1
|
Kulkarni MM, Popovic B, Nolfi AL, Skillen CD, Brown BN. Distinct impacts of aging on the immune responses to extracellular matrix-based versus synthetic biomaterials. Biomaterials 2025; 320:123204. [PMID: 40056612 DOI: 10.1016/j.biomaterials.2025.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/10/2025]
Abstract
All implanted materials inevitably trigger an acute inflammatory response. The long-term outcome, however, is dependent on the trajectory of this response. This study investigates the effects of aging on the immune response to two commercially available biomaterials. Extracellular matrix-based urinary bladder matrix (UBM) and synthetic polypropylene mesh (PPM) were implanted in young (4 months) and aged (18 months) C57BL/6J mice. Overall, PPM led to a sustained inflammatory response regardless of the age of the mice. In contrast, UBM induced an initial inflammatory response that matured into a pro-regenerative/remodeling response with time, though aged mice exhibited a delayed resolution of inflammation. The PPM-induced response was predominantly pro-inflammatory with consistently higher M1-like macrophage phenotype, whereas the response to UBM was characterized by an anti-inflammatory M2-like phenotype, especially in young mice. RNA sequencing revealed marked age-related differences in gene transcription. At day 7 post-implantation, the young mice with UBM showed a robust upregulation of both pro- and anti-inflammatory pathways as compared to young mice implanted with PPM, however, by day 14, the gene expression profile transitioned into an anti-inflammatory profile. Intriguingly, in aged mice, the response to UBM was distinct with consistent downregulation of inflammatory genes compared to PPM, while the response to PPM in both young and aged animals was largely consistent. Upstream analysis identified cytokines as key drivers of the host response, with IL-4 and IL-13 in young mice, and TNF-α and IL-1β driving chronic inflammation in aged mice. These findings highlight the importance of host age in biomaterial outcome, and the potential of ECM-based materials to mount a favorable response even in the presence of age-related immune dysregulation.
Collapse
Affiliation(s)
- Mangesh M Kulkarni
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Branimir Popovic
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alexis L Nolfi
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Clint D Skillen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bryan N Brown
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
2
|
Qiu Y, Liu H, Han C, Yan Z, Lu Y, Ren L, Wang Q, Zhou Q, Xue L. The effect of copper content in Ti-Cu alloy with bone regeneration ability on the phenotypic transformation of macrophages. Colloids Surf B Biointerfaces 2025; 252:114641. [PMID: 40138785 DOI: 10.1016/j.colsurfb.2025.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/09/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Titanium (Ti) alloys are widely used in bone repair due to their excellent biocompatibility and mechanical properties. However, managing post-implantation inflammatory responses in the defect region and accelerating the healing process remain major challenges in the design of such materials. As a bridge between the innate and adaptive immune systems, macrophages play a pivotal role in bone defect healing through their M2 polarization, which facilitates the secretion of tissue repair-promoting cytokines. Research on the role of copper ions (Cu²⁺) in regulating inflammatory responses at injury sites suggests their potential as active ions for incorporation into alloys as a secondary phase to modulate macrophage polarization. However, the effective concentration and mechanisms in this process remain unclear. Here, we synthesized Ti-xCu (x = 3, 5, 7 wt%) alloys and investigated the effects of copper concentration on macrophage M1/M2 polarization and the underlying mechanisms. In an 8-week rat mandibular bone regeneration experiment, Ti-5Cu demonstrated superior performance compared to pure titanium. At the early stage (2 weeks), Ti-5Cu promoted the dominance of M1 macrophages and upregulated inflammatory cytokines, facilitating the initial inflammatory response. Subsequently, a timely M1-to-M2 phenotype transition was observed, accompanied by elevated expression of the repair-related cytokine IL-10, ultimately leading to improved bone healing. This study provides a theoretical foundation for the development of titanium-copper composite materials with anti-inflammatory and pro-healing properties, paving the way for innovative solutions to promote bone defect repair.
Collapse
Affiliation(s)
- Yueyang Qiu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Hui Liu
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | | | - Zhuoqun Yan
- Liaoning Upcera Co., Ltd, Benxi 117004, China
| | - Yanjin Lu
- Key Laboratory of Opto-Electronic Science and Technology for Medicine of Ministry of Education, College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou 350117, China.
| | - Ling Ren
- Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China.
| | - Lei Xue
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Liu G, Xue J, Zhou X, Gui M, Xia R, Zhang Y, Cai Y, Li S, Shi S, Mao X, Chen Z. The paradigm shifts of periodontal regeneration strategy: From reparative manipulation to developmental engineering. Bioact Mater 2025; 49:418-436. [PMID: 40165829 PMCID: PMC11957753 DOI: 10.1016/j.bioactmat.2025.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/07/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Ideal periodontal regeneration requires the integration of alveolar bone, periodontal ligament, and cementum, along with Sharpey's fibers for occlusal force resistance. However, physiological regeneration remains rare due to its intricate structure, making clinical regeneration a challenge. Periodontal ligament stem cells (PDLSCs), first isolated in 2004, hold the key to multi-directional differentiation into cementoblasts, fibroblasts, and osteoblasts. While traditional therapies like guided tissue regeneration (GTR) aim to activate PDLSCs, clinical outcomes are inconsistent, suggesting the need for additional strategies to enhance PDLSCs' functions. Advancements in molecular biotechnology have introduced the use of recombinant growth factors for tissue regeneration. However, maintaining their efficacy requires high doses, posing cost and safety issues. Multi-layered scaffolds combined with cell sheet technology offer new insights, but face production, ethical, and survival challenges. Immune regulation plays a crucial role in PDLSC-mediated regeneration. The concept of "coagulo-immunomodulation" has emerged, emphasizing the coupling of blood coagulation and immune responses for periodontal regeneration. Despite its potential, the clinical translation of immune-based strategies remains elusive. The "developmental engineering" approach, which mimics developmental events using embryonic-stage cells and microenvironments, shows promise. Our research group has made initial strides, indicating its potential as a viable solution for periodontal complex regeneration. However, further clinical trials and considerations are needed for successful clinical application. This review aims to summarize the strategic transitions in the development of periodontal regenerative materials and to propose prospective avenues for future development.
Collapse
Affiliation(s)
- Guanqi Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Junlong Xue
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Xuan Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mixiao Gui
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Ruidi Xia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yanshu Zhang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yihua Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Shuhua Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- South China Center of Craniofacial Stem Cell Research, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
- Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| |
Collapse
|
4
|
Liu D, Liu L, Zhao X, Zhang X, Chen X, Che X, Wu G. A comprehensive review on targeting diverse immune cells for anticancer therapy: Beyond immune checkpoint inhibitors. Crit Rev Oncol Hematol 2025; 210:104702. [PMID: 40122356 DOI: 10.1016/j.critrevonc.2025.104702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/25/2025] Open
Abstract
Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, primary resistance and acquired resistance continue to limit their efficacy for many patients. To address resistance and enhance the anti-tumor activity within the tumor immune microenvironment (TIME), numerous therapeutic strategies targeting both innate and adaptive immune cells have emerged. These include combination therapies with ICIs, chimeric antigen receptor T-cell (CAR-T), chimeric antigen receptor macrophages (CAR-Ms) or chimeric antigen receptor natural killer cell (CAR-NK) therapy, colony stimulating factor 1 receptor (CSF1R) inhibitors, dendritic cell (DC) vaccines, toll-like receptor (TLR) agonists, cytokine therapies, and chemokine inhibition. These approaches underscore the significant potential of the TIME in cancer treatment. This article provides a comprehensive and up-to-date review of the mechanisms of action of various innate and adaptive immune cells within the TIME, as well as the therapeutic strategies targeting each immune cell type, aiming to deepen the understanding of their therapeutic potential.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Lei Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xinming Zhao
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaoman Zhang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaochi Chen
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
5
|
Zhang Y, Shi M, Li M, Qin S, Miao D, Bai Y. Dynamic single-cell metabolomics reveals cell-cell interaction between tumor cells and macrophages. Nat Commun 2025; 16:4582. [PMID: 40379657 PMCID: PMC12084531 DOI: 10.1038/s41467-025-59878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 05/08/2025] [Indexed: 05/19/2025] Open
Abstract
Single-cell metabolomics reveals cell heterogeneity and elucidates intracellular molecular mechanisms. However, general concentration measurement of metabolites can only provide a static delineation of metabolomics, lacking the metabolic activity information of biological pathways. Herein, we develop a universal system for dynamic metabolomics by stable isotope tracing at the single-cell level. This system comprises a high-throughput single-cell data acquisition platform and an untargeted isotope tracing data processing platform, providing an integrated workflow for dynamic metabolomics of single cells. This system enables the global activity profiling and flow analysis of interlaced metabolic networks at the single-cell level and reveals heterogeneous metabolic activities among single cells. The significance of activity profiling is underscored by a 2-deoxyglucose inhibition model, demonstrating delicate metabolic alteration within single cells which cannot reflected by concentration analysis. Significantly, the system combined with a neural network model enables the metabolomic profiling of direct co-cultured tumor cells and macrophages. This reveals intricate cell-cell interaction mechanisms within the tumor microenvironment and firstly identifies versatile polarization subtypes of tumor-associated macrophages based on their metabolic signatures, which is in line with the renewed diversity atlas of macrophages from single-cell RNA-sequencing. The developed system facilitates a comprehensive understanding single-cell metabolomics from both static and dynamic perspectives.
Collapse
Affiliation(s)
- Yi Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mingying Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mingxuan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shaojie Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Daiyu Miao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
6
|
Sandin A, Jönsson L, Jennische E, Dellenmark Blom M, Friberg LG, Gatzinsky V, Holmqvist O, Abrahamsson K. Regenerative Response 35 Days After Esophageal Replacement in a Porcine Model; Technical Difficulties and Attempts to Achieve Optimal Tissue Remodeling. Artif Organs 2025. [PMID: 40358073 DOI: 10.1111/aor.15006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2025] [Accepted: 03/11/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND In previous articles, a porcine model for bridging circumferential defects in the intrathoracic esophagus was developed. The aims of this present study were to evaluate the continued healing response after 35 days, avoid stent migration of the esophageal stent, and to investigate whether it would be beneficial to add new extracellular matrix (ECM) to the healing area after 20 days. METHODS Surgery was performed in twelve piglets, and five different types of stents were used. In two piglets, new ECM was added by endoscope to the area of healing after 20 days. After the animals were euthanized, the esophageal tissue was examined. RESULTS Histologic examination after 35 days showed clusters of desmin-positive smooth muscle cells and the sprouting of nerves in the area that was healing. Generally, there were fewer M1 classically activated macrophages in specimens after 35 days when we compared them with the 20-day study. The CD 163 positive macrophages (M2-macrophages) were seen in all specimens. Four piglets did not survive to the end of the study period because of adverse events. Out of the eight piglets that were euthanized after 34 to 35 days, six had stents that had migrated to the stomach. Only in two piglets, who had large rilled stents, did the stents remain in place throughout the study period. CONCLUSION After 35 days, the area of healing did not show more signs of regenerative healing than the 20 days study. A procedure to add a new biomatrix by re-stenting endoscopically after 20 days was performed on two pigs. The procedure was feasible, but due to limb pain in the animals, they had to be euthanized prior to the plan, which prevented the evaluation of the effect on the regenerative response. The regenerative healing that was started needs to be further orchestrated in other ways to produce a more functional outcome with time.
Collapse
Affiliation(s)
- A Sandin
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - L Jönsson
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - E Jennische
- Department of Medical Chemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - M Dellenmark Blom
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - L-G Friberg
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - V Gatzinsky
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - O Holmqvist
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - K Abrahamsson
- Department of Pediatric Surgery, The Queen Silvia Children's Hospital, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Wang X, Tan L, Dong Y, Lin Y, Yin L, Shen S, Dou H, Hou Y. Vitamin D enhances the effect of Soufeng sanjie formula in alleviating joint inflammation in CIA mice through VDR-NOTCH3/DLL4 signaling in macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2025; 349:119932. [PMID: 40350051 DOI: 10.1016/j.jep.2025.119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/22/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rheumatoid arthritis (RA), defined as Bi Zheng syndrome in traditional Chinese medicine (TCM), is a chronic inflammatory and autoimmune disease that can cause substantial articular degradation and impairment. In RA, the polarization of macrophages to a proinflammatoy phenotype contributes to chronic inflammation and joint injury. Soufeng sanjie formula (SF), a traditional Chinese formula used to treat RA, consists of Scolopendra subspinipes mutilans L. Koch, Buthus martensii Karsch, Astragalus membranaceus (Fisch), and Glycine max (L.) Merr seed coats and plays a role in the regulation of macrophage polarization. Vitamin D (VD), a specific activator of the vitamin D receptor (VDR), promotes the differentiation of M2 macrophages and significantly enhances the therapeutic effects of TCM on arthritis. However, whether SF can be combined with VD to regulate macrophage polarization and alleviate RA remains unclear. AIM OF THE STUDY In this study, we examined the regulatory mechanisms and therapeutic effects of the combination of SF and VD on macrophages in RA. MATERIALS AND METHODS We used network pharmacology to analyze the targets and pathways of SF in RA. Clinical data were analyzed to confirm the expression of key targets. The RA immune landscape for cell-gene correlations was built using bioinformatics. A collagen-induced arthritis (CIA) model was established to evaluate the combined therapeutic effects of SF and VD on joint injury and inflammation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), western blotting (WB), and immunofluorescence were used to assess the expression of key molecules in macrophages. Macrophage polarization was analyzed using flow cytometry. RESULTS SF acts on RA through multiple pathways, including hub genes, such as VDR, ABL1, DNMT1, and CXCR4. Immune infiltration analysis of RA showed that a reduction in the number of M2 macrophages significantly affected RA. Clinical data analysis and prognostic assessments corroborated the pivotal roles played by hub genes, such as VDR, ABL1, DNMT1, and CXCR4. Crucially, this study demonstrated a strong association between the key hub gene VDR and M2 macrophages. In vivo and in vitro models of RA showed that VD significantly improved the efficacy of SF against arthritis in CIA mice and stimulated macrophage polarization toward the M2 phenotype via modulation of the NOTCH3/DLL4 pathway. Furthermore, siRNA-mediated interference with the expression of VDR confirmed that the downregulation of VDR significantly activated the NOTCH3/DLL4 signaling pathway and blocked the regulation of SF combined with VD on the polarization of macrophages toward the M2 phenotype. CONCLUSIONS Our results demonstrate that the combination of SF and VD markedly improves the therapeutic effect of SF on RA via M2 macrophage differentiation through the VDR-NOTCH3/DLL4 signaling pathway. The VD-enhancing effect of SF in improving RA symptoms offers a new strategy and theoretical foundation for the clinical treatment of the condition.
Collapse
Affiliation(s)
- Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Yue Dong
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Yan Lin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Lijie Yin
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, PR China.
| |
Collapse
|
8
|
Dar MI, Hussain Y, Pan X. Roles of circadian clocks in macrophage metabolism: implications in inflammation and metabolism of lipids, glucose, and amino acids. Am J Physiol Endocrinol Metab 2025; 328:E723-E741. [PMID: 40193204 DOI: 10.1152/ajpendo.00009.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/06/2025]
Abstract
Macrophages are essential immune cells that play crucial roles in inflammation and tissue homeostasis and are important regulators of metabolic processes, such as the metabolism of glucose, lipids, and amino acids. The regulation of macrophage metabolism by circadian clock genes has been emphasized in many studies. Changes in metabolic profiles occurring after the perturbation of macrophage circadian cycles may underlie the etiology of several diseases. Specifically, chronic inflammatory disorders, such as atherosclerosis, diabetes, cardiovascular diseases, and liver dysfunction, are associated with poor macrophage metabolism. Developing treatment approaches that target metabolic and immunological ailments requires an understanding of the complex relationships among clock genes, disease etiology, and macrophage metabolism. This review explores the molecular mechanisms through which clock genes regulate lipid, amino acid, and glucose metabolism in macrophages and discusses their potential roles in the development and progression of metabolic disorders. The findings underscore the importance of maintaining circadian homeostasis in macrophage function as a promising avenue for therapeutic intervention in diseases involving metabolic dysregulation, given its key roles in inflammation and tissue homeostasis. Moreover, reviewing the therapeutic implications of circadian rhythm in macrophages can help minimize the side effects of treatment. Novel strategies may be beneficial in treating immune-related diseases caused by shifted and blunted circadian rhythms via light exposure, jet lag, seasonal changes, and shift work or disruption to the internal clock (such as stress or disease).
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| |
Collapse
|
9
|
Igarashi Y, Seino K. Role of IL-34 in Tumors and Its Application to Regulate Inflammation. Cancer Sci 2025; 116:1164-1170. [PMID: 39951014 PMCID: PMC12044644 DOI: 10.1111/cas.70020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 05/02/2025] Open
Abstract
Interleukin (IL)-34 is a relatively recently discovered cytokine which binds to colony-stimulating factor-1 receptor (CSF-1R). So far, there has been no clear explanation as to why CSF-1R requires two ligands. While CSF-1 is ubiquitously expressed, the expression of IL-34 is relatively restricted. However, it has been revealed that IL-34 expression increases in various diseases and is associated with their pathology. Naturally, both IL-34 and CSF-1 stimulate CSF-1R, thereby contributing to the differentiation of monocytes into macrophages. In many cases, the induced macrophages significantly influence the disease pathology. In particular, we have demonstrated that IL-34 expression in cancer is deeply involved in tumor progression and therapeutic resistance. We have shown that the blockade of IL-34 significantly improved therapeutic efficacy such as chemotherapy, radiotherapy, and immune checkpoint blockade against IL-34-expressing cancers. Recently, since macrophages induced by IL-34 exhibit immunosuppressive properties, whereas IL-34 can enhance inflammation, there is growing interest in actively regulating inflammation utilizing IL-34. In this review article, we provide an overview of the characteristics and roles of IL-34 and discuss how it could be applied to future diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yuichi Igarashi
- Division of ImmunobiologyInstitute for Genetic Medicine, Hokkaido UniversitySapporoJapan
| | - Ken‐ichiro Seino
- Division of ImmunobiologyInstitute for Genetic Medicine, Hokkaido UniversitySapporoJapan
| |
Collapse
|
10
|
Lin X, Lin Q. Heat shock-pretreated bone marrow mesenchymal stem cells accelerate wound healing in a diabetic foot ulcer rat model. Diabet Med 2025; 42:e15507. [PMID: 39924779 DOI: 10.1111/dme.15507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 02/11/2025]
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) are the severe chronic complications of diabetes, amputation is required when ulcers cause severe loss of tissue or evoke a life-threatening infection. Mesenchymal stem cells (MSCs) have shown a good effect in helping DFU healing, though the efficiency needs to be improved. This study aimed to investigate the effects of heat shock pretreatment on the improvement of the therapeutic effects of MSCs. METHODS Primary rat bone marrow MSCs (BMSCs) were isolated and stimulated with heat shock pretreatment and then tested on a DFU rat model. Alkaline phosphatase, Alizarin Red S, and Oil Red O were stained to check the osteogenic differentiation ability of heat shock-pretreated BMSCs. The effect of heat shock pretreatment on the inflammatory response of macrophages was studied with the lipopolysaccharides stimulation model on a mouse macrophage cell line RAW264.7. The impact of heat shock-pretreated BMSCs on dermal fibroblasts was also checked. Last, heat shock-pretreated BMSCs were tested on a DFU rat model. RESULTS Heat shock-pretreated BMSCs were characterized by the expression of CD105 and CD44. Heat shock pre-stimulation did not affect cell viability when cultured up to 96 h. Heat shock pre-stimulated BMSCs inhibited the inflammatory response by reducing the pro-inflammatory cytokine production (IL-1β, IL-6, and TNF-α) and enhancing the anti-inflammatory cytokine production (IL-10) (at least all p < 0.01), as well as increasing the ratio of M2 polarization macrophages to M1 polarization in vitro (p < 0.001). Heat shock pre-stimulated BMSCs enhanced the growth and migration of dermal fibroblasts in vitro (p < 0.001). Heat shock-BMSCs promoted the M2 polarization level of macrophages in wound tissues in a DFU rat model. CONCLUSION Heat shock pretreatment could enhance the therapeutic effect of BMSCs on wound healing in a DFU rat model.
Collapse
Affiliation(s)
- Xi Lin
- Department of Emergency Surgery, Center for Trauma Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Qi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| |
Collapse
|
11
|
Ye Y, Rao Z, Xie X, Liu Y, Qiu L, Liu Q, Weng X, Wang C, Bi Y, Zeng T. Naoqing formula alleviates cerebral ischemia/reperfusion injury induced inflammatory injury by regulating Csf3 mediated JAK/STAT pathway and macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156626. [PMID: 40088744 DOI: 10.1016/j.phymed.2025.156626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND Upon cerebral ischemia/reperfusion injury (CIRI), the brain tissue experiences excessive inflammatory responses, which fuel the activation of immune cells, thereby intensifying cellular damage and inflammatory reactions. Naoqing formula (NQ), a traditional Chinese medicinal compound formulated with musk as the primary component, has been extensively utilized in China for the clinical treatment of ischaemic stroke (IS). PURPOSE The precise pharmacological mechanism underlying NQ's efficacy in managing IS remains elusive. In this study, we investigate the protective effect and molecular mechanism of NQ against CIRI. METHODS C57BL/6 mice were utilized to investigate the protective effects of NQ (130, 260 and 520mg/kg) against middle cerebral artery occlusion (MCAO) induced CIRI and the underlying mechanism. Employing molecular biology techniques, transcriptomics, proteomics, and network pharmacological analyses, the study assessed the role of NQ in the inflammatory response of neuronal cells by establishing a model for neuronal cell and microglia inflammatory injury induced by oxygen-glucose deprivation/reperfusion (OGD/R) and lipopolysaccharide (LPS) stimulation. RESULTS NQ demonstrated significant efficacy in mitigating neuronal damage and cerebral infarction induced by CIRI, achieved through the enhancement of cortical blood flow. Transcriptomic and network pharmacological analyses revealed that NQ mitigated the inflammatory damage caused by CIRI by modulating the Csf3-mediated JAK/STAT pathway. Proteomic analysis further corroborated this finding, indicating that NQ reduced the impact of CIRI by regulating macrophage polarization. Notably, in CIRI mice treated with NQ, there was a notable downregulation of Csf3, JAK2, STAT3, and STAT6, along with a co-localization of Csf3 and CD206. These observations suggested that NQ inhibited the activation of the JAK/STAT pathway and exerted its anti-inflammatory effects by orchestrating the transition of macrophages from the M1 phenotype to the M2 phenotype, triggered by Csf3. Consistent with the in vivo findings, NQ also inhibited the activation of the JAK/STAT pathway in neuronal cells and microglial polarization in vitro, thereby protecting against OGD/R- and LPS-induced inflammatory injury. CONCLUSION This study confirmed that NQ prevented CIRI induced inflammatory injury by inhibiting Csf3-mediated activation of the JAK/STAT pathway and modulating Csf3-mediated macrophage polarization. This study provided a new perspective on the use of NQ in the treatment of IS.
Collapse
Affiliation(s)
- Yujun Ye
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, Guangdong, China
| | | | - Xuexin Xie
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yingxin Liu
- School of Combine Traditional Chinese and Western Medicine, Guangzhou Medical University, Guangzhou, Guangdong, China; Institute of Integration of Traditional and Western Medicine of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lingling Qiu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Qing Liu
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Xuliang Weng
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China
| | - Chengyin Wang
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| | - Yiming Bi
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| | - Ting Zeng
- Department of Brain Diseases, The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangdong, China; Sleep Research Institute of Traditional Chinese Medicine, Guangzhou Medical University, Guangdong, China.
| |
Collapse
|
12
|
Joy S, Prasannan A, Venkatachalam K, Binesh A. Molecular Mechanism of Notch Signaling and Macrophages in Deep Vein Thrombosis: A Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01761-y. [PMID: 40279070 DOI: 10.1007/s12013-025-01761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2025] [Indexed: 04/26/2025]
Abstract
Deep vein thrombosis is an acute medical condition, and the molecular basis of this etiology will be crucial in the discovery of more advanced therapies. This review has focused at the Notch signaling pathway, which plays a significant role in different physiological activities such as homeostasis, development, and disease. Also, reveal macrophage function in inflammation and thrombosis in depth, with a focus on their polarization and interaction with the endothelium during thrombosis. In this context, some essential cellular and molecular mechanisms relevant to thrombus pathogenesis, DVT aetiology and risk factors, as well as elements and composition of the Notch pathway, are covered in the end, with a focus on elements that distinguish canonical from non-canonical signaling pathways and their biological relevance to macrophages. Notch signaling has been shown to influence macrophage activation and polarization, influencing their function in thrombosis breakdown and resolution. This interplay between Notch signaling and macrophages may reveal possible treatment targets for DVT. Discuss the physiological role of Notch signaling in vascular biology, as well as how it contributes to thrombosis. The difficulties in implementing these discoveries in clinical practice are discussed, along with the status of ongoing clinical trials and experimental investigations focussing on macrophage-directed treatments and Notch inhibitors. These molecular insights synthesis provides a basis for the creation of novel strategies for the efficient management of DVT.
Collapse
Affiliation(s)
- Sisira Joy
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India
| | - Anusha Prasannan
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India
| | - Ambika Binesh
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, Tamil Nadu, India.
| |
Collapse
|
13
|
Araya-Sapag MJ, Lara-Barba E, García-Guerrero C, Herrera-Luna Y, Flores-Elías Y, Bustamante-Barrientos FA, Albornoz GG, Contreras-Fuentes C, Yantén-Fuentes L, Luque-Campos N, Vega-Letter AM, Toledo J, Luz-Crawford P. New mesenchymal stem/stromal cell-based strategies for osteoarthritis treatment: targeting macrophage-mediated inflammation to restore joint homeostasis. J Mol Med (Berl) 2025:10.1007/s00109-025-02547-8. [PMID: 40272537 DOI: 10.1007/s00109-025-02547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
Macrophages are pivotal in osteoarthritis (OA) pathogenesis, as their dysregulated polarization can contribute to chronic inflammatory processes. This review explores the molecular and metabolic mechanisms that influence macrophage polarization and identifies potential strategies for OA treatment. Currently, non-surgical treatments for OA focus only on symptom management, and their efficacy is limited; thus, mesenchymal stem/stromal cells (MSCs) have gained attention for their anti-inflammatory and immunomodulatory capabilities. Emerging evidence suggests that small extracellular vesicles (sEVs) derived from MSCs can modulate macrophage function, thus offering potential therapeutic benefits in OA. Additionally, the transfer of mitochondria from MSCs to macrophages has shown promise in enhancing mitochondrial functionality and steering macrophages toward an anti-inflammatory M2-like phenotype. While further research is needed to confirm these findings, MSC-based strategies, including the use of sEVs and mitochondrial transfer, hold great promise for the treatment of OA and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Araya-Sapag
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliana Lara-Barba
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García-Guerrero
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yeimi Herrera-Luna
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Yesenia Flores-Elías
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Felipe A Bustamante-Barrientos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Guillermo G Albornoz
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Consuelo Contreras-Fuentes
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Liliana Yantén-Fuentes
- Programa de Doctorado en Biomedicina, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Noymar Luque-Campos
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jorge Toledo
- Red de Equipamiento Científico Avanzado (REDECA), Facultad de Medicina, Universidad de Chile, Santiago, Chile.
- Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile, Santiago, Chile.
| | - Patricia Luz-Crawford
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación e Innovación Biomédica, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| |
Collapse
|
14
|
Takahara S, Ohkura N, Yoshiba N, Baldeon-Gutierrez R, Gomez-Kasimoto S, Edanami N, Ida T, Takenaka S, Yoshiba K, Noiri Y. Influence of Tooth Maturity on Healing Outcomes in Regenerative Endodontics. J Dent Res 2025:220345251325826. [PMID: 40251757 DOI: 10.1177/00220345251325826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025] Open
Abstract
Regenerative endodontic procedures using blood clots (BC-REP) for immature teeth typically exhibit a periodontal ligament-like healing pattern. However, a pulp-like healing pattern is observed in the presence of residual pulp. This study aimed to clarify the healing phenotype according to tooth maturity when performing BC-REP in the presence of residual pulp, focusing on migrated mesenchymal stem/stromal cells (MSCs). BC-REP rat molar models were created in the presence of residual pulp at ages corresponding to tooth developmental stages, from immature to mature (5 wk: immature, root is still growing; 8 wk: near mature, root has finished growing in length but the apex is not formed; 11 wk: mature, the apex is formed). The healing pattern and histological MSC markers (α-smooth muscle actin [α-SMA], CD73, CD90, and CD146) were investigated. The frequency of periodontal ligament-like healing was higher in mature teeth than in immature teeth. In addition, more healing macrophages were observed at the apical site 28 d after BC-REP, which is the final stage of healing. In immature teeth, double-immunopositive cells for proliferation markers (ki67 and proliferating cell nuclear antigen [PCNA]) and α-SMA were frequently observed in the vicinity of the root canal orifice 7 d after treatment, which is the early stage of healing. By contrast, in mature teeth, the number of CD73-, CD90-, and CD146-immunopositive cells increased at the apical site after 7 and 28 d. CD90- and CD146-immunopositive cells expressed cell proliferation markers (ki67 or PCNA) after 7 d. MSC migration after BC-REP likely varies based on tooth maturity, resulting in different healing phenotypes.
Collapse
Affiliation(s)
- S Takahara
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Ohkura
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - R Baldeon-Gutierrez
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Gomez-Kasimoto
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - N Edanami
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Ida
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - S Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yoshiba
- Division of Oral Science for Health Promotion, Department of Oral Health and Welfare, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Y Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Department of Oral Health Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
15
|
Yang H, Feng R, Heng X, Shan F, Wang Y, Yao L, Wang S, Chen G, Chen H. Enhanced Whole Tumor Cell-Based Vaccines by a RAFT and Protein Fusion Strategy for Tumor Immunotherapy. Biomacromolecules 2025; 26:2690-2699. [PMID: 40117506 DOI: 10.1021/acs.biomac.5c00115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Inactivated whole tumor cell-based vaccines (WTVs) are a promising strategy for tumor immunotherapy, but have exhibited limited antitumor effects clinically. Aiming at constructing enhanced WTVs, we developed glycopolymer-engineered WTVs (G-WTVs) using a Halo-Tag protein (HTP) fusion technique and reversible addition-fragmentation chain transfer (RAFT) polymerization. In our study, G-WTVs with varying molecular weights of glycopolymers were constructed. Compared to unmodified tumor cells, all G-WTVs effectively induced the polarization of macrophages toward the M1 phenotype and promoted the secretion of pro-inflammatory cytokines. This enhanced immune response was attributed to the improved interactions between G-WTVs and the macrophages. Among the G-WTVs, the medium molecular weight variant demonstrated the most pronounced enhancement of antitumor immune responses. Notably, the administration of optimized G-WTVs effectively inhibited the growth of B16 melanoma in mice. Our findings provide a new approach to enhance the antitumor efficacy of WTVs via cell membrane glycopolymer engineering, offering a promising strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- He Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Ruyan Feng
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, P. R. China
| | - Xingyu Heng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fangjian Shan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lihua Yao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Sujian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials College of Chemistry, Chemical Engineering and Materials Science Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Biosurf Biotech Co., Ltd., Suzhou 215123, P. R. China
| |
Collapse
|
16
|
AbuBakr N, Ahmed GM, Kamel AHM. Histological and immunohistochemical analysis of human periapical lesions: a study of TGF-β1 and CD68 markers. BMC Oral Health 2025; 25:526. [PMID: 40217194 PMCID: PMC11987189 DOI: 10.1186/s12903-025-05845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
BACKGROUND Various inflammatory and anti-inflammatory mediators, along with diverse cell types, are implicated in the development and progression of periapical lesions. This work aimed to assess the immuno-expression of transforming growth factor-beta 1 (TGF-β1) and CD68 (a macrophage marker), elucidating their roles and potential correlations. Additionally, histological analysis was conducted to evaluate the intensity of inflammatory infiltrates in chronic periapical lesion samples. METHODS Tissue samples from fifty individuals with chronic periapical lesions [25 radicular cysts (RCs) and 25 periapical granulomas (PGs)] were obtained, along with control samples from four healthy third molars' dental pulp. Histological examination and inflammatory infiltrate categorization were performed. Immunohistochemical analysis of TGF-β1 and CD68 markers, along with morphometric assessment, were conducted. RESULTS The control group displayed normal, inflammation-free pulp tissues, while intense inflammation was observed in PGs and RCs (Score 4 and 3, respectively) dominated by macrophages, plasma cells, and lymphocytes. Immunohistochemistry showed higher TGF-β1 and CD68 expression in PGs and RCs versus control (P < 0.001). Moreover, PGs exhibited greater TGF-β1 and CD68 expression than RCs (P < 0.001). However, a negative relationship was detected between the 2 markers (P < 0.05). CONCLUSIONS This study highlighted varying expressions of TGF-β1 and CD68 in PGs and RCs, indicating their potential roles in lesion pathology. However, a negative correlation between these markers was observed. Accordingly, their precise role in periapical lesion progression and repair requires further investigation.
Collapse
Affiliation(s)
- Nermeen AbuBakr
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt.
| | - Geraldine M Ahmed
- Department of Endodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | | |
Collapse
|
17
|
Qiu Z, Huang A, Li Z, Qin S, Chen J, Li B, Liu B, He L. Hydrogen-rich water ameliorates imiquimod-induced psoriasis-like skin lesions and regulates macrophage polarization in dyslipidemic ApoE-deficient mice. Eur J Pharmacol 2025; 992:177363. [PMID: 39923825 DOI: 10.1016/j.ejphar.2025.177363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Psoriasis is a complex immune-mediated disease that has been closely associated with obesity and lipid metabolism disorders. This study investigated the effects of hydrogen-rich water (HRW) on imiquimod-induced psoriasis-like skin inflammation in ApoE-deficient mice. Psoriasis severity as well as the lipid levels and inflammatory markers were evaluated. The results revealed that HRW significantly reduced plasma triglyceride and total cholesterol levels, increased high-density lipoprotein cholesterol levels, and alleviated skin lesions in mice. Transcriptomic data of the skin tissues indicated significant changes in the inflammatory and lipid metabolism pathways after HRW treatment and quantitative PCR validated the regulation of inflammatory cytokine expression. In addition, HRW promoted M2 macrophage polarization and reduced M1 macrophage polarization in the skin. These results suggest that the consumption of HRW may be a potential therapeutic strategy for psoriasis accompanied by abnormal lipid metabolism.
Collapse
Affiliation(s)
- Zhihui Qiu
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China; Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Ailing Huang
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Zhuohui Li
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Shucun Qin
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Jun Chen
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China
| | - Baoqiang Li
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China
| | - Boyan Liu
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| | - Lei He
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China.
| |
Collapse
|
18
|
Wang Y, Li Y, Lin Y, Cao C, Chen D, Huang X, Li C, Xu H, Lai H, Chen H, Zhou Y. Roles of the gut microbiota in hepatocellular carcinoma: from the gut dysbiosis to the intratumoral microbiota. Cell Death Discov 2025; 11:140. [PMID: 40185720 PMCID: PMC11971373 DOI: 10.1038/s41420-025-02413-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/23/2025] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is closely linked to alterations in the gut microbiota. This dysbiosis is characterized by significant changes in the microbial population, which correlate with the progression of HCC. Gut dysbiosis ultimately promotes HCC development in several ways: it damages the integrity of the gut-vascular barrier (GVB), alters the tumor microenvironment (TME), and even affects the intratumoral microbiota. Subsequently, intratumoral microbiota present a characteristic profile and play an essential role in HCC progression mainly by causing DNA damage, mediating tumor-related signaling pathways, altering the TME, promoting HCC metastasis, or through other mechanisms. Both gut microbiota and intratumoral microbiota have dual effects on HCC progression; a comprehensive understanding of their complex biological roles will provide a theoretical foundation for potential clinical applications in HCC treatment.
Collapse
Affiliation(s)
- Yiqin Wang
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yong Lin
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chuangyu Cao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Dongcheng Chen
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Xianguang Huang
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Canhua Li
- Department of Gastroenterology and Hepatology, Baiyun Hospital of Guangzhou First People's Hospital (The Second People's Hospital of Baiyun District), Guangzhou, China
| | - Haoming Xu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huasheng Lai
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.
| |
Collapse
|
19
|
Jafarzadeh S, Nemati M, Zandvakili R, Jafarzadeh A. Modulation of M1 and M2 macrophage polarization by metformin: Implications for inflammatory diseases and malignant tumors. Int Immunopharmacol 2025; 151:114345. [PMID: 40024215 DOI: 10.1016/j.intimp.2025.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Macrophages perform an essential role in the body's defense mechanisms and tissue homeostasis. These cells exhibit plasticity and are categorized into two phenotypes, including classically activated/M1 pro-inflammatory and alternatively activated/M2 anti-inflammatory phenotypes. Functional deviation in macrophage polarization occurs in different pathological conditions that need correction. In addition to antidiabetic impacts, metformin also possesses multiple biological activities, including immunomodulatory, anti-inflammatory, anti-tumorigenic, anti-aging, cardioprotective, hepatoprotective, and tissue-regenerative properties. Metformin can influence the polarization of macrophages toward M1 and M2 phenotypes. The ability of metformin to support M2 polarization and suppress M1 polarization could enhance its anti-inflammatory properties and potentiate its protective effects in conditions such as chronic inflammatory diseases, atherosclerosis, and obesity. However, in metformin-treated tumors, the proportion of M2 macrophages is decreased, while the frequency ratio of M1 macrophages is increased, indicating that metformin can modulate macrophage polarization from a pro-tumoral M2 state to an anti-tumoral M1 phenotype in malignancies. Metformin affects macrophage polarization through AMPK-dependent and independent pathways involving factors, such as NF-κB, mTOR, ATF, AKT/AS160, SIRT1, STAT3, HO-1, PGC-1α/PPAR-γ, and NLRP3 inflammasome. By modulating cellular metabolism and apoptosis, metformin can also influence macrophage polarization. This review provides comprehensive evidence regarding metformin's effects on macrophage polarization and the underlying mechanisms. The polarization-inducing capabilities of metformin may provide significant therapeutic applications in various inflammatory diseases and malignant tumors.
Collapse
Affiliation(s)
- Sara Jafarzadeh
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nemati
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran; Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
20
|
Yoon J, Lee Y, Kim M, Park JY, Jang J. Enhanced Bioprinting of 3D Corneal Stroma Patches with Reliability, Assessing Product Consistency and Quality through Optimized Electron Beam Sterilization. Adv Healthc Mater 2025; 14:e2403118. [PMID: 39930756 PMCID: PMC11973947 DOI: 10.1002/adhm.202403118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/31/2025] [Indexed: 04/08/2025]
Abstract
This study focuses on the optimization of sterilization methods for bioprinted three-dimensional (3D) corneal stroma patches prepared using cornea-derived decellularized extracellular matrix (Co-dECM) hydrogels and human keratocytes, with the aim of enhancing clinical applications in corneal tissue engineering. An essential aspect of this study is to refine the sterilization processes, particularly focusing on electron beam (EB) sterilization, to maintain the structural and functional integrity of the Co-dECM hydrogels while ensuring sterility. The study reveals that EB sterilization outperformed traditional methods like ethylene oxide (EtO) gas and autoclaving, which tend to degrade the biochemical properties of hydrogels. By optimizing the EB-sterilization process, the essential mechanical and biochemical characteristics needed for successful 3D bioprinting are retained, reducing batch variability in bioprinted 3D corneal stroma patches. Consistency in production is vital for meeting regulatory standards and ensuring patient safety. Moreover, the study investigates the immunomodulatory properties of sterilized hydrogels, emphasizing their potential to minimize inflammatory responses, which is crucial for maintaining keratocyte phenotype. These findings significantly advance biomedical engineering by providing a sterilization method that preserves material integrity, minimizes immunogenicity, and supports the clinical translation of bioprinted corneal stroma patches, offering a promising alternative to donor transplants and synthetic substitutes.
Collapse
Affiliation(s)
- Jungbin Yoon
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | | | - Minji Kim
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
| | | | - Jinah Jang
- Department of Mechanical EngineeringPohang University of Science and Technology (POSTECH)Pohang37673South Korea
- BioBricks Co., LtdPohang37673South Korea
- Department of Convergence IT EngineeringPOSTECHPohang37673South Korea
- School of Interdisciplinary Bioscience and BioengineeringPOSTECHPohang37673South Korea
- Institute of Convergence ScienceYonsei UniversitySeoul220‐710South Korea
| |
Collapse
|
21
|
Castanho Martins M, Dixon ED, Lupo G, Claudel T, Trauner M, Rombouts K. Role of PNPLA3 in Hepatic Stellate Cells and Hepatic Cellular Crosstalk. Liver Int 2025; 45:e16117. [PMID: 39394864 PMCID: PMC11891384 DOI: 10.1111/liv.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024]
Abstract
AIMS Since its discovery, the patatin-like phospholipase domain containing 3 (PNPLA3) (rs738409 C>G p.I148M) variant has been studied extensively to unravel its molecular function. Although several studies proved a causal relationship between the PNPLA3 I148M variant and MASLD development and particularly fibrosis, the pathological mechanisms promoting this phenotype have not yet been fully clarified. METHODS We summarise the latest data regarding the PNPLA3 I148M variant in hepatic stellate cells (HSCs) activation and macrophage biology or the path to inflammation-induced fibrosis. RESULTS Elegant but contradictory studies have ascribed PNPLA3 a hydrolase or an acyltransferase function. The PNPLA3 I148M results in hepatic lipid accumulation, which predisposes the hepatocyte to lipotoxicity and lipo-apoptosis, producing DAMPs, cytokines and chemokines leading to recruitment and activation of macrophages and HSCs, propagating fibrosis. Recent studies showed that the PNPLA3 I148M variant alters HSCs biology via attenuation of PPARγ, AP-1, LXRα and TGFβ activity and signalling. CONCLUSIONS The advent of refined techniques in isolating HSCs has made PNPLA3's direct role in HSCs for liver fibrosis development more apparent. However, many other mechanisms still need detailed investigations.
Collapse
Affiliation(s)
- Maria Castanho Martins
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| | - Emmanuel Dauda Dixon
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Giulia Lupo
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Krista Rombouts
- Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive HealthUniversity College London, Royal Free CampusLondonUK
| |
Collapse
|
22
|
Mortezaei A, Ghorbani M, Hajikarimloo B, Sameer O, Kazemi T, Salavati E, Hamidpour M, Gheydari ME. Is L-Arginine an Appropriate Alternative for Conventional Anti-Atherosclerotic Therapy?: A Comprehensive Review. Health Sci Rep 2025; 8:e70544. [PMID: 40161001 PMCID: PMC11949766 DOI: 10.1002/hsr2.70544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/14/2025] [Indexed: 04/02/2025] Open
Abstract
Background Atherosclerosis is the leading cause of cardiovascular disease (CVD). Historically, the management of atherosclerosis was focused on decreasing lipid profile levels; however, recent evidence demonstrated that platelets and leukocytes play an important role in forming and exacerbating atherosclerosis. L-arginine (L-Arg), a precursor to nitric oxide (NO), plays a critical role in modulating oxidative stress and influencing platelet-leukocyte recruitment and has been extensively addressed in the context of CVD. Objective We aimed to perform a comprehensive literature review on l-Arg metabolism in the causative pathway of atherosclerosis compared to conventional treatment and it as a putative therapeutic approach. Results L-Arg supplementation has shown promising effects on NO production, improving endothelial function and reducing oxidative stress in preclinical models. Clinical studies have indicated moderate improvements in vascular health markers, including reductions in inflammation and oxidative stress, although results have varied across studies. The potential of l-Arg to modify platelet-leukocyte recruitment and slow the progression of atherosclerotic plaque development has been observed in certain studies. However, these benefits remain inconsistent, and more robust clinical trials are needed to confirm its effectiveness. Additionally, while l-Arg appears to be relatively safe, some studies reported mild gastrointestinal discomfort as a common side effect. Conclusion l-Arg holds potential as a complementary or alternative treatment for atherosclerosis, particularly in improving endothelial function and reducing inflammation and oxidative stress. However, the variability in clinical outcomes and the lack of long-term data required further investigation into assessing therapeutic benefits. Future studies should focus on determining optimal dosing regimens, evaluating their long-term safety, and assessing their potential in combination with other therapies to enhance cardiovascular outcomes.
Collapse
Affiliation(s)
- Ali Mortezaei
- Student Research CommitteeGonabad University of Medical SciencesGonabadIran
| | - Mohammad Ghorbani
- Faculty of Allied Medicine, Department of Medical Laboratory SciencesGonabad University of Medical SciencesGonabadIran
- Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | | | - Omar Sameer
- College of MedicineUniversity of SharjahSharjahUAE
| | - Toba Kazemi
- Cardiovascular Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Ebrahim Salavati
- Allameh Bohlool HospitalGonabad University of Medical SciencesGonabadIran
| | - Mohsen Hamidpour
- HSC Research Center, Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Esmail Gheydari
- Department of Cardiology, School of Medicine, Taleghani HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
23
|
Li J, Wang L, Wang M, Zhang H. Activation of aryl hydrocarbon receptor attenuates intestinal inflammation by enhancing IRF4-mediated macrophage M2 polarization. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167735. [PMID: 39971258 DOI: 10.1016/j.bbadis.2025.167735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/16/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Crohn's disease (CD) is characterized by immune cell dysregulation, with macrophages playing an indisputable role. Macrophages can exhibit opposing polarization under different conditions, resulting in pro- or anti-inflammatory effects. The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, is implicated in intestinal inflammation by regulating both innate and adaptive immune responses. However, the regulatory mechanism between AhR and macrophages in colitis has not been thoroughly investigated. METHODS Macrophage polarization in the colonic tissue of active CD patients was assessed. Following colitis induction in mice by 2,4,6-trinitro-benzenesulfonic acid (TNBS), an intraperitoneal injection of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) was administered. The severity of colitis was estimated, and macrophage polarization was detected. In an in vitro setting, bone marrow-derived macrophages (BMDMs) were polarized to the M2 phenotype in the presence or absence of FICZ. Interferon regulatory factor 4 (IRF4) siRNA was applied to knockdown IRF4 expression. M2-specific markers were quantified using quantitative real-time PCR (qRT-PCR), enzyme-linked immunosorbent assay (ELISA) and flow cytometry. RESULTS Compared with healthy controls, active CD patients exhibited a lower presence of M2 macrophages in colonic tissue. Experimentally, FICZ was found to protect mice against TNBS-induced colitis, as evidenced by reduced diarrhea, bloody stool, and weight loss. This effect was associated with an increase in M2 macrophages and the release of IL-10 in the intestine. In BMDMs, FICZ promoted the expressions of M2-specific markers, including Ym1, Fizz1, IL-10, and CD206. Furthermore, FICZ upregulated IRF4 expression. After IRF4 silencing with siRNA, the enhancement of macrophage M2 polarization by FICZ was significantly impaired. CONCLUSION Activation of AhR appears to have a beneficial effect on intestinal inflammation by promoting macrophage M2 polarization. This effect is partially mediated by the upregulation of IRF4 expression and may lead to new insight into the pathogenesis of CD.
Collapse
Affiliation(s)
- Jiajia Li
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingyuan Wang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongjie Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Soma GI, Oda M, Tjhin VT, Kohchi C, Inagawa H. Oral and transdermal administration of lipopolysaccharide safely enhances self-healing ability through the macrophage network. Front Immunol 2025; 16:1563484. [PMID: 40230835 PMCID: PMC11994614 DOI: 10.3389/fimmu.2025.1563484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Lipopolysaccharide (LPS), also known as an endotoxin, is derived from Gram-negative bacteria. The intravenous administration of LPS induces an inflammatory response and causes systemic inflammation, such as cytokine storm. Gram-negative bacteria that produce LPS are found in the environment and digestive tract. The mucous membrane, the primary barrier between the interior of the body and the external environment, is constantly exposed to LPS. Moreover, no toxicity is observed when administering LPS through the mucous membranes of the mouth or skin. The presence of LPS in the mucous membranes is necessary not only for maintaining health but also for inducing preventive and therapeutic effects against multiple diseases when administered orally or topically. LPS is an environmental substance that is useful when administered to mucous membranes. The general information emphasizes the role of LPS as an inflammatory substance that occurs when administered intravenously. Therefore, the valuable role of LPS is unknown. Thus, mucosal administration of LPS has received little attention, and the mechanism underlying the expression of its beneficial effects has not been fully elucidated. We proposed a comprehensive concept, the "macrophage network," which proposes a regulatory system in which the mucosa receives environmental information, membrane-bound cytokines are expressed in phagocytes (macrophages), and these macrophages migrate distally to exert effects, such as anti-inflammatory and tissue repair effects, on distal tissues through cell-to-cell communication (juxtacrine signaling) with tissue macrophages. This macrophage network is effective not only for preventing and treating diseases but also for increasing the efficacy of pharmaceuticals. This review aims to investigate the preventive and therapeutic effects of oral and transdermal administration of LPS on various diseases and present an introduction to the concept of the macrophage network and the latest findings.
Collapse
Affiliation(s)
- Gen-Ichiro Soma
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masataka Oda
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Vindy Tjendana Tjhin
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Chie Kohchi
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
| | - Hiroyuki Inagawa
- Control of Innate Immunity, Technology Research Association, Takamatsu, Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
25
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
26
|
Ismailov A, Spallone A, Belogurov A, Herbert A, Poptsova M. Molecular biology of the deadliest cancer - glioblastoma: what do we know? Front Immunol 2025; 16:1530305. [PMID: 40191211 PMCID: PMC11968700 DOI: 10.3389/fimmu.2025.1530305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Glioblastomas are the most prevalent primary brain tumors and are associated with a dramatically poor prognosis. Despite an intensive treatment approach, including maximal surgical tumor removal followed by radio- and chemotherapy, the median survival for glioblastoma patients has remained around 18 months for decades. Glioblastoma is distinguished by its highly complex mechanisms of immune evasion and pronounced heterogeneity. This variability is apparent both within the tumor itself, which can exhibit multiple phenotypes simultaneously, and in its surrounding microenvironment. Another key feature of glioblastoma is its "cold" microenvironment, characterized by robust immunosuppression. Recent advances in single-cell RNA sequencing have uncovered new promising insights, revealing previously unrecognized aspects of this tumor. In this review, we consolidate current knowledge on glioblastoma cells and its microenvironment, with an emphasis on their biological properties and unique patterns of molecular communication through signaling pathways. The evidence underscores the critical need for personalized poly-immunotherapy and other approaches to overcome the plasticity of glioblastoma stem cells. Analyzing the tumor microenvironment of individual patients using single-cell transcriptomics and implementing a customized immunotherapeutic strategy could potentially improve survival outcomes for those facing this formidable disease.
Collapse
Affiliation(s)
- Aly Ismailov
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| | - Aldo Spallone
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
| | - Alexey Belogurov
- Laboratory of Hormonal Regulation Proteins, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences (RAS), Moscow, Russia
- Scientific and Educational Institute of Fundamental Medicine named after V.I. Pokrovsky, Department of Biological Chemistry, Russian University of Medicine, Moscow, Russia
| | - Alan Herbert
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
- Discovery Department, InsideOutBio, Boston, MA, United States
| | - Maria Poptsova
- International Laboratory of Bioinformatics, Institute of Artificial Intelligence and Digital Sciences, Faculty of Computer Science, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
27
|
McMahon S, Spector T, Ramana KV. Significance of Macrophage-Mediated Inflammatory Response in Ocular Inflammatory Complications. FRONT BIOSCI-LANDMRK 2025; 30:26698. [PMID: 40152374 DOI: 10.31083/fbl26698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 03/29/2025]
Abstract
Immune cells such as macrophages play a significant role in ocular inflammation by activating or inhibiting several cellular pathways. Systemic infections and autoimmune diseases could activate macrophages by releasing various pro-inflammatory cytokines, chemokines, and growth factors, which reach the eyes through the blood-retina barrier and cause immune and inflammatory responses. In addition, environmental pollutants, allergens, and eye injuries could also activate macrophages and cause an inflammatory response. Further, the inflammatory response generated by the macrophages could recruit additional immune cells and enhance the inflammatory response. The inflammatory response leads to ocular tissue damage and dysfunction and affects vision. Macrophages are generally implicated in the clearance of pathogens and debris, generate reactive oxygen species, and initiate immune response. However, uncontrolled immune and inflammatory responses could damage the ocular tissues, leading to various ocular inflammatory complications such as uveitis, scleritis, diabetic retinopathy, and retinitis. Recent studies describe the role of individual cytokines in the mediation of specific ocular inflammatory diseases. In this article, we discussed the potential impact of macrophages and their mediated inflammatory response on the development of various ocular inflammatory diseases and possible treatment strategies.
Collapse
Affiliation(s)
- Sara McMahon
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| | - Tori Spector
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| | - Kota V Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84045, USA
| |
Collapse
|
28
|
Wang H, Wei B, WuLan H, Qu B, Li H, Ren J, Han Y, Guo L. Conditioned medium of engineering macrophages combined with soluble microneedles promote diabetic wound healing. PLoS One 2025; 20:e0316398. [PMID: 40072964 PMCID: PMC11902060 DOI: 10.1371/journal.pone.0316398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 12/10/2024] [Indexed: 03/14/2025] Open
Abstract
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound. Engineering macrophages may enable a further improvement in their tissue repair capacity. Fibroblast growth factor 2 (FGF2) is a crucial growth factor that plays an integral role in wound healing process. And in this study, a stable macrophage cell line (engineered macrophages) overexpressing FGF2 was successfully established by engineering modification of macrophages. Proteomic analysis indicated that conditioned medium derived from FGF2 overexpressed macrophages may promote wound healing by enhancing the level of vascularization. Additionally, cellular assays demonstrated that this conditioned medium promotes endothelial cell migration in vitro. For the convenience of drug delivery and wound application, we prepared soluble hyaluronic acid microneedles to load the conditioned medium. These soluble microneedles exhibited excellent mechanical properties and biocompatibility while effectively releasing their contents in vivo. The microneedles significantly accelerated wound healing, leading to a marked increase in vascular proliferation and improved collagen deposition within a full thickness skin defect diabetic mouse model. In summary, we developed a type of hyaluronic acid microneedle loaded with conditioned medium of engineered macrophages. These microneedles have been demonstrated to enhance tissue vascularization and facilitate diabetic wound healing. This might potentially serve as a highly promising therapeutic approach for diabetic wounds.
Collapse
Affiliation(s)
- HongYu Wang
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Burn and Plastic Surgery, PLA No.983 Hospital, Tianjin, China
| | - BaoHua Wei
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hasi WuLan
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Bin Qu
- Department of Burn Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - HuiLong Li
- College of Basic Medical Sciences, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Ren
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Han
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - LingLi Guo
- Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
29
|
He H, Zhou Z, Zhang L, Lu Z, Li B, Li X. HIF1α/MIF/CD74 signaling mediated OSA-induced atrial fibrillation by promoting M1 macrophages polarization. Int Immunopharmacol 2025; 149:114248. [PMID: 39929098 DOI: 10.1016/j.intimp.2025.114248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is known to contribute to the occurrence and recurrence of atrial fibrillation (AF). However, the mechanism remains unknown. METHODS Chronic OSA rat model was established to elucidate the role of macrophages in OSA-induced AF. Moreover, to reveal the mechanisms underlying the abnormal polarization of macrophages induced by chronic OSA, co-culture cell model of macrophages and atrial myocytes was created. RESULTS Chronic OSA altered the pathological phenotype of atrial myocardial tissues, rendering it more susceptible to AF. Furthermore, chronic OSA promoted the polarization of M1 macrophages in the atrial tissue, and the AF susceptibility induced by chronic OSA was reversed upon clearance of macrophages. Then, we found that macrophages induced an atrial fibrillation-like phenotype in atrial myocytes, while atrial myocytes promoted M1 polarization of macrophages, under hypoxia/reoxygenation treatment. Moreover, hypoxia/reoxygenation upregulated the expression of hypoxia-inducible factor 1-α (HIF1α) in atrial myocytes, which subsequently promoted the expression of macrophage migration inhibitory factor (MIF) by binding to the promoter region. The increased expression of MIF further activated the expression of nuclear factor-kappa B (NF-κB) through interaction with CD74, ultimately leading to M1 macrophages polarization. CONCLUSIONS Increased polarization of M1-type macrophages was involved in the increased susceptibility to AF induced by OSA. In mechanism, OSA increased MIF expression by HIF1α in atrial myocytes. Then, MIF activated NF-κB expression by CD74 in macrophages, consequently driving the polarization of M1-type macrophages. Finally, M1 macrophages exacerbated atrial remodeling through the secretion of inflammatory cytokines, which contributed to the increased susceptibility to AF.
Collapse
Affiliation(s)
- Hangyuan He
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China; Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Zhen Zhou
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Lin Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Zhengjie Lu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 China.
| | - Xuefei Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China.
| |
Collapse
|
30
|
Lee D, Oh S, Lawler S, Kim Y. Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2025; 22:744-809. [PMID: 40296792 DOI: 10.3934/mbe.2025028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Neutrophils play a crucial role in the innate immune response as a first line of defense in many diseases, including cancer. Tumor-associated neutrophils (TANs) can either promote or inhibit tumor growth in various steps of cancer progression via mutual interactions with cancer cells in a complex tumor microenvironment (TME). In this study, we developed and analyzed mathematical models to investigate the role of natural killer cells (NK cells) and the dynamic transition between N1 and N2 TAN phenotypes in killing cancer cells through key signaling networks and how adjuvant therapy with radiation can be used in combination to increase anti-tumor efficacy. We examined the complex immune-tumor dynamics among N1/N2 TANs, NK cells, and tumor cells, communicating through key extracellular mediators (Transforming growth factor (TGF-$ \beta $), Interferon gamma (IFN-$ \gamma $)) and intracellular regulation in the apoptosis signaling network. We developed several tumor prevention strategies to eradicate tumors, including combination (IFN-$ \gamma $, exogenous NK, TGF-$ \beta $ inhibitor) therapy and optimally-controlled ionizing radiation in a complex TME. Using this model, we investigated the fundamental mechanism of radiation-induced changes in the TME and the impact of internal and external immune composition on the tumor cell fate and their response to different treatment schedules.
Collapse
Affiliation(s)
- Donggu Lee
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunju Oh
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Sean Lawler
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| | - Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul 05029, Republic of Korea
- Department of Pathology and Laboratory Medicine, Legorreta Brown Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
31
|
Zhang G, Yao Q, Long C, Yi P, Song J, Wu L, Wan W, Rao X, Lin Y, Wei G, Ying J, Hua F. Infiltration by monocytes of the central nervous system and its role in multiple sclerosis: reflections on therapeutic strategies. Neural Regen Res 2025; 20:779-793. [PMID: 38886942 PMCID: PMC11433895 DOI: 10.4103/nrr.nrr-d-23-01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/12/2023] [Accepted: 02/18/2024] [Indexed: 06/20/2024] Open
Abstract
Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Guangyong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Qing Yao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Chubing Long
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Pengcheng Yi
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jiali Song
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Luojia Wu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Wei Wan
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Xiuqin Rao
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Yue Lin
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Gen Wei
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Jun Ying
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
- Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, Jiangxi Province, China
| | - Fuzhou Hua
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
32
|
Li W, Zhao Y, Cheng Z, Niu F, Ding J, Bai Y, Li Z, Midgley AC, Zhu M. Fine-tuning of porous microchannelled silk fibroin scaffolds for optimal tissue ingrowth. MATERIALS & DESIGN 2025; 251:113711. [DOI: 10.1016/j.matdes.2025.113711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
33
|
Wen L, Lin X, Hu D, Li J, Xie K, Li S, Su S, Duan X, Zhong G, Lin Y, Chen Y, Xu T, Zeng Q. Trimethylamine N-oxide aggravates human aortic valve interstitial cell inflammation by regulating the macrophages polarization through a N6-methyladenosine-mediated pathway. Atherosclerosis 2025; 402:119109. [PMID: 39952076 DOI: 10.1016/j.atherosclerosis.2025.119109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/24/2024] [Accepted: 01/26/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Trimethylamine N-oxide (TMAO) is a gut microbial metabolite that promotes calcified aortic valve disease (CAVD), but the underlying mechanism remains obscure. Herein, we aim to test the hypothesis that TMAO regulated the inflammatory process in aortic valves via N6-methyladenosine (m6A) RNA methylation-mediated macrophage polarization. METHODS In vitro, we stimulated macrophages (Phorbol-12-Myristate-13-Acetate-induced THP-1) with TMAO and assessed the expression of methyltransferase-like 3 (Mettl3), IL-1 receptor associated kinase M (IRAK-M) and polarization markers. The interaction between YTH domain family protein 2 (YTHDF2) and IRAK-M mRNA was explored by RNA-IP and RNA decay assay. Functionally, the effects of macrophages on human aortic valve interstitial cells (AVICs) were measured via macrophage adhesion assay and co-culture system. In vivo, the influence of IRAK-M on CAVD development was verified using Irak-m-/- mice. RESULT Mettl3 was highly expressed while IRAK-M was decreased in human calcified aortic valves. In vitro, TMAO upregulated the expression of Mettl3, while the expression of IRAK-M, an important negative regulator of the NF-κB pathway, was remarkably decreased in macrophages. TMAO also induced classical macrophage activation (M1 polarization). Mechanistically, IRAK-M was identified as a target of Mettl3-mediated m6A modification, indicating the involvement of m6A methylation in the regulation of NF-κB activation. Moreover, RIP assay revealed the direct interaction between YTHDF2 and IRAK-M mRNA and this process was dependent on Mettl3. TMAO-treated macrophage conditioned medium induced inflammatory responses in human aortic valve interstitial cells (AVICs). In vivo experiments showed that the deletion of IRAK-M significantly accelerated the progression of aortic valve lesion in mice administrated with high-fat and choline diet (HFCD). CONCLUSION TMAO induces the expression of Mettl3 in macrophages. Mettl3 promotes M1 polarization of macrophages by inhibiting IRAK-M through a m6A/YTHDF2 pathway. TMAO-treated macrophages aggravate the inflammation of human AVICs.
Collapse
Affiliation(s)
- Liming Wen
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiangjie Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Dongtu Hu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Juncong Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Kaiji Xie
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shunyi Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Shuwen Su
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Xiaolin Duan
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Guoheng Zhong
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yingwen Lin
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China
| | - Yangchao Chen
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China
| | - Tianyu Xu
- NHC Key Laboratory of Assisted Circulation, Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Southern Medical University, 510515, Guangzhou, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005, Guangzhou, China.
| |
Collapse
|
34
|
Xue C, Liu W, Li Y, Yin Y, Tang B, Zhu J, Dong Y, Liu H, Ren H. Mesenchymal stem cells alleviate idiopathic pneumonia syndrome by facilitating M2 polarization via CCL2/CCR2 axis and further inducing formation of regulatory CCR2 + CD4 + T cells. Stem Cell Res Ther 2025; 16:108. [PMID: 40025564 PMCID: PMC11872334 DOI: 10.1186/s13287-025-04232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/14/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Our previous study revealed that mesenchymal stem cells (MSCs) can secrete large amounts of the chemokine CCL2 under inflammatory conditions and alleviate idiopathic pneumonia syndrome (IPS) by promoting regulatory CCR2 + CD4 + T-cell formation through the CCL2‒CCR2 axis. Given the abundance of macrophages in lung tissue, how these macrophages are regulated by MSC-based prophylaxis via IPS and their interactions with T cells in lung tissue during allo-HSCT are still not fully understood. METHODS An IPS mouse model was established, and MSC-based prophylaxis was administered. In vitro coculture systems and an IPS model were used to study the interactions among MSCs, macrophages and T cells. RESULTS Prophylactic administration of MSCs induced M2 polarization and alleviated acute graft-versus-host disease (aGVHD) and lung injury in an IPS mouse model. In vitro coculture studies revealed that M2 polarization was induced by MSC-released CCL2 and that these M2 macrophages promoted the formation of regulatory CCR2 + CD4 + T cells. Blocking the CCL2-CCR2 interaction in vitro reversed MSC-induced M2 polarization and abolished the induction of CCR2 + CD4 + T-cell formation. Additionally, in vivo administration of a CCL2 or CCR2 antagonist in the IPS mouse model exacerbated aGVHD and lung injury, accompanied by a reduction in M2 macrophages and reduced formation of regulatory CCR2 + CD4 + T cells in lung tissue. CONCLUSIONS MSCs alleviate IPS by facilitating M2 polarization via the CCL2‒CCR2 axis and further inducing the formation of regulatory CCR2 + CD4 + T cells.
Collapse
Affiliation(s)
- Chao Xue
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Wei Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yuan Li
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yue Yin
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Bo Tang
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Jinye Zhu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Yujun Dong
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China
| | - Huihui Liu
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| | - Hanyun Ren
- Department of Hematology, Peking University First Hospital, 8#, Xishiku Street, Xicheng District, Beijing, 100034, PR China.
| |
Collapse
|
35
|
Rao W, Li D, Zhang Q, Liu T, Gu Z, Huang L, Dai J, Wang J, Hou X. Complex regulation of cardiac fibrosis: insights from immune cells and signaling pathways. J Transl Med 2025; 23:242. [PMID: 40022104 PMCID: PMC11869728 DOI: 10.1186/s12967-025-06260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/16/2025] [Indexed: 03/03/2025] Open
Abstract
Cardiac fibrosis is a physiological process that involves the formation of scar tissue in the heart in response to injury or damage. This process is initially a protective measure characterized by enhanced fibroblasts, which are responsible for producing extracellular matrix proteins that provide structural support to the heart. However, when fibrosis becomes excessive, it can lead to adverse outcomes, including increasing tissue stiffness and impaired cardiac function, which can ultimately result in heart failure with a poor prognosis. While fibroblasts are the primary cells involved in cardiac fibrosis, immune cells have also been found to play a vital role in its progression. Recent research has shown that immune cells exert multifaceted effects besides regulation of inflammatory response. Advanced research techniques such as single-cell sequencing and multiomics have provided insights into the specific subsets of immune cells involved in fibrosis and the complex regulation of the process. Targeted immunotherapy against fibrosis is gaining traction as a potential treatment option, but it is still unclear how immune cells achieve this regulation and whether distinct subsets are involved in different roles. To better understand the role of immune cells in cardiac fibrosis, it is essential to examine the classical signaling pathways that are closely related to fibrosis formation. We have also focused on the unique properties of diverse immune cells in cardiac fibrosis and their specific intercommunications. Therefore, this review will delve into the plasticity and heterogeneity of immune cells and their specific roles in cardiac fibrosis, which propose insights to facilitate the development of anti-fibrosis therapeutic strategies.
Collapse
Affiliation(s)
- Wutian Rao
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Li
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qinghang Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tianbao Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengying Gu
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lin Huang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinjie Dai
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Hospital's Office, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
Wassaifi S, Kaeffer B, Zarrouk S. Cellular Phenotypic Transformation During Atherosclerosis: The Potential Role of miRNAs as Biomarkers. Int J Mol Sci 2025; 26:2083. [PMID: 40076710 PMCID: PMC11900927 DOI: 10.3390/ijms26052083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 03/14/2025] Open
Abstract
Cellular phenotypic transformation is a key process that occurs during the development and progression of atherosclerosis. Within the arterial wall, endothelial cells, vascular smooth muscle cells, and macrophages undergo phenotypic changes that contribute to the pathogenesis of atherosclerosis. miRNAs have emerged as potential biomarkers for cellular phenotypic changes during atherosclerosis. Monitoring miR-155-5p, miR-210-3p, and miR-126-3p or 5p levels could provide valuable insights into disease progression, risk of complications, and response to therapeutic interventions. Moreover, miR-92a-3p's elevated levels in atherosclerotic plaques present opportunities for predicting disease progression and related complications. Baseline levels of miR-33a/b hold the potential for predicting responses to cholesterol-lowering therapies, such as statins, and the likelihood of dyslipidemia-related complications. Additionally, the assessment of miR-122-5p levels may offer insights into the efficacy of low-density-lipoprotein-lowering therapies. Understanding the specific miRNA-mediated regulatory mechanisms involved in cellular phenotypic transformations can provide valuable insights into the pathogenesis of atherosclerosis and potentially identify novel therapeutic targets.
Collapse
Affiliation(s)
- Souhir Wassaifi
- LR99E10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
| | - Bertrand Kaeffer
- UMR 1280, PhAN, INRAE, Nantes Université, F-44000 Nantes, France;
| | - Sinda Zarrouk
- LR99E10 Human Genetics Laboratory, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1002, Tunisia;
- Institut Pasteur Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
37
|
Behn A, Brendle S, Ehrnsperger M, Zborilova M, Grupp TM, Grifka J, Schäfer N, Grässel S. Filtered and unfiltered lipoaspirates reveal novel molecular insights and therapeutic potential for osteoarthritis treatment: a preclinical in vitro study. Front Cell Dev Biol 2025; 13:1534281. [PMID: 40083666 PMCID: PMC11903472 DOI: 10.3389/fcell.2025.1534281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/05/2025] [Indexed: 03/16/2025] Open
Abstract
Introduction Orthobiologics, such as autologous nanofat, are emerging as a potential treatment option for osteoarthritis (OA), a common degenerative joint causing pain and disability in the elderly. Nanofat, a minimally processed human fat graft rich in stromal vascular fraction (SVF) secretory factors, has shown promise in relieving pain. This study aimed to elucidate the molecular mechanisms underlying nanofat treatment of OA-affected cells and compare two filtration systems used for nanofat preparation. Methods Chondrocytes and synoviocytes were isolated from articular cartilage and synovium of 22 OA-patients. Lipoaspirates from 13 OA-patients were emulsified using the Adinizer® or Lipocube™ Nano filter systems to generate nanofat. The fluid phase of SVF from both filtered and unfiltered lipoaspirates was applied to OA-affected cells. Luminex multiplex ELISA were performed with lipoaspirates and cell supernatants alongside functional assays evaluating cell migration, proliferation, metabolic activity, and senescence. Results A total of 62 cytokines, chemokines, growth factors, neuropeptides, matrix-degrading enzymes, and complement components were identified in lipoaspirates. Among these, significant concentration differences were observed for TIMP-2, TGF-ß3, and complement component C3 between the filtered and unfiltered samples. Nanofat enhanced chondrocyte proliferation and migration, as well as synoviocyte migration and metabolic activity, while reducing chondrocyte metabolic activity. Pain-related factors like β-NGF, MCP-1, Substance P, VEGF, and αCGRP were reduced, while anti-inflammatory TGF-β1+3 increased and pro-inflammatory cytokines (IL-5, IL-7, IL-15, and IFN-γ) decreased. Nanofat also elevated secretion of complement components and TIMPs in both cell types. Notably, our results revealed no significant differences in cellular effects between sSVF filtered using the Adinizer® and Lipocube™ Nano systems, as well as compared to unfiltered sSVF. Discussion Here, we provide first insights into how autologous nanofat therapy may ameliorate OA by enhancing chondrocyte proliferation and synoviocyte migration while modulating inflammatory and pain-related factors. However, further research is needed to determine its effects on cartilage regeneration.
Collapse
Affiliation(s)
- Alissa Behn
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Saskia Brendle
- Research and Development, Aesculap AG, Tuttlingen, Germany
- Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU Munich, Munich, Germany
| | - Marianne Ehrnsperger
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Magdalena Zborilova
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
| | - Thomas M. Grupp
- Research and Development, Aesculap AG, Tuttlingen, Germany
- Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU Munich, Munich, Germany
| | - Joachim Grifka
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
- Department of Orthopedics and Ergonomics, Ostbayerische Technische Hochschule (OTH), Regensburg, Germany
| | - Nicole Schäfer
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
| | - Susanne Grässel
- Department of Orthopaedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology (ZMB/Biopark 1), University of Regensburg, Regensburg, Germany
- Department of Orthopedic Surgery, University of Regensburg, Asklepios, Germany
| |
Collapse
|
38
|
Ren S, Zhang Y, Wang X, Su J, Wang X, Yuan Z, He X, Guo S, Chen Y, Deng S, Wu X, Li M, Du F, Zhao Y, Shen J, Hu W, Li X, Xiao Z. Emerging insights into the gut microbiota as a key regulator of immunity and response to immunotherapy in hepatocellular carcinoma. Front Immunol 2025; 16:1526967. [PMID: 40070843 PMCID: PMC11893557 DOI: 10.3389/fimmu.2025.1526967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
The gut microbiota, a complex microbial ecosystem closely connected to the liver via the portal vein, has emerged as a critical regulator of liver health and disease. Numerous studies have underscored its role in the onset and progression of liver disorders, including alcoholic liver disease, metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic dysfunction-associated steatohepatitis (MASH), liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). This review provides a comprehensive overview of current insights into the influence of the gut microbiota on HCC progression, particularly its effects on immune cells within the HCC tumor microenvironment (TME). Furthermore, we explore the potential of gut microbiota-targeted interventions, such as antibiotics, probiotics, prebiotics, and fecal microbiota transplantation (FMT), to modulate the immune response and improve outcomes of immunotherapy in HCC. By synthesizing insights from recent studies, this review aims to highlight microbiota-based strategies that may enhance immunotherapy outcomes, advancing personalized approaches in HCC treatment.
Collapse
Affiliation(s)
- Siqi Ren
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yinping Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jiahong Su
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiang Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zijun Yuan
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xinyu He
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Sipeng Guo
- Research and Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shuai Deng
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaobing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Research and Experiment Center, Sichuan College of Traditional Chinese Medicine, Mianyang, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou, China
- South Sichuan Institute of Translational Medicine, Luzhou, China
- Gulin Traditional Chinese Medicine Hospital, Luzhou, China
| |
Collapse
|
39
|
Zhao P, Li Y, Guo B, Liu Z, Zhang X, Liu M, Ma X. Hydrogen-Releasing Micromaterial Dressings: Promoting Wound Healing by Modulating Extracellular Matrix Accumulation Through Wnt/β-Catenin and TGF-β/Smad Pathways. Pharmaceutics 2025; 17:279. [PMID: 40142944 PMCID: PMC11944919 DOI: 10.3390/pharmaceutics17030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Wound healing is a complex and intricate biological process that involves multiple systems within the body and initiates a series of highly coordinated responses to repair damage and restore integrity and functionality. We previously identified that breathing hydrogen can significantly inhibit early inflammation, activate autologous stem cells, and promote the accumulation of extracellular matrix (ECM). However, the broader functions and downstream targets of hydrogen-induced ECM accumulation and tissue remodeling are unknown in the wound-healing process. Methods: Consequently, this thesis developed a hydrogen sustained-release dressing based on a micro storage material and reveals the mechanism of hydrogen in treating wound healing. Upon encapsulating the hydrogen storage materials, magnesium (Mg), and ammonia borane (AB), we found that SiO2@Mg exhibits superior sustained-release performance, while SiO2@AB demonstrates a higher hydrogen storage capacity. We used a C57/BL6 mouse full-thickness skin defect wound model to analyze and compare different hydrogen dressings. Results: It was identified that hydrogen dressings can significantly improve the healing rate of wounds by promoting epithelialization, angiogenesis, and collagen accumulation in wound tissue, and that the effect of slow-release dressings is better than of non-slow-release dressings. We also found that hydrogen dressing can promote transcriptome-level expression related to cell proliferation and differentiation and ECM accumulation, mainly through the Wnt1/β-catenin pathway and TGF-β1/Smad2 pathway. Conclusions: Overall, these results provide a novel insight into the field of hydrogen treatment and wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xuemei Ma
- College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China; (P.Z.); (Y.L.); (B.G.); (Z.L.); (X.Z.); (M.L.)
| |
Collapse
|
40
|
Rykova EY, Klimontov VV, Shmakova E, Korbut AI, Merkulova TI, Kzhyshkowska J. Anti-Inflammatory Effects of SGLT2 Inhibitors: Focus on Macrophages. Int J Mol Sci 2025; 26:1670. [PMID: 40004134 PMCID: PMC11854991 DOI: 10.3390/ijms26041670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
A growing body of evidence indicates that nonglycemic effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors play an important role in the protective effects of these drugs in diabetes, chronic kidney disease, and heart failure. In recent years, the anti-inflammatory potential of SGLT2 inhibitors has been actively studied. This review summarizes results of clinical and experimental studies on the anti-inflammatory activity of SGLT2 inhibitors, with a special focus on their effects on macrophages, key drivers of metabolic inflammation. In patients with type 2 diabetes, therapy with SGLT2 inhibitors reduces levels of inflammatory mediators. In diabetic and non-diabetic animal models, SGLT2 inhibitors control low-grade inflammation by suppressing inflammatory activation of tissue macrophages, recruitment of monocytes from the bloodstream, and macrophage polarization towards the M1 phenotype. The molecular mechanisms of the effects of SGLT2 inhibitors on macrophages include an attenuation of inflammasome activity and inhibition of the TLR4/NF-κB pathway, as well as modulation of other signaling pathways (AMPK, PI3K/Akt, ERK 1/2-MAPK, and JAKs/STAT). The review discusses the state-of-the-art concepts and prospects of further investigations that are needed to obtain a deeper insight into the mechanisms underlying the effects of SGLT2 inhibitors on the molecular, cellular, and physiological levels.
Collapse
Affiliation(s)
- Elena Y. Rykova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Vadim V. Klimontov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Elena Shmakova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
| | - Anton I. Korbut
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Research Institute of Clinical and Experimental Lymphology, Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), Timakov Str. 2, 630060 Novosibirsk, Russia
| | - Tatyana I. Merkulova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
| | - Julia Kzhyshkowska
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (IC&G SB RAS), Lavrentjev Prospect 10, 630090 Novosibirsk, Russia; (E.Y.R.); (V.V.K.); (E.S.); (A.I.K.); (T.I.M.)
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
41
|
Rodríguez JP, Casas J, Balboa MA, Balsinde J. Bioactive lipid signaling and lipidomics in macrophage polarization: Impact on inflammation and immune regulation. Front Immunol 2025; 16:1550500. [PMID: 40028333 PMCID: PMC11867965 DOI: 10.3389/fimmu.2025.1550500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Macrophages, crucial innate immune cells, defend against pathogens and resolve inflammation, maintaining tissue balance. They perform phagocytosis, present antigens to T cells, and bond innate and adaptive immunity through various activation states. Classical activation is associated with Th1 responses and interferon γ production, while alternative activation, induced by interleukin 4, is characterized by increased endocytosis, reduced secretion of pro-inflammatory cytokines, and roles in immunoregulation and tissue remodeling. Although these represent opposite extremes observed in vitro, the remarkable plasticity of macrophages allows for a wide spectrum of activation phenotypes that are complex to characterize experimentally. While the application of omics techniques has resulted in significant advances in the characterization of macrophage polarization, lipidomic studies have received lesser attention. Beyond their role as structural components and energy sources, lipids function as signaling molecules that regulate macrophage activation and polarization, thereby shaping immune responses. This work reviews the interaction between lipid signaling and macrophage polarization, exploring how lipid metabolism influences macrophage phenotype and function. These insights offer potential therapeutic strategies for immune-mediated diseases and inflammation-related disorders, including inflammaging.
Collapse
Affiliation(s)
- Juan P. Rodríguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Javier Casas
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Valladolid, Spain
| | - María A. Balboa
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Balsinde
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas Uva, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Ma R, Gong L, Dong C, Utsumi T, Qi J, Zhuang ZW, Zhang X, Yang Y, McConnell MJ, Huang HC, Iwakiri Y. Hepatic Arterial Flow-Induced Portal Tract Fibrosis in Portal Hypertension: The Role of VCAM-1 and Osteopontin-Expressing Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.634947. [PMID: 39975181 PMCID: PMC11838461 DOI: 10.1101/2025.01.31.634947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background The liver undergoes significant hemodynamic changes during surgery, transplantation, or cirrhosis with portal hypertension(PH). The hepatic artery buffer response(HABR), which compensates for reduced portal venous flow by increasing hepatic artery(HA) flow, is hypothesized to induce pathological portal tract remodeling. This study investigates the molecular mechanisms underlying this process. Methods PH was induced in Sprague-Dawley rats via partial portal vein ligation(PPVL). Structural evaluation(microCT), immune cell profiling, hemodynamic measurements, and transcriptomic analysis in macrophages(Mϕ) from sham or PPVL rats were conducted. Results MicroCT revealed decreased portal vein flow and increased HA flow correlated with portal pressure(r=0.799, p<0.01). A 2-fold increase in portal tract fibrosis(p<0.001) was observed with increased α-SMA+ myofibroblasts in PPVL rats. CD68+ Mϕ peaked at 10 days post-PPVL, and their depletion significantly reduced fibrosis(p<0.001), indicating critical roles of Mϕ in portal tract remodeling. VCAM-1 was elevated in HA endothelium and portal fibroblasts (PFs); VCAM-1 neutralization reduced collagen accumulation(p<0.05), CD68+ Mϕ(46.3%, p<0.01), and CD3+ T cells(18%, p<0.05). Mϕ-conditioned medium increased VCAM-1 in PFs(8-fold, p<0.001) and enhanced PF migration, while VCAM-1 knockdown reduced this effect (p<0.01). Single-cell RNA sequencing data(GSE171904) and RNA-FISH revealed increased interactions between osteopontin (Spp1)+ Mϕ and PFs, with Spp1+ Mϕ driving fibrosis. Spp1 knockdown in Mϕ co-culture reduced PF fibrogenic markers, while recombinant Spp1 upregulated Col1a1, Fn1, and Acta2 expression in PFs. Conclusion Increased VCAM-1 in arterial endothelial cells and PFs facilitates the recruitment of Spp1+ Mϕ, which drive HA flow-mediated vascular remodeling and portal tract fibrosis. These findings highlight arterial flow-induced fibrosis as a key mechanism in PH, potentially contributing to disease progression and decompensation. Synopsis Liver hemodynamic changes in portal hypertension drive extracellular matrix accumulation and portal tract remodeling via Spp1+ macrophages. This study highlights how altered blood flow induces fibrosis, and its potential role in decompensation, and identifies therapeutic targets for advanced liver disease.
Collapse
|
43
|
Xu D, Tao X, Fan Y, Teng Y. Sarcoidosis: molecular mechanisms and therapeutic strategies. MOLECULAR BIOMEDICINE 2025; 6:6. [PMID: 39904950 PMCID: PMC11794924 DOI: 10.1186/s43556-025-00244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Sarcoidosis, a multisystemic granulomatous disease with unknown etiology, is characterized by formation of noncaseating granulomas, which can affect all organs. Recent studies have made outstanding achievement in understanding the pathology, etiology, genetics, and immune dysregulation involved in granuloma formation of sarcoidosis. Antigen stimulation in genetically predisposed individuals enhances the phagocytic activity of antigen-presenting cells, including macrophages and dendritic cells. CD4 + T cells initiate dysregulated immune responses and secrete significant quantities of inflammatory cytokines, including interleukin (IL)-2 and interferon-gamma (IFN-γ), which play a crucial role in modulating the aggregation and fusion of macrophages to form granulomas. The current therapeutic strategies focus on blocking the formation and spread of granulomas to protect organ function and alleviate symptoms. The efficacy of traditional treatments, such as glucocorticoids and immunosuppressants, has been confirmed in the management of sarcoidosis. Promising therapeutic agents encompass inhibitors of cytokines, like those targeting tumor necrosis factor (TNF)-α, as well as inhibitors of signaling pathways, such as Janus kinase (JAK) inhibitors, which exhibit favorable prospects for application. Although there has been progress in the identification of biomarkers for the diagnosis, prognosis, activity and severity of sarcoidosis, specific and sensitive biomarkers have yet to be identified. This review outlines recent advancements in the molecular mechanisms and therapeutic strategies for the sarcoidosis.
Collapse
Affiliation(s)
- Danfeng Xu
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaohua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yibin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Teng
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
44
|
Tang Y, Zhang L, Huang P, She Z, Luo S, Peng H, Chen Y, Luo J, Duan W, Xiao Y, Liu L, Liu L. Understanding the intricacies of cellular mechanisms in remyelination: The role of circadian rhythm. Neurochem Int 2025; 183:105929. [PMID: 39756585 DOI: 10.1016/j.neuint.2025.105929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/27/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
The term "circadian rhythm" refers to the 24-h oscillations found in various physiological processes in organisms, responsible for maintaining bodily homeostasis. Many neurological diseases mainly involve the process of demyelination, and remyelination is crucial for the treatment of neurological diseases. Current research mainly focuses on the key role of circadian clocks in the pathophysiological mechanisms of multiple sclerosis. Various studies have shown that the circadian rhythm regulates various cellular molecular mechanisms and signaling pathways involved in remyelination. The process of remyelination is primarily mediated by oligodendrocyte precursor cells (OPCs), oligodendrocytes, microglia, and astrocytes. OPCs are activated, proliferate, migrate, and ultimately differentiate into oligodendrocytes after demyelination, involving many key signaling pathway and regulatory factors. Activated microglia secretes important cytokines and chemokines, promoting OPC proliferation and differentiation, and phagocytoses myelin debris that inhibits remyelination. Astrocytes play a crucial role in supporting remyelination by secreting signals that promote remyelination or facilitate the phagocytosis of myelin debris by microglia. Additionally, cell-to-cell communication via gap junctions allows for intimate contact between astrocytes and oligodendrocytes, providing metabolic support for oligodendrocytes. Therefore, gaining a deeper understanding of the mechanisms and molecular pathways of the circadian rhythm at various stages of remyelination can help elucidate the fundamental characteristics of remyelination and provide insights into treating demyelinating disorders.
Collapse
Affiliation(s)
- Yufen Tang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lu Zhang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Peng Huang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Zhou She
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Senlin Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Hong Peng
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yuqiong Chen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Jinwen Luo
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Wangxin Duan
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Yangyang Xiao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China
| | - Lingjuan Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| | - Liqun Liu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Department of Pediatric Neurology, Children's Medical Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China; Clinical Medical Research Center for Child Development and Behavior, Changsha, 410011, Hunan, China.
| |
Collapse
|
45
|
Panda B, Chilvery S, Devi P, Kalmegh R, Godugu C. Inhibition of peptidyl arginine deiminase-4 ameliorated pulmonary fibrosis via modulating M1/M2 polarisation of macrophages. Life Sci 2025; 362:123354. [PMID: 39755270 DOI: 10.1016/j.lfs.2024.123354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Pulmonary fibrosis (PF) arises from dysregulated wound healing, leading to excessive extracellular matrix (ECM) deposition and impaired lung function. Macrophages exhibit high plasticity, polarizing to pro-inflammatory M1 during early inflammation and anti-inflammatory, fibrosis-inducing M2 during later stages of PF. Additionally, neutrophils and neutrophil extracellular traps (NETs) release mediated by peptidyl arginine deiminase (PAD-4), also play a key role in PF progression. PAD-4 inhibitor chloro-amidine (CLA) has shown anti-fibrotic effects in bleomycin (BLM) induced PF mouse model in our earlier study. Here, we have demonstrated that CLA also exhibited inhibition of macrophage polarisation in in-vitro in THP-1 monocytes and in-vivo in BLM induced PF. THP-1 monocytes were exposed to NETs isolated from phorbol 12-myristate-13-acetate (PMA) stimulated and PMA plus CLA treated differentiated HL-60 (dHL-60) cells. Monocytes exposed to stimulated NETs resulted in increased oxidative stress, disrupted mitochondrial membrane potential and increased M1 and M2 macrophage markers. These alterations were abrogated in THP-1 cells upon exposure to CLA treated NETs. Further, CLA treatment in BLM induced mice improved abnormal BALF, biochemical, and histological parameters in line with our previous findings. Additionally, CLA also reduced M1 and M2 markers time-dependently, as shown by immunofluorescence (IF), western blot, and RT-PCR analysis. CLA treatment led to decreased expression of PAD-4, M1-related pro-inflammatory cytokines and M2-related pro-fibrotic cytokines and mediators, as confirmed by western blot and ELISA analysis. Thus, it is established that inhibition of PAD-4 lead to mitigation of macrophage polarisation and a combined anti-fibrotic effect is achieved which can be explored further.
Collapse
Affiliation(s)
- Biswajit Panda
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Shrilekha Chilvery
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Priyanka Devi
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Radha Kalmegh
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India
| | - Chandraiah Godugu
- Department of Biological Sciences (Regulatory Toxicology), National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, TS 500037, India.
| |
Collapse
|
46
|
Zhao X, Yang L, Pan J, Zeng Z, Zhang T, Yang Y, Zhang J, Chen T, Xiao Z, Pan W. CXCL8 modulates M0 macrophage proliferation and polarization to influence tumor progression in cervical cancer. Sci Rep 2025; 15:790. [PMID: 39755693 PMCID: PMC11700176 DOI: 10.1038/s41598-024-81726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Abstract
Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME. A nine-gene prognostic model constructed from immune gene signatures highlighted CXCL8 as a key regulator of M0 macrophage behavior. Functional experiments demonstrated that CXCL8 knockdown in M0 macrophages inhibited their proliferation, shifted polarization toward an M1-dominant phenotype, and reduced tumor-promoting M2 polarization. Co-culture experiments with CXCL8-deficient M0 macrophages further revealed a suppression of HeLa cell proliferation, migration, and invasion. These findings position M0 macrophages as central regulators within the TME and suggest that targeting pathways like CXCL8 could provide novel therapeutic strategies for improving outcomes in CESC patients.
Collapse
Affiliation(s)
- Xiyan Zhao
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Li Yang
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China
- Department of Medical Laboratory science, Guizhou Medical University, Guizhou, Guiyang, 550004, China
| | - Jigang Pan
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Zhirui Zeng
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Tuo Zhang
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Yushi Yang
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550025, China
| | - Jingjing Zhang
- Affiliated Children's Hospital, Nanjing Medical University School of Pediatrics, Nanjing, Jiangsu, 210008, China
| | - Tengxiang Chen
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guizhou, Guiyang, 550025, China.
| | - Ziwen Xiao
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
| | - Wei Pan
- Prenatal Diagnosis Center in Guizhou Province, The Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, 550009, China.
- Guizhou Institute of Precision Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550009, China.
| |
Collapse
|
47
|
Rodríguez-Largo A, Gómez Á, Pérez E, de Miguel R, Moncayola I, Biagini L, Rossi G, de Blas I, Fernández A, Pérez M, Glaria I, Reina R, Luján L. Morphometry, cellular characterization and temporal evolution of granulomas induced by aluminium oxyhydroxide in sheep. J Comp Pathol 2025; 216:1-9. [PMID: 39647191 DOI: 10.1016/j.jcpa.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 12/10/2024]
Abstract
Persistent subcutaneous granulomas form at the injection site following administration of aluminium oxyhydroxide (AlOOH), a widely used vaccine adjuvant. Small ruminant lentiviruses (SRLVs) can infect macrophages within granulomas induced by commercial AlOOH-based vaccines in sheep. The entry of SRLVs into target cells involves the mannose receptor (MR), while catalytic polypeptide-like 3 protein containing Z1 domain (A3Z1) is considered a restriction factor for lentiviral replication. The objective of this study was to investigate the temporal evolution of AlOOH-induced post-vaccination granulomas in sheep experimentally infected with SRLVs. Twenty-four male lambs underwent two identical vaccination protocols and were challenged with SRLVs. Granulomas were detected in vaccinated groups only and progressively decreased in size. At post-mortem examination, 91.3% of the granulomas were recovered. Fistulas were present in granulomas following the second vaccination protocol. Central necrosis was present in 58.0% of granulomas and was associated with the vaccine used. Orthokeratotic keratin was seen within granulomas in 47.1% of the lambs. Considering all granulomas studied, significantly higher expression of MR was found compared with A3Z1. Differences in MR expression were related to the type of vaccine and the time since vaccination. A3Z1 expression was upregulated in granulomas from the infected groups. Macrophage polarization may influence SRLV infection of granulomas. While SRLV infection does not influence the architecture of post-vaccination granulomas, it may modulate their immune microenvironment. Further studies are needed to elucidate the complex interactions between AlOOH-induced granulomas and SRLV infection in sheep.
Collapse
Affiliation(s)
- Ana Rodríguez-Largo
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Álex Gómez
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Estela Pérez
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Ricardo de Miguel
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Irati Moncayola
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Lucia Biagini
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, 62024 Matelica, Italy
| | - Giacomo Rossi
- Scuola di Bioscienze e Medicina Veterinaria, Università di Camerino, 62024 Matelica, Italy
| | - Ignacio de Blas
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Antonio Fernández
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Marta Pérez
- Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; Departamento de Anatomía, Embriología y Genética, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Idoia Glaria
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Ramsés Reina
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, 31192 Mutilva, Spain
| | - Lluís Luján
- Departamento de Patología Animal, Universidad de Zaragoza, 50013 Zaragoza, Spain; Instituto Universitario de Investigación Mixto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain.
| |
Collapse
|
48
|
Shaulli X, Moreno‐Echeverri AM, Andoni M, Waeber E, Ramakrishna SN, Fritsch C, Vanhecke D, Rothen‐Rutishauser B, Scheffold F. Polymer Nano-Carrier-Mediated Gene Delivery: Visualizing and Quantifying DNA Encapsulation Using dSTORM. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405929. [PMID: 39551983 PMCID: PMC11707562 DOI: 10.1002/smll.202405929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/28/2024] [Indexed: 11/19/2024]
Abstract
The success of gene therapy hinges on the effective encapsulation, protection, and compression of genes. These processes deliver therapeutic genes into designated cells for genetic repair, cellular behavior modification, or therapeutic effect induction. However, quantifying the encapsulation efficiency of small molecules of interest like DNA or RNA into delivery carriers remains challenging. This work shows how super-resolution microscopy, specifically direct stochastic optical reconstruction microscopy (dSTORM), can be employed to visualize and measure the quantity of DNA entering a single carrier. Utilizing pNIPAM/bPEI microgels as model nano-carriers to form polyplexes, DNA entry into the carrier is revealed across different charge ratios at temperatures below and above the volume phase transition of the microgel core. The encapsulation efficiency also depends on DNA length and shape. This work demonstrates the uptake of the carrier entity by primary derived macro-phages and showcases the cell viability of the polyplexes. The study shows that dSTORM is a potent tool for fine-tuning and creating polyplex microgel carrier systems with precise size, shape, and loading capacity at the individual particle level. This advancement shall contribute significantly to optimizing gene delivery systems.
Collapse
Affiliation(s)
- Xhorxhina Shaulli
- Department of PhysicsUniversity of FribourgChemin du Musée 3FribourgCH 1700Switzerland
| | | | - Mariza Andoni
- Department of PhysicsUniversity of FribourgChemin du Musée 3FribourgCH 1700Switzerland
| | - Eileen Waeber
- Department of PhysicsUniversity of FribourgChemin du Musée 3FribourgCH 1700Switzerland
| | | | - Cornelia Fritsch
- Department of BiologyUniversity of FribourgChemin du Musée 10FribourgCH 1700Switzerland
| | - Dimitri Vanhecke
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 4FribourgCH 1700Switzerland
| | | | - Frank Scheffold
- Department of PhysicsUniversity of FribourgChemin du Musée 3FribourgCH 1700Switzerland
| |
Collapse
|
49
|
Khan AH, Mulfaul K. Choroidal macrophages in homeostasis, aging and age-related macular degeneration. Exp Eye Res 2025; 250:110159. [PMID: 39577606 DOI: 10.1016/j.exer.2024.110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
With increasing age, the optimal functioning of the choroid is essential for efficient removal of waste products formed from photoreceptor renewal. A decline in regulatory elements of the immune system, termed immunosenescence, and the failure of para-inflammation to restore tissue homeostasis can result in the progression of healthy aging to sight-threatening inflammation of the choroid. Macrophages are uniquely situated between the innate and adaptive immune systems, with a high capacity for phagocytosis, recognition of complement components, as well as antigen presentation. In this review, we provide an overview of macrophages and their properties in the healthy choroid and cover the impact of aging, immunosenescence and inflammaging on the function of choroidal macrophages. We will discuss the impact of age on macrophage phenotype and behaviour in the pathophysiology of age-related macular degeneration.
Collapse
Affiliation(s)
- Adnan H Khan
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Kelly Mulfaul
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology & Visual Sciences, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
50
|
Penas FN, Bott E, Carneiro AB, López SA, Torres Bozza P, Goren NB, Gimenez G, Belaunzarán ML. Modified lipids from Trypanosoma cruzi amastigotes down-regulate the pro-inflammatory response and increase the expression of alternative activation markers in macrophages. Microb Pathog 2025; 198:107140. [PMID: 39581235 DOI: 10.1016/j.micpath.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/06/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Herein, we analyzed the in vitro effect induced by total lipid extracts from Trypanosoma cruzi amastigotes of RA and K98 strains, which were obtained after overnight incubation (RAinc and K98inc) to mimic phospholipid hydrolytic processes that occurred adjacent to degenerating amastigote nests in tissues of Chagas disease patients. We demonstrated that RAinc and K98inc might possess bioactive lipid molecules with anti-inflammatory bias since they inactivated the NF-κB pathway, in contrast to intact lipids. Moreover, different M1/M2 macrophage phenotype markers of polarization were analyzed by RT-qPCR which evidenced that RAinc and K98inc promoted an increased expression of the M2 markers Arginase-1, IL-10, FIZZ and YM-1, and a decreased expression of iNOS and proinflammatory cytokines IL-6 and TNF-α. All these results indicate the relevant role of T. cruzi in bioactive lipid molecules, deepening thus our understanding of their contribution to immunomodulatory mechanisms as well as to macrophage polarization that occurs during the course of Chagas disease.
Collapse
Affiliation(s)
- Federico Nicolas Penas
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Emanuel Bott
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Alan Brito Carneiro
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Bartholomew Laboratory, Department of Surgery, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Sebastián Andrés López
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - Patricia Torres Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Nora Beatriz Goren
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Guadalupe Gimenez
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina
| | - María Laura Belaunzarán
- Facultad de Medicina, Universidad de Buenos Aires, Departamento de Microbiología, Parasitología e Inmunología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Buenos Aires, Argentina.
| |
Collapse
|