1
|
Muntiu A, Papait A, Vincenzoni F, Rossetti DV, Romele P, Cargnoni A, Silini A, Parolini O, Desiderio C. Proteomic analysis of the human amniotic mesenchymal stromal cell secretome by integrated approaches via filter-aided sample preparation. J Proteomics 2025; 310:105339. [PMID: 39448028 DOI: 10.1016/j.jprot.2024.105339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The immunomodulatory, anti-inflammatory and regenerative properties of the human amniotic mesenchymal stromal cells (hAMSCs) secretome are acknowledged but the understanding of the specific bioactive components remains incomplete. To address these limitations, the present investigation aimed to profile the proteins and peptides content of the hAMSC secretome through sample pretreatment and fractionation on 10 kDa molecular cut-off FASP (Filter Aided Sample Preparation) device and LC-MS analysis. The filter retained protein fraction underwent trypsin digestion, while the unretained was collected unchanged for intact small proteins and peptides analysis. This combined approach (C-FASP) collects in a single step two complementary fractions, advantageously saving sample volume and time of analysis. The bottom-up analysis of the C-FASP proteins fraction >10 kDa confirmed our previous findings, establishing a set of proteins consistently characterizing the hAMSC secretome. The analysis of the fraction <10 kDa, never been investigated to our knowledge, identified peptide fragments of thymosin beta 4 and beta 10, collagen alpha 1 chains I and III, alpha-enolase, and glyceraldehyde-3-phosphate dehydrogenase, involved in wound healing, anti-inflammatory response, tissue repair and regeneration, key biological activities of the secretome. C-FASP provided a comprehensive molecular profile of the hAMSC secretome offering new insights for enhanced therapeutic applications in regenerative medicine. SIGNIFICANCE: In this investigation we originally present the comprehensive proteomic investigation of the human amniotic mesenchymal stromal cell secretome by combining the analysis of the proteome and of the peptidome following sample pretreatment and fractionation by Filter Aided Sample Preparation (FASP) with 10 kDa molecular cut-off in coupling with LC-MS analysis. The proteome fraction retained by FASP filter was analyzed after enzymatic digestion, while the unretained fraction, below 10 kDa molecular mass, was analyzed unchanged in its intact form. This dual approach provides novel insights, previously unexplored, into the molecular components potentially responsible for the immunomodulatory and anti-inflammatory properties of the hAMSC secretome. These findings could significantly enhance the therapeutic potential of hAMSCs in regenerative medicine.
Collapse
Affiliation(s)
- Alexandra Muntiu
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Andrea Papait
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Rome, Italy
| | - Federica Vincenzoni
- Fondazione Policlinico Universitario "Agostino Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Rome, Italy; Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Diana Valeria Rossetti
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Pietro Romele
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Anna Cargnoni
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Antonietta Silini
- Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
| | - Ornella Parolini
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Rome, Italy
| | - Claudia Desiderio
- Istituto di Scienze e Tecnologie Chimiche (SCITEC) "Giulio Natta", Consiglio Nazionale delle Ricerche, Rome, Italy.
| |
Collapse
|
2
|
Manabe N, Hoshino Y, Himaki T, Sakaguchi K, Matsumoto S, Yamamoto T, Murase T. Lysate of bovine adipose-derived stem cells accelerates in-vitro development and increases cryotolerance through reduced content of lipid in the in vitro fertilized embryos. Biochem Biophys Res Commun 2024; 735:150834. [PMID: 39427378 DOI: 10.1016/j.bbrc.2024.150834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Mesenchymal stem cells such as adipose-derived stem cells (ADSCs) are known to secrete factors that stimulate cell division and promote regeneration in neighboring cells. While conditioned medium from stem cells has been used in blastocyst production, no studies have examined the use of cell lysates. In this study we investigated the effects of adding ADSC lysate to in vitro culture (IVC) medium. ADSCs and fibroblasts were isolated from bovine adipose tissue and auricular tissue, respectively, and their lysates were prepared by freeze-thaw disruption. ADSC lysate was added to synthetic oviductal fluid medium. The effects on cleavage, blastocyst development rates, cell numbers, cryotolerance, gene expression (POU5F1, BAX, IGF1R, IGF2R, SOD2), lipid content, and membrane integrity were evaluated according to the experimental design. In Expt. 1, the comparison involved adding ADSC or fibroblast lysate alongside the control group. The total blastocyst rate increased when ADSC lysate was introduced (ADSCs: 40.1 %, fibroblasts: 33.1 %, control: 27.3 %). However, there were no significant differences in the number of trophoblast cells or in the inner cell mass. Experiment 2 confirmed that this increase in blastocyst development was not due to the solvent, PBS(-). In Expt. 3, addition of 10 % fetal calf serum (FCS) or ADSC lysate increased the total blastocyst rate compared to the control (control, 26.2 %; 10 % FCS, 43.4 %; 1 % ADSC lysate, 34.2 %; 10 % ADSC lysate, 48.1 %). After freezing and thawing, the survival and hatching rates of embryos with FCS were significantly lower than those of the control as well as those with added ADSC lysate. In Expt. 4, the addition of ADSC lysate or FCS had no significant effect on gene expression in blastocysts compared to control. However, the addition of FCS significantly increased the gray intensity, indicating higher lipid content compared to the control, with a significant increase in the number of dead cells in the blastocyst. These results indicate that the addition of ADSC lysate to the IVC medium accelerates bovine blastocyst development and that its 10 % addition, corresponding to 1 × 105 cells/mL, is as effective as 10 % FCS without a decrease in cryotolerance due to the increased lipid content.
Collapse
Affiliation(s)
- Noriyoshi Manabe
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Department of Dairy Research Center, Gifu Prefectural Livestock Research Institute, Ena, Gifu, 509-7601, Japan
| | - Yoichiro Hoshino
- Kyoto University Livestock Farm, Graduate School of Agriculture, Kyoto University, Funai, Kyoto, 622-0203, Japan
| | - Takehiro Himaki
- Laboratory of Animal Developmental Engineering, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan
| | - Kenichiro Sakaguchi
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, 501-1193, Japan
| | - Seiji Matsumoto
- Headquarters for Research Promotion, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan
| | - Tokunori Yamamoto
- Clinical Research Support Center, Asahikawa Medical University Hospital, Asahikawa Medical University, Asahikawa, Hokkaido, 078-8510, Japan; Department of Urology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, 466-8550, Japan
| | - Tetsuma Murase
- Laboratory of Veterinary Theriogenology, Joint Graduate School of Veterinary Sciences, Gifu University, Gifu, 501-1193, Japan; Laboratory of Veterinary Theriogenology, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1193, Japan.
| |
Collapse
|
3
|
Ma Z, Liu T, Liu L, Pei Y, Wang T, Wang Z, Guan Y, Zhang X, Zhang Y, Chen X. Epidermal Neural Crest Stem Cell Conditioned Medium Enhances Spinal Cord Injury Recovery via PI3K/AKT-Mediated Neuronal Apoptosis Suppression. Neurochem Res 2024; 49:2854-2870. [PMID: 39023805 PMCID: PMC11365850 DOI: 10.1007/s11064-024-04207-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
This study aimed to assess the impact of conditioned medium from epidermal neural crest stem cells (EPI-NCSCs-CM) on functional recovery following spinal cord injury (SCI), while also exploring the involvement of the PI3K-AKT signaling pathway in regulating neuronal apoptosis. EPI-NCSCs were isolated from 10-day-old Sprague-Dawley rats and cultured for 48 h to obtain EPI-NCSC-CM. SHSY-5Y cells were subjected with H2O2 treatment to induce apoptosis. Cell viability and survival rates were evaluated using the CCK-8 assay and calcein-AM/PI staining. SCI contusion model was established in adult Sprague-Dawley rats to assess functional recovery, utilizing the Basso, Beattie and Bresnahan (BBB) scoring system, inclined test, and footprint observation. Neurological restoration after SCI was analyzed through electrophysiological recordings. Histological analysis included hematoxylin and eosin (H&E) staining and Nissl staining to evaluate tissue organization. Apoptosis and oxidative stress levels were assessed using TUNEL staining and ROS detection methods. Additionally, western blotting was performed to examine the expression of apoptotic markers and proteins related to the PI3K/AKT signaling pathway. EPI-NCSC-CM significantly facilitated functional and histological recovery in SCI rats by inhibiting neuronal apoptosis through modulation of the PI3K/AKT pathway. Administration of EPI-NCSCs-CM alleviated H2O2-induced neurotoxicity in SHSY-5Y cells in vitro. The use of LY294002, a PI3K inhibitor, underscored the crucial role of the PI3K/AKT signaling pathway in regulating neuronal apoptosis. This study contributes to the ongoing exploration of molecular pathways involved in spinal cord injury (SCI) repair, focusing on the therapeutic potential of EPI-NCSC-CM. The research findings indicate that EPI-NCSC-CM exerts a neuroprotective effect by suppressing neuronal apoptosis through activation of the PI3K/AKT pathway in SCI rats. These results highlight the promising role of EPI-NCSC-CM as a potential treatment strategy for SCI, emphasizing the significance of the PI3K/AKT pathway in mediating its beneficial effects.
Collapse
Affiliation(s)
- Ziqian Ma
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, 8 Workers Stadium South Road, Chaoyang District, Beijing, China
| | - Tao Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Tianyi Wang
- Department of Orthopedics, 981st Hospital of the Chinese People's Liberation Army Joint Logistics Support Force, Chengde, 067000, Hebei Province, P.R. China
| | - Zhijie Wang
- Department of Pediatric Internal Medicine, Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurological Surgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinwei Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Xueming Chen
- Department of Orthopedics Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
4
|
Samiminemati A, Aprile D, Siniscalco D, Di Bernardo G. Methods to Investigate the Secretome of Senescent Cells. Methods Protoc 2024; 7:52. [PMID: 39051266 PMCID: PMC11270363 DOI: 10.3390/mps7040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
The word "secretome" was first used to describe the proteins that cells secrete under different circumstances; however, recent studies have proven the existence of other molecules such as RNA and chemical compounds in the secretome. The study of secretome has significance for the diagnosis and treatment of disease as it provides insight into cellular functions, including immune responses, development, and homeostasis. By halting cell division, cellular senescence plays a role in both cancer defense and aging by secreting substances known as senescence-associated secretory phenotypes (SASP). A variety of techniques could be used to analyze the secretome: protein-based approaches like mass spectrometry and protein microarrays, nucleic acid-based methods like RNA sequencing, microarrays, and in silico prediction. Each method offers unique advantages and limitations in characterizing secreted molecules. Top-down and bottom-up strategies for thorough secretome analysis are became possible by mass spectrometry. Understanding cellular function, disease causes, and proper treatment targets is aided by these methodologies. Their approaches, benefits, and drawbacks will all be discussed in this review.
Collapse
Affiliation(s)
- Afshin Samiminemati
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Domenico Aprile
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Dario Siniscalco
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Biotechnology, and Molecular Biology Section, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (A.S.); (D.A.); (D.S.)
- Sbarro Health Research Organization, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
Margiana R, Pilehvar Y, Amalia FL, Lestari SW, Supardi S, I'tishom R. Mesenchymal stem cell secretome: A promising therapeutic strategy for erectile dysfunction? Asian J Urol 2024; 11:391-405. [PMID: 39139521 PMCID: PMC11318444 DOI: 10.1016/j.ajur.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/06/2023] [Indexed: 08/15/2024] Open
Abstract
Objective The secretome, comprising bioactive chemicals released by mesenchymal stem cells (MSCs), holds therapeutic promise in regenerative medicine. This review aimed to explore the therapeutic potential of the MSC secretome in regenerative urology, particularly for treating erectile dysfunction (ED), and to provide an overview of preclinical and clinical research on MSCs in ED treatment and subsequently to highlight the rationales, mechanisms, preclinical investigations, and therapeutic potential of the MSC secretome in this context. Methods The review incorporated an analysis of preclinical and clinical research involving MSCs in the treatment of ED. Subsequently, it delved into the existing knowledge regarding the MSC secretome, exploring its therapeutic potential. The methods included a comprehensive examination of relevant literature to discern the processes underlying the therapeutic efficacy of the MSC secretome. Results Preclinical research indicated the effectiveness of the MSC secretome in treating various models of ED. However, the precise mechanisms of its therapeutic efficacy remain unknown. The review provided insights into the anti-inflammatory, pro-angiogenic, and trophic properties of the MSC secretome. It also discussed potential advantages, such as avoiding issues related to cellular therapy, including immunogenicity, neoplastic transformation, and cost. Conclusion This review underscores the significant therapeutic potential of the MSC secretome in regenerative urology, particularly for ED treatment. While preclinical studies demonstrate promising outcomes, further research is essential to elucidate the specific mechanisms underlying the therapeutic efficacy before clinical application. The review concludes by discussing future perspectives and highlighting the challenges associated with the clinical translation of the MSC secretome in regenerative urology.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Fatkhurrohmah L. Amalia
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
- Dr. Kariadi Hospital, Semarang, Indonesia
| | - Silvia W. Lestari
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Indonesia General Academic Hospital, Depok, Indonesia
- Ciptomangunkusumo General Academic Hospital, Jakarta, Indonesia
- Department of Medical Biology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Supardi Supardi
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Reny I'tishom
- Andrology Program, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Science, Faculty of Medicine, Universitas Airlangga Surabaya, Indonesia
| |
Collapse
|
6
|
Rybachuk O, Nesterenko Y, Zhovannyk V. Modern advances in spinal cord regeneration: hydrogel combined with neural stem cells. Front Pharmacol 2024; 15:1419797. [PMID: 38994202 PMCID: PMC11236698 DOI: 10.3389/fphar.2024.1419797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Severe spinal cord injuries (SCI) lead to loss of functional activity of the body below the injury site, affect a person's ability to self-care and have a direct impact on performance. Due to the structural features and functional role of the spinal cord in the body, the consequences of SCI cannot be completely overcome at the expense of endogenous regenerative potential and, developing over time, lead to severe complications years after injury. Thus, the primary task of this type of injury treatment is to create artificial conditions for the regenerative growth of damaged nerve fibers through the area of the SCI. Solving this problem is possible using tissue neuroengineering involving the technology of replacing the natural tissue environment with synthetic matrices (for example, hydrogels) in combination with stem cells, in particular, neural/progenitor stem cells (NSPCs). This approach can provide maximum stimulation and support for the regenerative growth of axons of damaged neurons and their myelination. In this review, we consider the currently available options for improving the condition after SCI (use of NSC transplantation or/and replacement of the damaged area of the SCI with a matrix, specifically a hydrogel). We emphasise the expediency and effectiveness of the hydrogel matrix + NSCs complex system used for the reconstruction of spinal cord tissue after injury. Since such a complex approach (a combination of tissue engineering and cell therapy), in our opinion, allows not only to creation of conditions for supporting endogenous regeneration or mechanical reconstruction of the spinal cord, but also to strengthen endogenous regeneration, prevent the spread of the inflammatory process, and promote the restoration of lost reflex, motor and sensory functions of the injured area of spinal cord.
Collapse
Affiliation(s)
- Oksana Rybachuk
- Bogomoletz Institute of Physiology NAS of Ukraine, Kyiv, Ukraine
- Institute of Genetic and Regenerative Medicine, M. D. Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
7
|
Pokorska J, Sawicki S, Gabryś J, Kułaj D, Bauer EA, Lenart-Boroń A, Bulanda K, Kuchta-Gładysz M, Grzesiakowska A, Kemilew J, Barton PM, Lasek O, Bugno-Poniewierska M. The use of stem cells in the treatment of mastitis in dairy cows. Sci Rep 2024; 14:10349. [PMID: 38710789 DOI: 10.1038/s41598-024-61051-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.
Collapse
Affiliation(s)
- Joanna Pokorska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Sebastian Sawicki
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Julia Gabryś
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Dominika Kułaj
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Edyta Agnieszka Bauer
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Lenart-Boroń
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Klaudia Bulanda
- Department of Microbiology and Biomonitoring, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Marta Kuchta-Gładysz
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Anna Grzesiakowska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Jerzy Kemilew
- "Kemilew Stem Cells for Animals" Company, Warsaw, Poland
| | - Patryk Mikołaj Barton
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
- Kietrz Agricultural Combine LLC, ul. Zatorze 2, 48-130, Kietrz, Poland
| | - Olga Lasek
- Department of Animal Nutrition, Biotechnology, and Fisheries, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
8
|
Alipanah-Moghadam R, Khodaei M, Aghamohammadi V, Malekzadeh V, Afrouz M, Nemati A, Zahedian H. Andrographolide induced heme oxygenase-1 expression in MSC-like cells isolated from rat bone marrow exposed to environmental stress. Biochem Biophys Res Commun 2023; 687:149212. [PMID: 37944470 DOI: 10.1016/j.bbrc.2023.149212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/29/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Mesenchymal stem cells (MSC-like cells) are the most important stem cells that are used in transplantation clinically in various applications. The survival rate of MSC-like cells is strongly reduced due to adverse conditions in the microenvironment of transplantation, including environmental stress. Heme oxygenase-1 (HO-1) is a member of the heat shock protein, as well as a stress-induced enzyme, present throughout the body. The present study was conducted to investigate the effect of andrographolide, an active derivative from andrographolide paniculate, on HO-1 expression in mesenchymal stem cells derived from rat bone marrow. MATERIALS AND METHODS The rat bone marrow-derived mesenchymal stem cells (BMSC-like cells) were extracted and proliferated in several passages. The identity of MSC-like cells was confirmed by morphological observations and differential tests. The flow cytometry method was used to verify the MSC-specific markers. Isolated MSC-like cells were treated with different concentrations of andrographolide and then exposed to environmental stress. Cell viability was assessed using the MTT colorimetric assay. A real-time PCR technique was employed to evaluate the expression level of HO-1 in the treated MSC-like cells. RESULTS Isolated MSC-like cells demonstrated fibroblast-like morphology. These cells in different culture mediums differentiated into osteocytes and adipocytes and were identified using alizarin red and oil red staining, respectively. As well, MSC-like cells were verified by the detection of CD105 surface antigen and the absence of CD14 and CD45 antigens. The results of the MTT assay showed that the pre-treatment of MSC-like cells with andrographolide concentration independently increased the viability and resistance of these cells to environmental stress caused by hydrogen peroxide and serum deprivation (SD). Real-time PCR findings indicated a significant increase in HO-1 gene expression in the andrographolide-receiving groups (p < 0.01). CONCLUSION Our results suggest that andrographolide creates a promising strategy for enhancing the quality of cell therapy by increasing the resistance of MSC-like cells to environmental stress and inducing the expression of HO-1.
Collapse
Affiliation(s)
- Reza Alipanah-Moghadam
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Maryam Khodaei
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran.
| | | | - Vadoud Malekzadeh
- Department of Anatomical Sciences, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Afrouz
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Iran.
| | - Ali Nemati
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hoda Zahedian
- Department of Deutsch-Sprachen, Volkshochschule, Gütersloh, Germany
| |
Collapse
|
9
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
10
|
Székiová E, Michalová Z, Blaško J, Mucha R, Slovinská L, Kello M, Vanický I. Characterisation of mesenchymal stem cells conditioned media obtained at different conditioning times: their effect on glial cells in in vitro scratch model. Growth Factors 2023; 41:57-70. [PMID: 36825505 DOI: 10.1080/08977194.2023.2182145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
In this study, the bone marrow mesenchymal stem cells conditioned media (BMMSC-CM) obtained by conditioning for 24(CM24), 48(CM48) and 72(CM72) hours was characterised. In vitro, the impact of BMMSC-CM on the astrocyte migratory response and oligodendrocyte density was evaluated using the scratch model. The proteomic profiles of individual secretomes were analysed by mass spectrometry and the concentrations of four selected neurotrophins (BDNF, NGF, GDNF and VEGF) were determined by ELISA. Our results revealed an increased number of proteins at CM72, many of which are involved in neuroregenerative processes. ELISA documented a gradual increase in the concentration of two neurotrophins (NGF, VEGF), peaking at CM72. In vitro, the different effect of individual BMMSC-CM on astrocyte migration response and oligodendrocyte density was observed, most pronounced with CM72. The outcomes demonstrate that the prolonged conditioning results in increased release of detectable proteins, neurotrophic factors concentration and stronger effect on reparative processes in neural cell cultures.
Collapse
Affiliation(s)
- Eva Székiová
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Zuzana Michalová
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Juraj Blaško
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Rastislav Mucha
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| | - Lucia Slovinská
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
- Associated Tissue Bank, P. J. Šafárik University and L. Pasteur University Hospital, Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, P. J. Šafárik University, Košice, Slovakia
| | - Ivo Vanický
- Department of Regenerative Medicine and Cell Therapy, Institute of Neurobiology Biomedical Research Center, Slovak Academy of Sciences, Košice, Slovakia
| |
Collapse
|
11
|
Fan M, Shi H, Yao H, Wang W, Zhang Y, Jiang C, Lin R. BMSCs Promote Differentiation of Enteric Neural Precursor Cells to Maintain Neuronal Homeostasis in Mice With Enteric Nerve Injury. Cell Mol Gastroenterol Hepatol 2022; 15:511-531. [PMID: 36343901 PMCID: PMC9880979 DOI: 10.1016/j.jcmgh.2022.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND & AIMS Our previous study showed that transplantation of bone marrow-derived mesenchymal stem cells (BMSCs) promoted functional enteric nerve regeneration in denervated mice but not through direct transdifferentiation. Homeostasis of the adult enteric nervous system (ENS) is maintained by enteric neural precursor cells (ENPCs). Whether ENPCs are a source of regenerated nerves in denervated mice remains unknown. METHODS Genetically engineered mice were used as recipients, and ENPCs were traced during enteric nerve regeneration. The mice were treated with benzalkonium chloride to establish a denervation model and then transplanted with BMSCs 3 days later. After 28 days, the gastric motility and ENS regeneration were analyzed. The interaction between BMSCs and ENPCs in vitro was further assessed. RESULTS Twenty-eight days after transplantation, gastric motility recovery (gastric emptying capacity, P < .01; gastric contractility, P < .01) and ENS regeneration (neurons, P < .01; glial cells, P < .001) were promoted in BMSCs transplantation groups compared with non-transplanted groups in denervated mice. More importantly, we found that ENPCs could differentiate into enteric neurons and glial cells in denervated mice after BMSCs transplantation, and the proportion of Nestin+/Ngfr+ cells differentiated into neurons was significantly higher than that of Nestin+ cells. A small number of BMSCs located in the myenteric plexus differentiated into glial cells. In vitro, glial cell-derived neurotrophic factor (GDNF) from BMSCs promotes the migration, proliferation, and differentiation of ENPCs. CONCLUSIONS In the case of enteric nerve injury, ENPCs can differentiate into enteric neurons and glial cells to promote ENS repair and gastric motility recovery after BMSCs transplantation. BMSCs expressing GDNF enhance the migration, proliferation, and differentiation of ENPCs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong Lin
- Correspondence Address correspondence to: Rong Lin, MD, PhD, Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
12
|
Ojeda-Hernández DD, Hernández-Sapiéns MA, Reza-Zaldívar EE, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Mateos-Díaz JC, Gómez-Pinedo U, Sancho-Bielsa F. Exosomes and Biomaterials: In Search of a New Therapeutic Strategy for Multiple Sclerosis. Life (Basel) 2022; 12:1417. [PMID: 36143453 PMCID: PMC9504193 DOI: 10.3390/life12091417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023] Open
Abstract
Current efforts to find novel treatments that counteract multiple sclerosis (MS) have pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising potential to achieve this purpose. However, disadvantages such as poor survival, differentiation, and integration into the target tissue have limited its application. A series of recent studies have focused on the cell secretome, showing it to provide the most benefits of cell therapy. Exosomes are a key component of the cell secretome, participating in the transfer of bioactive molecules. These nano-sized vesicles offer many therapeutical advantages, such as the capacity to cross the blood-brain barrier, an enrichable cargo, and a customizable membrane. Moreover, integrating of biomaterials into exosome therapy could lead to new tissue-specific therapeutic strategies. In this work, the use of exosomes and their integration with biomaterials is presented as a novel strategy in the treatment of MS.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes A. Hernández-Sapiéns
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Edwin E. Reza-Zaldívar
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Jordi A. Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Sancho-Bielsa
- Área de Fisiología, Departamento de Ciencias Médicas, Facultad de Medicina de Ciudad Real, UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
13
|
Miceli M, Maruotti GM, Sarno L, Carbone L, Guida M, Pelagalli A. Preliminary Characterization of the Epigenetic Modulation in the Human Mesenchymal Stem Cells during Chondrogenic Process. Int J Mol Sci 2022; 23:9870. [PMID: 36077266 PMCID: PMC9456537 DOI: 10.3390/ijms23179870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Regenerative medicine represents a growing hot topic in biomedical sciences, aiming at setting out novel therapeutic strategies to repair or regenerate damaged tissues and organs. For this perspective, human mesenchymal stem cells (hMSCs) play a key role in tissue regeneration, having the potential to differentiate into many cell types, including chondrocytes. Accordingly, in the last few years, researchers have focused on several in vitro strategies to optimize hMSC differentiation protocols, including those relying on epigenetic manipulations that, in turn, lead to the modulation of gene expression patterns. Therefore, in the present study, we investigated the role of the class II histone deacetylase (HDAC) inhibitor, MC1568, in the hMSCs-derived chondrogenesis. The hMSCs we used for this work were the hMSCs obtained from the amniotic fluid, given their greater differentiation capacity. Our preliminary data documented that MC1568 drove both the improvement and acceleration of hMSCs chondrogenic differentiation in vitro, since the differentiation process in MC1568-treated cells took place in about seven days, much less than that normally observed, namely 21 days. Collectively, these preliminary data might shed light on the validity of such a new differentiative protocol, in order to better assess the potential role of the epigenetic modulation in the process of the hypertrophic cartilage formation, which represents the starting point for endochondral ossification.
Collapse
Affiliation(s)
- Marco Miceli
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Giuseppe Maria Maruotti
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Laura Sarno
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Luigi Carbone
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Maurizio Guida
- Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
14
|
Ren G, Peng Q, Fink T, Zachar V, Porsborg SR. Potency assays for human adipose-derived stem cells as a medicinal product toward wound healing. Stem Cell Res Ther 2022; 13:249. [PMID: 35690872 PMCID: PMC9188073 DOI: 10.1186/s13287-022-02928-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/29/2022] [Indexed: 11/18/2022] Open
Abstract
In pre-clinical studies, human adipose-derived stem cells (hASCs) have shown great promise as a treatment modality for healing of cutaneous wounds. The advantages of hASCs are that they are relatively easy to obtain in large numbers from basic liposuctions, they maintain their characteristics after long-term in vitro culture, and they possess low immunogenicity, which enables the use of hASCs from random donors. It has been hypothesized that hASCs exert their wound healing properties by reducing inflammation, inducing angiogenesis, and promoting fibroblast and keratinocyte growth. Due to the inherent variability associated with the donor-dependent nature of ASC-based products, it appears necessary that the quality of the different products is prospectively certified using a set of most relevant potency assays. In this review, we present an overview of the available methodologies to assess the Mode and the Mechanism of Action of hASCs, specifically in the wound healing scenario. In conclusion, we propose a panel of potential potency assays to include in the future production of ASC-based medicinal products.
Collapse
Affiliation(s)
- Guoqiang Ren
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Qiuyue Peng
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Trine Fink
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Vladimir Zachar
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark
| | - Simone Riis Porsborg
- Regenerative Medicine Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 3B, 9220, Aalborg, Denmark.
| |
Collapse
|
15
|
Kim JH, Yang H, Kim MW, Cho KS, Kim DS, Yim HE, Atala Z, Ko IK, Yoo JJ. The Delivery of the Recombinant Protein Cocktail Identified by Stem Cell-Derived Secretome Analysis Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury. Front Bioeng Biotechnol 2022; 10:848679. [PMID: 35646873 PMCID: PMC9130839 DOI: 10.3389/fbioe.2022.848679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in cell therapy have shown the potential to treat kidney diseases. As the treatment effects of the cell therapies are mainly attributed to secretomes released from the transplanted cells, the delivery of secretomes or conditioned medium (CM) has emerged as a promising treatment option for kidney disease. We previously demonstrated that the controlled delivery of human placental stem cells (hPSC)-derived CM using platelet-rich plasma (PRP) ameliorated renal damages and restored kidney function in an acute kidney injury (AKI) model in rats. The proteomics study of the hPSC-CM revealed that hPSC secrets several proteins that contribute to kidney tissue repair. Based on our results, this study proposed that the proteins expressed in the hPSC-CM and effective for kidney repair could be used as a recombinant protein cocktail to treat kidney diseases as an alternative to CM. In this study, we analyzed the secretome profile of hPSC-CM and identified five proteins (follistatin, uPAR, ANGPLT4, HGF, VEGF) that promote kidney repair. We investigated the feasibility of delivering the recombinant protein cocktail to improve structural and functional recovery after AKI. The pro-proliferative and anti-apoptotic effects of the protein cocktail on renal cells are demonstrated in vitro and in vivo. The intrarenal delivery of these proteins with PRP ameliorates the renal tubular damage and improved renal function in the AKI-induced rats, yielding similar therapeutic effects compared to the CM delivery. These results indicate that our strategy may provide a therapeutic solution to many challenges associated with kidney repair resulting from the lack of suitable off-the-shelf regenerative medicine products.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Heejo Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kang Su Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Pediatrics, Korea University College of Medicine, Seoul, South Korea
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
16
|
Arifka M, Wilar G, Elamin KM, Wathoni N. Polymeric Hydrogels as Mesenchymal Stem Cell Secretome Delivery System in Biomedical Applications. Polymers (Basel) 2022; 14:polym14061218. [PMID: 35335547 PMCID: PMC8955913 DOI: 10.3390/polym14061218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Secretomes of mesenchymal stem cells (MSCs) have been successfully studied in preclinical models for several biomedical applications, including tissue engineering, drug delivery, and cancer therapy. Hydrogels are known to imitate a three-dimensional extracellular matrix to offer a friendly environment for stem cells; therefore, hydrogels can be used as scaffolds for tissue construction, to control the distribution of bioactive compounds in tissues, and as a secretome-producing MSC culture media. The administration of a polymeric hydrogel-based MSC secretome has been shown to overcome the fast clearance of the target tissue. In vitro studies confirm the bioactivity of the secretome encapsulated in the gel, allowing for a controlled and sustained release process. The findings reveal that the feasibility of polymeric hydrogels as MSC -secretome delivery systems had a positive influence on the pace of tissue and organ regeneration, as well as an enhanced secretome production. In this review, we discuss the widely used polymeric hydrogels and their advantages as MSC secretome delivery systems in biomedical applications.
Collapse
Affiliation(s)
- Mia Arifka
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
| | - Khaled M. Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia;
- Correspondence: ; Tel.: +62-22-842-888-888
| |
Collapse
|
17
|
Harness EM, Mohamad-Fauzi N, Murray JD. MSC therapy in livestock models. Transl Anim Sci 2022; 6:txac012. [PMID: 35356233 PMCID: PMC8962450 DOI: 10.1093/tas/txac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/24/2022] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great value as therapeutic tools in a wide array of applications in regenerative medicine. The wide repertoire of cell functions regarding tissue regeneration, immunomodulation, and antimicrobial activity makes MSC-based therapy a strong candidate for treatment options in a variety of clinical conditions and should be studied to expand the current breadth of knowledge surrounding their physiological properties and therapeutic benefits. Livestock models are an appropriate resource for testing the efficacy of MSC therapies for their use in biomedical research and can be used to improve both human health and animal agriculture. Agricultural animal models such as pigs, cattle, sheep, and goats have grown in popularity for in vivo research relative to small animal models due to their overlapping similarities in structure and function that more closely mimic the human body. Cutaneous wound healing, bone regeneration, osteoarthritis, ischemic reperfusion injury, and mastitis recovery represent a few examples of the types of disease states that may be investigated in livestock using MSC-based therapy. Although the cost of agricultural animals is greater than small animal models, the information gained using livestock as a model holds great value for human applications, and in some cases, outcompetes the weight of information gained from rodent models. With emerging fields such as exosome-based therapy, proper in vivo models will be needed for testing efficacy and translational practice, i.e., livestock models should be strongly considered as candidates. The potential for capitalizing on areas that have crossover benefits for both agricultural economic gain and improved health of the animals while minimizing the gap between translational research and clinical practice are what make livestock great choices for experimental MSC models.
Collapse
Affiliation(s)
- E M Harness
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
| | - N Mohamad-Fauzi
- Institute of Biological Sciences, Faculty of Science
- Institute of Ocean and Earth Sciences, Institute for Advanced Studies, Universiti Malaya, Kuala Lumpur, MALAYSIA
| | - J D Murray
- Department of Animal Science, University of California, Davis, One Shields Ave, Davis, CA, USA
- Department of Population Health and Reproduction, University of California, Davis, One Shields Ave, Davis, CA, USA
| |
Collapse
|
18
|
Huang J, U KP, Yang F, Ji Z, Lin J, Weng Z, Tsang LL, Merson TD, Ruan YC, Wan C, Li G, Jiang X. Human pluripotent stem cell-derived ectomesenchymal stromal cells promote more robust functional recovery than umbilical cord-derived mesenchymal stromal cells after hypoxic-ischaemic brain damage. Am J Cancer Res 2022; 12:143-166. [PMID: 34987639 PMCID: PMC8690936 DOI: 10.7150/thno.57234] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Aims: Hypoxic-ischaemic encephalopathy (HIE) is one of the most serious complications in neonates and infants. Mesenchymal stromal cell (MSC)-based therapy is emerging as a promising treatment avenue for HIE. However, despite its enormous potential, the clinical application of MSCs is limited by cell heterogeneity, low isolation efficiency and unpredictable effectiveness. In this study, we examined the therapeutic effects and underlying mechanisms of human pluripotent stem cell-derived ectomesenchymal stromal cells (hPSC-EMSCs) in a rat model of HIE. Methods: hPSC-EMSCs were induced from either human embryonic stem cells or induced pluripotent stem cells. Stem cells or the conditioned medium (CM) derived from stem cells were delivered intracranially or intranasally to neonatal rats with HIE. Human umbilical cord-derived MSCs (hUC-MSCs) were used as the therapeutic comparison control and phosphate-buffered saline (PBS) was used as a negative control. Lesion size, apoptosis, neurogenesis, astrogliosis and microgliosis were evaluated. The rotarod test and Morris water maze were used to determine brain functional recovery. The PC-12 cell line, rat primary cortical neurons and neural progenitor cells were used to evaluate neurite outgrowth and the neuroprotective and neurogenesis effects of hPSC-EMSCs/hUC-MSCs. RNA-seq and enzyme-linked immunosorbent assays were used to determine the secretory factors that were differentially expressed between hPSC-EMSCs and hUC-MSCs. The activation and suppression of extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) were characterised using western blotting and immunofluorescent staining. Results: hPSC-EMSCs showed a higher neuroprotective potential than hUC-MSCs, as demonstrated by a more significant reduction in lesion size and apoptosis in the rat brain following hypoxia-ischaemia (HI). Compared with PBS treatment, hPSC-EMSCs promoted endogenous neurogenesis and alleviated astrogliosis and microgliosis. hPSC-EMSCs were more effective than hUC-MSCs. hPSC-EMSCs achieved a greater recovery of brain function than hUC-MSCs and PBS in rats with HIE. CM derived from hPSC-EMSCs had neuroprotective and neurorestorative effects in vitro through anti-apoptotic and neurite outgrowth- and neurogenesis-promoting effects. Direct comparisons between hPSC-EMSCs and hUC-MSCs revealed the significant enrichment of a group of secretory factors in hPSC-EMSCs, including nerve growth factor (NGF), platelet-derived growth factor-AA and transforming growth factor-β2, which are involved in neurogenesis, synaptic transmission and neurotransmitter transport, respectively. Mechanistically, the CM derived from hPSC-EMSCs was found to potentiate NGF-induced neurite outgrowth and the neuronal differentiation of NPCs via the ERK/CREB pathway. Suppression of ERK or CREB abolished CM-potentiated neuritogenesis and neuronal differentiation. Finally, intranasal delivery of the CM derived from hPSC-EMSCs significantly reduced brain lesion size, promoted endogenous neurogenesis, mitigated inflammatory responses and improved functional recovery in rats with HIE. Conclusion: hPSC-EMSCs promote functional recovery after HI through multifaceted neuromodulatory activities via paracrine/trophic mechanisms. We propose the use of hPSC-EMSCs for the treatment of HIE, as they offer an excellent unlimited cellular source of MSCs.
Collapse
|
19
|
A Retrospective Study of SVF-gel Compared With Nanofat Combined With High-density Fat in the Treatment of Early Periorbital Aging. Ophthalmic Plast Reconstr Surg 2021; 38:340-347. [PMID: 34889312 DOI: 10.1097/iop.0000000000002103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the effectiveness of transplantation with stromal vascular fraction (SVF)-gel or nanofat combined with high-density fat prepared with the Coleman technique (nanofat+high-density fat) to restore volume in the periorbital region or for periorbital rejuvenation in early periorbital aging. METHODS This retrospective study included 103 patients who received a transplant of SVF-gel (n = 58) or nanofat+high-density fat (n = 45) to restore volume in the periorbital region (n = 85) or for periorbital rejuvenation (n = 18) in our hospital between January 2016 and January 2020. Patient satisfaction and the reoperation rate were evaluated. RESULTS All patients had improved periorbital contouring and augmentation. Among the patients that received treatment to restore volume in the periorbital region, 17% and 65.9% of patients administered SVF-gel were very satisfied or satisfied, and 5.3% and 44.7% of patients administered nanofat+high-density fat were very satisfied or satisfied. PATIENTS administered SVF-gel were significantly more satisfied than patients administered nanofat+high-density fat with improvements in periorbital contouring (p < 0.05). Among the patients that received treatment for periorbital rejuvenation, 54.5% and 27.3% of patients administered SVF-gel were very satisfied or satisfied, and 28.6% and 42.8% of patients administered nanofat+high-density fat were very satisfied or satisfied. There was no significant difference between groups (p > 0.05). Some patients underwent a second operation after 3 to 8 months. Patients administered SVF-gel to restore volume in the periorbital region had a significantly lower reoperation rate than patients administered nanofat+high-density fat (12.7% [6/47] vs. 34.2% [13/38]; p < 0.05). There was no significant difference in the reoperation rate in patients treated for periorbital rejuvenation (9.1% [1/11] vs. 14.3% [1/7]; p > 0.05). CONCLUSION SVF-gel and nanofat+high-density fat are effective for restoring volume in the periorbital region and for periorbital rejuvenation in early periorbital aging. The reoperation rate was significantly lower and patient satisfaction scores were significantly higher in patients administered SVF-gel to restore volume in the periorbital region compared with patients administered nanofat+high-density fat.
Collapse
|
20
|
Assunção Silva RC, Pinto L, Salgado AJ. Cell transplantation and secretome based approaches in spinal cord injury regenerative medicine. Med Res Rev 2021; 42:850-896. [PMID: 34783046 DOI: 10.1002/med.21865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/12/2021] [Accepted: 10/07/2021] [Indexed: 01/01/2023]
Abstract
The axonal growth-restrictive character of traumatic spinal cord injury (SCI) makes finding a therapeutic strategy a very demanding task, due to the postinjury events impeditive to spontaneous axonal outgrowth and regeneration. Considering SCI pathophysiology complexity, it has been suggested that an effective therapy should tackle all the SCI-related aspects and provide sensory and motor improvement to SCI patients. Thus, the current aim of any therapeutic approach for SCI relies in providing neuroprotection and support neuroregeneration. Acknowledging the current SCI treatment paradigm, cell transplantation is one of the most explored approaches for SCI with mesenchymal stem cells (MSCs) being in the forefront of many of these. Studies showing the beneficial effects of MSC transplantation after SCI have been proposing a paracrine action of these cells on the injured tissues, through the secretion of protective and trophic factors, rather than attributing it to the action of cells itself. This manuscript provides detailed information on the most recent data regarding the neuroregenerative effect of the secretome of MSCs as a cell-free based therapy for SCI. The main challenge of any strategy proposed for SCI treatment relies in obtaining robust preclinical evidence from in vitro and in vivo models, before moving to the clinics, so we have specifically focused on the available vertebrate and mammal models of SCI currently used in research and how can SCI field benefit from them.
Collapse
Affiliation(s)
- Rita C Assunção Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal.,BnML, Behavioral and Molecular Lab, Braga, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's e PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
21
|
The secretome of mesenchymal stem cells and oxidative stress: challenges and opportunities in cell-free regenerative medicine. Mol Biol Rep 2021; 48:5607-5619. [PMID: 34191238 DOI: 10.1007/s11033-021-06360-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022]
Abstract
Over the last decade, mesenchymal stem cells (MSCs) have been considered a suitable source for cell-based therapy, especially in regenerative medicine. First, the efficacy and functions of MSCs in clinical applications have been attributed to their differentiation ability, called homing and differentiation. However, it has recently been confirmed that MSCs mostly exert their therapeutic effects through soluble paracrine bioactive factors and extracellular vesicles, especially secretome. These secreted components play critical roles in modulating immune responses, improving the survival, and increasing the regeneration of damaged tissues. The secretome content of MSCs is variable under different conditions. Oxidative stress (OS) is one of these conditions that is highly important in MSC therapy and regenerative medicine. High levels of reactive oxygen species (ROS) are produced during isolation, cell culture, and transplantation lead to OS, which induces cell death and apoptosis and limits the efficacy of their regeneration capability. In turn, the preconditioning of MSCs in OS conditions contributes to the secretion of several proteins, cytokines, growth factors, and exosomes, which can improve the antioxidant potential of MSCs against OS. This potential of MSC secretome has turned it into a new promising cell-free tissue regeneration strategy.This review provides a view of MSC secretome under OS conditions, focusing on different secretome contents of MSCs and thier possible therapeutic potential against cell therapy.
Collapse
|
22
|
Rettinger CL, Kaini RR, Burke TA, Wang HC. Neurotrophic Factors Secreted by Induced Pluripotent Stem Cell-Derived Retinal Progenitors Promote Retinal Survival and Preservation in an Adult Porcine Neuroretina Model. J Ocul Pharmacol Ther 2021; 37:301-312. [PMID: 33661042 DOI: 10.1089/jop.2020.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Paracrine factors released by pluripotent stem cells have shown great potential as therapeutic agents in regenerative medicine. The purpose of this study was to characterize trophic factor secretion of retinal progenitor cells (RPCs) derived from human induced pluripotent stem cells (iPSCs) and to assess its impact on retinal survival ex vivo. Methods: RPCs were generated from human 3D1 iPSCs following previously established protocols with modifications. Conditioned medium (CM) was harvested from iPSC-derived retinal progenitors and analyzed for trophic factor composition through multiplex enzyme-linked immunosorbent assay. Retina-preserving capability of the collected CM was examined using a degenerative porcine neuroretina model. Viability of the CM-treated retina explants was evaluated using the resazurin-based PrestoBlue reagent, whereas the lactate dehydrogenase (LDH) assay was used to assess retinal cytotoxicity. Retina explants were also analyzed morphologically through immunohistochemistry for glial cell activation and apoptosis. Results: We have successfully generated and characterized iPSC-derived RPCs that secreted an array of neuroprotective factors, including osteopontin, hepatocyte growth factor, stromal cell-derived factor 1, and insulin-like growth factor-1. Retina explants cultured in CM derived from iPSC-RPCs (iPSC-RPC-CM) showed better preservation of the retinal microarchitecture and fewer terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)+ nuclei, and reduced reactive gliosis. Furthermore, we saw a reduction in extracellular LDH levels in CM-treated retina explants, which also exhibited higher metabolic activity than the untreated controls. Conclusions: iPSC-derived RPCs secrete many trophic factors that have been shown to promote neuroprotection, tissue repair, and regeneration in the retina. Overall, we have demonstrated the neuroprotective effects of iPSC-RPC-CM through a degenerative neuroretina model ex vivo.
Collapse
Affiliation(s)
- Christina L Rettinger
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Ramesh R Kaini
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Teresa A Burke
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Heuy-Ching Wang
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| |
Collapse
|
23
|
Nakamura R, Nakajima D, Sato H, Endo Y, Ohara O, Kawashima Y. A Simple Method for In-Depth Proteome Analysis of Mammalian Cell Culture Conditioned Media Containing Fetal Bovine Serum. Int J Mol Sci 2021; 22:ijms22052565. [PMID: 33806404 PMCID: PMC7961985 DOI: 10.3390/ijms22052565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/02/2022] Open
Abstract
A conditioned medium of a cell culture is widely used for various biological applications and frequently analyzed to characterize the functional proteins responsible for observed biological functions. However, a large number of abundant proteins in fetal bovine serum (FBS), usually included in the conditioned medium of a mammalian cell culture medium, hampers in-depth proteomic analysis by liquid chromatography–tandem mass spectrometry (LC-MS/MS). For a deep proteomic analysis of a conditioned medium by LC-MS/MS, we developed a simple albumin depletion approach coupled with data-independent acquisition (DIA)-mode LC-MS/MS for the conditioned medium of mammalian cells in this study. The results showed that this approach enabled the detection of more than 3700 cell-derived proteins in the cell culture supernatant containing FBS. We further demonstrated the potency of this approach by analyzing proteins in the conditioned media of HeLa cells with and without tumor necrosis factor (TNF) stimulation: >40 differentially accumulated proteins, including four cytokines, upon TNF stimulation were identified in the culture media, which were hardly detected by conventional proteome approaches in the literature.
Collapse
Affiliation(s)
- Ren Nakamura
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; (R.N.); (D.N.); (H.S.); (O.O.)
| | - Daisuke Nakajima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; (R.N.); (D.N.); (H.S.); (O.O.)
| | - Hironori Sato
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; (R.N.); (D.N.); (H.S.); (O.O.)
| | - Yusuke Endo
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan;
| | - Osamu Ohara
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; (R.N.); (D.N.); (H.S.); (O.O.)
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan; (R.N.); (D.N.); (H.S.); (O.O.)
- Correspondence: ; Tel.: +81-438-52-3580
| |
Collapse
|
24
|
Ramalingam M, Jang S, Jeong HS. Neural-Induced Human Adipose Tissue-Derived Stem Cells Conditioned Medium Ameliorates Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2021; 22:2322. [PMID: 33652595 PMCID: PMC7956615 DOI: 10.3390/ijms22052322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different biological signaling pathways. In this study, we evaluated the therapeutic role of NI-hADSC-conditioned medium (NI-hADSC-CM) in rotenone (ROT)-induced toxicity in SH-SY5Y cells. Increasing concentrations of ROT led to decreased cell survival at 24 and 48 h in a dose- and time-dependent manner. Treatment of NI-hADSC-CM (50% dilution in DMEM) against ROT (0.5 μM) significantly increased the cell survival. ROT toxicity decreased the expression of tyrosine hydroxylase (TH). Western blot analysis of the Triton X-100-soluble fraction revealed that ROT significantly decreased the oligomeric, dimeric, and monomeric phosphorylated Serine129 (p-S129) α-syn, as well as the total monomeric α-syn expression levels. ROT toxicity increased the oligomeric, but decreased the dimeric and monomeric p-S129 α-syn expression levels. Total α-syn expression (in all forms) was increased in the Triton X-100-insoluble fraction, compared to the control. NI-hADSC-CM treatment enhanced the TH expression, stabilized α-syn monomers, reduced the levels of toxic insoluble p-S129 α-syn, improved the expression of neuronal functional proteins, regulated the Bax/Bcl-2 ratio, and upregulated the expression of pro-caspases, along with PARP-1 inactivation. Moreover, hADSC-CM treatment decreased the cell numbers and have no effect against ROT toxicity on SH-SY5Y cells. The therapeutic effects of NI-hADSC-CM was higher than the beneficial effects of hADSC-CM on cellular signaling. From these results, we conclude that NI-hADSC-CM exerts neuroregenerative effects on ROT-induced PD-like impairments in SH-SY5Y cells.
Collapse
Affiliation(s)
- Mahesh Ramalingam
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
| | - Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
| |
Collapse
|
25
|
Dabrowska S, Andrzejewska A, Janowski M, Lukomska B. Immunomodulatory and Regenerative Effects of Mesenchymal Stem Cells and Extracellular Vesicles: Therapeutic Outlook for Inflammatory and Degenerative Diseases. Front Immunol 2021; 11:591065. [PMID: 33613514 PMCID: PMC7893976 DOI: 10.3389/fimmu.2020.591065] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are non-hematopoietic, multipotent stem cells derived from mesoderm, which can be easily isolated from many sources such as bone marrow, umbilical cord or adipose tissue. MSCs provide support for hematopoietic stem cells and have an ability to differentiate into multiple cell lines. Moreover, they have proangiogenic, protective and immunomodulatory properties. MSCs have the capacity to modulate both innate and adaptive immune responses, which accompany many diseases, by inhibiting pro-inflammatory reactions and stimulating anti-inflammatory activity. Recent findings revealed that the positive effect of MSCs is at least partly associated with the production of extracellular vesicles (EVs). EVs are small membrane structures, containing proteins, lipids and nuclei acids, which take part in intra-cellular communication. Many studies indicate that EVs contain protective and pro-regenerative properties and can modulate an immune response that is activated in various diseases such as CNS diseases, myocardial infarction, liver injury, lung diseases, ulcerative colitis or kidney injury. Thus, EVs have similar functions as their cells of origin and since they do not carry the risk of cell transplantation, such as tumor formation or small vessel blockage, they can be considered a potential therapeutic tool for cell-free therapy.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland.,University of Maryland School of Medicine, Baltimore, MD, United States.,Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, Warsaw, Poland
| |
Collapse
|
26
|
Červenka J, Tylečková J, Kupcová Skalníková H, Vodičková Kepková K, Poliakh I, Valeková I, Pfeiferová L, Kolář M, Vaškovičová M, Pánková T, Vodička P. Proteomic Characterization of Human Neural Stem Cells and Their Secretome During in vitro Differentiation. Front Cell Neurosci 2021; 14:612560. [PMID: 33584205 PMCID: PMC7876319 DOI: 10.3389/fncel.2020.612560] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Cell therapies represent a promising approach to slow down the progression of currently untreatable neurodegenerative diseases (e.g., Alzheimer's and Parkinson's disease or amyotrophic lateral sclerosis), as well as to support the reconstruction of functional neural circuits after spinal cord injuries. In such therapies, the grafted cells could either functionally integrate into the damaged tissue, partially replacing dead or damaged cells, modulate inflammatory reaction, reduce tissue damage, or support neuronal survival by secretion of cytokines, growth, and trophic factors. Comprehensive characterization of cells and their proliferative potential, differentiation status, and population purity before transplantation is crucial to preventing safety risks, e.g., a tumorous growth due to the proliferation of undifferentiated stem cells. We characterized changes in the proteome and secretome of human neural stem cells (NSCs) during their spontaneous (EGF/FGF2 withdrawal) differentiation and differentiation with trophic support by BDNF/GDNF supplementation. We used LC-MS/MS in SWATH-MS mode for global cellular proteome profiling and quantified almost three thousand cellular proteins. Our analysis identified substantial protein differences in the early stages of NSC differentiation with more than a third of all the proteins regulated (including known neuronal and NSC multipotency markers) and revealed that the BDNF/GDNF support affected more the later stages of the NSC differentiation. Among the pathways identified as activated during both spontaneous and BDNF/GDNF differentiation were the HIF-1 signaling pathway, Wnt signaling pathway, and VEGF signaling pathway. Our follow-up secretome analysis using Luminex multiplex immunoassay revealed significant changes in the secretion of VEGF and IL-6 during NSC differentiation. Our results further demonstrated an increased expression of neuropilin-1 as well as catenin β-1, both known to participate in the regulation of VEGF signaling, and showed that VEGF-A isoform 121 (VEGF121), in particular, induces proliferation and supports survival of differentiating cells.
Collapse
Affiliation(s)
- Jakub Červenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jiřina Tylečková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Helena Kupcová Skalníková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Kateřina Vodičková Kepková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Ievgeniia Poliakh
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Ivona Valeková
- Laboratory of Cell Regeneration and Plasticity, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Lucie Pfeiferová
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.,Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague, Czechia
| | - Michal Kolář
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Michaela Vaškovičová
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia.,Laboratory of DNA Integrity, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| | - Tereza Pánková
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia.,Department of Cell Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Petr Vodička
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czechia
| |
Collapse
|
27
|
Meng X, Gao X, Chen X, Yu J. Umbilical cord-derived mesenchymal stem cells exert anti-fibrotic action on hypertrophic scar-derived fibroblasts in co-culture by inhibiting the activation of the TGF β1/Smad3 pathway. Exp Ther Med 2021; 21:210. [PMID: 33574910 PMCID: PMC7818529 DOI: 10.3892/etm.2021.9642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
A hypertrophic scar (HS) is a severe fibrotic skin disease that causes disfigurement and deformity. It occurs after deep cutaneous injury and presents a major clinical challenge. The present study aimed to evaluate the effects of umbilical cord-derived mesenchymal stem cells (UCMSCs) on hypertrophic scar fibroblasts (HSFs), one of the main effector cells for HS formation, in a co-culture system and to investigate the potential underlying molecular mechanism. Cultured HSFs were divided into control and co-culture groups. The proliferation ability of HSFs was evaluated using cell counting kit-8 and the percentage of Ki67-positive fibroblasts was assessed by immunofluorescence. The apoptosis of HSFs was determined using a TUNEL assay and by assessing the expression of capase-3 via western blotting. A scratch wound healing assay was employed to examine the migration of HSFs. The expression levels of HS-associated genes (collagen type Iα 2 chain, collagen type IIIα 1 chain and actin α 2 smooth muscle) and proteins (collagen I, collagen III and α-smooth muscle actin) were measured by reverse transcription-quantitative PCR (RT-qPCR) and western blotting, respectively, to assess the pro-fibrotic phenotype of HSFs. The modulation of the transforming growth factor β1 (TGF β1)/Smad3 pathway in HSFs was evaluated by measuring the protein levels of TGF β1, Smad3 and phosphorylated Smad3 using western blotting, and the mRNA levels of TGFβ1 and several other target genes (cellular communication network factor 2, metalloproteinase inhibitor 1 and periostin) were measured by RT-qPCR. The proliferative and migratory ability of co-cultured HSFs was suppressed compared with controls, and no significant difference in apoptosis was observed between the two groups. The pro-fibrotic phenotype of co-cultured HSFs was inhibited due to a decline in expression levels of HS-associated genes and proteins. Furthermore, co-culture with UCMSCs inhibited the activation of the TGF β1/Smad3 pathway. In conclusion, the present study indicated that UCMSCs may exert an anti-fibrotic action on HSFs in co-culture through inhibition of the TGF β1/Smad3 pathway, which suggests a potential use for UCMSCs in HS therapy.
Collapse
Affiliation(s)
- Xianglong Meng
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xinxin Gao
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Xinxin Chen
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Jiaao Yu
- Department of Burns Surgery, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
28
|
Abreu de Melo MI, da Silva Cunha P, Coutinho de Miranda M, Faraco CCF, Barbosa JL, da Fonseca Ferreira A, Kunrath Lima M, Faria JAQA, Rodrigues MÂ, de Goes AM, Gomes DA. Human adipose-derived stromal/stem cells are distinct from dermal fibroblasts as evaluated by biological characterization and RNA sequencing. Cell Biochem Funct 2021; 39:442-454. [PMID: 33389760 DOI: 10.1002/cbf.3610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/27/2020] [Accepted: 12/13/2020] [Indexed: 01/08/2023]
Abstract
Human adipose-derived stromal/stem cells (ASC) have immunomodulatory properties and the potential to differentiate into several cell lines, important for application in regenerative medicine. However, the contamination with dermal fibroblasts (FIB) can impair the beneficial effects of ASC in cell therapy. It is then essential to develop new strategies that contribute to the distinction between these two cell types. In this study, we performed functional assays, high-throughput RNA sequencing (RNA-Seq) and quantitative PCR (qPCR) to find new markers that can distinguish ASC and FIB. We showed that ASC have adipogenic and osteogenic differentiation capacity and alkaline phosphatase activity, not observed in FIB. Gene expression variation analysis identified more than 2000 differentially expressed genes (DEG) between these two cell types. We validated 16 genes present in the list of DEG, including the alkaline phosphatase gene (ALPL). In conclusion, we showed that ASC and FIB have distinct biological properties as demonstrated by alkaline phosphatase activity and differentiation capacity, besides having different gene expression profiles. SIGNIFICANCE OF THE STUDY: Although many differences between stromal stem cells derived from human adipose tissue (ASC) and human dermal fibroblasts (FIB) are described, it is still difficult to find specific markers to differentiate them. This problem can interfere with the therapeutic use of ASC. This work aimed to find new markers to differentiate these two cell populations. Our findings suggest that these cells can be distinguished by biological and molecular characteristics, such as adipogenic and osteogenic differentiation, alkaline phosphatase activity and differential gene expression profiles. The DEG were related to the regulation of the cell cycle, development process, structural organization of the cell and synthesis of the extracellular matrix. This study helps to find new cellular markers to distinguish the two populations and to better understand the properties of these cells, which can improve cell therapy.
Collapse
Affiliation(s)
- Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Pricila da Silva Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cristina Fraga Faraco
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Joana Lobato Barbosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrea da Fonseca Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marianna Kunrath Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil
| | - Michele Ângela Rodrigues
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Alwjwaj M, Kadir RRA, Bayraktutan U. The secretome of endothelial progenitor cells: a potential therapeutic strategy for ischemic stroke. Neural Regen Res 2021; 16:1483-1489. [PMID: 33433461 PMCID: PMC8323700 DOI: 10.4103/1673-5374.303012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ischemic stroke continues to be a leading cause of mortality and morbidity in the world. Despite recent advances in the field of stroke medicine, thrombolysis with recombinant tissue plasminogen activator remains as the only pharmacological therapy for stroke patients. However, due to short therapeutic window (4.5 hours of stroke onset) and increased risk of hemorrhage beyond this point, each year globally less than 1% of stroke patients receive this therapy which necessitate the discovery of safe and efficacious therapeutics that can be used beyond the acute phase of stroke. Accumulating evidence indicates that endothelial progenitor cells (EPCs), equipped with an inherent capacity to migrate, proliferate and differentiate, may be one such therapeutics. However, the limited availability of EPCs in peripheral blood and early senescence of few isolated cells in culture conditions adversely affect their application as effective therapeutics. Given that much of the EPC-mediated reparative effects on neurovasculature is realized by a wide range of biologically active substances released by these cells, it is possible that EPC-secretome may serve as an important therapeutic after an ischemic stroke. In light of this assumption, this review paper firstly discusses the main constituents of EPC-secretome that may exert the beneficial effects of EPCs on neurovasculature, and then reviews the currently scant literature that focuses on its therapeutic capacity.
Collapse
Affiliation(s)
- Mansour Alwjwaj
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Rais Reskiawan A Kadir
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Stroke, Division of Clinical Neuroscience, University of Nottingham, Clinical Sciences Building, City Hospital, Hucknall Road, Nottingham, NG5 1PB, UK
| |
Collapse
|
30
|
Belanger MC, Anbaei P, Dunn AF, Kinman AW, Pompano RR. Spatially Resolved Analytical Chemistry in Intact, Living Tissues. Anal Chem 2020; 92:15255-15262. [PMID: 33201681 PMCID: PMC7864589 DOI: 10.1021/acs.analchem.0c03625] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissues are an exciting frontier for bioanalytical chemistry, one in which spatial distribution is just as important as total content. Intact tissue preserves the native cellular and molecular organization and the cell-cell contacts found in vivo. Live tissue, in particular, offers the potential to analyze dynamic events in a spatially resolved manner, leading to fundamental biological insights and translational discoveries. In this Perspective, we provide a tutorial on the four fundamental challenges for the bioanalytical chemist working in living tissue samples as well as best practices for mitigating them. The challenges include (i) the complexity of the sample matrix, which contributes myriad interfering species and causes nonspecific binding of reagents; (ii) hindered delivery and mixing; (iii) the need to maintain physiological conditions; and (iv) tissue reactivity. This framework is relevant to a variety of methods for spatially resolved chemical analysis, including optical imaging, inserted sensors and probes such as electrodes, and surface analyses such as sensing arrays. The discussion focuses primarily on ex vivo tissues, though many considerations are relevant in vivo as well. Our goal is to convey the exciting potential of analytical chemistry to contribute to understanding the functions of live, intact tissues.
Collapse
Affiliation(s)
- Maura C. Belanger
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Parastoo Anbaei
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Austin F. Dunn
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Andrew W.L. Kinman
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| | - Rebecca R. Pompano
- Department of Chemistry, University of Virginia, PO BOX 400319, Charlottesville, VA 22904
| |
Collapse
|
31
|
Wang YH, Wang DR, Guo YC, Liu JY, Pan J. The application of bone marrow mesenchymal stem cells and biomaterials in skeletal muscle regeneration. Regen Ther 2020; 15:285-294. [PMID: 33426231 PMCID: PMC7770413 DOI: 10.1016/j.reth.2020.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/07/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023] Open
Abstract
Skeletal muscle injuries have bothered doctors and caused great burdens to the public medical insurance system for a long time. Once injured, skeletal muscles usually go through the processes of inflammation, repairing and remodeling. If repairing and remodeling stages are out of balance, scars will be formed to replace injured skeletal muscles. At present, clinicians usually use conventional methods to restore the injured skeletal muscles, such as flap transplantation. However, flap transplantation sometimes needs to sacrifice healthy autologous tissues and will bring extra harm to patients. In recent years, stem cells-based tissue engineering provides us new treatment ideas for skeletal muscle injuries. Stem cells are cells with multiple differentiation potential and have ability to differentiate into adult cells under special condition. Skeletal muscle tissues also have stem cells, called satellite cells, but they are in small amount and new muscle fibers that derived from them may not be enough to replace injured fibers. Bone marrow mesenchymal stem cells (BM-MSCs) could promote musculoskeletal tissue regeneration and activate the myogenic differentiation of satellite cells. Biomaterial is another important factor to promote tissue regeneration and greatly enhance physiological activities of stem cells in vivo. The combined use of stem cells and biomaterials will gradually become a mainstream to restore injured skeletal muscles in the future. This review article mainly focuses on the review of research about the application of BM-MSCs and several major biomaterials in skeletal muscle regeneration over the past decades.
Collapse
Key Words
- 3D-ECM, three dimensional extracellular matrix
- ASCs, adipose stem cells
- BDNF, brain derived neurotrophic factor
- BM-MSCs
- BM-MSCs, bone marrow mesenchymal stem cells
- Biomaterial
- CREB, cAMP- response element binding protein
- DPSCs, dental pulp stem cells
- Differentiation
- ECM, extracellular matrix
- ECs, endothelial cells
- EGF, epidermal growth factor
- FGF, fibroblast growth factor
- FGF-2, fibroblast growth factor-2
- GCSF, granulocyte colony-stimulating factor
- GDNF, glial derived neurotrophic factor
- GPT, gelatin-poly(ethylene glycol)- tyramine
- HGF, hepatocyte growth factor
- IGF-1, insulin-like growth factor-1
- IL, interleukin
- LIF, leukemia inhibitory factor
- MRF, myogenic muscle factor
- NSAIDs, non-steroidal drugs
- PDGF-BB, platelet derived growth factor-BB
- PGE2, prostaglandin E2
- PRP, platelet rich plasma
- S1P, sphingosine 1-phosphate
- SDF-1, stromal cell derived factor-1
- Skeletal muscle injury
- TGF-β, transforming growth factor-β
- Tissue regeneration
- TrkB, tyrosine kinaseB
- VEGF, vascular endothelial growth factor
- VML, volumetric muscle loss
Collapse
Affiliation(s)
- Yu-Hao Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Dian-Ri Wang
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| | - Yu-Chen Guo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Ji-Yuan Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China
| | - Jian Pan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.,National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, 610041, PR China
| |
Collapse
|
32
|
Bai S, Chaurasiya AH, Banarjee R, Walke PB, Rashid F, Unnikrishnan AG, Kulkarni MJ. CD44, a Predominant Protein in Methylglyoxal-Induced Secretome of Muscle Cells, is Elevated in Diabetic Plasma. ACS OMEGA 2020; 5:25016-25028. [PMID: 33043179 PMCID: PMC7542587 DOI: 10.1021/acsomega.0c01318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Methylglyoxal (MG), a glycolytic intermediate and reactive dicarbonyl, is responsible for exacerbation of insulin resistance and diabetic complication. In this study, MG-induced secretome of rat muscle cells was identified and relatively quantified by SWATH-MS. A total of 643 proteins were identified in MG-induced secretome, of which 82 proteins were upregulated and 99 proteins were downregulated by more than 1.3-fold in SWATH analysis. Further, secretory proteins from the classical secretory pathway and nonclassical secretory pathway were identified using SignalP and SecretomeP, respectively. A total of 180 proteins were identified with SignalP, and 113 proteins were identified with SecretomeP. The differentially expressed proteins were functionally annotated by KEGG pathway analysis using Cytoscape software with plugin clusterMaker. The differentially expressed proteins were found to be involved in various pathways like extracellular matrix (ECM)-receptor interaction, leukocyte transendothelial migration, fluid shear stress and atherosclerosis, complement and coagulation cascades, and lysosomal pathway. Since the MG levels are high in diabetic conditions, the presence of MG-induced secreted proteins was inspected by profiling human plasma of healthy and diabetic subjects (n = 10 each). CD44, a predominant MG-induced secreted protein, was found to be elevated in the diabetic plasma and to have a role in the development of insulin resistance.
Collapse
Affiliation(s)
- Shakuntala Bai
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Arvindkumar H. Chaurasiya
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Reema Banarjee
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Prachi B. Walke
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Faraz Rashid
- Sciex, 121 DHR, Udyog Vihar, Phase IV, Gurugram 122015, Haryana, India
| | | | - Mahesh J. Kulkarni
- Proteomics
Facility, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
33
|
Lee JS, Chae S, Yoon D, Yoon D, Chun W, Kim GH. Angiogenic factors secreted from human ASC spheroids entrapped in an alginate-based hierarchical structure via combined 3D printing/electrospinning system. Biofabrication 2020; 12:045028. [PMID: 32946427 DOI: 10.1088/1758-5090/abaf9a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Human adipose-derived stem cell spheroids have been widely used in the treatment or regeneration of damaged skin tissues, and their success is believed to be due in part to angiogenic factors released from the spheroids. To achieve the sustained release of bioactive components from implanted spheroids within a defective area, the use of a biocompatible scaffolding biomaterial is required. In this study, we developed an alginate-based scaffolding structure, which was processed using three-dimensional printing and electrospinning for use as a spheroid-entrapping structure. A micro-sized alginate strut and electrospun alginate nanofibers functioned not only to firmly entrap the spheroids, but also to enable the stable release of various angiogenic and wound healing-related factors. We also demonstrated the function of these factors using a tube-forming assay and found that conditioned media from the spheroid-scaffold group improved capillary-like structure formation in human umbilical vein endothelial cells compared to the single cell-scaffold group. Our results suggest that this spheroid-entrapping alginate hybrid structure could represent a new platform for stem cell therapy using spheroid transplantation.
Collapse
Affiliation(s)
- Ji-Seon Lee
- Burn Institute, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, Seoul, Republic of Korea. These authors contributed equally to this work
| | | | | | | | | | | |
Collapse
|
34
|
Hoesl C, Zanuttigh E, Fröhlich T, Philippou-Massier J, Krebs S, Blum H, Dahlhoff M. The secretome of skin cancer cells activates the mTOR/MYC pathway in healthy keratinocytes and induces tumorigenic properties. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118717. [PMID: 32283126 DOI: 10.1016/j.bbamcr.2020.118717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the most prominent tumor of non-melanoma skin cancers and the most aggressive tumor among keratinocyte carcinoma of the skin, showing a high potential for local invasion and metastasis. The cSCC incidences increased dramatically in recent years and the disease occurs more commonly than any other malignancy. The secretome of cancer cells is currently the focus of many studies in order to identify new marker proteins for different types of cancer and to investigate its influence on the tumor microenvironment. In our study we evaluated whether the secretome of cSCC cells has an impact on keratinocytes, the surrounding tissue cells of cSCC. Therefore, we analyzed and compared the secretome of human A431 cancer cells and of HaCaT keratinocytes by mass spectrometry. In a second experiment, keratinocytes were exposed to the secretome of A431 cells and vice versa and the transcriptome was analyzed by next-generation sequencing. HaCaT cells incubated with A431 conditioned medium revealed a significantly activated mammalian target of rapamycin pathway with a concomitant increase in proliferation and migration. In conclusion, our data demonstrate the impact of the secretome of cancer cells on the transcription machinery of the cells surrounding the tumor, leading to a tumorigenic cell fate.
Collapse
Affiliation(s)
- Christine Hoesl
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany
| | - Enrica Zanuttigh
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | | | - Stefan Krebs
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis LAFUGA, Gene Center, LMU, München, Germany
| | - Maik Dahlhoff
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU, München, Germany.
| |
Collapse
|
35
|
Xia J, Minamino S, Kuwabara K, Arai S. Stem cell secretome as a new booster for regenerative medicine. Biosci Trends 2020; 13:299-307. [PMID: 31527327 DOI: 10.5582/bst.2019.01226] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Stem cells are an undifferentiated cell population that has the ability to develop into many different cell types and also has the ability to repair damaged tissues in some cases. For a long time, the stem cell regenerative paradigm has been based on the assumption that progenitor cells play a critical role in tissue repair by means of their plasticity and differentiation potential. However, recent works suggest that the mechanism underlying the benefits of stem cell transplantation might relate to a paracrine modulatory effect rather than the replacement of affected cells at the site of injury. This paracrine modulatory effect derives from secretome which comprises a diverse host of growth factors, cytokines, chemokines, angiogenic factors, and exosomes which are extracellular vesicles that are produced in the endosomal compartment of most eukaryotic cells and are from about 30 to several hundred nanometers in diameter. The role of these factors is being increasingly recognized as key to the regulation of many physiological processes including leading endogenous and progenitor cells to sites of injury as well as mediating apoptosis, proliferation, migration, and angiogenesis. In reality, the immunomodulatory and paracrine role of these factors may mainly account for the therapeutic effects of stem cells and a number of in vitro and in vivo researches have proved limited stem cell engraftment at the site of injury. As a cell-free way for regenerative medicine therapies, stem cell secretome has shown great potential in a variety of clinical applications including prevention of cardiac disfunction, neurodegenerative disease, type 1 diabetes, hair loss, tumors, and joint osteoarthritis.
Collapse
Affiliation(s)
- Jufeng Xia
- Graduate School of Frontier Science, The University of Tokyo.,Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shuichi Minamino
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Kazuma Kuwabara
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| | - Shunichi Arai
- Department of stem cell and regenerative medicine, Arai Japan Medical Institute
| |
Collapse
|
36
|
Denninger JK, Chen X, Turkoglu AM, Sarchet P, Volk AR, Rieskamp JD, Yan P, Kirby ED. Defining the adult hippocampal neural stem cell secretome: In vivo versus in vitro transcriptomic differences and their correlation to secreted protein levels. Brain Res 2020; 1735:146717. [PMID: 32035887 DOI: 10.1016/j.brainres.2020.146717] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/08/2023]
Abstract
Adult hippocampal neural stem and progenitor cells (NSPCs) secrete a variety of proteins that affect tissue function. Though several individual NSPC-derived proteins have been shown to impact key cellular processes, a broad characterization is lacking. Secretome profiling of low abundance stem cell populations is typically achieved via proteomic characterization of in vitro, isolated cells. Here, we identified hundreds of secreted proteins in conditioned media from in vitro adult mouse hippocampal NSPCs using an antibody array and mass spectrometry. Comparison of protein abundance between antibody array and mass spectrometry plus quantification of several key secreted proteins by ELISA revealed notable disconnect between methods in what proteins were identified as being high versus low abundance, suggesting that data from antibody arrays in particular should be approached with caution. We next assessed the NSPC secretome on a transcriptional level with single cell and bulk RNA sequencing (RNAseq) of cultured NSPCs. Comparison of RNAseq transcript levels of highly secreted proteins revealed that quantification of gene expression did not necessarily predict relative protein abundance. Interestingly, comparing our in vitro NSPC gene expression data with similar data from freshly isolated, in vivo hippocampal NSPCs revealed strong correlations in global gene expression between in vitro and in vivo NSPCs. Understanding the components and functions of the NSPC secretome is essential to understanding how these cells may modulate the hippocampal neurogenic niche. Cumulatively, our data emphasize the importance of using proteomics in conjunction with transcriptomics and highlights the need for better methods of unbiased secretome profiling.
Collapse
Affiliation(s)
- Jiyeon K Denninger
- Department of Psychology, College of Arts and Sciences, The Ohio State University, United States
| | - Xi Chen
- Comprehensive Cancer Center, The Ohio State University, United States
| | - Altan M Turkoglu
- College of Arts and Sciences, The Ohio State University, United States
| | - Patricia Sarchet
- Comprehensive Cancer Center, The Ohio State University, United States
| | - Abby R Volk
- College of Arts and Sciences, The Ohio State University, United States
| | - Joshua D Rieskamp
- Neuroscience Graduate Program, The Ohio State University, United States
| | - Pearlly Yan
- Comprehensive Cancer Center, The Ohio State University, United States; Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, United States
| | - Elizabeth D Kirby
- Department of Psychology, College of Arts and Sciences, The Ohio State University, United States; Department of Neuroscience, The Ohio State University, United States; Chronic Brain Injury Initiative, The Ohio State University, United States.
| |
Collapse
|
37
|
Shima A, Itou A, Takeuchi S. Cell fibers promote proliferation of co-cultured cells on a dish. Sci Rep 2020; 10:288. [PMID: 31937888 PMCID: PMC6959263 DOI: 10.1038/s41598-019-57213-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022] Open
Abstract
This paper describes a co-culture method using cell fiber technology. Cell fibers are cell-laden hydrogel microfibers, in which cells are cultured three-dimensionally and allowed to reach more mature state than the conventional two-dimensional cell culture. Cells in the cell fibers are encapsulated by alginate shell. Only cellular secretome is released into the surrounding environment through the shell while the cells were retained by the fiber. With their high handleability and retrievability, we propose to use the cell fibers for co-culture to ensure steady supply of cellular secretome. We cultured mouse C2C12 myoblasts with mouse 3T3 fibroblasts encapsulated in the cell fibers for two days. The number of C2C12 cells increased proportionally to the number of co-cultured 3T3 fibers, suggesting that the secretome of 3T3 fibers promoted survival and proliferation of C2C12 cells. We believe that cell fiber technology is a useful tool for co-culturing cells, and it will contribute to both basic cell biology and tissue engineering with its unique features.
Collapse
Affiliation(s)
- Ai Shima
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Akane Itou
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Shoji Takeuchi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
38
|
Quade M, Münch P, Lode A, Duin S, Vater C, Gabrielyan A, Rösen‐Wolff A, Gelinsky M. The Secretome of Hypoxia Conditioned hMSC Loaded in a Central Depot Induces Chemotaxis and Angiogenesis in a Biomimetic Mineralized Collagen Bone Replacement Material. Adv Healthc Mater 2020; 9:e1901426. [PMID: 31830380 DOI: 10.1002/adhm.201901426] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Indexed: 12/18/2022]
Abstract
The development of biomaterials with intrinsic potential to stimulate endogenous tissue regeneration at the site of injury is a main demand on future implants in regenerative medicine. For critical-sized bone defects, an in situ tissue engineering concept is devised based on biomimetic mineralized collagen scaffolds. These scaffolds are functionalized with a central depot loaded with a signaling factor cocktail, obtained from secretome of hypoxia-conditioned human mesenchymal stem cells (MSC). Therefore, hypoxia-conditioned medium (HCM)-production is standardized and adapted to achieve high signaling factor-yields; a concentration protocol based on dialysis and freeze-drying is established to enable the integration of sufficient and defined amounts into the depot. In humid milieu-as after implantation-signaling factors are released by forming a chemotactic gradient, inducing a directed migration of human bone marrow stroma cells (hBMSC) into the scaffold. Angiogenic potential, determined by coculturing human umbilical vein endothelial cells (HUVEC) with osteogenically induced hBMSC shows prevascular structures, which sprout throughout the interconnected pores in a HCM-concentration-dependent manner. Retarded release by alginate-based (1 vol%) depots, significantly improves sprouting-depth and morphology of tubular structures. With the intrinsic potential to supply attracted cells with oxygen and nutrients, this bioactive material system has great potential for clinical translation.
Collapse
Affiliation(s)
- Mandy Quade
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Pina Münch
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Anja Lode
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Sarah Duin
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Corina Vater
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
- University Centre of Orthopaedica and TraumatologyFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Anastasia Gabrielyan
- Department of PediatricsFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Angela Rösen‐Wolff
- Department of PediatricsFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchFaculty of Medicine and University Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| |
Collapse
|
39
|
Caseiro AR, Santos Pedrosa S, Ivanova G, Vieira Branquinho M, Almeida A, Faria F, Amorim I, Pereira T, Maurício AC. Mesenchymal Stem/ Stromal Cells metabolomic and bioactive factors profiles: A comparative analysis on the umbilical cord and dental pulp derived Stem/ Stromal Cells secretome. PLoS One 2019; 14:e0221378. [PMID: 31774816 PMCID: PMC6881058 DOI: 10.1371/journal.pone.0221378] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal Stem/ Stromal Cells assume a supporting role to the intrinsic mechanisms of tissue regeneration, a feature mostly assigned to the contents of their secretome. A comparative study on the metabolomic and bioactive molecules/factors content of the secretome of Mesenchymal Stem/ Stromal Cells derived from two expanding sources: the umbilical cord stroma and the dental pulp is presented and discussed. The metabolic profile (Nuclear Magnetic Resonance Spectroscopy) evidenced some differences in the metabolite dynamics through the conditioning period, particularly on the glucose metabolism. Despite, overall similar profiles are suggested. More prominent differences are highlighted for the bioactive factors (Multiplexing Laser Bear Analysis), in which Follistatin, Growth Regulates Protein, Hepatocyte Growth Factor, Interleukin-8 and Monocyte Chemotactic Protein-1 dominate in Umbilical Cord Mesenchymal Stem/ Stromal Cells secretion, while in Dental Pulp Stem/ Stromal Cells the Vascular Endothelial Growth Factor-A and Follistatin are more evident. The distinct secretory cocktail did not result in significantly different effects on endothelial cell populations dynamics including proliferation, migration, tube formation capacity and in vivo angiogenesis, or in chemotaxis for both Mesenchymal Stem/ Stromal Cells populations.
Collapse
Affiliation(s)
- Ana Rita Caseiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
- Escola Universitária Vasco da Gama (EUVG), Lordemão, Coimbra, Portugal
| | - Sílvia Santos Pedrosa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
| | - Galya Ivanova
- REQUIMTE- LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal
| | - Mariana Vieira Branquinho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
| | - André Almeida
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
- Indústria Transformadora de Subprodutos—I.T.S, SA, Grupo ETSA, Rua Padre Adriano, Olivais do Machio, Santo Antão do Tojal, Loures, Portugal
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- i3S - Instituto de Investigação e Inovação da Universidade do Porto, Rua Alfredo Allen, Porto, Portugal
| | - Tiago Pereira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, Porto, Portugal
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado, Porto, Portugal
- * E-mail: ,
| |
Collapse
|
40
|
Mandacaru SC, Queiroz RML, Alborghetti MR, de Oliveira LS, de Lima CMR, Bastos IMD, Santana JM, Roepstorff P, Ricart CAO, Charneau S. Exoproteome profiling of Trypanosoma cruzi during amastigogenesis early stages. PLoS One 2019; 14:e0225386. [PMID: 31756194 PMCID: PMC6874342 DOI: 10.1371/journal.pone.0225386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Chagas disease is caused by the protozoan Trypanosoma cruzi, affecting around 8 million people worldwide. After host cell invasion, the infective trypomastigote form remains 2–4 hours inside acidic phagolysosomes to differentiate into replicative amastigote form. In vitro acidic-pH-induced axenic amastigogenesis was used here to study this step of the parasite life cycle. After three hours of trypomastigote incubation in amastigogenesis promoting acidic medium (pH 5.0) or control physiological pH (7.4) medium samples were subjected to three rounds of centrifugation followed by ultrafiltration of the supernatants. The resulting exoproteome samples were trypsin digested and analysed by nano flow liquid chromatography coupled to tandem mass spectrometry. Computational protein identification searches yielded 271 and 483 protein groups in the exoproteome at pH 7.4 and pH 5.0, respectively, with 180 common proteins between both conditions. The total amount and diversity of proteins released by parasites almost doubled upon acidic incubation compared to control. Overall, 76.5% of proteins were predicted to be secreted by classical or non-classical pathways and 35.1% of these proteins have predicted transmembrane domains. Classical secretory pathway analysis showed an increased number of mucins and mucin-associated surface proteins after acidic incubation. However, the number of released trans-sialidases and surface GP63 peptidases was higher at pH 7.4. Trans-sialidases and mucins are anchored to the membrane and exhibit an enzyme-substrate relationship. In general, mucins are glycoproteins with immunomodulatory functions in Chagas disease, present mainly in the epimastigote and trypomastigote surfaces and could be enzymatically cleaved and released in the phagolysosome during amastigogenesis. Moreover, evidence for flagella discard during amastigogenesis are addressed. This study provides the first comparative analysis of the exoproteome during amastigogenesis, and the presented data evidence the dynamism of its profile in response to acidic pH-induced differentiation.
Collapse
Affiliation(s)
- Samuel C. Mandacaru
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rayner M. L. Queiroz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Marcos R. Alborghetti
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Lucas S. de Oliveira
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Consuelo M. R. de Lima
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela M. D. Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Jaime M. Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Peter Roepstorff
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Carlos André O. Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Sébastien Charneau
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- * E-mail:
| |
Collapse
|
41
|
Zarei F, Abbaszadeh A. Application of Cell Therapy for Anti-Aging Facial Skin. Curr Stem Cell Res Ther 2019; 14:244-248. [PMID: 30421684 DOI: 10.2174/1574888x13666181113113415] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/30/2018] [Accepted: 11/05/2018] [Indexed: 12/24/2022]
Abstract
The human skin undergoes the complex process of aging which is prompted by the interplay of intrinsic mechanisms and extrinsic influences. Aging is unavoidable but can be somewhat delayed. Numerous approaches have been developed to slow down facial skin aging process as it is of interest to stake holders in the beauty and fashion world as well as to plastic surgeons. Adipose-derived stem cell [ADSC] and mesenchymal stem cell [MSC] as potential anti-aging agents to some extent have provided a promising and effective alternative in managing skin and facial skin aging. Furthermore, bone marrow-derived mesenchymal stem cells [BMMSC] have exhibited similar ability to rejuvenate aged skin. This review is aimed at giving a comprehensive account of the application of stem cells especially ADSCs and MSCs to reduce or slow down the rate of facial skin aging process.
Collapse
Affiliation(s)
- Farshad Zarei
- Faculty of Medicine, Department of Surgery, Lorestan University of Medical Science, Khoramabad, Iran
| | - Abolfazl Abbaszadeh
- Faculty of Medicine, Department of Surgery, Lorestan University of Medical Science, Khoramabad, Iran
| |
Collapse
|
42
|
Miceli M, Baldi D, Cavaliere C, Soricelli A, Salvatore M, Napoli C. Peripheral artery disease: the new frontiers of imaging techniques to evaluate the evolution of regenerative medicine. Expert Rev Cardiovasc Ther 2019; 17:511-532. [PMID: 31220944 DOI: 10.1080/14779072.2019.1635012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Stem cells (ESC, iPSC, MSC) are known to have intrinsic regenerative properties. In the last decades numerous findings have favored the development of innovative therapeutic protocols based on the use of stem cells (Regenerative Medicine/Cell Therapy) for the treatment of numerous diseases including PAD, with promising results in preclinical studies. So far, several clinical studies have shown a general improvement of the patient's clinical outcome, however they possess many critical issues caused by the non-randomized design of the limited number of patients examined, the type cells to be used, their dosage, the short duration of treatment and also their delivery strategy. Areas covered: In this context, the use of the most advanced molecular imaging techniques will allow the visualization of very important physio-pathological processes otherwise invisible with conventional techniques, such as angiogenesis, also providing important structural and functional data. Expert opinion: The new frontier of cell therapy applied to PAD, potentially able to stop or even the process that causes the disease, with particular emphasis on the clinical aspects that different types of cells involve and on the use of more innovative molecular imaging techniques now available.
Collapse
Affiliation(s)
| | | | | | - Andrea Soricelli
- a IRCCS SDN , Naples , Italy.,b Department of Exercise and Wellness Sciences , University of Naples Parthenope , Naples , Italy
| | | | - Claudio Napoli
- a IRCCS SDN , Naples , Italy.,c University Department of Advanced Medical and Surgical Sciences, Clinical Department of Internal Medicine and Specialty Medicine , Università degli Studi della Campania 'Luigi Vanvitelli' , Napes , Italy
| |
Collapse
|
43
|
Zagoura D, Trohatou O, Makridakis M, Kollia A, Kokla N, Mokou M, Psaraki A, Eliopoulos AG, Vlahou A, Roubelakis MG. Functional secretome analysis reveals Annexin-A1 as important paracrine factor derived from fetal mesenchymal stem cells in hepatic regeneration. EBioMedicine 2019; 45:542-552. [PMID: 31303498 PMCID: PMC6642415 DOI: 10.1016/j.ebiom.2019.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human mesenchymal stem/stromal cells (MSCs) and their secreted molecules exert beneficial effects in injured tissues by promoting tissue regeneration and angiogenesis and by inhibiting inflammation and fibrosis. We have previously demonstrated that the therapeutic activity of fetal MSCs derived from amniotic fluid (AF-MSCs) and their hepatic progenitor-like cells (HPL) is mediated by paracrine effects in a mouse model of acute hepatic failure (AHF). METHODS Herein, we have combined proteomic profiling of the AF-MSCs and HPL cell secretome with ex vivo and in vivo functional studies to identify specific soluble factors, which underpin tissue regeneration in AHF. FINDINGS The anti-inflammatory molecule Annexin-A1 (ANXA1) was detected at high levels in both AF-MSC and HPL cell secretome. Further functional analyses revealed that the shRNA-mediated knock-down of ANXA1 in MSCs (shANXA1-MSCs) decreased their proliferative, clonogenic and migratory potential, as well as their ability to differentiate into HPL cells. Liver progenitors (oval cells) from AHF mice displayed reduced proliferation when cultured ex vivo in the presence of conditioned media from shANXA1-MSCs compared to control MSCs secretome. Intra-hepatic delivery of conditioned media from control MSCs but not shANXA1-MSCs reduced liver damage and circulating levels of pro-inflammatory cytokines in AHF. INTERPRETATION Collectively, our study uncovers secreted Annexin-A1 as a novel effector of MSCs in liver regeneration and further underscores the potential of cell-free therapeutic strategies for liver diseases. FUND: Fondation Santé, GILEAD Asklipeios Grant, Fellowships of Excellence - Siemens, IKY, Reinforcement of Postdoctoral Researchers, IKY.
Collapse
Affiliation(s)
- Dimitra Zagoura
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania Trohatou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Manousos Makridakis
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Kollia
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolitsa Kokla
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Marika Mokou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Adriana Psaraki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Aristides G Eliopoulos
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Greece
| | - Antonia Vlahou
- Biotechnology Laboratory, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Greece.
| |
Collapse
|
44
|
Tree MO, Londono-Renteria B, Troupin A, Clark KM, Colpitts TM, Conway MJ. Dengue virus reduces expression of low-density lipoprotein receptor-related protein 1 to facilitate replication in Aedes aegypti. Sci Rep 2019; 9:6352. [PMID: 31015516 PMCID: PMC6478881 DOI: 10.1038/s41598-019-42803-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 03/28/2019] [Indexed: 01/09/2023] Open
Abstract
Aedes aegypti is the primary vector of a number of viruses pathogenic to humans including dengue virus (DENV). DENV infection leads to widespread transcriptomic and proteomic alterations in mosquito cells. Here we identified alterations to the mosquito cell secretome during DENV infection by performing liquid chromatography tandem mass spectrometry. We found that an extracellular fragment of low-density lipoprotein receptor-related protein 1 (LRP-1) was present during infection. Previous literature suggests that LRP-1 regulates cholesterol homeostasis. Therefore, we hypothesized that DENV modifies LRP-1 protein expression to maintain host-derived intracellular cholesterol, which would facilitate virus replication within membrane-associated replication compartments. Accordingly, stimuli that are present during flavivirus infection reduced LRP-1 protein expression. We also found that dsRNA knockdown of LRP-1 increased intracellular cholesterol and DENV viral RNA. Further, depletion of intracellular lipids reduced infection. Together, these data suggest that DENV reduces LRP-1 protein expression, possibly through regulated intramembrane proteolysis (RIP), to increase intracellular cholesterol and facilitate replication in Ae. aegypti.
Collapse
Affiliation(s)
- Maya O Tree
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, United States of America
| | - Berlin Londono-Renteria
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America.,Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Andrea Troupin
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Kellie M Clark
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, United States of America
| | - Tonya M Colpitts
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America.,Department of Microbiology, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, Boston, MA, United States of America
| | - Michael J Conway
- Foundational Sciences, Central Michigan University, College of Medicine, Mount Pleasant, MI, United States of America.
| |
Collapse
|
45
|
Dong G, Filho AL, Olivier M. Modulation of Host-Pathogen Communication by Extracellular Vesicles (EVs) of the Protozoan Parasite Leishmania. Front Cell Infect Microbiol 2019; 9:100. [PMID: 31032233 PMCID: PMC6470181 DOI: 10.3389/fcimb.2019.00100] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/25/2019] [Indexed: 12/21/2022] Open
Abstract
Leishmania genus protozoan parasites have developed various strategies to overcome host cell protective mechanisms favoring their survival and propagation. Recent findings in the field propose a new player in this infectious strategy, the Leishmania exosomes. Exosomes are eukaryotic extracellular vesicles essential to cell communication in various biological contexts. In fact, there have been an increasing number of reports over the last 10 years regarding the role of protozoan parasite exosomes, Leishmania exosomes included, in their capacity to favor infection and propagation within their hosts. In this review, we will discuss the latest findings regarding Leishmania exosome function during infectious conditions with a strong focus on Leishmania-host interaction from a mammalian perspective. We also compare the immunomodulatory properties of Leishmania exosomes to other parasite exosomes, demonstrating the conserved, important role that exosomes play during parasite infection.
Collapse
Affiliation(s)
- George Dong
- Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Alonso Lira Filho
- Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Martin Olivier
- Infectious Diseases and Immunity in Global Heath Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
46
|
Robert AW, Azevedo Gomes F, Rode MP, Marques da Silva M, Veleirinho MBDR, Maraschin M, Hayashi L, Wosgrau Calloni G, Stimamiglio MA. The skin regeneration potential of a pro-angiogenic secretome from human skin-derived multipotent stromal cells. J Tissue Eng 2019; 10:2041731419833391. [PMID: 30886688 PMCID: PMC6415469 DOI: 10.1177/2041731419833391] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 01/26/2019] [Indexed: 12/18/2022] Open
Abstract
Multipotent stromal cells stimulate skin regeneration after acute or chronic injuries. However, many stem cell therapy protocols are limited by the elevated number of cells required and poor cell survival after transplantation. Considering that the beneficial effects of multipotent stromal cells on wound healing are typically mediated by paracrine mechanisms, we examined whether the conditioned medium from skin-derived multipotent stromal cells would be beneficial for restoring the skin structure of mice after wounding. A proteomic characterization of skin-derived multipotent stromal cell-conditioned medium was performed, and the angiogenic function of this secretome was investigated in vitro using an endothelial cell tube formation assay. We then applied the skin-derived multipotent stromal cell-conditioned medium directly to full-thickness excisional wounds or embedded it into carrageenan or poly(vinyl alcohol) hydrogels to monitor tissue regeneration in mice. Biological processes related to wound healing and angiogenesis were highlighted by the analysis of the skin-derived multipotent stromal cell secretome, and a pro-angiogenic capacity for promoting tubule-like structures was first confirmed in vitro. Skin wounds treated with skin-derived multipotent stromal cell-conditioned medium also displayed increased angiogenesis, independently of the association of the conditioned medium with hydrogels. However, improvements in wound closure and epidermis or decreased inflammatory cell presence were not observed. Hence, the use of the secretome obtained from human skin-derived multipotent stromal cells may be a potential strategy to aid the natural skin repair of full-thickness lesions mainly based on its pro-angiogenic properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Leila Hayashi
- Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | |
Collapse
|
47
|
Endrinaldi E, Darwin E, Zubir N, Revilla G. The Effect of Mesenchymal Stem Cell Wharton's Jelly on Matrix Metalloproteinase-1 and Interleukin-4 Levels in Osteoarthritis Rat Model. Open Access Maced J Med Sci 2019; 7:529-535. [PMID: 30894907 PMCID: PMC6420948 DOI: 10.3889/oamjms.2019.152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND: Osteoarthritis (OA) is generally considered a degenerative joint disease caused by biomechanical changes and the ageing process. In OA pathogenesis, the development of OA is thought to be regulated largely by excess matrix metalloproteinase (MMP), which contributes to the degradation of extracellular matrices such as MMP-1 and Interleukin-4. AIM: This study aims to prove the influence of Mesenchymal Stem Cell Wharton Jelly on decreasing MMP-1 levels and increasing IL-4 which is a specific target as a target component in cases of osteoarthritis in vivo. MATERIAL AND METHODS: This research is an experimental study with the design of Post-Test-Only Control Group Design. The sample consisted of 16 OA rats as a control group and 16 OA rats treated with MSC-WJ as a treatment group. OA induction is done by injection of monosodium iodoacetate (MIA) into the intra-articular right knee. Giving MSC-WJ is done in the third week after MIA induction. The serum MMP-1 and IL-4 levels were measured after 3 weeks treated with MSC-WJ using the ELISA method. The statistical test used is an independent t-test. The value of p < 0.05 was said to be statistically significant. RESULTS: The result showed that serum MMP-1 levels were higher in the group treated with MSC-WJ than in the control group (p < 0.05). Serum IL-4 levels were higher in the group treated with MSC-WJ than in the control group (p < 0.05). CONCLUSION: This study concluded that MSC-WJ increased MMP-1 levels and IL-4 levels in serum OA rats. MSC-WJ showed a negative effect on MMP-1 in the serum of OA rats.
Collapse
Affiliation(s)
- Endrinaldi Endrinaldi
- Postgraduate Biomedical Science, Faculty of Medicine, Andalas University, Padang, Indonesia.,Department of Chemistry, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Eryati Darwin
- Department of Histology, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Nasrul Zubir
- Department of Internal Medicine, Faculty of Medicine, Andalas University, Padang, Indonesia
| | - Gusti Revilla
- Department of Anatomy, Faculty of Medicine, Andalas University, Padang, Indonesia
| |
Collapse
|
48
|
|
49
|
Sultan N, Amin LE, Zaher AR, Scheven BA, Grawish ME. Dental pulp stem cells: Novel cell-based and cell-free therapy for peripheral nerve repair. World J Stomatol 2019; 7:1-19. [DOI: 10.5321/wjs.v7.i1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023] Open
Abstract
The regeneration of peripheral nerves comprises complicated steps involving a set of cellular and molecular events in distal nerve stumps with axonal sprouting and remyelination. Stem cell isolation and expansion for peripheral nerve repair (PNR) can be achieved using a wide diversity of prenatal and adult tissues, such as bone marrow or brain tissues. The ability to obtain stem cells for cell-based therapy (CBT) is limited due to donor site morbidity and the invasive nature of the harvesting process. Dental pulp stem cells (DPSCs) can be relatively and simply isolated from the dental pulps of permanent teeth, extracted for surgical or orthodontic reasons. DPSCs are of neural crest origin with an outstanding ability to differentiate into multiple cell lineages. They have better potential to differentiate into neural and glial cells than other stem cell sources through the expression and secretion of certain markers and a range of neurotropic factors; thus, they should be considered a good choice for PNR using CBT. In addition, these cells have paracrine effects through the secretion of neurotrophic growth factors and extracellular vesicles, which can enhance axonal growth and remyelination by decreasing the number of dying cells and activating local inhabitant stem cell populations, thereby revitalizing dormant or blocked cells, modulating the immune system and regulating inflammatory responses. The use of DPSC-derived secretomes holds great promise for controllable and manageable therapy for peripheral nerve injury. In this review, up-to-date information about the neurotrophic and neurogenic properties of DPSCs and their secretomes is provided.
Collapse
Affiliation(s)
- Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Laila E Amin
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed R Zaher
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ben A Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, United Kingdom
| | - Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
50
|
Dittfeld C, Bienger K, Andres J, Plötze K, Jannasch A, Waldow T, Tugtekin SM, Matschke K. Characterization of thoracal fat depots - expression of adipokines and remodeling factors and impact of adipocyte conditioned media in fibroblast scratch assays. Clin Hemorheol Microcirc 2019; 70:267-280. [PMID: 30507567 DOI: 10.3233/ch-170341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adipose tissue is not only a connective tissue but also an endocrine organ secreting adipokines like Leptin and Adiponectin, lipokines such as palmitoileic acid and extracellular vesicles. These factors and the expression of matrix remodeling enzymes impact surrounding tissues via paracrine effects. The expression of selected secretion factors and the effect of adipocyte conditioned media from four thoracal adipose tissue origins - subcutaneous, perivascular, pericardial and epicardial adipose tissues - in a fibroblast proliferation/wound healing scratch assay model were investigated. Results were compared directly and according to the type 2 diabetic mellitus (T2DM) status of the patients the tissues are originated from. Adipocyte conditioned media from non-diabetic patients resulted in a significant higher scratch closure rate compared to the media with T2DM background. Linoleic acid incubation in scratch assay resulted in a reduced scratch closure rate. Leptin, Adiponectin and Visfatin/Nampt expression and MMP2, MMP9 and FSTL1 mRNA levels did not vary according to T2DM subgroups directly, leading to the assumption that these factors are not causal for scratch assay effects observed. In contrast significant mRNA expression differences were monitored between the thoracal tissue origins implying variations in the local effects of the different adipose tissue depots.
Collapse
Affiliation(s)
- C Dittfeld
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - K Bienger
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - J Andres
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - K Plötze
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - A Jannasch
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - T Waldow
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - S M Tugtekin
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| | - K Matschke
- Department of Cardiac Surgery, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Herzzentrum Dresden, Germany
| |
Collapse
|