhance the sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Chao Liu
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Shuwen Kuang
- Departments of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Quan Cheng
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Gong
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Wu
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Longbo Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Departments of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Sharma R, Balta S, Raza A, Escalona RM, Kannourakis G, Prithviraj P, Ahmed N. In Vitro and In Silico Analysis of Epithelial-Mesenchymal Transition and Cancer Stemness as Prognostic Markers of Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15092586. [PMID: 37174052 PMCID: PMC10177434 DOI: 10.3390/cancers15092586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The process of epithelial-mesenchymal transition (EMT) involves the phenotypic transformation of cells from epithelial to mesenchymal status. The cells exhibiting EMT contain features of cancer stem cells (CSC), and the dual processes are responsible for progressive cancers. Activation of hypoxia-inducible factors (HIF) is fundamental to the pathogenesis of clear cell renal cell carcinoma (ccRCC), and their role in promoting EMT and CSCs is crucial for ccRCC tumour cell survival, disease progression, and metastatic spread. In this study, we explored the status of HIF genes and their downstream targets, EMT and CSC markers, by immunohistochemistry on in-house accrued ccRCC biopsies and adjacent non-tumorous tissues from patients undergoing partial or radical nephrectomy. In combination, we comprehensively analysed the expression of HIF genes and its downstream EMT and CSC-associated targets relevant to ccRCC by using publicly available datasets, the cancer genome atlas (TCGA) and the clinical proteome tumour analysis consortium (CPTAC). The aim was to search for novel biological prognostic markers that can stratify high-risk patients likely to experience metastatic disease. Using the above two approaches, we report the development of novel gene signatures that may help to identify patients at a high risk of developing metastatic and progressive disease.
Collapse
Affiliation(s)
- Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Showan Balta
- Dorevitch Pathology, Ballarat Base Hospital, Drummond Street, Ballarat, VIC 3350, Australia
| | - Ali Raza
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Ruth M Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Prashanth Prithviraj
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia
- Health Innovation and Transformation Centre, Mt Helen Campus, Federation University Australia, Ballarat, VIC 3350, Australia
- Centre for Reproductive Health, The Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
49
|
da Costa KM, Freire-de-Lima L, da Fonseca LM, Previato JO, Mendonça-Previato L, Valente RDC. ABCB1 and ABCC1 Function during TGF-β-Induced Epithelial-Mesenchymal Transition: Relationship between Multidrug Resistance and Tumor Progression. Int J Mol Sci 2023; 24:ijms24076046. [PMID: 37047018 PMCID: PMC10093952 DOI: 10.3390/ijms24076046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Multidrug resistance (MDR) and induction of metastasis are some of the puzzles encountered during cancer chemotherapy. The MDR phenotype is associated with overexpression of ABC transporters, involved in drug efflux. Metastasis originates from the epithelial-mesenchymal transition (EMT), in which cells acquire a migratory phenotype, invading new tissues. ABC transporters' role during EMT is still elusive, though cells undergoing EMT exhibit enhanced ABCB1 expression. We demonstrated increased ABCB1 expression but no change in activity after TGF-β-induced EMT in A549 cells. Moreover, ABCB1 inhibition by verapamil increased snail and fibronectin expression, an event associated with upregulation of ABCB1, evidencing coincident cell signaling pathways leading to ABCB1 and EMT-related markers transcription, rather than a direct effect of transport. Additionally, for the first time, increased ABCC1 expression and activity was observed after EMT, and use of ABCC1 inhibitors partially inhibited EMT-marker snail, although increased ABCC1 function translated into collateral sensibility to daunorubicin. More investigations must be done to evaluate the real benefits that the gain of ABC transporters might have on the process of metastasis. Considering ABCC1 is involved in the stress response, affecting intracellular GSH content and drug detoxification, this transporter could be used as a therapeutic target in cancer cells undergoing EMT.
Collapse
Affiliation(s)
- Kelli Monteiro da Costa
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Freire-de-Lima
- Laboratório de Biologia Celular de Glicoconjugados, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Marques da Fonseca
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - José Osvaldo Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Lucia Mendonça-Previato
- Laboratório de Glicobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Raphael do Carmo Valente
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Universidade Federal do Rio de Janeiro, Rio de Janeiro 25250-470, Brazil
| |
Collapse
|
50
|
Pillai S, Roy N. Plasticity of Cancer Stem Cell. CANCER STEM CELLS: BASIC CONCEPT AND THERAPEUTIC IMPLICATIONS 2023:101-117. [DOI: 10.1007/978-981-99-3185-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|