1
|
Gope TK, Pal D, Srivastava AK, Chatterjee B, Bose S, Ain R. ARID3A inhibits colorectal cancer cell stemness and drug-resistance by targeting a multitude of stemness-associated genes. Life Sci 2025; 372:123642. [PMID: 40250751 DOI: 10.1016/j.lfs.2025.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/14/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
AIMS ARID3A is highly expressed in CRC patients. However, the functional role of ARID3A in CRC remains unexplored. We sought to demonstrate ARID3A function in CRC. MATERIALS AND METHODS ARID3A was knocked-down using lentiviruses harboring shRNA. CRC patients' tissue cDNA array was used to assess expression of ARID3A. Effect of ARID3A on CSC-associated genes was analysed using real-time PCR array. Western-blot analysis and ChIP assay were used to validate the role of ARID3A. Paclitaxel-resistant CSC-enriched cell population was used to assess correlation between ARID3A, stemness and drug resistance potential. Ex vivo findings were corroborated on preclinical mouse model. KEY FINDINGS ARID3A expression was significantly higher throughout CRC stages than normal individuals. ARID3A expression was significantly higher in the aggressive CRC cell line HCT116 compared to HT29, which expressed higher levels of CD44, CD133, and EpCAM, suggesting a reciprocal relationship between ARID3A expression and CRC stemness. Real-time PCR-based stem cell array using ARID3A-knockdown HCT116 cells showed upregulation of 9 cancer stem cell (CSC)-associated genes. ChIP-assay verified binding of ARID3A on transcriptionally active promoter regions of CSC associated genes. ARID3A depletion led to enhanced proliferation, anchorage-independent growth, and ABCG2 upregulation in HCT116 cells. In paclitaxel-resistant HCT116 cells, ARID3A expression was dampened, whereas, CD44 and CD133 increased. ARID3A knockdown accelerated tumor growth and promoted larger tumor formation in nude-mouse xenograft model. Ki67, CD44 and CD133 were highly upregulated in knockdown tumors. SIGNIFICANCE This study demonstrated that ARID3A inhibits CRC stemness, anchorage-independent growth, self-renewal, anti-cancer drug resistance of CRC cells and tumor growth in vivo.
Collapse
Affiliation(s)
- Tamal Kanti Gope
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West-Bengal 700032, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Debankur Pal
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West-Bengal 700032, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Bilash Chatterjee
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Calcutta, West-Bengal 700032, India; Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, UP 201002, India.
| |
Collapse
|
2
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [DOI: https:/doi.org/10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Affiliation(s)
- Abolfazl Soulat
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Taghi Mohsenpour
- Department of Atomic and Molecular Physics, Faculty of Sciences
- University of Mazandaran
| | - Leila Roshangar
- Department of Histology, Faculty of Medicine
- Tabriz University of Medical Sciences
| | | | - Fatemeh Soulat
- Applied Chemistry laboratory, Department of Chemistry, Faculty of Basic Science
- Azarbaijan Shahid Madani University (ASMU)
| |
Collapse
|
3
|
Soulat A, Mohsenpour T, Roshangar L, Moaddab SY, Soulat F. Innovative Therapeutic Approach Targeting Colon Cancer Stem Cells: Transitional Cold Atmospheric Plasma. ACS OMEGA 2025; 10:12109-12121. [PMID: 40191350 PMCID: PMC11966581 DOI: 10.1021/acsomega.4c10378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Transitional cold atmospheric plasma (TCAP) represents a novel technique for generating plasma remotely from a primary source. It consists of a partially nonthermal ionized gas mixture containing charged and neutral particles, photons, and free radicals. In recent years, TCAP has attracted considerable attention in biomedical applications. In order to evaluate colon cancer stem cells' (CCSCs) proliferation, apoptotic induction, inflammatory response, and survival, TCAP was utilized both directly and indirectly in this study. Using argon and helium gases, TCAP was continuously delivered in two stages during the experiment. For direct state, TCAP was irradiated onto CCSCs for 3 and 5 min. In the indirect technique, Matrigel was treated with TCAP for 5 min before the introduction of cells. In vitro assays demonstrated that TCAP exposure significantly reduced the viability of CCSCs; helium gas and direct application had greater impacts than argon. Numerous investigations confirmed the induction of apoptosis, showing that the treated groups had more apoptotic cells and altered cellular structures than controls (****p < 0.0001). A substantial increase in the Bax/Bcl-2 ratio was found by analyzing the expression of the Bax and Bcl-2 genes, indicating increased susceptibility to apoptosis (*p = 0.0177 and ***p = 0.0004). The higher efficacy of the direct helium mode was further highlighted by inflammatory marker analysis, which showed a significant reduction in interleukin-6 and interleukin-8 expression in cells directly treated with TCAP-helium compared to TCAP-argon (**p = 0.0015 and ***p = 0.0007). Lastly, the proliferation test, which relies on K i-67 expression, demonstrated a noteworthy decline in all TCAP-treated groups, with the direct helium group exhibiting the most robust impact (**p = 0.0014). Overall, the findings highlight the potential of TCAP, particularly with helium, as a promising approach for selectively targeting CCSCs and providing insights into its therapeutic mechanisms for cancer treatment. TCAP, therefore, emerges as a unique therapeutic strategy with potential applications in cancer stem cell-targeted therapies.
Collapse
Affiliation(s)
- Abolfazl Soulat
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Taghi Mohsenpour
- Department
of Atomic and Molecular Physics, Faculty of Sciences, University of Mazandaran, 4741613534 Babolsar, Iran
| | - Leila Roshangar
- Department
of Histology, Faculty of Medicine, Tabriz
University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Seyyed Yaghoub Moaddab
- Liver
and Gastrointestinal Disease Research Center, Tabriz University of Medical Sciences, 5166614766 Tabriz, Iran
| | - Fatemeh Soulat
- Applied
Chemistry laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), 5375171379 Tabriz, Iran
| |
Collapse
|
4
|
Liu L, Sun Y. Multidimensional analysis of clinicopathological characteristics and long-term prognosis of colonic signet-ring cell carcinoma. Surg Endosc 2025; 39:2380-2395. [PMID: 39966132 DOI: 10.1007/s00464-025-11548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 01/08/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Colonic signet-ring cell carcinoma (SRCC) is a rare pathological subtype of colonic tumors. This study aims to comprehensively analyze the clinicopathological characteristics and long-term prognosis of colonic SRCC from multiple perspectives. METHODS Patients diagnosed with colonic SRCC and mucinous adenocarcinoma (MA) between 2000 and 2021 were retrieved from the surveillance, epidemiology, and end results database. Clinicopathological characteristics were compared using Chi-square tests. Overall survival (OS) and cancer-specific survival (CSS) were assessed using Kaplan-Meier curves and Cox regression analysis. RESULTS A total of 29,495 patients were enrolled, including 4000 with SRCC and 25,495 with MA. Compared to MA patients, the SRCC cohort was younger, had more males, less differentiation, and higher risks of lymph node (51.2%) and distant (36.6%) metastases. Age, T stage, and M stage were identified as risk factors for lymph node metastasis in SRCC, while age, T stage, and N stage were associated with distant metastasis. SRCC patients demonstrated significantly poorer OS and CSS compared to MA patients (P < 0.001). The 1-, 3-, 5-, and 10-year OS rates for SRCC patients were 57.8, 33.3, 26.0, and 17.1%, respectively, with corresponding CSS rates of 62.8, 39.7, 34.3, and 29.3%. Multivariate Cox regression analysis revealed that age, gender, grade, TNM stage, surgical intervention, chemotherapy, and marital status were predictive of OS, while age, gender, TNM stage, surgery, and marital status were significantly associated with CSS. Notably, female SRCC patients were younger and had a lower incidence of distant metastasis compared to males. Additionally, elderly patients had a higher proportion of females and Caucasians, and a lower incidence of lymph node and distant metastases compared to non-elderly patients. CONCLUSION Compared to colonic MA, SRCC demonstrates unique clinicopathological features and inferior prognosis, with variations observed across age and gender. Hence, individualized treatment strategies are essential.
Collapse
Affiliation(s)
- Luojie Liu
- Department of Gastroenterology, Changshu Hospital Affiliated to Soochow University, Suzhou, China
| | - Yibin Sun
- Department of Gastroenterology, Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou, China.
| |
Collapse
|
5
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
6
|
Tetrick MG, Emon MAB, Doha U, Marcellus M, Symanski J, Ramanathan V, Saif MTA, Murphy CJ. Decoupling chemical and mechanical signaling in colorectal cancer cell migration. Sci Rep 2025; 15:4952. [PMID: 39929899 PMCID: PMC11811049 DOI: 10.1038/s41598-025-89152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
Colorectal cancer metastasis is governed by a variety of chemical and mechanical signaling that are largely influenced by cancer-associated fibroblasts (CAFs) in the tumor microenvironment. Here, we deconvolute the chemical from mechanical signaling in the case of the colon cancer cell line HCT-116 and CAFs. We examined three chemoattractants (CXCL12, TGF-β, and activin A) which allegedly are secreted by CAFs and induce HCT-116 cell migration. None of the chemoattractants tested resulted in enhanced migration of HCT-116 in a 2D transwell assay, at low cell density. Similarly, CAF-conditioned media also did not lead to enhanced HCT-116 migration, while CAFs co-cultured in the transwell assay did lead to increased HCT-116 migration. This result suggests that either high cell densities are required for chemotaxis, and/or a reciprocal two-way signaling network between CAFs and HCT-116 is necessary to induce chemotaxis. Surprisingly, we find that HCT-116 cells exhibit enhanced migration along the axis of mechanical stress in a 3D collagen matrix, at very high cell densities. This migration is independent of whether the strain is induced mechanically or by CAFs. By comparing purely mechanical and purely chemical migration to a 3D co-culture of CAFs and HCT-116 containing both chemical and mechanical cues, it is concluded that HCT-116 migration is dominated by mechanical signaling, while chemical cues are less influential.
Collapse
Affiliation(s)
- Maxwell G Tetrick
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Abul Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Umnia Doha
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marsophia Marcellus
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Symanski
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Valli Ramanathan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - M Taher A Saif
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Bo S, You Y, Wang Y, Zhang Y, Bai B, Jiang T, Gao Y. Identification of signatures associated with microsatellite instability and immune characteristics to predict the prognostic risk of colon cancer. Open Med (Wars) 2024; 19:20241056. [PMID: 39726813 PMCID: PMC11669901 DOI: 10.1515/med-2024-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background Microsatellite instability (MSI) significantly impacts treatment response and outcomes in colon cancer; however, its underlying molecular mechanisms remain unclear. This study aimed to identify prognostic biomarkers by comparing MSI and microsatellite stability (MSS). Methods Data from the GSE39582 dataset downloaded from the Gene Expression Omnibus database were analyzed for differentially expressed genes (DEGs) and immune cell infiltration between MSI and MSS. Then, weighted gene co-expression network analysis (WGCNA) was utilized to identify the key modules, and the modules related to immune infiltration phenotypes were considered as the immune-related gene modules, followed by enrichment analysis of immune-related module genes. Prognostic signatures were derived using Cox regression, and their correlation with immune features and clinical features was assessed, followed by a nomogram construction. Results A total of 857 DEGs and 14 differential immune cell infiltration between MSI and MSS were obtained. Then, WGCNA identified two immune-related modules comprising 356 genes, namely MEturquoise and MEbrown. Eight signature genes were identified, namely PLK2, VSIG4, LY75, GZMB, GAS1, LIPG, ANG, and AMACR, followed by prognostic model construction. Both training and validation cohorts revealed that these eight signature genes have prognostic value, and the prognostic model showed superior predictive performance for colon cancer prognosis and distinguished the clinical characteristics of colon cancer patients. Notably, VSIG4 among the signature genes correlated significantly with immune infiltration, human leukocyte antigen expression, and immune pathway enrichment. Finally, the constructed nomogram model could significantly predict the prognosis of colorectal cancer. Conclusion This study identifies eight prognostic signature genes associated with MSI and immune infiltration in colon cancer, suggesting their potential for predicting prognostic risk.
Collapse
Affiliation(s)
- Sihan Bo
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yong You
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yongwei Wang
- Department of Anatomy, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yan Zhang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Bing Bai
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Tao Jiang
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| | - Yaxian Gao
- Department of Immunology, Basic Medical Institute, Chengde Medical College, Chengde067000, Hebei, China
| |
Collapse
|
8
|
Elghali F, Msalbi D, Frikha F, Alonazi M, Sahli E, Hakim B, Mnif S, Ben Bacha A, Aifa S. Evaluation of the Combinatory Anticancer Effect of Chemotherapeutic Compounds and Prodigiosin against HCT-116, LoVo, and A549 Cell lines. ACS OMEGA 2024; 9:48112-48124. [PMID: 39676943 PMCID: PMC11635512 DOI: 10.1021/acsomega.4c04760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Despite their wide usage in reducing tumors and improving patients' survival, chemotherapeutic drugs or natural compounds are facing the development of cancer resistance. Many experimental data and clinical trials have shown that combinatorial treatment could be an efficient solution for some resistance problems. In this study, we aimed to evaluate the synergistic effects of combining prodigiosin (PG), a natural compound with known anticancer properties, with the commonly used chemotherapy drugs 5-fluorouracil (5-FU), oxaliplatin, and paclitaxel. The primary objective was to identify the most potent combination that could enhance tumor cytotoxicity while minimizing drug resistance. In vitro experiments using three cancer cell lines (LoVo, HCT-116, and A549) were conducted to assess the impact of these combinations on the cell viability and proliferation. Recorded data demonstrated that the combination of 20 μM PG with 1/2 IC50 of 5-FU showed the most significant decrease in cell viability, with remaining viabilities of 28, 32, and 43% for LoVo, HCT-116, and A549 cells, respectively. This combination resulted in a notable increase in the proportion of cells in the G0/G1 phase and a decrease in the S phase of the cell cycle. These findings indicated that this combination effectively induced cell-cycle arrest. In contrast, other combinations such as PG with paclitaxel or oxaliplatin were less effective. Furthermore, molecular docking studies revealed that PG targets Akt1, a key protein in the PI3K/Akt survival pathway, providing a possible explanation for its proapoptotic effects. These findings suggested that the combination of PG with 5-FU enhanced tumor cell sensitivity to chemotherapy, potentially offering a more effective treatment strategy for overcoming drug resistance. In conclusion, the current study highlighted the promising potential of PG in combination with 5-FU as a therapeutic approach for colorectal and lung cancers, warranting further investigations in preclinical and clinical settings.
Collapse
Affiliation(s)
- Fares Elghali
- Laboratory
of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, B.P.1177, Sfax 3038, Tunisia
| | - Dhouha Msalbi
- Laboratory
of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, B.P.1177, Sfax 3038, Tunisia
| | - Fakher Frikha
- Laboratory
of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, B.P.1177, Sfax 3038, Tunisia
| | - Mona Alonazi
- Biochemistry
Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Emna Sahli
- Unity
of
Analysis, Centre of Biotechnology of Sfax, B.P.1177, Sfax 3038, Tunisia
| | - Bochra Hakim
- Laboratory
of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, B.P.1177, Sfax 3038, Tunisia
| | - Sami Mnif
- Laboratory
of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, B.P.1177, Sfax 3038, Tunisia
| | - Abir Ben Bacha
- Biochemistry
Department, Science College, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Sami Aifa
- Laboratory
of Molecular and Cellular Screening Processes, Centre of Biotechnology of Sfax, B.P.1177, Sfax 3038, Tunisia
| |
Collapse
|
9
|
Fu Z, Wang X, Chen Z, Wang B, Huang W, Liu X. CELF6 as an Oncogene in Colorectal Cancer: Targeting Stem-Cell-Like Properties Through Modulation of HOXA5 mRNA Stability. FRONT BIOSCI-LANDMRK 2024; 29:395. [PMID: 39614437 DOI: 10.31083/j.fbl2911395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Emerging evidence indicates the essential role of cancer stem cells (CSCs) in the development and progression of various cancers, including colorectal cancer (CRC). CELF6, a member of the cytosine-uridine-guanine-binding protein (CUG-BP), Elav-like family (CELF), has been reported to be downregulated in CRC tissues. This study aims to elucidate the role and underlying mechanisms of CELF6 in CRC progression. METHODS The expression levels and prognostic significance of CELF6, along with its association with homeobox A5 (HOXA5), were analyzed using University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN), PrognoScan, and Tumor Immune Estimation Resource (TIMER) databases. The expression of CELF6 was further assessed through quantitative real-time polymerase chain reaction (qRT-PCR), immunoblotting, and immunohistochemistry. Both in vitro and in vivo experiments were conducted to investigate the effects of CELF6 on CRC cell proliferation, stemness and tumorigenesis, and to elucidate the molecular mechanisms. RESULTS CELF6 was found to be downregulated in CRC and was associated with poor prognosis. Functional studies revealed that overexpression of CELF6 resulted in decreased CRC cell proliferation and stemness in vitro, reduced tumor growth in vivo, and induced G1 phase cell cycle arrest. Mechanistically, CELF6 regulated the expression of HOXA5 by modulating its mRNA stability. Furthermore, the knockdown of HOXA5 reversed the inhibitory effects of CELF6 on CRC cell proliferation and stemness, demonstrating that silencing HOXA5 counteracted the suppressive effects of CELF6. CONCLUSIONS This study is the first to identify CELF6 as a suppressor of stemness and a modulator of CRC progression. These findings provide new insights into the role of CELF6 in CRC and highlight its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Zhiming Fu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Xiang Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Zhiju Chen
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Baochun Wang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Weiwei Huang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| | - Xin Liu
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, 570311 Haikou, Hainan, China
| |
Collapse
|
10
|
Cao L, Chen F, Xu L, Zeng J, Wang Y, Zhang S, Ba Y, Zhang H. Prognostic cellular senescence-related lncRNAs patterns to predict clinical outcome and immune response in colon cancer. Front Immunol 2024; 15:1450135. [PMID: 39355236 PMCID: PMC11443174 DOI: 10.3389/fimmu.2024.1450135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/19/2024] [Indexed: 10/03/2024] Open
Abstract
Background Cellular senescence (CS) is believed to be a major factor in the evolution of cancer. However, CS-related lncRNAs (CSRLs) involved in colon cancer regulation are not fully understood. Our goal was to create a novel CSRLs prognostic model for predicting prognosis and immunotherapy and exploring its potential molecular function in colon cancer. Methods The mRNA sequencing data and relevant clinical information of GDC TCGA Colon Cancer (TCGA-COAD) were obtained from UCSC Xena platform, and CS-associated genes was acquired from the CellAge website. Pearson correlation analysis was used to identify CSRLs. Then we used Kaplan-Meier survival curve analysis and univariate Cox analysis to acquire prognostic CSRL. Next, we created a CSRLs prognostic model using LASSO and multivariate Cox analysis, and evaluated its prognostic power by Kaplan-Meier and ROC curve analysis. Besides, we explored the difference in tumor microenvironment, somatic mutation, immunotherapy, and drug sensitivity between high-risk and low-risk groups. Finally, we verified the functions of MYOSLID in cell experiments. Results Three CSRLs (AC025165.1, LINC02257 and MYOSLID) were identified as prognostic CSRLs. The prognostic model exhibited a powerful predictive ability for overall survival and clinicopathological features in colon cancer. Moreover, there was a significant difference in the proportion of immune cells and the expression of immunosuppressive point biomarkers between the different groups. The high-risk group benefited from the chemotherapy drugs, such as Teniposide and Mitoxantrone. Finally, cell proliferation and CS were suppressed after MYOSLID knockdown. Conclusion CSRLs are promising biomarkers to forecast survival and therapeutic responses in colon cancer patients. Furthermore, MYOSLID, one of 3-CSRLs in the prognostic model, could dramatically regulate the proliferation and CS of colon cancer.
Collapse
Affiliation(s)
- Lichao Cao
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Fang Chen
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Jian Zeng
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Yun Wang
- Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Shenrui Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Ying Ba
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| | - Hezi Zhang
- Shenzhen Nucleus Gene Technology Co., Ltd., Shenzhen, Guangdong, China
- Shenzhen Nucleus Huaxi Medical Laboratory, Shenzhen, Guangdong, China
- Shanghai Nucleus Biotechnology Co., Ltd., Shanghai, China
| |
Collapse
|
11
|
Xu D, Han S, Yue X, Xu X, Huang T. METTL14 Suppresses Tumor Stemness and Metastasis of Colon Cancer Cells by Modulating m6A-Modified SCD1. Mol Biotechnol 2024; 66:2095-2105. [PMID: 37592151 DOI: 10.1007/s12033-023-00843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/27/2023] [Indexed: 08/19/2023]
Abstract
Colon cancer (CC) is a malignant disease of the digestive tract, and its rising prevalence poses a grave threat to people's health. N6-methyladenosine (m6A) modification is essential for various crucial life processes through modulating gene expression. Methyltransferase-like 14 (METTL14), the m6A methylation transferase core protein, and its aberrant expression is intimately correlated to tumor development. This study was conducted to probe the impacts and specific mechanisms of METTL14 on the biological process of CC. Bioinformatics data disclosed that METTL14 was significantly attenuated in CC. Functional assays were executed to ascertain how METTL14 affected CC tumorigenicity, and METTL14 overexpression caused a notable decline in viability, migration, invasion, and stemness phenotype of CC cells. Then, in-depth mechanistic studies displayed that stearoyl-CoA desaturase 1 (SCD1) was a downstream target gene of METTL14-mediated m6A modification. METTL14 overexpression substantially augmented the m6A modification of SCD1 mRNA and diminished the SCD1 mRNA level. In addition, we revealed that YTHDF2 was the m6A reader to recognize METTL14 m6A-modified SCD1 mRNA and abolish its stability. Finally, we also validated that METTL14 might impede the tumorigenic process of CC through SCD1 mediated Wnt/β-catenin signaling. Taken together, this study presented that METTL14 performed as a potential therapeutic target in CC with important implications for the prognosis amelioration of CC patients.
Collapse
Affiliation(s)
- Dehua Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Shuguang Han
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiaoguang Yue
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Xiangyu Xu
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China
| | - Tieao Huang
- Gastrointestinal Surgery, Suzhou Xiangcheng Peoples' Hospital, No. 1060, Huayuan Road, Xiangcheng District, Suzhou, 215131, Jiangsu, China.
| |
Collapse
|
12
|
Jahanafrooz Z, Oroojalian F, Mokhtarzadeh A, Rahdar A, Díez-Pascual AM. Nanovaccines: Immunogenic tumor antigens, targeted delivery, and combination therapy to enhance cancer immunotherapy. Drug Dev Res 2024; 85:e22244. [PMID: 39138855 DOI: 10.1002/ddr.22244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Nanovaccines have been designed to overcome the limitations associated with conventional vaccines. Effective delivery methods such as engineered carriers or smart nanoparticles (NPs) are critical requisites for inducing self-tolerance and optimizing vaccine immunogenicity with minimum side effects. NPs can be used as adjuvants, immunogens, or nanocarriers to develop nanovaccines for efficient antigen delivery. Multiloaded nanovaccines carrying multiple tumor antigens along with immunostimulants can effectively increase immunity against tumor cells. They can be biologically engineered to boost interactions with dendritic cells and to allow a gradual and constant antigen release. Modifying NPs surface properties, using high-density lipoprotein-mimicking nanodiscs, and developing nano-based artificial antigen-presenting cells such as dendritic cell-derived-exosomes are amongst the new developed technologies to enhance antigen-presentation and immune reactions against tumor cells. The present review provides an overview on the different perspectives, improvements, and barriers of successful clinical application of current cancer therapeutic and vaccination options. The immunomodulatory effects of different types of nanovaccines and the nanoparticles incorporated into their structure are described. The advantages of using nanovaccines to prevent and treat common illnesses such as AIDS, malaria, cancer and tuberculosis are discussed. Further, potential paths to develop optimal cancer vaccines are described. Given the immunosuppressive characteristics of both cancer cells and the tumor microenvironment, applying immunomodulators and immune checkpoint inhibitors in combination with other conventional anticancer therapies are necessary to boost the effectiveness of the immune response.
Collapse
Affiliation(s)
- Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Fatemeh Oroojalian
- Natural Products & Medicinal Plants Research Center, North Khorasan University of Medical Sciences Bojnurd, Bojnurd, Iran
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol, Iran
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingenieria Química, Alcalá de Henares, Spain
| |
Collapse
|
13
|
Fathi Z, Avanes A, Jahanafrooz Z. In vitro study on the anticancer effects of oxalipalladium against PC3 human prostate carcinoma cells. Toxicol Appl Pharmacol 2024; 490:117021. [PMID: 38971382 DOI: 10.1016/j.taap.2024.117021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Prostate cancer is a common type of cancer in men with high incidence and mortality. Our aim was to investigate the effects of oxalipalladium (ox-Pd) on metastatic human prostate cancer PC3 cells and compare them with the effects of oxaliplatin (ox-Pt) (as an approved cancer drug). We synthesized ox-Pd through a new chemical method and used FT-IR, 1H NMR, 13C NMR, and MS analyzes to characterize it. The effects of ox-Pd on PC3 cells viability, apoptosis, cell cycle, migration, and gene expression were examined. Inhibition of topoisomerase IIα activity was investigated by pHOT1 plasmid relaxation and kDNA decatenation assays. Chemical tests showed ox-Pd with the correct composition and structure. For the first time, the exact fragmentation pathway of ox-Pd and its difference with ox-Pt was obtained by MS analysis. Ox-Pd significantly decreased PC3 cell viability with less/no toxicity effect on MHFB-1 normal skin fibroblasts. Wound scratch assay confirmed the strong anti-migratory activity of ox-Pd. According to flow cytometry analysis, this drug increased the number of PC3 cells in late apoptosis and decreased DNA replication and mitosis. Furthermore, pHOT1 plasmid relaxation and kDNA decatenation assays showed that ox-Pd strongly inhibited the catalytic activity of topoisomerase IIα. The expression of topoisomerase IIα, Bcl-2, P21, and survivin was decreased while the expression of Bax and p53 was increased under ox-Pd treatment. We provide the first evidence that ox-Pd exhibits more selective anticancer effects on PC3 cells compared to ox-Pt. Taken together, these data strongly suggest a therapeutic window for ox-Pd in cancer.
Collapse
Affiliation(s)
- Zahra Fathi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran; Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Armen Avanes
- Department of Chemistry, Faculty of Sciences, University of Maragheh, Maragheh, Iran
| | - Zohreh Jahanafrooz
- Department of Biology, Faculty of Sciences, University of Maragheh, Maragheh, Iran.
| |
Collapse
|
14
|
Sameti P, Amini M, Oroojalian F, Baghay Esfandyari Y, Tohidast M, Rahmani SA, Azarbarzin S, Mokhtarzadeh A, Baradaran B. MicroRNA-425: A Pivotal Regulator Participating in Tumorigenesis of Human Cancers. Mol Biotechnol 2024; 66:1537-1551. [PMID: 37332071 DOI: 10.1007/s12033-023-00756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded regulatory RNAs that are shown to be dysregulated in a wide array of human cancers. MiRNAs play critical roles in cancer progression and function as either oncogenes or tumor suppressors through modulating various target genes. Therefore, they possess great potential as diagnostic and therapeutic targets for cancer detection and treatment. In particular, recent studies have illustrated that miR-425 is also dysregulated in various human malignancies and plays a fundamental role in cancer initiation and progression. miR-425 has been reported to function as a dual-role miRNA participating in the regulation of cellular processes, including metastasis, invasion, and cell proliferation by modulating multiple signaling pathways, such as TGF-β, Wnt, and P13K/AKT pathways. Therefore, regarding recent researches showing the high therapeutic potential of miR-425, in this review, we have noted the impact of its dysregulation on signaling pathways and various aspects of tumorigenesis in a variety of human cancers.
Collapse
Affiliation(s)
- Pouriya Sameti
- Department of Biology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | | | - Maryam Tohidast
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Ali Rahmani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Liu YL, Xiang Z, Zhang BY, Zou YW, Chen GL, Yin L, Shi YL, Xu LL, Bi J, Wang Q. APOA5 alleviates reactive oxygen species to promote oxaliplatin resistance in PIK3CA-mutated colorectal cancer. Aging (Albany NY) 2024; 16:9410-9436. [PMID: 38848145 PMCID: PMC11210231 DOI: 10.18632/aging.205872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/25/2024] [Indexed: 06/09/2024]
Abstract
Although platinum-based chemotherapy is the frontline regimen for colorectal cancer (CRC), drug resistance remains a major challenge affecting its therapeutic efficiency. However, there is limited research on the correlation between chemotherapy resistance and lipid metabolism, including PIK3CA mutant tumors. In this present study, we found that PIK3CA-E545K mutation attenuated cell apoptosis and increased the cell viability of CRC with L-OHP treatment in vitro and in vivo. Mechanistically, PIK3CA-E545K mutation promoted the nuclear accumulation of SREBP1, which promoted the transcription of Apolipoprotein A5 (APOA5). APOA5 activated the PPARγ signaling pathway to alleviate reactive oxygen species (ROS) production following L-OHP treatment, which contributed to cell survival of CRC cells. Moreover, APOA5 overexpression enhanced the stemness-related traits of CRC cells. Increased APOA5 expression was associated with PIK3CA mutation in tumor specimens and poor response to first-line chemotherapy, which was an independent detrimental factor for chemotherapy sensitivity in CRC patients. Taken together, this study indicated that PIK3CA-E545K mutation promoted L-OHP resistance by upregulating APOA5 transcription in CRC, which could be a potent target for improving L-OHP chemotherapeutic efficiency. Our study shed light to improve chemotherapy sensitivity through nutrient management in CRC.
Collapse
Affiliation(s)
- Yu-Lin Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Zhuo Xiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Bo-Ya Zhang
- China Key Laboratory of Marine Drugs, The Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yu-Wei Zou
- Department of Pathology, Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | - Gui-Lai Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Li Yin
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Yan-Long Shi
- Department of Oncology, 960 Hospital of People’s Liberation Army, Jinan 250031, China
| | - Li-Li Xu
- Department of Pathology, Navy 971 People’s Liberation Army Hospital, Qingdao 266071, China
| | - Jingwang Bi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| | - Qiang Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250023, China
- Department of Oncology, Shandong Second Provincial General Hospital, Jinan 250023, China
| |
Collapse
|
16
|
Abedizadeh R, Majidi F, Khorasani HR, Abedi H, Sabour D. Colorectal cancer: a comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments. Cancer Metastasis Rev 2024; 43:729-753. [PMID: 38112903 DOI: 10.1007/s10555-023-10158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Colorectal cancer is the third most common and the second deadliest cancer worldwide. To date, colorectal cancer becomes one of the most important challenges of the health system in many countries. Since the clinical symptoms of this cancer appear in the final stages of the disease and there is a significant golden time between the formation of polyps and the onset of cancer, early diagnosis can play a significant role in reducing mortality. Today, in addition to colonoscopy, minimally invasive methods such as liquid biopsy have received much attention. The treatment of this complex disease has been mostly based on traditional treatments including surgery, radiotherapy, and chemotherapy; the high mortality rate indicates a lack of success for current treatment methods. Moreover, disease recurrence is another problem of traditional treatments. Recently, new approaches such as targeted therapy, immunotherapy, and nanomedicine have opened new doors for cancer treatment, some of which have already entered the market, and many methods have shown promising results in clinical trials. The success of immunotherapy in the treatment of refractory disease, the introduction of these methods into neoadjuvant therapy, and the successful results in tumor shrinkage without surgery have made immunotherapy a tough competitor for conventional treatments. It seems that the combination of those methods with such targeted therapies will go through promising changes in the future of colorectal cancer treatment.
Collapse
Affiliation(s)
- Roya Abedizadeh
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran
| | - Fateme Majidi
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran
| | - Hamid Reza Khorasani
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran
| | - Hassan Abedi
- Department of Internal Medicine, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Davood Sabour
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Isar 11, Babol, 47138-18983, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Bani-Hashem Square, Tehran, 16635-148, Iran.
| |
Collapse
|
17
|
Gao LP, Li TD, Yang SZ, Ma HM, Wang X, Zhang DK. NAT10-mediated ac 4C modification promotes stemness and chemoresistance of colon cancer by stabilizing NANOGP8. Heliyon 2024; 10:e30330. [PMID: 38726177 PMCID: PMC11079091 DOI: 10.1016/j.heliyon.2024.e30330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/12/2024] Open
Abstract
Background Colon cancer (CC) stem cells can self-renew as well as expand, thereby promoting tumor progression and conferring resistance to chemotherapeutic agents. The acetyltransferase NAT10 mediates N4-acetylcytidine (ac4C) modification, which in turn drives tumorigenesis, metastasis, stemness properties maintenance, and cell fate decisions. Nonetheless, the specific involvement of ac4C modification mediated by NAT10 in regulating stemness and chemosensitivity in CC remains undetermined. Methods The levels of NAT10 in normal colon and chemoresistant CC tissues were determined utilizing quantitative real-time polymerase chain reaction alongside immunohistochemistry. Assessing cancer cell stemness and chemosensitivity was conducted by various methods including spheroid and colony formation, western blotting, and flow cytometry. RNA-Seq was used to identify target genes, and RNA immunoprecipitation analysis was used to explore the potential mechanisms. Results We observed NAT10 overexpression and increased ac4C modification levels in chemoresistant CC tissues. The in vivo and in vitro analysis findings suggested that NAT10 promoted CC cell stemness while suppressing their chemosensitivity. Conversely, Remodelin, a NAT10-specific inhibitor, enhanced CC cell chemosensitivity. Mechanistically, NAT10 increased the level of NANOGP8 ac4C modification and promoted NANOGP8 mRNA stability. Conclusions NAT10 promotes the maintenance of stemness and chemoresistance in CC cells by augmenting the mRNA stability of NANOGP8. The inhibition of NAT10 via Remodelin improves chemotherapeutic efficacy and impedes CC progression.
Collapse
Affiliation(s)
- Li-ping Gao
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Ting-dong Li
- Department of Musculoskeletal Tumor, Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, PR China
| | - Su-zhen Yang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Hui-min Ma
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, PR China
| | - Xiang Wang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, PR China
| | - De-kui Zhang
- Department of Gastroenterology, Lanzhou University Second Hospital, Lanzhou, PR China
| |
Collapse
|
18
|
Xu H, Zhang H, Sun S, Zhang J, Huo J, Zhou C. Integrated Analysis of CD1A Immune Infiltration and Competing Endogenous RNA Networks in COAD. Int J Gen Med 2024; 17:2037-2053. [PMID: 38751492 PMCID: PMC11095400 DOI: 10.2147/ijgm.s455546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/26/2024] [Indexed: 05/18/2024] Open
Abstract
Background The CD1A gene, a key component of the human immune system and part of the CD1 family, plays a crucial role in presenting lipid antigens to T cells. Abnormal CD1A expression is associated with various immune-related diseases and tumors. However, the biological function of CD1A in COAD is unclear. Methods Multiple databases were systematically employed to conduct an analysis of CD1A expression in pan-cancer and COAD, along with its clinical-pathological features. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses of CD1A were performed using the 'clusterProfiler' package. The Protein-protein interaction (PPI) analysis of CD1A was used the STRING database. Additionally, TIMER and ssGSEA tools were used to explore the relationship between CD1A expression in COAD and immune cell infiltration. The study also investigated the association between CD1A expression and N6-methyladenosine (m6A) modification genes in the TCGA COAD cohort and constructed a CD1A-centric competing endogenous RNA (ceRNA) regulatory network. Results CD1A displays varying expression levels in various tumors, including COAD, and is closely linked to clinical-pathological characteristics. GO analysis suggests that CD1A plays a role in important processes like antigen processing and presentation, leukocyte-mediated immunity, and lymphocyte-mediated immunity. KEGG analysis identifies CD1A's involvement in key pathways such as the Chemokine signaling pathway and Cytokine-cytokine receptor interaction. PPI analysis highlights CD1A's interactions with CD207, CD1C, CD1E, FOXP3, and ITGB2. ssGSEA analysis indicates a significant relationship between CD1A expression and the infiltration of various immune cells in COAD. Significant associations were found between CD1A and m6A modification genes in COAD. Furthermore, a CD1A-centered ceRNA regulatory network has been constructed. Conclusion CD1A emerges as a potential biomarker for the diagnosis and treatment of COAD, showing a strong association with tumor immune infiltration, m6A modification, and the ceRNA network.
Collapse
Affiliation(s)
- Houxi Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, University of Chinese Medicine, Nanjing, People’s Republic of China
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Hongqun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, University of Chinese Medicine, Nanjing, People’s Republic of China
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Songxian Sun
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jingyuan Zhang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing, University of Chinese Medicine, Nanjing, People’s Republic of China
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Chunxiang Zhou
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| |
Collapse
|
19
|
Radu P, Zurzu M, Tigora A, Paic V, Bratucu M, Garofil D, Surlin V, Munteanu AC, Coman IS, Popa F, Strambu V, Ramboiu S. The Impact of Cancer Stem Cells in Colorectal Cancer. Int J Mol Sci 2024; 25:4140. [PMID: 38673727 PMCID: PMC11050141 DOI: 10.3390/ijms25084140] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Despite incessant research, colorectal cancer (CRC) is still one of the most common causes of fatality in both men and women worldwide. Over time, advancements in medical treatments have notably enhanced the survival rates of patients with colorectal cancer. Managing metastatic CRC involves a complex tradeoff between the potential benefits and adverse effects of treatment, considering factors like disease progression, treatment toxicity, drug resistance, and the overall impact on the patient's quality of life. An increasing body of evidence highlights the significance of the cancer stem cell (CSC) concept, proposing that CSCs occupy a central role in triggering cancer. CSCs have been a focal point of extensive research in a variety of cancer types, including CRC. Colorectal cancer stem cells (CCSCs) play a crucial role in tumor initiation, metastasis, and therapy resistance, making them potential treatment targets. Various methods exist for isolating CCSCs, and understanding the mechanisms of drug resistance associated with them is crucial. This paper offers an overview of the current body of research pertaining to the comprehension of CSCs in colorectal cancer.
Collapse
Affiliation(s)
- Petru Radu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mihai Zurzu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Anca Tigora
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Vlad Paic
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Mircea Bratucu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Dragos Garofil
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Valeriu Surlin
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Alexandru Claudiu Munteanu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| | - Ionut Simion Coman
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
- General Surgery Department, “Bagdasar-Arseni” Clinical Emergency Hospital, 12 Berceni Road, 041915 Bucharest, Romania
| | - Florian Popa
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Victor Strambu
- Tenth Department of Surgery, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania; (P.R.); (A.T.); (V.P.); (M.B.); (D.G.); (I.S.C.); (F.P.); (V.S.)
| | - Sandu Ramboiu
- Sixth Department of Surgery, University of Medicine and Pharmacy of Craiova, Craiova Emergency Clinical 7 Hospital, 200642 Craiova, Romania; (V.S.); (A.C.M.); (S.R.)
| |
Collapse
|
20
|
Yi SY, Wei MZ, Zhao L. Targeted immunotherapy to cancer stem cells: A novel strategy of anticancer immunotherapy. Crit Rev Oncol Hematol 2024; 196:104313. [PMID: 38428702 DOI: 10.1016/j.critrevonc.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/04/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
Cancer is a major disease that endangers human health. Cancer drug resistance and relapse are the two main causes contributing to cancer treatment failure. Cancer stem cells (CSCs) are a small fraction of tumor cells that are responsible for tumorigenesis, metastasis, relapse, and resistance to conventional anticancer therapies. Therefore, CSCs are considered to be the root of cancer recurrence, metastasis, and drug resistance. Novel anticancer strategies need to face this new challenge and explore their efficacy against CSCs. Recently, immunotherapy has made rapid advances in cancer treatment, and its potential against CSCs is also an interesting area of research. Meanwhile, immunotherapy strategies are novel therapeutic modalities with promising results in targeting CSCs. In this review, we summarize the targeting of CSCs by various immunotherapy strategies such as monoclonal antibodies(mAb), tumor vaccines, immune checkpoint inhibitors, and chimeric antigen receptor-T cells(CAR-T) in pre-clinical and clinical studies. This review provides new insights into the application of these immunotherapeutic approaches to potential anti-tumor therapies in the future.
Collapse
Affiliation(s)
- Shan-Yong Yi
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| | - Mei-Zhuo Wei
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China
| | - Ling Zhao
- Department of Oncology of the Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zheng Zhou, Henan Province 450007, China.
| |
Collapse
|
21
|
Zamanian MY, Golmohammadi M, Abdullaev B, García MO, Alazbjee AAA, Kumar A, Mohaamed SS, Hussien BM, Khalaj F, Hodaei SM, Shirsalimi N, Moriasi G. A narrative review on therapeutic potential of naringenin in colorectal cancer: Focusing on molecular and biochemical processes. Cell Biochem Funct 2024; 42:e4011. [PMID: 38583080 DOI: 10.1002/cbf.4011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/08/2024]
Abstract
Colorectal cancer (CRC) is a common and highly metastatic cancer affecting people worldwide. Drug resistance and unwanted side effects are some of the limitations of current treatments for CRC. Naringenin (NAR) is a naturally occurring compound found in abundance in various citrus fruits such as oranges, grapefruits, and tomatoes. It possesses a diverse range of pharmacological and biological properties that are beneficial for human health. Numerous studies have highlighted its antioxidant, anticancer, and anti-inflammatory activities, making it a subject of interest in scientific research. This review provides a comprehensive overview of the effects of NAR on CRC. The study's findings indicated that NAR: (1) interacts with estrogen receptors, (2) regulates the expression of genes related to the p53 signaling pathway, (3) promotes apoptosis by increasing the expression of proapoptotic genes (Bax, caspase9, and p53) and downregulation of the antiapoptotic gene Bcl2, (4) inhibits the activity of enzymes involved in cell survival and proliferation, (5) decreases cyclin D1 levels, (6) reduces the expression of cyclin-dependent kinases (Cdk4, Cdk6, and Cdk7) and antiapoptotic genes (Bcl2, x-IAP, and c-IAP-2) in CRC cells. In vitro CDK2 binding assay was also performed, showing that the NAR derivatives had better inhibitory activities on CDK2 than NAR. Based on the findings of this study, NAR is a potential therapeutic agent for CRC. Additional pharmacology and pharmacokinetics studies are required to fully elucidate the mechanisms of action of NAR and establish the most suitable dose for subsequent clinical investigations.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Bekhzod Abdullaev
- Central Asian Center of Development Studies, New Uzbekistan University, Tashkent, Uzbekistan
- School of Medicine, Central Asian University, Tashkent, Uzbekistan
- Department of Medical Oncology and Radiology, Samarkand State Medical University
| | - María Olalla García
- Universidad Estatal de Bolívar, Facultad de Ciencias de la Salud y del Ser Humano, Carrera de Enfermería, CP, Guaranda, Ecuador
| | | | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg, Russia
| | - Sameer S Mohaamed
- Department of Pharmacy, Al Rafidain University College, Bagdad, Iraq
| | - Beneen M Hussien
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Fattaneh Khalaj
- Digestive Diseases Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Niyousha Shirsalimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gervason Moriasi
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
22
|
Almohammed MAO, Meshkani S, Homayouni Tabrizi M, Sharbatiyan M, Nasiraei Haghighi H. Anti-proliferative activity of chitosan-coated oxypeucedanin nano-chitosomes (COPD-NCs) against human HT-29 colon cancer cells: in vitro study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2133-2143. [PMID: 37787784 DOI: 10.1007/s00210-023-02748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Oxypeucedanin (OPD) as a powerful anti-proliferative agent found in the Angelicae dahuricae has been used to suppress cancer cell growth. However, the hydrophobic chemical structure has limited its solubility and bio-accessibility. This is the first time OPD is encapsulated into a nano-liposomal structure and coated with poly-cationic chitosan polymer as the oxypeucedanin drug delivery system to evaluate its antioxidant and anti-colon cancer potential. The chitosan-coated oxypeucedanin nano-chitosomes (COPD-NCs) were synthesized utilizing the thin-layer hydration method and characterized by FESEM, DLS, FTIR, and zeta potential analysis. The anti-cancer potential of COPD-NC was analyzed by measuring the cell survival rate (MTT assay) and studying the cellular death type (AO/PI staining) following the increased treatment concentrations of COPD-NC on the HT-29 colon cancer cell line. Moreover, the COPD-NCs' apoptotic activity was verified by analyzing Cas-3 and Cas-9 gene expression profiles. Finally, the COPD-NCs' antioxidant activity was evaluated by applying ABTS, DPPH, and FRAP antioxidant assays. The 258.26-nm COPD-NCs significantly inhibited the HT-29 colon cancer cells compared with the normal fibroblast HFF cells. The up-regulated Cas-3 and Cas-9 gene expression exhibited the COPD-NCs' apoptotic activity. Also, the COPD-NCs' apoptotic activity was verified by detecting the increased apoptotic bodies following the AO/PI fluorescent staining in the increased exposure doses of COPD-NCs. Ultimately, the COPD-NCs meaningfully inhibited the ABTS-DPPH radicals and exhibited an appropriate FRAP-reductive potential. The designed nanostructure for COPD-NCs significantly improved its antioxidant potential and selective cytotoxicity on human HT-29 human cancer cells, which makes them a safe selective natural drug delivery system. Therefore, the COPD-NCs can selectively induce apoptotic death in human HT-29 cancer cells and have the potential to be studied as an anti-colon cancer compound. However, further cancer and normal cell lines are required to verify their selective cytotoxicity.
Collapse
Affiliation(s)
| | - Sakineh Meshkani
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Mahshid Sharbatiyan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | |
Collapse
|
23
|
Zhu C, Li S. Role of CRH in colitis and colitis-associated cancer: a combinative result of central and peripheral effects? Front Endocrinol (Lausanne) 2024; 15:1363748. [PMID: 38616821 PMCID: PMC11010637 DOI: 10.3389/fendo.2024.1363748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024] Open
Abstract
Corticotropin-releasing factor family peptides (CRF peptides) comprise corticotropin releasing hormone (CRH), urocortin (UCN1), UCN2 and UCN3. CRH is first isolated in the brain and later with UCNs found in many peripheral cells/tissues including the colon. CRH and UCNs function via the two types of receptors, CRF1 and CRF2, with CRH mainly acting on CRF1, UCN1 on both CRF1 &CRF2 and UCN2-3 on CRF2. Compiling evidence shows that CRH participates in inflammation and cancers via both indirect central effects related to stress response and direct peripheral influence. CRH, as a stress-response mediator, plays a significant central role in promoting the development of colitis involving colon motility, immunity and gut flora, while a few anti-colitis results of central CRH are also reported. Moreover, CRH is found to directly influence the motility and immune/inflammatory cells in the colon. Likewise, CRH is believed to be greatly related to tumorigenesis of many kinds of cancers including colon cancer via the central action during chronic stress while the peripheral effects on colitis-associated-colon cancer (CAC) are also proved. We and others observe that CRH/CRF1 plays a significant peripheral role in the development of colitis and CAC in that CRF1 deficiency dramatically suppresses the colon inflammation and CAC. However, up to date, there still exist not many relevant experimental data on this topic, and there seems to be no absolute clearcut between the central and direct peripheral effects of CRH in colitis and colon cancer. Taken together, CRH, as a critical factor in stress and immunity, may participate in colitis and CAC as a centrally active molecule; meanwhile, CRH has direct peripheral effects regulating the development of colitis and CAC, both of which will be summarized in this review.
Collapse
Affiliation(s)
| | - Shengnan Li
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Wang M, Tang L, Chen S, Wang L, Wu J, Zhong C, Li Y, Chen Y. ZNF217-activated Notch signaling mediates sulforaphane-suppressed stem cell properties in colorectal cancer. J Nutr Biochem 2024; 125:109551. [PMID: 38134973 DOI: 10.1016/j.jnutbio.2023.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 11/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Cancer stem cells (CSCs) are known to contribute to the progression of colorectal cancer (CRC). However, understanding of the molecular mechanisms and key factors involved in CRC is still insufficient to identify therapeutic targets against colorectal CSCs. In an effort to identify such mechanisms, we conducted bioinformatics analyses to evaluate the expression patterns in tumor and normal colorectal tissues, leading us to focus on the role of the ZNF217/Notch1 axis in mediating stem cell properties in CRC. Our findings revealed that ZNF217 overexpression activated self-renewal ability, expression of colorectal CSC markers, and Notch signaling in CRC. Dual-luciferase reporter assay suggested a role for ZNF217 in targeting Notch1 to activate Notch signaling. We observed that the promotional effects of Notch signaling, as well as CSC markers, under ZNF217 overexpression were attenuated after Notch1 knockdown. In addition to in vitro data, our in vivo results confirmed the inhibitory effect of sulforaphane on the tumorigenicity of CSCs, depicted the suppressive role of sulforaphane on colorectal CSCs mediated by the ZNF217/Notch1 axis, thereby providing new targetable vulnerabilities and therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Menghuan Wang
- Department of Children Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China; Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - LvYuwei Tang
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Liudan Wang
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jinyi Wu
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Caiyun Zhong
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Yadong Li
- Department of Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Yue Chen
- Department of Fundamental and Community Nursing, School of Nursing, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
25
|
Lin Y, Chen Y, Gan L, Li Z, Shen F. A prognostic model based on tumor microenvironment and immune cell in colorectal cancer. Scand J Gastroenterol 2024; 59:304-315. [PMID: 37978827 DOI: 10.1080/00365521.2023.2281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer-related death. Immunotherapy is one of the new options for cancer treatment. This study aimed to develop an immune-related signature associated with CRC. METHODS We performed differential analysis to screen out the differentially expressed genes (DEGs) of The Cancer Genome Atlas-Colorectal Cancer (TCGA-CRC) datasets. Weighted gene co-expression network analysis (WGCNA) was performed to obtain the key module genes associated with differential immune cells. The candidate genes were obtained through overlapping key DEGs and key module genes. The univariate and multivariate Cox regression analyses were adopted to build a CRC prognostic signature. We further conducted immune feature estimation and chemotherapy analysis between two risk subgroups. Finally, we verified the expression of immune-related prognostic genes at the transcriptional level. RESULTS A total of 61 candidate genes were obtained by overlapping key DEGs and key module genes associated with differential immune cells. Then, an immune-related prognostic signature was built based on the three prognostic genes (HAMP, ADAM8, and CD1B). The independent prognostic analysis suggested that age, stage, and RiskScore could be used as independent prognostic factors. Further, we found significantly higher expression of three prognostic genes in the CRC group compared with the normal group. Finally, real-time polymerase chain reaction verified the expression of three genes in patients with CRC. CONCLUSION The prognostic signature comprising HAMP, ADAM8, and CD1B based on immune cells was established, providing a theoretical basis and reference value for the research of CRC.
Collapse
Affiliation(s)
- Yufu Lin
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yabo Chen
- Department of General Practice, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Lu Gan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Li
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Feng Shen
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Yuan Y, Zhang XF, Li YC, Chen HQ, Wen T, Zheng JL, Zhao ZY, Hu QY. VX-509 attenuates the stemness characteristics of colorectal cancer stem-like cells by regulating the epithelial-mesenchymal transition through Nodal/Smad2/3 signaling. World J Stem Cells 2024; 16:207-227. [PMID: 38455101 PMCID: PMC10915959 DOI: 10.4252/wjsc.v16.i2.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Colorectal cancer stem cells (CCSCs) are heterogeneous cells that can self-renew and undergo multidirectional differentiation in colorectal cancer (CRC) patients. CCSCs are generally accepted to be important sources of CRC and are responsible for the progression, metastasis, and therapeutic resistance of CRC. Therefore, targeting this specific subpopulation has been recognized as a promising strategy for overcoming CRC. AIM To investigate the effect of VX-509 on CCSCs and elucidate the underlying mechanism. METHODS CCSCs were enriched from CRC cell lines by in conditioned serum-free medium. Western blot, Aldefluor, transwell and tumorigenesis assays were performed to verify the phenotypic characteristics of the CCSCs. The anticancer efficacy of VX-509 was assessed in HCT116 CCSCs and HT29 CCSCs by performing cell viability analysis, colony formation, sphere formation, flow cytometry, and western blotting assessments in vitro and tumor growth, immunohistochemistry and immunofluorescence assessments in vivo. RESULTS Compared with parental cells, sphere cells derived from HCT116 and HT29 cells presented increased expression of stem cell transcription factors and stem cell markers and were more potent at promoting migration and tumorigenesis, demonstrating that the CRC sphere cells displayed CSC features. VX-509 inhibited the tumor malignant biological behavior of CRC-stem-like cells, as indicated by their proliferation, migration and clonality in vitro, and suppressed the tumor of CCSC-derived xenograft tumors in vivo. Besides, VX-509 suppressed the CSC characteristics of CRC-stem-like cells and inhibited the progression of epithelial-mesenchymal transition (EMT) signaling in vitro. Nodal was identified as the regulatory factor of VX-509 on CRC stem-like cells through analyses of differentially expressed genes and CSC-related database information. VX-509 markedly downregulated the expression of Nodal and its downstream phosphorylated Smad2/3 to inhibit EMT progression. Moreover, VX-509 reversed the dedifferentiation of CCSCs and inhibited the progression of EMT induced by Nodal overexpression. CONCLUSION VX-509 prevents the EMT process in CCSCs by inhibiting the transcription and protein expression of Nodal, and inhibits the dedifferentiated self-renewal of CCSCs.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Xu-Fan Zhang
- Department of Nuclear Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan Province, China
| | - Yu-Chen Li
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Hong-Qing Chen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Tian Wen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Jia-Lian Zheng
- Department of Hepatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang 110032, Liaoning Province, China
| | - Zi-Yi Zhao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu 610072, Sichuan Province, China
| | - Qiong-Ying Hu
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China.
| |
Collapse
|
27
|
Chen B, Han Y, Sheng S, Deng J, Vasquez E, Yau V, Meng M, Sun C, Wang T, Wang Y, Sheng M, Wu T, Wang X, Liu Y, Lin N, Zhang L, Shao W. An angiogenesis-associated gene-based signature predicting prognosis and immunotherapy efficacy of head and neck squamous cell carcinoma patients. J Cancer Res Clin Oncol 2024; 150:91. [PMID: 38347320 PMCID: PMC10861726 DOI: 10.1007/s00432-024-05606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/02/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVES To develop a model that can assist in the diagnosis and prediction of prognosis for head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Data from TCGA and GEO databases were used to generate normalized gene expression data. Consensus Cluster Plus was used for cluster analysis and the relationship between angiogenesis-associated gene (AAG) expression patterns, clinical characteristics and survival was examined. Support vector machine (SVM) and least absolute shrinkage and selection operator (LASSO) analyzes and multiple logistic regression analyzes were performed to determine the diagnostic model, and a prognostic nomogram was constructed using univariate and multivariate Cox regression analyses. ESTIMATE, XCELL, TIMER, QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT-ABS, CIBERSORT algorithms were used to assess the immune microenvironment of HNSCC patients. In addition, gene set enrichment analysis, treatment sensitivity analysis, and AAGs mutation studies were performed. Finally, we also performed immunohistochemistry (IHC) staining in the tissue samples. RESULTS We classified HNSCC patients into subtypes based on differences in AAG expression from TCGA and GEO databases. There are differences in clinical features, TME, and immune-related gene expression between two subgroups. We constructed a HNSCC diagnostic model based on nine AAGs, which has good sensitivity and specificity. After further screening, we constructed a prognostic risk signature for HNSCC based on six AAGs. The constructed risk score had a good independent prognostic significance, and it was further constructed into a prognostic nomogram together with age and stage. Different prognostic risk groups have differences in immune microenvironment, drug sensitivity, gene enrichment and gene mutation. CONCLUSION We have constructed a diagnostic and prognostic model for HNSCC based on AAG, which has good performance. The constructed prognostic risk score is closely related to tumor immune microenvironment and immunotherapy response.
Collapse
Affiliation(s)
- Bangjie Chen
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Yanxun Han
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Shuyan Sheng
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Jianyi Deng
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | | | - Vicky Yau
- Division of Oral and Maxillofacial Surgery, NewYork Presbyterian (Columbia Irving Medical Center), New York, USA
| | - Muzi Meng
- UK Program Site, American University of the Caribbean School of Medicine, Preston, UK
- Bronxcare Health System, New York, USA
| | - Chenyu Sun
- The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Wang
- The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Yu Wang
- The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China
| | - Mengfei Sheng
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology (Anhui Provincial Laboratory of Pathogen Biology), School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tiangang Wu
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China
| | - Xinyi Wang
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Yuchen Liu
- The First Affiliated Hospital (First Clinical Medical College), Anhui Medical University, Hefei, China
| | - Ning Lin
- The Affiliated Chuzhou Hospital of Anhui Medical University, The First People's Hospital of Chuzhou, Chuzhou, China.
| | - Lei Zhang
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China.
| | - Wei Shao
- College & Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, China.
- Department of Microbiology and Parasitology (Anhui Provincial Laboratory of Pathogen Biology), School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
28
|
Wang F, Wang C, Li B, Wang G, Meng Z, Han J, Guo G, Yu B, Wang G. Identification of angiogenesis-related subtypes, the development of a prognosis model, and features of tumor microenvironment in colon cancer. Biotechnol Appl Biochem 2024; 71:45-60. [PMID: 37881150 DOI: 10.1002/bab.2520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
Angiogenesis is associated with tumor progression, prognosis, and treatment effect. However, the angiogenesis' underlying mechanisms in the tumor microenvironment (TME) still remain unclear. Understanding the dynamic interactions between angiogenesis and TME in colon adenocarcinoma (COAD) is necessary. We downloaded the transcriptome data and corresponding clinical data of colon cancer patients from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, respectively. We identified two distinct angiogenesis-related molecular subtypes (subtype A and subtype B) and assessed the clinical features, prognosis, and infiltrating immune cells of patients in the two subtypes. According to the prognostic differential genes, we defined two different gene clusters to further explore the correlation between angiogenesis and tumor heterogeneity. Then, we construct the prognostic risk scoring model angiogenesis-related gene (ARG-score) including seven genes (ARMCX2, latent transforming growth factor β binding protein 1, ADAM8, FABP4, CCL11, CXCL11, ITLN1) using Lasso-multivariate cox method. We analyzed the correlation between ARG-score and prognosis, clinicopathological features, TME, molecular feature, cancer stem cells (CSCs), and microsatellite instability (MSI) status. To assess the application value of ARG-score in clinical treatment, immunophenotype score was used to predict patients' immunotherapy response in colon cancer. We found the mutations of ARGs in TCGA-COAD dataset from genetic levels and discussed their expression patterns based on TCGA and GEO datasets. We observed important differences in clinicopathological features, prognosis, immune feature, molecular feature between the two molecular subgroups. Then, we established an ARG-score for predicting OS and validated its predictive capability. A high ARG-score characterized by higher transcription level of ARGs, suggested lower MSI-high (MSI-H), lower immune score, and worse clinical stage and survival outcome. Additionally, the ARG-score was remarkably related to the CSCs index and immunotherapy sensitivity. We found two new molecular subtypes and two gene clusters based on ARGs and established an ARG-score. Multilayered analysis revealed that ARGs were remarkably correlated to the heterogeneity of colon cancer patients and explained the process of tumorigenesis and progression better. The ARG-score can help us better assess patients' survival outcomes and provide guidance for individualized treatment.
Collapse
Affiliation(s)
- Feifei Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Changjing Wang
- Department of Gastrointestinal Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Baokun Li
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guanglin Wang
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zesong Meng
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jiachao Han
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ganlin Guo
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Yu
- The Second Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guiying Wang
- Department of Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
29
|
Atwan QS, Al-Ogaidi I. Enhancing the therapeutic potential of curcumin: a novel nanoformulation for targeted anticancer therapy to colorectal cancer with reduced miR20a and miR21 expression. Biomed Mater 2024; 19:025020. [PMID: 38215475 DOI: 10.1088/1748-605x/ad1dfc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established method features three aspects that, to our knowledge, have not been formally verified: (1) use of a novel formula to incorporate curcumin, (2) use of all biocompatible biodegradable materials to produce this formula without leaving harmful residues, and (3) an incorporation process at temperatures of approximately 50 °C. The formula was prepared from lecithin (LE), and chitosan (CH) with an eco-friendly emulsifying agent and olive oil as the curcumin solvent. The formula was converted to nanoscale through ultrasonication and probe sonication at a frequency of 20 kHz. Transmission electron microscopy showed that the nano formula was spherical in shape with sizes ranging between 49.7 nm in diameter and negative zeta potentials ranging from 28 to 34 mV. Primers miR20a and miR21 were designed for molecular studies. Nearly complete curcumin with an encapsulation efficiency of 91.1% was established using a straight-line equation. The nano formula incorporated with curcumin was used to prepare formulations that exhibited anticancer activities. The apoptosis pathway in cancer cells was activated by the minimum inhibitory concentration of the nano formula. These findings suggest the potential of this nanoformulation as an effective and selective cancer treatment that does not affect the normal cells.
Collapse
Affiliation(s)
- Qusay S Atwan
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Israa Al-Ogaidi
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
30
|
Gui Y, Qian X, Ding Y, Chen Q, Fangyu Ye, Ye Y, Hou Y, Yu J, Zhao L. c-Fos regulated by TMPO/ERK axis promotes 5-FU resistance via inducing NANOG transcription in colon cancer. Cell Death Dis 2024; 15:61. [PMID: 38233377 PMCID: PMC10794174 DOI: 10.1038/s41419-024-06451-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Acquired drug resistance is one of the most common limitations for the clinical response of colon cancer to 5-Fluorouracil (5-FU)-based chemotherapy. The relevant molecular mechanisms might be diversity, but still not be elucidated clearly. In this study, we aimed to investigate the potential mechanisms of c-Fos, a subfamily of activator protein-1, in 5-FU chemoresistance. We determined that phosphorylated c-Fos promoted colon cancer cells resistance to 5-FU by facilitating the cancer stemness. Mechanically, 5-FU treatment induced autolysosome-dependent degradation of TMPO, which subsequently triggered ERK-mediated phosphorylation of c-Fos. Additionally, c-Fos was found to bind to the promoter of NANOG and phosphorylation of c-Fos at Ser 374 was required for its regulation of NANOG expression. NANOG ablation impaired c-Fos/p-c-Fos induced 5-FU resistance and stemness. Taken together, these findings revealed that TMPO-mediated phosphorylation of c-Fos conferred 5-FU resistance by regulating NANOG expression and promoting cell stemness in colon cancer cells. c-Fos could be as a therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Yanping Gui
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoping Qian
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215153, China
| | - Youxiang Ding
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, 210008, China
| | - Qianqian Chen
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Fangyu Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuting Ye
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjian Hou
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Jun Yu
- Jiangsu Cancer Hospital, Nanjing, 210009, China
| | - Li Zhao
- Public Experimental Platform, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
31
|
Zhu M, Xu T, Ji L, Jiang B, Wu K. MIR143HG promotes methylation of transcription factor HOXB7 promoter by recruiting methyltransferase DNMT1 to prevent the progression of colon cancer. FASEB J 2024; 38:e23378. [PMID: 38127104 DOI: 10.1096/fj.202301060rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/22/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
In recent years, accumulating evidence has demonstrated the role of long noncoding RNAs (lncRNAs) in colon cancer. We aim to investigate the role of MIR143HG, also known as CARMN (Cardiac mesoderm enhancer-associated noncoding RNA) in colon cancer and explore the related mechanisms. An RNAseq data analysis was performed to screen differentially expressed lncRNAs associated with colon cancer. Next, MIR143HG expression was quantified in colon cancer cells. Moreover, the contributory roles of MIR143HG in the progression of colon cancer with the involvement of DNMT1 and HOXB7 (Homeobox B7) were evaluated after restored MIR143HG or depleted HOXB7. Finally, the effects of MIR143HG were investigated in vivo by measuring tumor formation in nude mice. High-throughput transcriptome sequencing was employed to validate the specific mechanisms by which MIR143HG and HOXB7 affect tumor growth in vivo. MIR143HG was found to be poorly expressed, while HOXB7 was highly expressed in colon cancer. MIR143HG could promote HOXB7 methylation by recruiting DNMT1 to reduce HOXB7 expression. Upregulation of MIR143HG or downregulation of HOXB7 inhibited cell proliferation, invasion and migration and facilitated apoptosis in colon cancer cells so as to delay the progression of colon cancer. The same trend was identified in vivo. Our study provides evidence that restoration of MIR143HG suppressed the progression of colon cancer via downregulation of HOXB7 through DNMT1-mediated HOXB7 promoter methylation. Thus, MIR143HG may be a potential candidate for the treatment of colon cancer.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, P.R. China
| | - Ting Xu
- Hematology Research Laboratory, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, P.R. China
| | - Lindong Ji
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, P.R. China
| | - Baofei Jiang
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, P.R. China
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Shanghai, P.R. China
| | - Kun Wu
- Department of Gastrointestinal Surgery, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, P.R. China
| |
Collapse
|
32
|
Soleimani A, Saeedi N, Al-Asady AM, Nazari E, Hanaie R, Khazaei M, Ghorbani E, Akbarzade H, Ryzhikov M, Avan A, Mehr SMH. Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights. Curr Pharm Des 2024; 30:1386-1397. [PMID: 38623972 DOI: 10.2174/0113816128291321240329050945] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/17/2024]
Abstract
Due to self-renewal, differentiation, and limitless proliferation properties, Cancer Stem Cells (CSCs) increase the probability of tumor development. These cells are identified by using CSC markers, which are highly expressed proteins on the cell surface of CSCs. Recently, the therapeutic application of CSCs as novel biomarkers improved both the prognosis and diagnosis outcome of colorectal Cancer. In the present review, we focused on a specific panel of colorectal CSC markers, including LGR5, ALDH, CD166, CD133, and CD44, which offers a targeted and comprehensive analysis of their functions. The selection criteria for these markers cancer were based on their established significance in Colorectal Cancer (CRC) pathogenesis and clinical outcomes, providing novel insights into the CSC biology of CRC. Through this approach, we aim to elevate understanding and stimulate further research for developing effective diagnostic and therapeutic strategies in CRC.
Collapse
Affiliation(s)
- Atena Soleimani
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Nikoo Saeedi
- Medical School, Islamic Azad University, Mashhad, Iran
| | | | - Elnaz Nazari
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Reyhane Hanaie
- Department of Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Elnaz Ghorbani
- Department of Microbiology, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Hamed Akbarzade
- Department of Biochemistry, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Biochemistry, Saint Louis University, St. Louis, MO 63103, USA
| | - Amir Avan
- Department of Genetics, Mashhad University of Medical Sciences, Razavi Khorasan, Mashhad, Iran
| | | |
Collapse
|
33
|
Kang BG, Shende M, Inci G, Park SH, Jung JS, Kim SB, Kim JH, Mo YW, Seo JH, Feng JH, Kim SC, Lim SS, Suh HW, Lee JY. Combination of metformin/efavirenz/fluoxetine exhibits profound anticancer activity via a cancer cell-specific ROS amplification. Cancer Biol Ther 2023; 24:20-32. [PMID: 36588385 PMCID: PMC9809943 DOI: 10.1080/15384047.2022.2161803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The possible anticancer activity of combination (M + E + F) of metformin (M), efavirenz (E), and fluoxetine (F) was investigated in normal HDF cells and HCT116 human colon cancer cells. Metformin increased cellular FOXO3a, p-FOXO3a, AMPK, p-AMPK, and MnSOD levels in HDFs but not in HCT116 cells. Cellular ATP level was decreased only in HDFs by metformin. Metformin increased ROS level only in HCT116 cells. Transfection of si-FOXO3a into HCT116 reversed the metformin-induced cellular ROS induction, indicating that FOXO3a/MnSOD is the key regulator for cellular ROS level. Viability readout with M, E, and F alone decreased slightly, but the combination of three drugs dramatically decreased cell survival in HCT116, A549, and SK-Hep-1 cancer cells but not in HDF cells. ROS levels in HCT116 cells were massively increased by M + E + F combination, but not in HDF cells. Cell cycle analysis showed that of M + E + F combination caused cell death only in HCT116 cells. The combination of M + E + F reduced synergistically mitochondrial membrane potential and mitochondrial electron transport chain complex I and III activities in HCT116 cells when compared with individual treatments. Western blot analysis indicated that DNA damage, apoptosis, autophagy, and necroptosis-realated factors increased in M + E + F-treated HCT116 cells. Oral administration with M + E + F combination for 3 weeks caused dramatic reductions in tumor volume and weight in HCT116 xenograft model of nude mice when compared with untreated ones. Our results suggest that M + E + F have profound anticancer activity both in vitro and in vivo via a cancer cell-specific ROS amplification (CASRA) through ROS-induced DNA damage, apoptosis, autophagy, and necroptosis.
Collapse
Affiliation(s)
- Beom-Goo Kang
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Madhuri Shende
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Gozde Inci
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | | - Sung-Chan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition, College of Natural Science, Hallym University, Chuncheon, Republic of Korea
| | - Hong-Won Suh
- FrontBio Inc, Gangwon-do, Republic of Korea,Department of Pharmacology, Institute of Natural Medicine, Hallym University, Chuncheon, Republic of Korea,Hong-Won Suh Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon24252, Republic of Korea
| | - Jae-Yong Lee
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Chuncheon, Republic of Korea,FrontBio Inc, Gangwon-do, Republic of Korea,CONTACT Jae-Yong Lee
| |
Collapse
|
34
|
Wei Y, Zhang Z, Long C, Huang X, Tang W, Mo X, Liu J. Case Report: Colon malignant tumor caused by retroperitoneal small round cell undifferentiated sarcoma. Front Oncol 2023; 13:1212475. [PMID: 38179167 PMCID: PMC10764574 DOI: 10.3389/fonc.2023.1212475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Small round cell undifferentiated sarcoma is a rare and highly invasive group of malignant bone and soft tissue tumors, often associated with a high misdiagnosis rate. The patient in this case was a 34-year-old male who presented with a two-month history of abdominal pain that worsened over the past two weeks. Elevated levels of tumor markers CA19-9 and CA72-4 were observed. Imaging revealed a substantial, well-vascularized mass in the lower left abdomen, located in the posterior abdominal cavity, invading the descending colon and the root of the small mesentery, and infiltrating the serous layer. The lesion was extensively resected without any postoperative complications. Microscopic examination indicated a combination of mucinous adenocarcinoma (approximately 30%) and small round cell undifferentiated sarcoma (approximately 70%). The patient was followed up for six months, and one month after surgery, a recurrence of the tumor was observed in the left paracolonic sulcus area, with metastases to the abdominal wall, peritoneum, and medial iliac muscles. Chemotherapy and targeted therapy were administered, and the patient currently survives with the presence of tumors. Small round cell undifferentiated sarcoma is an uncommon and highly invasive tumor, and clinical surgeons need to raise their awareness and realize to the maximum extent possible that this disease can be described through a multi-modal combination of immunohistochemistry and genetic test to improve diagnostic accuracy and reduce missed diagnoses. Further research in the field of biology is necessary to explore targeted drugs specifically suitable for this disease.
Collapse
Affiliation(s)
- Yuqin Wei
- Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of General Surgery, Zhuzhou Central Hospital, Zhuzhou, China
| | - Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Weizhong Tang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianwei Mo
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
35
|
Zaki RM, Alkharashi LA, Sarhan OM, Almurshedi AS, Aldosari BN, Said M. Box Behnken optimization of cubosomes for enhancing the anticancer activity of metformin: Design, characterization, and in-vitro cell proliferation assay on MDA-MB-231 breast and LOVO colon cancer cell lines. Int J Pharm X 2023; 6:100208. [PMID: 37680878 PMCID: PMC10480553 DOI: 10.1016/j.ijpx.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
This study aimed to formulate and statistically optimize cubosomal formulations of metformin (MTF) to enhance its breast anticancer activity. A Box Behnken design was employed using Design-Expert® software. The formulation variables were glyceryl monooleate concentration (GMO) w/w%, Pluronic F-127 concentration (PF127) w/w% and Tween 80 concentration w/w% whereas Entrapment efficiency (EE%), Vesicles' size (VS) and Zeta potential (ZP) were set as the dependent responses. The design expert software was used to perform the process of optimization numerically. X ray diffraction (XRD), Transmission electron microscope (TEM), in-vitro release study, short-term stability study, and in in-vitro cell proliferation assay on the MDA-MB-231 breast cancer and LOVO cancer cell lines were used to validate the optimized cubosomal formulation. The optimized formulation had a composition of 4.35616 (w/w%) GMO, 5 (w/w%) PF127 and 7.444E-6 (w/w%) Tween 80 with a desirability of 0.733. The predicted values for EE%, VS and ZP were 78.0592%, 307.273 nm and - 26.8275 mV, respectively. The validation process carried out on the optimized formula revealed that there were less than a 5% variance from the predicted responses. The XRD thermograms showed that MTF was encapsulated inside the cubosomal vesicles. TEM images of the optimized MTF cubosomal formulation showed spherical non-aggregated nanovesicles. Moreover, it revealed a sustained release profile of MTF in comparison to the MTF solution. Stability studies indicated that optimum cubosomal formulation was stable for thirty days. Cytotoxicity of the optimized cubosomal formulation was enhanced on the MDA-MB-231 breast and LOVO cancer cell lines compared to MTF solution even at lower concentrations. However, it showed superior cytotoxic effect on breast cancer cell line. So, cubosomes could be considered a promising carrier of MTF to treat breast and colon cancers.
Collapse
Affiliation(s)
- Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt
| | - Layla A. Alkharashi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11211, Saudi Arabia
| | - Omnia M. Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mayada Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, P.O. Box 11562, Cairo, Egypt
| |
Collapse
|
36
|
Li W, Zou C. NXNL2 Promotes Colon Cancer Proliferation and Metastasis by Regulating AKT Pathway. Appl Biochem Biotechnol 2023; 195:7685-7696. [PMID: 37084033 DOI: 10.1007/s12010-023-04513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
This study aimed to explore the role of nucleoredoxin-like 2 (NXNL2) in colon cancer (CC). The GEPIA and UALCAN databases were analyzed to explore genes involved in the prognosis of CC patients. DLD1 cells were treated with the DNA methylation inhibitor 5-azacitidine to validate the above findings. The methyltransferase DNMT (DNA methylation) was further knocked down by shRNA, then the expression of NXNL2 was assessed by qPCR. The role of NXNL2 on cell proliferation and metastasis was examined using corresponding assays. NXNL2 was found to exhibit the greatest impact on the prognosis of CC patients. High NXNL2 correlated with poor survival outcomes of CC. The expression of NXNL2 was regulated by DNA methylation. NXNL2 promoted CC cell proliferation and metastasis. Also, NXNL2 promoted the AKT pathway activity. In conclusion, NXNL2 could affect the cancer cell proliferation and metastasis, and has a poor survival prognosis in CC.
Collapse
Affiliation(s)
- Wenqin Li
- Department of Gastroenterology, the Second Clinical Medical college, Yangtze University, No. 60 Jingzhong Road, Jingzhou, 434020, Hubei, China
| | - Chuanxin Zou
- Department of Gastroenterology, the Second Clinical Medical college, Yangtze University, No. 60 Jingzhong Road, Jingzhou, 434020, Hubei, China.
| |
Collapse
|
37
|
Banerjee A, Deka D, Muralikumar M, Sun-Zhang A, Bisgin A, Christopher C, Zhang H, Sun XF, Pathak S. A concise review on miRNAs as regulators of colon cancer stem cells and associated signalling pathways. Clin Transl Oncol 2023; 25:3345-3356. [PMID: 37086351 DOI: 10.1007/s12094-023-03200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Despite recent therapy advances and a better understanding of colon cancer biology, it remains one of the major causes of death. The cancer stem cells, associated with the progression, metastasis, and recurrence of colon cancer, play a major role in promoting the development of tumour and are found to be chemo resistant. The stroma of the tumour, which makes up the bulk of the tumour mass, is composed of the tumour microenvironment. With the advent of theranostic and the development of personalised medicine, miRNAs are becoming increasingly important in the context of colon malignancies. A holistic understanding of the regulatory roles of miRNAs in cancer cells and cancer stem cells will allow us to design effective strategies to regulate miRNAs, which could lead to improved clinical translation and creating a potent colon cancer treatment strategy. In this review paper, we briefly discuss the history of miRNA as well as the mechanisms of miRNA and cancer stem cells that contribute to the tumour growth, apoptosis, and advancement of colon cancer. The usefulness of miRNA in colorectal cancer theranostic is further concisely reviewed. We conclude by holding a stance in addressing the prospects and possibilities for miRNA by the disclosure of recent theranostic approaches aimed at eradicating cancer stem cells and enhancing overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India.
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Makalakshmi Muralikumar
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Alexander Sun-Zhang
- Department of Oncology-Pathology, Karolinska Institute, 171 77, Solna, Sweden
| | - Atil Bisgin
- InfoGenom R&D Laboratories, Cukurova Technopolis, Adana, Turkey
- Medical Genetics Department of Medical Faculty, Cukurova University AGENTEM (Adana Genetic Diseases Diagnosis and Treatment Center), Cukurova University, Adana, Turkey
| | - Cynthia Christopher
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, 701 82, Orebro, Sweden
| | - Xiao-Feng Sun
- Division of Oncology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), 603103, Kelambakkam, Chennai, India
| |
Collapse
|
38
|
Zhou Q, Lan L, Wang W, Xu X, Wang W. Comprehensive analysis of tertiary lymphoid structures-related genes for prognostic prediction, molecular subtypes and immune infiltration in gastric cancer. Aging (Albany NY) 2023; 15:13368-13383. [PMID: 38015717 DOI: 10.18632/aging.205247] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/03/2023] [Indexed: 11/30/2023]
Abstract
Gastric cancer (GC) is a highly heterogeneous malignancy and survival rates of advanced GC patients are unsatisfactory. Tertiary lymphoid structures (TLS) are recently identified as lymphoid-like structures that are directly related to tumor prognosis and immune response. However, the association of tertiary lymphoid structures-related genes (TLS-RGs) with prognosis and immune response in GC remains unclear. In our study, a comprehensive analysis of the role of TLS-RGs in GC was performed based on public data, and the difference of TLS-RGs expression, TLS-RGs mutation frequency, pathway enrichment, differentially expressed gene, immune landscape, immunotherapy and drug sensitivity was analyzed. We found that TLS-RGs were altered in GC in terms of expression and mutation. The difference of survival, immune landscape and enrichment pathway exists between TLS clusters. Immune checkpoint differences were also evident between gene clusters. The grouping by TLS score indicated that patients in the low TLS score group had a better prognosis and a lower degree of immune escape. For immunotherapy, the low TLS score group showed better outcomes than the high TLS score group. Sensitivity to chemotherapeutic agents differed between TLS score groups. In conclusion, we comprehensively analyzed the role of TLS-RGs in GC, constructed nomogram that can accurately predict the prognosis of GC patients, and the TLS score can reflect the immune landscape of patients, providing the possibility of personalized design of immunotherapy and targeted drug therapy for GC patients.
Collapse
Affiliation(s)
- Qingde Zhou
- Department of Pharmacy, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People’s Republic of China
| | - Lan Lan
- Department of Dermatology, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third People’s Hospital, Hangzhou 310009, People’s Republic of China
| | - Wei Wang
- Department of Pharmacy, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People’s Republic of China
| | - Xinchang Xu
- Department of Pharmacy, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People’s Republic of China
| | - Wei Wang
- Department of Pharmacy, Hangzhou Third People’s Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou 310009, People’s Republic of China
| |
Collapse
|
39
|
Wu X, Zhou F, Cheng B, Tong G, Chen M, He L, Li Z, Yu S, Wang S, Lin L. Immune activity score to assess the prognosis, immunotherapy and chemotherapy response in gastric cancer and experimental validation. PeerJ 2023; 11:e16317. [PMID: 38025711 PMCID: PMC10655707 DOI: 10.7717/peerj.16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
Background Gastric cancer (GC) is an extremely heterogeneous malignancy with a complex tumor microenvironment (TME) that contributes to unsatisfactory prognosis. Methods The overall activity score for assessing the immune activity of GC patients was developed based on cancer immune cycle activity index in the Tracking Tumor Immunophenotype (TIP). Genes potentially affected by the overall activity score were screened using weighted gene co-expression network analysis (WGCNA). Based on the expression profile data of GC in The Cancer Genome Atlas (TCGA) database, COX analysis was applied to create an immune activity score (IAS). Differences in TME activity in the IAS groups were analyzed. We also evaluated the value of IAS in estimating immunotherapy and chemotherapy response based on immunotherapy cohort. Gene expression in IAS model and cell viability were determined by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and Cell Counting Kit-8 (CCK-8) assay, respectively. Results WGCAN analysis screened 629 overall activity score-related genes, which were mainly associated with T cell response and B cell response. COX analysis identified AKAP5, CTLA4, LRRC8C, AOAH-IT1, NPC2, RGS1 and SLC2A3 as critical genes affecting the prognosis of GC, based on which the IAS was developed. Further RT-qPCR analysis data showed that the expression of AKAP5 and CTLA4 was downregulated, while that of LRRC8C, AOAH-IT1, NPC2, RGS1 and SLC2A3 was significantly elevated in GC cell lines. Inhibition of AKAP5 increased cell viability but siAOAH-IT1 promoted viability of GC cells. IAS demonstrated excellent robustness in predicting immunotherapy outcome and GC prognosis, with low-IAS patients having better prognosis and immunotherapy. In addition, resistance to Erlotinib, Rapamycin, MG-132, Cyclopamine, AZ628, and Sorafenib was reduced in patients with low IAS. Conclusion IAS was a reliable prognostic indicator. For GC patients, IAS showed excellent robustness in predicting GC prognosis, immune activity status, immunotherapy response, and chemotherapeutic drug resistance. Our study provided novel insights into the prognostic assessment in GC.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Fengrui Zhou
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Boran Cheng
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Gangling Tong
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Minhua Chen
- Community Healthcare Center of Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Lirui He
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhu Li
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Shaokang Yu
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Shubin Wang
- Department of Medical Oncology, Peking University Shenzhen Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Shenzhen, China
- Cancer Institute of Shenzhen-PKU-HKUST Medical Center, Shenzhen, China
| | - Liping Lin
- Department of Oncology, Panyu Central Hospital, Cancer Institute of Panyu, Guangzhou, China
| |
Collapse
|
40
|
Li Z, Liu Y, Guo P, Wei Y. Construction and validation of a novel angiogenesis pattern to predict prognosis and immunotherapy efficacy in colorectal cancer. Aging (Albany NY) 2023; 15:12413-12450. [PMID: 37938164 PMCID: PMC10683615 DOI: 10.18632/aging.205189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Evidence suggests that the tumor microenvironment (TME) affects the tumor active response to immunotherapy. Tumor angiogenesis is closely related to the TME. Nonetheless, the effects of angiogenesis on the TME of colorectal cancer (CRC) remain unknown. METHODS We comprehensively assessed the angiogenesis patterns in CRC based on 36 angiogenesis-related genes (ARGs). Subsequently, we evaluated the prognostic values and therapeutic sensitivities of angiogenesis patterns using multiple methods. We then performed the machine learning algorithm and functional experiments to identify the prognostic key ARGs. Ultimately, the regulation of gut microbiota on the expression of ARGs was further investigated by using whole genome sequencing. RESULTS Two angiogenesis clusters were identified and angiogenesis cluster B was characterized by increased stromal and immunity activation with unfavorable odds of survival. Further, an ARG_score including 9 ARGs to predict recurrence-free survival (RFS) was established and its predominant predictive ability was confirmed. The low ARG_score patients were characterized by a high mutation burden, high microsatellite instability, and immune activation with better prognosis. Moreover, patients with high KLK10 expression were associated with a hot tumor immune microenvironment, poorer immune checkpoint blocking treatment, and shorter survival. The in vitro experiments also indicated that Fusobacterium nucleatum (F.n) infection significantly induced KLK10 expression in CRC. CONCLUSIONS The quantification of angiogenesis patterns could contribute to predict TME characteristics, prognosis, and individualized immunotherapy strategies. Furthermore, our findings suggest that F.n may influence CRC progression through ARGs, which could serve as a clinical biomarker and therapeutic target for F.n-infected CRC patients.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Emergency Surgery, Peking University People’s Hospital, Xicheng, Beijing 100044, China
| | - Yang Liu
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo Second Hospital, Ningbo, Zhejiang 315010, China
| | - Peng Guo
- Department of Emergency Surgery, Peking University People’s Hospital, Xicheng, Beijing 100044, China
- Department of Emergency Medicine, Peking University People’s Hospital, Xicheng, Beijing 100044, China
- Laboratory of Surgery Oncology, Peking University People’s Hospital, Xicheng, Beijing 100044, China
| | - Yunwei Wei
- Department of Pancreatic and Gastrointestinal Surgery Division, Ningbo Second Hospital, Ningbo, Zhejiang 315010, China
- Ningbo Key Laboratory of Intestinal Microecology and Human Major Diseases, Ningbo, Zhejiang 315010, China
| |
Collapse
|
41
|
Yi S, Luo M, Peng Y, Chen Y, Yu D. Anti-oncogenic mechanism of KLF17 in colon cancer by repressing cell migration and invasion via FHL1 upregulation. CHINESE J PHYSIOL 2023; 66:534-545. [PMID: 38149566 DOI: 10.4103/cjop.cjop-d-23-00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Colon cancer is a disease with high prevalence worldwide. This study sought to investigate Kruppel-like factor 17 (KLF17) mechanism in the development of colon cancer through four-and-a-half-LIM domain protein 1 (FHL1). In colon cancer cells, KLF17 and FHL1 expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. After gain- and loss-of-function experiments in colon cancer cells, cell proliferative, invasive, and migrating abilities were tested by cell counting kit-8, transwell, and scratch assays, respectively. The expression of epithelial-mesenchymal transition (EMT)-related genes, E-cadherin, N-cadherin, and Vimentin, was measured by RT-qPCR and Western blot. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were performed to detect the binding of KLF17 and the FHL1 promoter. Finally, a transplantation tumor model in nude mice was established for in vivo validation. Mechanistically, KLF17 facilitated FHL1 transcription by binding to the FHL1 promoter. KLF17 or FHL1 upregulation suppressed the colon cancer cell proliferative, invasive, and migrating capacities, accompanied by elevated E-cadherin expression and diminished N-cadherin and Vimentin expression. Furthermore, FHL1 silencing abrogated the repressive impacts of KLF17 upregulation on colon cancer cell EMT, proliferative, invasive, and migrating capabilities. Furthermore, KLF17 augmented FHL1 expression and curtailed the growth of transplanted tumors in nude mice. Conclusively, KLF17 promoted FHL1 transcription, thereby impeding the invasion, migration, and EMT of colon cancer cells.
Collapse
Affiliation(s)
- Shengen Yi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjin Peng
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Yu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
42
|
Wang Y, Popovic Z, Charkoftaki G, Garcia-Milian R, Lam TT, Thompson DC, Chen Y, Vasiliou V. Multi-omics profiling reveals cellular pathways and functions regulated by ALDH1B1 in colon cancer cells. Chem Biol Interact 2023; 384:110714. [PMID: 37716420 PMCID: PMC10807983 DOI: 10.1016/j.cbi.2023.110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/31/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Colon cancer is the third leading cause of cancer death globally. Although early screenings and advances in treatments have reduced mortality since 1970, identification of novel targets for therapeutic intervention is needed to address tumor heterogeneity and recurrence. Previous work identified aldehyde dehydrogenase 1B1 (ALDH1B1) as a critical factor in colon tumorigenesis. To investigate further, we utilized a human colon adenocarcinoma cell line (SW480) in which the ALDH1B1 protein expression has been knocked down by 80% via shRNA. Through multi-omics (transcriptomics, proteomics, and untargeted metabolomics) analysis, we identified the impact of ALDH1B1 knocking down (KD) on molecular signatures in colon cancer cells. Suppression of ALDH1B1 expression resulted in 357 differentially expressed genes (DEGs), 191 differentially expressed proteins (DEPs) and 891 differentially altered metabolites (DAMs). Functional annotation and enrichment analyses revealed that: (1) DEGs were enriched in integrin-linked kinase (ILK) signaling and growth and development pathways; (2) DEPs were mainly involved in apoptosis signaling and cellular stress response pathways; and (3) DAMs were associated with biosynthesis, intercellular and second messenger signaling. Collectively, the present study provides new molecular information associated with the cellular functions of ALDH1B1, which helps to direct future investigation of colon cancer.
Collapse
Affiliation(s)
- Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Zeljka Popovic
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA
| | - Rolando Garcia-Milian
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA; Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University, New Haven, CT, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Clinical Pharmacy, University of Colorado Skaggs School of Pharmacy & Pharmaceutical Sciences, Aurora, CO, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
43
|
Ling J, Tang Z, Yang W, Li Y, Dong X. Pygo2 activates BRPF1 via Pygo2-H3K4me2/3 interaction to maintain malignant progression in colon cancer. Exp Cell Res 2023; 431:113696. [PMID: 37423512 DOI: 10.1016/j.yexcr.2023.113696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Epigenetic alterations have essential roles during colon adenocarcinoma (COAD) progression. As the coactivator of Wnt/b-catenin signaling, Pygopus 2 (Pygo2) binds H3K4me2/3 and participate in chromatin remodeling in multiple cancers. However, It remains unclear whether the Pygo2-H3K4me2/3 association has significance in COAD. We aimed to elucidate the roles of Pygo2 in COAD. Functionally, Pygo2 inhibition attenuated cell proliferation, self-renewal capacities in vitro. Pygo2 overexpression enhanced in vivo tumor growth. Besides, Pygo2 overexpression could also enhance cell migration ability and in vivo distal metastasis. Mechanistically, Pygo2 correlates positively with BRPF1 expressions, one epigenetic reader of histone acetylation. The luciferase reporter assay and Chromatin Immunoprecipitation (ChIP)-qPCR assay were used to find that Pygo2 coordinated with H3K4me2/3 modifications to activate BRPF1 transcriptions via binding to the promoter. Both Pygo2 and BRPF1 expressed highly in tumors and Pygo2 relied on BRPF1 to accelerate COAD progression, including cell proliferation rate, migration abilities, stemness features and in vivo tumor growth. Targeting BPRF1 (GSK5959) is effective to suppress in vitro growth of Pygo2high cell lines, and has mild effect on Pygo2low cells. The subcutaneous tumor model further demonstrated that GSK5959 could effectively suppress the in vivo growth of Pygo2high COAD, but not the Pygo2low subtype. Collectively, our study represented Pygo2/BRPF1 as an epigenetic vulnerability for COAD treatment with predictive significance.
Collapse
Affiliation(s)
- Jie Ling
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China; Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Zhijie Tang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Wei Yang
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ye Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| | - Xiaoqiang Dong
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
44
|
Wang Y, Zhang L, Tan J, Zhang Z, Liu Y, Hu X, Lu B, Gao Y, Tong L, Liu Z, Zhang H, Lin PP, Li B, Gires O, Zhang T. Longitudinal detection of subcategorized CD44v6 + CTCs and circulating tumor endothelial cells (CTECs) enables novel clinical stratification and improves prognostic prediction of small cell lung cancer: A prospective, multi-center study. Cancer Lett 2023; 571:216337. [PMID: 37553013 DOI: 10.1016/j.canlet.2023.216337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023]
Abstract
Current management of small cell lung cancer (SCLC) remains challenging. Effective biomarkers are needed to subdivide patients presenting distinct treatment response and clinical outcomes. An understanding of heterogeneous phenotypes of aneuploid CD31- circulating tumor cells (CTCs) and CD31+ circulating tumor endothelial cells (CTECs) may provide novel insights in the clinical management of SCLC. In the present translational and prospective study, increased cancer metastasis-related cell proliferation and motility, accompanied with up-regulated mesenchymal marker vimentin but down-regulated epithelial marker E-cadherin, were observed in both lentivirus infected SCLC and NSCLC cells overexpressing the stemness marker CD44v6. Aneuploid CTCs and CTECs expressing CD44v6 were longitudinally detected by SE-iFISH in 120 SCLC patients. Positive detection of baseline CD44v6+ CTCs and CD44v6+ CTECs was significantly associated with enhanced hepatic metastasis. Karyotype analysis revealed that chromosome 8 (Chr8) in CD44v6+ CTCs shifted from trisomy 8 towards multiploidy in post-therapeutic patients compared to pre-treatment subjects. Furthermore, the burden of baseline CD44v6+ CTCs (t0) or amid the therapy (t1-2), the ratio of baseline CD31+ CTEC/CD31- CTC (t0), and CTC-WBC clusters (t0) were correlated with treatment response and distant metastases, particularly brain metastasis, in subjects with limited disease (LD-SCLC) but not in those with extensive disease (ED-SCLC). Multivariate survival analysis validated that longitudinally detected CD44v6+/CD31- CTCs was an independent prognostic factor for inferior survival in SCLC patients. Our study provides evidence for the first time that comprehensive analyses of CTCs, CTECs, and their respective CD44v6+ subtypes enable clinical stratification and improve prognostic prediction of SCLC, particularly for potentially curable LD-SCLC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Lina Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinjing Tan
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zhiyun Zhang
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yanxia Liu
- Department of Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baohua Lu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Yuan Gao
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Li Tong
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Zan Liu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Hongxia Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | | | - Baolan Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China
| | - Olivier Gires
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital, LMU, Munich, Germany.
| | - Tongmei Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic, Tumor Research Institute, Beijing, China.
| |
Collapse
|
45
|
Chen P, Li Z, Liang Y, Wei M, Jiang H, Chen S, Zhao Z. Identification of Hypoxia-Associated Signature in Colon Cancer to Assess Tumor Immune Microenvironment and Predict Prognosis Based on 14 Hypoxia-Associated Genes. Int J Gen Med 2023; 16:2503-2518. [PMID: 37346810 PMCID: PMC10281280 DOI: 10.2147/ijgm.s407005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Purpose Colon cancer is the main malignant tumor of the digestive tract. Hypoxia is highly related to the occurrence, progression and tumor immune microenvironment (TIME) of cancer. The aim of this study was to identify a hypoxia-associated signature with high accuracy for predicting the prognosis and TIME of colon cancer. Methods Download colon cancer data from the GEO and TCGA databases. A novel hypoxia risk model was identified to predict the prognosis of colon cancer patients. Subsequently, GSEA, TIME and mutation analysis were performed in the hypoxia high and low risk score groups. Finally, the signature gene ANKZF1 was selected for functional verification at the cellular level. Results A novel hypoxia risk model was identified. The risk score was significantly associated with poorer overall survival in colon cancer, and could be used as an independent prognostic factor for colon cancer. GSEA analysis found that the processes related to stimulate tumor proliferation and anti-apoptosis were significantly enriched in the hypoxia high risk score group. The expression of immunosuppressive cells and most immune checkpoints in the high risk score group was significantly higher than that in the low risk score group. In vitro cell experiments showed that knockdown the expression of ANKZF1 could inhibit the proliferation, migration and invasion of colon cancer cells. Conclusion Hypoxia plays an important role in evaluating the TIME and predicting the prognosis of colon cancer.
Collapse
Affiliation(s)
- Peng Chen
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Zhongxin Li
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Yulong Liang
- Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Ming Wei
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Haibo Jiang
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Shihao Chen
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| | - Zengren Zhao
- Department of General Surgery, The First Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People’s Republic of China
| |
Collapse
|
46
|
Chen J, Wu S, Peng Y, Zhao Y, Dong Y, Ran F, Geng H, Zhang K, Li J, Huang S, Wang Z. Constructing a cancer stem cell related prognostic model for predicting immune landscape and drug sensitivity in colorectal cancer. Front Pharmacol 2023; 14:1200017. [PMID: 37377935 PMCID: PMC10292801 DOI: 10.3389/fphar.2023.1200017] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Colorectal cancer (CRC) ranks the second malignancy with high incidence and mortality worldwide. Cancer stem cells (CSCs) function critically in cancer progression and metastasis via the interplay with immune cells in tumor microenvironment. This study aimed to identify important CSC marker genes and parsed the role of these marker genes in CRC. Materials and methods: CRC samples' single-cell RNA sequencing data and bulk transcriptome data were utilized. Seurat R package annotated CSCs and identified CSC marker genes. Consensus clustering subtyped CRC samples based on CSC marker genes. Immune microenvironment, pathway and oxidative stress analysis was performed using ESTIMATE, MCP-counter analysis and ssGSEA analysis. A prognostic model was established by Lasso and stepAIC. Sensitivity to chemotherapeutic drugs was determined by the biochemical half maximal inhibitory concentration with pRRophetic R package. Results: We identified a total of 29 CSC marker genes related to disease-specific survival (DSS). Two clusters (CSC1 and CSC2) were determined, and CSC2 showed shorter DSS, a larger proportion of late-stage samples, and higher oxidative stress response. Two clusters exhibited differential activation of biological pathways associated with immune response and oncogenic signaling. Drug sensitivity analysis showed that 44 chemotherapy drugs were more sensitive to CSC2 that those in CSC1. We constructed a seven-gene prognostic model (DRD4, DPP7, UCN, INHBA, SFTA2, SYNPO2, and NXPH4) that was effectively to distinguish high-risk and low-risk patients. 14 chemotherapy drugs were more sensitive to high-risk group and 13 chemotherapy drugs were more sensitive to low-risk group. Combination of higher oxidative stress and risk score indicated dismal prognosis. Conclusion: The CSC marker genes we identified may help to further decipher the role of CSCs in CRC development and progression. The seven-gene prognostic model could serve as an indicator for predicting the response to immunotherapy and chemotherapy as well as prognosis of CRC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianjun Li
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shuo Huang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhe Wang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
47
|
Novoa Díaz MB, Carriere P, Gentili C. How the interplay among the tumor microenvironment and the gut microbiota influences the stemness of colorectal cancer cells. World J Stem Cells 2023; 15:281-301. [PMID: 37342226 PMCID: PMC10277969 DOI: 10.4252/wjsc.v15.i5.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/26/2023] Open
Abstract
Colorectal cancer (CRC) remains the third most prevalent cancer disease and involves a multi-step process in which intestinal cells acquire malignant characteristics. It is well established that the appearance of distal metastasis in CRC patients is the cause of a poor prognosis and treatment failure. Nevertheless, in the last decades, CRC aggressiveness and progression have been attributed to a specific cell population called CRC stem cells (CCSC) with features like tumor initiation capacity, self-renewal capacity, and acquired multidrug resistance. Emerging data highlight the concept of this cell subtype as a plastic entity that has a dynamic status and can be originated from different types of cells through genetic and epigenetic changes. These alterations are modulated by complex and dynamic crosstalk with environmental factors by paracrine signaling. It is known that in the tumor niche, different cell types, structures, and biomolecules coexist and interact with cancer cells favoring cancer growth and development. Together, these components constitute the tumor microenvironment (TME). Most recently, researchers have also deepened the influence of the complex variety of microorganisms that inhabit the intestinal mucosa, collectively known as gut microbiota, on CRC. Both TME and microorganisms participate in inflammatory processes that can drive the initiation and evolution of CRC. Since in the last decade, crucial advances have been made concerning to the synergistic interaction among the TME and gut microorganisms that condition the identity of CCSC, the data exposed in this review could provide valuable insights into the biology of CRC and the development of new targeted therapies.
Collapse
Affiliation(s)
- María Belén Novoa Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Pedro Carriere
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| | - Claudia Gentili
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Buenos Aires, Argentina
- Instituto de Ciencias Biológicas y Biomédicas del Sur, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)- Universidad Nacional del Sur (UNS), Bahía Blanca 8000, Buenos Aires, Argentina
| |
Collapse
|
48
|
Almutairi BO, Almutairi MH, Alrefaei AF, Alkahtani S, Alarifi S. HSPB6 Is Depleted in Colon Cancer Patients and Its Expression Is Induced by 5-aza-2'-Deoxycytidine In Vitro. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:996. [PMID: 37241227 PMCID: PMC10220775 DOI: 10.3390/medicina59050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Colon cancer (CC) is the second most common cancer in Saudi Arabia, and the number of new cases is expected to increase by 40% by 2040. Sixty percent of patients with CC are diagnosed in the late stage, causing a reduced survival rate. Thus, identifying a new biomarker could contribute to diagnosing CC in the early stages, leading to delivering better therapy and increasing the survival rate. Materials and Methods: HSPB6 expression was investigated in extracted RNA taken from 10 patients with CC and their adjacent normal tissues, as well as in DMH-induced CC and a colon treated with saline taken from a male Wistar rat. Additionally, the DNA of the LoVo and Caco-2 cell lines was collected, and bisulfite was converted to measure the DNA methylation level. This was followed by applying 5-aza-2'-deoxycytidine (AZA) to the LoVo and Caco-2 cell lines for 72 h to see the effect of DNA methylation on HSPB6 expression. Finally, the GeneMANIA database was used to find the interacted genes at transcriptional and translational levels with HSPB6. Results: We found that the expression of HSPB6 was downregulated in 10 CC tissues compared to their adjacent normal colon tissues, as well as in the in vivo study, where its expression was lower in the colon treated with the DMH agent compared to the colon treated with saline. This suggests the possible role of HSPB6 in tumor progression. Moreover, HSPB6 was methylated in two CC cell lines (LoVo and Caco-2), and demethylation with AZA elevated its expression, implying a mechanistic association between DNA methylation and HSPB6 expression. Conclusions: Our findings indicate that HSPB6 is adversely expressed with tumor progression, and its expression may be controlled by DNA methylation. Thus, HSPB6 could be a good biomarker employed in the CC diagnostic process.
Collapse
Affiliation(s)
- Bader O. Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.H.A.); (A.F.A.); (S.A.); (S.A.)
| | | | | | | | | |
Collapse
|
49
|
Idoudi S, Bedhiafi T, Sahir F, Hijji Y, Uddin S, Merhi M, Dermime S, Billa N. Studies on anti-colon cancer potential of nanoformulations of curcumin and succinylated curcumin in mannosylated chitosan. Int J Biol Macromol 2023; 235:123827. [PMID: 36858085 DOI: 10.1016/j.ijbiomac.2023.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023]
Abstract
Colon cancer (CRC) is the second leading cause of death and the third most diagnosed cancer worldwide. Although curcumin (CUR) has demonstrated a potent anticancer activity, it is characterized by its poor solubility, low bioavailability, and instability. This study is a projection from a previous investigation where CUR and succinylated CUR (CUR.SA) were separately encapsulated in mannosylated-chitosan nanoparticles (CM-NPs) to form CUR-NPs and CUR.SA-NPs, respectively. Here, we aim to assess the anti-CRC activity of these two nanoformulations. Cytotoxicity studies using CCK-8 assay indicated that both CUR-NPs and CUR.SA-NPs have a dose and time-dependent toxicity towards CRC human cell-lines (HCT116 and SW480), and more cytotoxic compared to free CUR or CUR-SA in a time-dependent manner. A significant induction of early and late apoptosis in the CUR-NPs and CUR.SA-NPs treated CRC cell lines compared to untreated cells was observed. Western blotting analyses confirmed the induction of apoptosis through activation of Caspase signaling compared to untreated cells. Based on the physicochemical properties of CUR-NPs and CUR.SA-NPs along with the data from the in vitro studies, we may conclude these nanoparticle formulations hold very promising attributes, worthy of further investigations for its role in the management of CRC.
Collapse
Affiliation(s)
- Sourour Idoudi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Takwa Bedhiafi
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Fairooz Sahir
- Flow Cytometry Core, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Yousef Hijji
- Department of Chemistry, Howard University, Washington DC 20069, USA
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nashiru Billa
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
50
|
Desai N, Hasan U, K J, Mani R, Chauhan M, Basu SM, Giri J. Biomaterial-based platforms for modulating immune components against cancer and cancer stem cells. Acta Biomater 2023; 161:1-36. [PMID: 36907233 DOI: 10.1016/j.actbio.2023.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Immunotherapy involves the therapeutic alteration of the patient's immune system to identify, target, and eliminate cancer cells. Dendritic cells, macrophages, myeloid-derived suppressor cells, and regulatory T cells make up the tumor microenvironment. In cancer, these immune components (in association with some non-immune cell populations like cancer-associated fibroblasts) are directly altered at a cellular level. By dominating immune cells with molecular cross-talk, cancer cells can proliferate unchecked. Current clinical immunotherapy strategies are limited to conventional adoptive cell therapy or immune checkpoint blockade. Targeting and modulating key immune components presents an effective opportunity. Immunostimulatory drugs are a research hotspot, but their poor pharmacokinetics, low tumor accumulation, and non-specific systemic toxicity limit their use. This review describes the cutting-edge research undertaken in the field of nanotechnology and material science to develop biomaterials-based platforms as effective immunotherapeutics. Various biomaterial types (polymer-based, lipid-based, carbon-based, cell-derived, etc.) and functionalization methodologies for modulating tumor-associated immune/non-immune cells are explored. Additionally, emphasis has been laid on discussing how these platforms can be used against cancer stem cells, a fundamental contributor to chemoresistance, tumor relapse/metastasis, and failure of immunotherapy. Overall, this comprehensive review strives to provide up-to-date information to an audience working at the juncture of biomaterials and cancer immunotherapy. STATEMENT OF SIGNIFICANCE: Cancer immunotherapy possesses incredible potential and has successfully transitioned into a clinically lucrative alternative to conventional anti-cancer therapies. With new immunotherapeutics getting rapid clinical approval, fundamental problems associated with the dynamic nature of the immune system (like limited clinical response rates and autoimmunity-related adverse effects) have remained unanswered. In this context, treatment approaches that focus on modulating the compromised immune components within the tumor microenvironment have garnered significant attention amongst the scientific community. This review aims to provide a critical discussion on how various biomaterials (polymer-based, lipid-based, carbon-based, cell-derived, etc.) can be employed along with immunostimulatory agents to design innovative platforms for selective immunotherapy directed against cancer and cancer stem cells.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Uzma Hasan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India; Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Rajesh Mani
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|