1
|
Qian L, Zhang Z, Zhang R, Zheng X, Xiao B, Zhang X, Wu Y, Chen Y, Zhang X, Zhou P, Fu Q, Kang T, Gao Y. Activated STING-containing R-EVs from iPSC-derived MSCs promote antitumor immunity. Cancer Lett 2024; 597:217081. [PMID: 38909776 DOI: 10.1016/j.canlet.2024.217081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
We recently revealed that activated STING is secreted into RAB22A-induced extracellular vesicles (R-EVs) and promotes antitumor immunity in cancer cells. Whether mesenchymal stem cell (MSC)-derived R-EVs containing activated STING can be used as a novel antitumor immunotherapy remains unclear, as MSC-derived EVs are promising cell-free therapeutics due to their superior biocompatibility and safety, as well as low immunogenicity. Here, we report that induced pluripotent stem cell (iPSC)-derived MSCs can generate R-EVs with a size and mechanism of formation that are similar to those of R-EVs produced from cancer cells. Furthermore, these MSC-derived R-EVs containing activated STING induced IFNβ expression in recipient THP-1 monocytes and antitumor immunity in mice. Our findings reveal that the use of MSC-derived R-EVs containing activated STING is a promising cell-free strategy for antitumor immunity.
Collapse
Affiliation(s)
- Linxia Qian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China; School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhonghan Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xueping Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Beibei Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiaomin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yang Chen
- Departments of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Xingding Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
2
|
Mesenchymal Stem Cells in Acquired Aplastic Anemia: The Spectrum from Basic to Clinical Utility. Int J Mol Sci 2023; 24:ijms24054464. [PMID: 36901900 PMCID: PMC10003043 DOI: 10.3390/ijms24054464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Aplastic anemia (AA), a rare but potentially life-threatening disease, is a paradigm of bone marrow failure syndromes characterized by pancytopenia in the peripheral blood and hypocellularity in the bone marrow. The pathophysiology of acquired idiopathic AA is quite complex. Mesenchymal stem cells (MSCs), an important component of the bone marrow, are crucial in providing the specialized microenvironment for hematopoiesis. MSC dysfunction may result in an insufficient bone marrow and may be associated with the development of AA. In this comprehensive review, we summarized the current understanding about the involvement of MSCs in the pathogenesis of acquired idiopathic AA, along with the clinical application of MSCs for patients with the disease. The pathophysiology of AA, the major properties of MSCs, and results of MSC therapy in preclinical animal models of AA are also described. Several important issues regarding the clinical use of MSCs are discussed finally. With evolving knowledge from basic studies and clinical applications, we anticipate that more patients with the disease can benefit from the therapeutic effects of MSCs in the near future.
Collapse
|
3
|
Soh KVQY, Hwang WYK. Optimizing Blood Stem Cell Transplants Through Cellular Engineering. BLOOD CELL THERAPY 2022; 5:1-15. [PMID: 36714264 PMCID: PMC9847292 DOI: 10.31547/bct-2021-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/11/2021] [Indexed: 02/01/2023]
Abstract
Haematopoietic stem cell transplants (HSCT) are used in the treatment of blood cancers, autoimmune diseases, and metabolic disorders. Over 1.5 million transplants have been performed around the world thus far. In an attempt to enhance the efficacy of the cells used for transplantation, efforts are underway to use cellular engineering to increase cell numbers through: (1) the expansion of hematopoietic stem and progenitor cells (HSPC); (2) cellular subset selection to remove cells that cause graft-versus-host disease (GvHD), while adding back cells, which can mediate anti-tumor and anti-viral immunity; (3) the use of immune regulatory cells, such as mesenchymal stromal cells (MSC) and regulatory T cells (Tregs) to control GvHD; (4) the use of immune effector cells to mount immunological control of tumor cells before, after, or independent of blood stem cell transplants.
Collapse
Affiliation(s)
- Krystal Valerie Qian Ying Soh
- National Cancer Centre Singapore, Singapore, SG 169610,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, SG
| | - William Ying Khee Hwang
- National Cancer Centre Singapore, Singapore, SG 169610,Singapore General Hospital, Singapore, SG,Duke-NUS Medical School Singapore, Singapore, SG
| |
Collapse
|
4
|
Lan Y, Liu F, Chang L, Liu L, Zhang Y, Yi M, Cai Y, Feng J, Han Z, Han Z, Zhu X. Combination of umbilical cord mesenchymal stem cells and standard immunosuppressive regimen for pediatric patients with severe aplastic anemia. BMC Pediatr 2021; 21:102. [PMID: 33639900 PMCID: PMC7912947 DOI: 10.1186/s12887-021-02562-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Defects of bone marrow mesenchymal stem cells (BM-MSCs) in proliferation and differentiation are involved in the pathophysiology of aplastic anemia (AA). Infusion of umbilical cord mesenchymal stem cells (UC-MSCs) may improve the efficacy of immunosuppressive therapy (IST) in childhood severe aplastic anemia (SAA). METHODS We conducted an investigator-initiated, open-label, and prospective phase IV trial to evaluate the safety and efficacy of combination of allogenic UC-MSCs and standard IST for pediatric patients with newly diagnosed SAA. In mesenchymal stem cells (MSC) group, UC-MSCs were injected intravenously at a dose of 1 × 106/kg per week starting on the 14th day after administration of rabbit antithymocyte globulin (ATG), for a total of 3 weeks. The clinical outcomes and adverse events of patients with UC-MSCs infusion were assessed when compared with a concurrent control group in which patients received standard IST alone. RESULTS Nine patients with a median age of 4 years were enrolled as the group with MSC, while the data of another 9 childhood SAA were analysed as the controls. Four (44%) patients in MSC group developed anaphylactic reactions which were associated with rabbit ATG. When compared with the controls, neither the improvement of blood cell counts, nor the change of T-lymphocytes after IST reached statistical significance in MSC group (both p > 0.05) and there were one (11%) patient in MSC group and two (22%) patients in the controls achieved partial response (PR) at 90 days after IST. After a median follow-up of 48 months, there was no clone evolution occurring in both groups. The 4-year estimated overall survival (OS) rate in two groups were both 88.9% ± 10.5%, while the 4-year estimated failure-free survival (FFS) rate in MSC group was lower than that in the controls (38.1% ± 17.2% vs. 66.7% ± 15.7%, p = 0.153). CONCLUSIONS Concomitant use of IST and UC-MSCs in SAA children is safe but may not necessarily improve the early response rate and long-term outcomes. This clinical trial was registered at ClinicalTrials.gov, identifier: NCT02218437 (registered October 2013).
Collapse
Affiliation(s)
- Yang Lan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Fang Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Lixian Chang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Lipeng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yingchi Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Meihui Yi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Yuli Cai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Jing Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China
| | - Zhibo Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China.,National Engineering Research Center of Cell Products, Tianjin AmCellGene Engineering Co., Ltd, Tianjin, 300020, China
| | - Zhongchao Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China.,National Engineering Research Center of Cell Products, Tianjin AmCellGene Engineering Co., Ltd, Tianjin, 300020, China
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Heping District, Tianjin, 300020, China.
| |
Collapse
|
5
|
Therapeutic Potential of Mesenchymal Stromal Cells and Extracellular Vesicles in the Treatment of Radiation Lesions-A Review. Cells 2021; 10:cells10020427. [PMID: 33670501 PMCID: PMC7922519 DOI: 10.3390/cells10020427] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022] Open
Abstract
Ionising radiation-induced normal tissue damage is a major concern in clinic and public health. It is the most limiting factor in radiotherapy treatment of malignant diseases. It can also cause a serious harm to populations exposed to accidental radiation exposure or nuclear warfare. With regard to the clinical use of radiation, there has been a number of modalities used in the field of radiotherapy. These includes physical modalities such modified collimators or fractionation schedules in radiotherapy. In addition, there are a number of pharmacological agents such as essential fatty acids, vasoactive drugs, enzyme inhibitors, antioxidants, and growth factors for the prevention or treatment of radiation lesions in general. However, at present, there is no standard procedure for the treatment of radiation-induced normal tissue lesions. Stem cells and their role in tissue regeneration have been known to biologists, in particular to radiobiologists, for many years. It was only recently that the potential of stem cells was studied in the treatment of radiation lesions. Stem cells, immediately after their successful isolation from a variety of animal and human tissues, demonstrated their likely application in the treatment of various diseases. This paper describes the types and origin of stem cells, their characteristics, current research, and reviews their potential in the treatment and regeneration of radiation induced normal tissue lesions. Adult stem cells, among those mesenchymal stem cells (MSCs), are the most extensively studied of stem cells. This review focuses on the effects of MSCs in the treatment of radiation lesions.
Collapse
|
6
|
Lu S, Qiao X. Single-cell profiles of human bone marrow-derived mesenchymal stromal cells after IFN-γ and TNF-α licensing. Gene 2020; 771:145347. [PMID: 33333228 DOI: 10.1016/j.gene.2020.145347] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/12/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Pre-licensing mesenchymal stromal cells (MSCs) with IFN-γ and TNF-α can empower their immune fate and induce a more effective immune regulation. However, the cellular heterogeneity of MSCs limits our understanding of this inflammatory licensing. METHODS The publicly available Gene Expression Omnibus single-cell RNA sequencing (scRNA-seq) data of human bone marrow-derived MSCs with or without IFN-γ and TNF-α licensing were analyzed. Based on the scRNA-seq data and related marker genes, the cell-cycle, stemness, differentiative potencies, and immunomodulate capability of unlicensed and licensed MSCs were compared. RESULTS After removing low-quality cells and regressing out the ribosomal gene effects, high-quality data reflecting IFN-γ and TNF-α effect on MSCs were chosen for further analysis. Despite the heterogeneity, pre-licensing didn't influence the cell-cycle and stemness of human bone marrow-derived MSCs. The osteogenesis potencies were decreased, the chondrogenesis potencies were increased while the adipogenesis potencies were stable in licensed MSCs. Licensed MSCs also showed more effective immunomodulate capability including expression of related chemokines, cytokines, surface molecules, and receptors. CONCLUSION Collectively, our study showed the expression profiles of human bone marrow-derived unlicensed and licensed MSCs about the cell cycle, stemness, differentiative potencies, and immunomodulate capability at single-cell resolution, which may help the comprehensive understanding about the inflammatory licensing of human bone marrow-derived MSCs and their further clinical application.
Collapse
Affiliation(s)
- Shuanglong Lu
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China
| | - Xiaohong Qiao
- Department of Pediatrics, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, China.
| |
Collapse
|
7
|
Critchley HOD, Babayev E, Bulun SE, Clark S, Garcia-Grau I, Gregersen PK, Kilcoyne A, Kim JYJ, Lavender M, Marsh EE, Matteson KA, Maybin JA, Metz CN, Moreno I, Silk K, Sommer M, Simon C, Tariyal R, Taylor HS, Wagner GP, Griffith LG. Menstruation: science and society. Am J Obstet Gynecol 2020; 223:624-664. [PMID: 32707266 PMCID: PMC7661839 DOI: 10.1016/j.ajog.2020.06.004] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/13/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Women's health concerns are generally underrepresented in basic and translational research, but reproductive health in particular has been hampered by a lack of understanding of basic uterine and menstrual physiology. Menstrual health is an integral part of overall health because between menarche and menopause, most women menstruate. Yet for tens of millions of women around the world, menstruation regularly and often catastrophically disrupts their physical, mental, and social well-being. Enhancing our understanding of the underlying phenomena involved in menstruation, abnormal uterine bleeding, and other menstruation-related disorders will move us closer to the goal of personalized care. Furthermore, a deeper mechanistic understanding of menstruation-a fast, scarless healing process in healthy individuals-will likely yield insights into a myriad of other diseases involving regulation of vascular function locally and systemically. We also recognize that many women now delay pregnancy and that there is an increasing desire for fertility and uterine preservation. In September 2018, the Gynecologic Health and Disease Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development convened a 2-day meeting, "Menstruation: Science and Society" with an aim to "identify gaps and opportunities in menstruation science and to raise awareness of the need for more research in this field." Experts in fields ranging from the evolutionary role of menstruation to basic endometrial biology (including omic analysis of the endometrium, stem cells and tissue engineering of the endometrium, endometrial microbiome, and abnormal uterine bleeding and fibroids) and translational medicine (imaging and sampling modalities, patient-focused analysis of menstrual disorders including abnormal uterine bleeding, smart technologies or applications and mobile health platforms) to societal challenges in health literacy and dissemination frameworks across different economic and cultural landscapes shared current state-of-the-art and future vision, incorporating the patient voice at the launch of the meeting. Here, we provide an enhanced meeting report with extensive up-to-date (as of submission) context, capturing the spectrum from how the basic processes of menstruation commence in response to progesterone withdrawal, through the role of tissue-resident and circulating stem and progenitor cells in monthly regeneration-and current gaps in knowledge on how dysregulation leads to abnormal uterine bleeding and other menstruation-related disorders such as adenomyosis, endometriosis, and fibroids-to the clinical challenges in diagnostics, treatment, and patient and societal education. We conclude with an overview of how the global agenda concerning menstruation, and specifically menstrual health and hygiene, are gaining momentum, ranging from increasing investment in addressing menstruation-related barriers facing girls in schools in low- to middle-income countries to the more recent "menstrual equity" and "period poverty" movements spreading across high-income countries.
Collapse
Affiliation(s)
- Hilary O D Critchley
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom.
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Iolanda Garcia-Grau
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
| | - Peter K Gregersen
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | | | | | | | - Erica E Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI
| | - Kristen A Matteson
- Division of Research, Department of Obstetrics and Gynecology, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jacqueline A Maybin
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, United Kingdom
| | - Christine N Metz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY
| | - Inmaculada Moreno
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain
| | - Kami Silk
- Department of Communication, University of Delaware, Newark, DE
| | - Marni Sommer
- Department of Sociomedical Sciences, Columbia University Mailman School of Public Health, New York, NY
| | - Carlos Simon
- Igenomix Foundation-Instituto de Investigación Sanitaria Hospital Clínico, INCLIVA, Valencia, Spain; Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain; Beth Israel Deaconess Medical Center, Harvard University, Boston, MA; Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | | | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Department of Obstetrics, Gynecology and Reproductive Sciences, Systems Biology Institute, Yale University, New Haven, CT; Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI
| | - Linda G Griffith
- Center for Gynepathology Research, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
8
|
Current insights into the treatments of severe aplastic anemia in China. Int J Hematol 2020; 112:292-299. [PMID: 32748215 DOI: 10.1007/s12185-020-02955-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 06/28/2020] [Accepted: 07/22/2020] [Indexed: 01/23/2023]
Abstract
Recently, several studies have been conducted to generate considerable evidence regarding unique treatments for severe aplastic anemia (SAA) in China. Haploidentical donor hematopoietic stem cell transplantation (HID-HSCT) showed an overall survival rate (80.3-86.1%) comparable to those with immunosuppressive therapy (IST) and matched related donor (MRD)- and matched unrelated donor (MUD)-HSCT. Failure-free survival of HID-HSCT was also comparable (76.4-85.0%) to those of MRD- and MUD-HSCT and better than IST in patients < 40 years. Although these results are promising, HID-HSCT should be regarded as a salvage therapy when young patients fail to respond to IST. Porcine anti-human lymphocyte immunoglobulin (pALG) showed similar or superior overall response at 6 months compared to rabbit anti-human thymocyte immunoglobulin (rATG) (64.0-79.4% in the pALG-group vs.48.1-64.7% in the rATG-group) as a first-line IST. Promising hematological response (28.4-33.3%) was observed in patients with refractory AA following infusion of the mesenchymal stromal cells (MSCs) derived from the bone marrow of allogeneic donors. pALG can replace rATG as an immunosuppressive drug and MSCs infusion can be used as a second-line treatment for refractory SAA. We believe that this review contributes to refine the global practices for SAA treatment.
Collapse
|
9
|
Chen L, Li Y, Chen W, Han N, Li K, Guo R, Liu Z, Xiao Y. Enhanced recruitment and hematopoietic reconstitution of bone marrow-derived mesenchymal stem cells in bone marrow failure by the SDF-1/CXCR4. J Tissue Eng Regen Med 2020; 14:1250-1260. [PMID: 32633015 DOI: 10.1002/term.3096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Aplastic anemia (AA) is a bone marrow failure disease. It is difficult to treat AA, and in addition, relapses are common because of its complex disease pathogenesis. Allogeneic bone marrow-derived mesenchymal stem cells (BMSCs) infusion is an effective and safe treatment option for the AA patients. However, it found that BMSCs infusion in AA patients is less than 30% effective. Therefore, the key to improve the efficacy of BMSCs treatment in these patients is to enhance their homing efficiency to the target sites. Studies have shown that stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays an important role in promoting BMSCs homing. In this study, human BMSCs were transduced with lentivirus stably expressing CXCR4-BMSCs. Transduced BMSCs resemble normal BMSCs in many ways. Migration ability of CXCR4-BMSCs toward SDF-1 was increased because of the overexpression of CXCR4. In the mice with bone marrow failure, the migration and colonization ability of CXCR4-BMSCs to the bone marrow was significantly improved as seen by IVIS imaging and FACS. The SDF-1 level in the bone marrow failure mice was significantly higher than in the normal mice. Thus, from our study, it is clear that after CXCR4-BMSCs were infused into mice with bone marrow failure, SDF-1 interacted with CXCR4 receptor, leading cells to migrate and colonize to bone marrow. Because of the high SDF-1 expression in mouse bone marrow and CXCR4 receptor expression in cells, BMSCs homing was increased.
Collapse
Affiliation(s)
- Lixuan Chen
- Department of Hematology, Jiangmen Central Hospital, Jiangmen, China
| | - Yonghua Li
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.,The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Wancheng Chen
- Department of Hematology, Jiangmen Central Hospital, Jiangmen, China
| | - Na Han
- Department of Hematology, General Hospital of Southern Theatre Command of PLA, Guangzhou, China
| | - Keke Li
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Zenghui Liu
- Department of Hematology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Xiao
- Department of Hematology, Jiangmen Central Hospital, Jiangmen, China.,Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Zhao MY, Fu YW, Wang Q, Ai H, Wang YQ, Zhou J, Fang BJ, Wei XD, Song YP. [The role of mesenchymal stem cells in allogeneic hematopoietic stem cell transplantation for patients with refractory severe aplastic anemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:726-731. [PMID: 31648472 PMCID: PMC7342447 DOI: 10.3760/cma.j.issn.0253-2727.2019.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 01/03/2023]
Abstract
Objective: To evaluate the efficacy and safety of mesenchymal stem cells in allogeneic hematopoietic stem cell transplantation for patients with refractory severe aplastic anemia (R-SAA) . Method: The clinical data of 25 R-SAA patients receiving co-transplantation of mesenchymal stem cells combined with peripheral blood stem cells from sibling donors (10 cases) and unrelated donors (15 cases) from March 2010 to July 2018 in Zhengzhou University Affiliated Tumor Hospital were retrospectively analyzed. Antithymocyte globulin (ATG) treatment was ineffective/relapsed in 11 cases, and cyclosporine (CsA) treatment ineffective/relapsed in 14 cases. Results: There were 13 male and 12 female among these patients. One patient had a primary graft failure, one patient had a poorly engraftment of platelets, and the remaining 23 patients achieved hematopoietic engraftment. The median time of granulocyte engraftment was 12.5 (10-23) days and 15 (11-25) days for megakaryocyte. Incidences of grade Ⅰ/Ⅱ acute graft-versus-host disease (aGVHD) and chronic graft-versus-host disease (cGVHD) were 37.5% (9/24) and 21.7% (5/23) , respectively. There was no severe GVHD and no severe complications that related to transplantation. 21 of 25 (84%) patients were alive with a median follow-up of 22.9 (1.6-107.8) months. The 5-year overall survival rate after transplantation was (83.6±7.5) %. Conclusion: The combination of mesenchymal stem cells is reliable and safe in the treatment of R-SAA in peripheral blood stem cell transplantation of unrelated donors and sibling donors, which could significantly reduce the incidence of GVHD and severe transplantation-related complications.
Collapse
Affiliation(s)
- M Y Zhao
- Haematology Department of the Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Medinger M, Drexler B, Lengerke C, Passweg J. Pathogenesis of Acquired Aplastic Anemia and the Role of the Bone Marrow Microenvironment. Front Oncol 2018; 8:587. [PMID: 30568919 PMCID: PMC6290278 DOI: 10.3389/fonc.2018.00587] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Aplastic anemia (AA) is characterized by bone marrow (BM) hypocellularity, resulting in peripheral cytopenias. An antigen-driven and likely auto-immune dysregulated T-cell homeostasis results in hematopoietic stem cell injury, which ultimately leads to the pathogenesis of the acquired form of this disease. Auto-immune and inflammatory processes further influence the disease course as well as response rate to therapy, mainly consisting of intensive immunosuppressive therapy and allogeneic hematopoietic cell transplantation. Bone marrow hematopoietic stem and progenitor cells are strongly regulated by the crosstalk with the surrounding microenvironment and its components like mesenchymal stromal cells, also consistently altered in AA. Whether latter is a contributing cause or rather consequence of the disease remains an open question. Overall, niche disruption may contribute to disease progression, sustain pancytopenia and promote clonal evolution. Here we review the existing knowledge on BM microenvironmental changes in acquired AA and discuss their relevance for the pathogenesis and therapy.
Collapse
Affiliation(s)
- Michael Medinger
- Division of Internal Medicine, Department of Medicine, University Hospital Basel, Basel, Switzerland.,Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Beatrice Drexler
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Claudia Lengerke
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| | - Jakob Passweg
- Division of Hematology, Department of Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
12
|
Moradi SL, Golchin A, Hajishafieeha Z, Khani M, Ardeshirylajimi A. Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds. J Cell Physiol 2018; 233:6509-6522. [DOI: 10.1002/jcp.26606] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sadegh L. Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Hajishafieeha
- Department of Microbiology Qazvin University of Medical Sciences Qazvin Iran
| | - Mohammad‐Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Edward A. Doisy Department of Biochemistry and Molecular Biology Saint Louis University School of Medicine Saint Louis MO
| |
Collapse
|
13
|
Han N, Xiao Y. [Research status and application prospect of mesenchymal stem cells in hematological diseases]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:346-349. [PMID: 29779338 PMCID: PMC7342131 DOI: 10.3760/cma.j.issn.0253-2727.2018.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Y Xiao
- Department of Hematology, Guangzhou General Hospital of Guangzhou Military Command of PLA, Southern Medical University, Guangdong 510010, China
| |
Collapse
|
14
|
Broglie L, Margolis D, Medin JA. Yin and Yang of mesenchymal stem cells and aplastic anemia. World J Stem Cells 2017; 9:219-226. [PMID: 29321823 PMCID: PMC5746642 DOI: 10.4252/wjsc.v9.i12.219] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/14/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023] Open
Abstract
Acquired aplastic anemia (AA) is a bone marrow failure syndrome characterized by peripheral cytopenias and bone marrow hypoplasia. It is ultimately fatal without treatment, most commonly from infection or hemorrhage. Current treatments focus on suppressing immune-mediated destruction of bone marrow stem cells or replacing hematopoietic stem cells (HSCs) by transplantation. Our incomplete understanding of the pathogenesis of AA has limited development of targeted treatment options. Mesenchymal stem cells (MSCs) play a vital role in HSC proliferation; they also modulate immune responses and maintain an environment supportive of hematopoiesis. Some of the observed clinical manifestations of AA can be explained by mesenchymal dysfunction. MSC infusions have been shown to be safe and may offer new approaches for the treatment of this disorder. Indeed, infusions of MSCs may help suppress auto-reactive, T-cell mediated HSC destruction and help restore an environment that supports hematopoiesis. Small pilot studies using MSCs as monotherapy or as adjuncts to HSC transplantation have been attempted as treatments for AA. Here we review the current understanding of the pathogenesis of AA and the function of MSCs, and suggest that MSCs should be a target for further research and clinical trials in this disorder.
Collapse
Affiliation(s)
- Larisa Broglie
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - David Margolis
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Jeffrey A Medin
- Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| |
Collapse
|
15
|
Mesenchymal Stem Cell Benefits Observed in Bone Marrow Failure and Acquired Aplastic Anemia. Stem Cells Int 2017; 2017:8076529. [PMID: 29333168 PMCID: PMC5733198 DOI: 10.1155/2017/8076529] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/15/2017] [Accepted: 09/10/2017] [Indexed: 12/16/2022] Open
Abstract
Acquired aplastic anemia (AA) is a type of bone marrow failure (BMF) syndrome characterized by partial or total bone marrow (BM) destruction resulting in peripheral blood (PB) pancytopenia, which is the reduction in the number of red blood cells (RBC) and white blood cells (WBC), as well as platelets (PLT). The first-line treatment option of AA is given by hematopoietic stem cell (HSCs) transplant and/or immunosuppressive (IS) drug administration. Some patients did not respond to the treatment and remain pancytopenic following IS drugs. The studies are in progress to test the efficacy of adoptive cellular therapies as mesenchymal stem cells (MSCs), which confer low immunogenicity and are reliable allogeneic transplants in refractory severe aplastic anemia (SAA) cases. Moreover, bone marrow stromal cells (BMSC) constitute an essential component of the hematopoietic niche, responsible for stimulating and enhancing the proliferation of HSCs by secreting regulatory molecules and cytokines, providing stimulus to natural BM microenvironment for hematopoiesis. This review summarizes scientific evidences of the hematopoiesis improvements after MSC transplant, observed in acquired AA/BMF animal models as well as in patients with acquired AA. Additionally, we discuss the direct and indirect contribution of MSCs to the pathogenesis of acquired AA.
Collapse
|