1
|
Salatino S, Cuber P, Tynior W, Gustave C, Hudy D, Chan YT, Raczkowska-Siostrzonek A, Misra R, Aleksandrowicz D, Nałęcz D, Strzelczyk JK. Harnessing Nanopore Sequencing to Investigate the Epigenomic Landscape in Molar Incisor Hypomineralization-A Pilot Study. Int J Mol Sci 2025; 26:3401. [PMID: 40244243 PMCID: PMC11990023 DOI: 10.3390/ijms26073401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025] Open
Abstract
Molar incisor hypomineralization (MIH) is a dental condition that affects the enamel of permanent molars and/or incisors, often leading to tooth decay. Although several etiological hypotheses have come forward, including prenatal medical problems and postnatal illness, the pathogenesis of MIH is yet unclear. Aimed at exploring the epigenomic landscape of this dental condition, we collected dental tissue from a MIH-affected child and an age-matched control patient and investigated their DNA methylation status through an in-depth analysis of nanopore long-read sequencing data. We identified 780,141 CpGs with significantly different methylation levels between the samples; intriguingly, the density of these dinucleotides was higher in the regions containing genes involved in dental morphogenesis and inflammatory processes leading to periodontitis. Further examination of 54 genes associated with MIH or hypomineralized second primary molar disorders revealed very distinct methylation of intragenic transposable elements (SINEs, LINEs, and LTRs), while functional profiling analysis of 571 differentially methylated regions genome-wide uncovered significant enrichment processes including ameloblasts differentiation and calcium ion binding, as well as SP1 and other zinc finger transcription factors. Taken together, our findings suggest that DNA methylation could play a role in the pathogenesis of MIH and represent a stepping stone towards a comprehensive understanding of this multifactorial disorder.
Collapse
Affiliation(s)
- Silvia Salatino
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Piotr Cuber
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Wojciech Tynior
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Carla Gustave
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| | - Yuen-Ting Chan
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
| | - Agnieszka Raczkowska-Siostrzonek
- Department of Dental Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Raju Misra
- Molecular Biology Laboratories, Science and Innovation Platforms, Natural History Museum, London SW7 5BD, UK
- Public Health Microbiology, United Kingdom Health Security Agency, London E14 4PU, UK
| | - Dagmara Aleksandrowicz
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 81-348 Gdynia, Poland
| | - Dariusz Nałęcz
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 81-348 Gdynia, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-808 Zabrze, Poland
| |
Collapse
|
2
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Quigley RM, Kearney M, Kennedy OD, Duncan HF. Tissue engineering approaches for dental pulp regeneration: The development of novel bioactive materials using pharmacological epigenetic inhibitors. Bioact Mater 2024; 40:182-211. [PMID: 38966600 PMCID: PMC11223092 DOI: 10.1016/j.bioactmat.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
The drive for minimally invasive endodontic treatment strategies has shifted focus from technically complex and destructive root canal treatments towards more conservative vital pulp treatment. However, novel approaches to maintaining dental pulp vitality after disease or trauma will require the development of innovative, biologically-driven regenerative medicine strategies. For example, cell-homing and cell-based therapies have recently been developed in vitro and trialled in preclinical models to study dental pulp regeneration. These approaches utilise natural and synthetic scaffolds that can deliver a range of bioactive pharmacological epigenetic modulators (HDACis, DNMTis, and ncRNAs), which are cost-effective and easily applied to stimulate pulp tissue regrowth. Unfortunately, many biological factors hinder the clinical development of regenerative therapies, including a lack of blood supply and poor infection control in the necrotic root canal system. Additional challenges include a need for clinically relevant models and manufacturing challenges such as scalability, cost concerns, and regulatory issues. This review will describe the current state of bioactive-biomaterial/scaffold-based engineering strategies to stimulate dentine-pulp regeneration, explicitly focusing on epigenetic modulators and therapeutic pharmacological inhibition. It will highlight the components of dental pulp regenerative approaches, describe their current limitations, and offer suggestions for the effective translation of novel epigenetic-laden bioactive materials for innovative therapeutics.
Collapse
Affiliation(s)
- Ross M. Quigley
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
| | - Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
| | - Oran D. Kennedy
- Department of Anatomy and Regenerative Medicine, and Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin (TCD), University of Dublin, Lincoln Place, Dublin, Ireland
- The Trinity Centre for Biomedical Engineering (TCBE) and the Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) and Trinity College Dublin (TCD), Dublin, Ireland
| |
Collapse
|
4
|
Wang X, Sun K, Xu Z, Chen Z, Wu W. Roles of SP/KLF transcription factors in odontoblast differentiation: From development to diseases. Oral Dis 2024; 30:3745-3760. [PMID: 38409677 DOI: 10.1111/odi.14904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES A zinc-finger transcription factor family comprising specificity proteins (SPs) and Krüppel-like factor proteins (KLFs) plays an important role in dentin development and regeneration. However, a systematic regulatory network involving SPs/KLFs in odontoblast differentiation has not yet been described. This review examined the expression patterns of SP/KLF gene family members and their current known functions and mechanisms in odontoblast differentiation, and discussed prospective research directions for further exploration of mechanisms involving the SP/KLF gene family in dentin development. MATERIALS AND METHODS Relevant literature on SP/KLF gene family members and dentin development was acquired from PubMed and Web of Science. RESULTS We discuss the expression patterns, functions, and related mechanisms of eight members of the SP/KLF gene family in dentin development and genetic disorders with dental problems. We also summarize current knowledge about their complementary or synergistic actions. Finally, we propose future research directions for investigating the mechanisms of dentin development. CONCLUSIONS The SP/KLF gene family plays a vital role in tooth development. Studying the complex complementary or synergistic interactions between SPs/KLFs is helpful for understanding the process of odontoblast differentiation. Applications of single-cell and spatial multi-omics may provide a more complete investigation of the mechanism involved in dentin development.
Collapse
Affiliation(s)
- Xuefei Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Kaida Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zekai Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Zhuo Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Wenzhi Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| |
Collapse
|
5
|
Eldeeb D, Okada H, Suzuki Y, Seki M, Tanaka J, Mishima K, Chung UI, Ohba S, Hojo H. Exploring the role of DNMT1 in dental papilla cell fate specification during mouse tooth germ development through integrated single-cell transcriptomics and bulk RNA sequencing. J Oral Biosci 2024; 66:530-538. [PMID: 38942194 DOI: 10.1016/j.job.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVES This study aimed to investigate the regulatory mechanisms governing dental mesenchymal cell commitment during tooth development, focusing on odontoblast differentiation and the role of epigenetic regulation in this process. METHODS We performed single-cell RNA sequencing (scRNA-seq) of dental cells from embryonic day 14.5 (E14.5) mice to understand the heterogeneity of developing tooth germ cells. Computational analyses including gene regulatory network (GRN) assessment were conducted. We validated our findings using immunohistochemistry (IHC) and in vitro loss-of-function analyses using the DNA methyltransferase 1 (DNMT1) inhibitor Gsk-3484862 in primary dental mesenchymal cells (DMCs) isolated from E14.5 mouse tooth germs. Bulk RNA-seq of Gsk-3484862-treated DMCs was performed to identify potential downstream targets of DNMT1. RESULTS scRNA-seq analysis revealed diverse cell populations within the tooth germs, including epithelial, mesenchymal, immune, and muscle cells. Using single-cell regulatory network inference and clustering (SCENIC), we identified Dnmt1 as a key regulator of early odontoblast development. IHC analysis showed the ubiquitous expression of DNMT1 in the dental papilla and epithelium. Bulk RNA-seq of cultured DMCs showed that Gsk-3484862 treatment upregulated odontoblast-related genes, whereas genes associated with cell division and the cell cycle were downregulated. Integrated analysis of bulk RNA-seq data with scRNA-seq SCENIC profiles was used to identify the potential Dnmt1 target genes. CONCLUSIONS Dnmt1 may negatively affect odontoblast commitment and differentiation during tooth development. These findings contribute to a better understanding of the molecular mechanisms underlying tooth development and future development of hard-tissue regenerative therapies.
Collapse
Affiliation(s)
- Dahlia Eldeeb
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Oral Biology, Faculty of Dentistry, Cairo University, Egypt
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan.
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan.
| |
Collapse
|
6
|
Shi L, Ye X, Zhou J, Fang Y, Yang J, Meng M, Zou J. Roles of DNA methylation in influencing the functions of dental-derived mesenchymal stem cells. Oral Dis 2024; 30:2797-2806. [PMID: 37856651 DOI: 10.1111/odi.14770] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE DNA methylation as intensively studied epigenetic regulatory mechanism exerts pleiotropic effects on dental-derived mesenchymal stem cells (DMSCs). DMSCs have self-renewal and multidifferentiation potential. Here, this review aims at summarizing the research status about application of DMSCs in tissue engineering and clarifying the roles of DNA methylation in influencing the functions of DMSCs, with expectation of paving the way for its in-depth exploration in tissue engineering. METHOD The current research status about influence of DNA methylation in DMSCs was acquired by MEDLINE (through PubMed) and Web of Science using the keywords 'DNA methylation', 'dental-derived mesenchymal stem cells', 'dental pulp stem cells', 'periodontal ligament stem cells', 'dental follicle stem cells', 'stem cells from the apical papilla', 'stem cells from human exfoliated deciduous teeth', and 'gingival-derived mesenchymal stem cells'. RESULTS This review indicates DNA methylation affects DMSCs' differentiation and function through inhibiting or enhancing the expression of specific gene resulted by DNA methylation-related genes or relevant inhibitors. CONCLUSION DNA methylation can influence DMSCs in aspects of osteogenesis, adipogenesis, immunomodulatory function, and so on. Yet, the present studies about DNA methylation in DMSCs commonly focus on dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Little has been reported for other DMSCs.
Collapse
Affiliation(s)
- Liyan Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingchen Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuwen Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiazhen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mingmei Meng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Huang L, Chen X, Yang X, Zhang Y, Liang Y, Qiu X. Elucidating epigenetic mechanisms governing odontogenic differentiation in dental pulp stem cells: an in-depth exploration. Front Cell Dev Biol 2024; 12:1394582. [PMID: 38863943 PMCID: PMC11165363 DOI: 10.3389/fcell.2024.1394582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Epigenetics refers to the mechanisms such as DNA methylation and histone modification that influence gene expression without altering the DNA sequence. These epigenetic modifications can regulate gene transcription, splicing, and stability, thereby impacting cell differentiation, development, and disease occurrence. The formation of dentin is intrinsically linked to the odontogenic differentiation of dental pulp stem cells (DPSCs), which are recognized as the optimal cell source for dentin-pulp regeneration due to their varied odontogenic potential, strong proliferative and angiogenic characteristics, and ready accessibility Numerous studies have demonstrated the critical role of epigenetic regulation in DPSCs differentiation into specific cell types. This review thus provides a comprehensive review of the mechanisms by which epigenetic regulation controls the odontogenesis fate of DPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Gil-Martín E, Ramos E, López-Muñoz F, Egea J, Romero A. Potential of melatonin to reverse epigenetic aberrations in oral cancer: new findings. EXCLI JOURNAL 2023; 22:1280-1310. [PMID: 38234969 PMCID: PMC10792176 DOI: 10.17179/excli2023-6624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024]
Abstract
It is now an accepted principle that epigenetic alterations cause cellular dyshomeostasis and functional changes, both of which are essential for the initiation and completion of the tumor cycle. Oral carcinogenesis is no exception in this regard, as most of the tumors in the different subsites of the oral cavity arise from the cross-reaction between (epi)genetic inheritance and the huge challenge of environmental stressors. Currently, the biochemical machinery is put at the service of the tumor program, halting the cell cycle, triggering uncontrolled proliferation, driving angiogenesis and resistance to apoptosis, until the archetypes of the tumor phenotype are reached. Melatonin has the ability to dynamically affect the epigenetic code. It has become accepted that melatonin can reverse (epi)genetic aberrations present in oral and other cancers, suggesting the possibility of enhancing the oncostatic capacity of standard multimodal treatments by incorporating this indolamine as an adjuvant. First steps in this direction confirm the potential of melatonin as a countermeasure to mitigate the detrimental side effects of conventional first-line radiochemotherapy. This single effect could produce synergies of extraordinary clinical importance, allowing doses to be increased and treatments not to be interrupted, ultimately improving patients' quality of life and prognosis. Motivated by the urgency of improving the medical management of oral cancer, many authors advocate moving from in vitro and preclinical research, where the bulk of melatonin cancer research is concentrated, to systematic randomized clinical trials on large cohorts. Recognizing the challenge to improve the clinical management of cancer, our motivation is to encourage comprehensive and robust research to reveal the clinical potential of melatonin in oral cancer control. To improve the outcome and quality of life of patients with oral cancer, here we provide the latest evidence of the oncolytic activity that melatonin can achieve by manipulating epigenetic patterns in oronasopharyngeal tissue.
Collapse
Affiliation(s)
- Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
9
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Veysari SK, Asghari M, Farshad F, Hodjat M. Epigenetic changes underlie the association between diabetes mellitus and oral diseases. Mol Biol Rep 2023; 50:6987-6996. [PMID: 37378745 DOI: 10.1007/s11033-023-08574-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 06/01/2023] [Indexed: 06/29/2023]
Abstract
Patients with diabetes mellitus (DM) suffer from oral complications related to oral infections, periodontal diseases, and endodontic lesions. Emerging evidence has revealed the contribution of the epigenetic process as the underlying mechanism of DM complications. DNA methylation, histone modifications, and non-coding RNAs are epigenetic regulators that directly affect gene expression. The present review elaborated on the role of epigenetic dysregulation in the etiology of diabetes-related periodontal and endodontic diseases. The narrative review study was prepared using databases such as PubMed, Google Scholar, Science Direct, and Scopus. The formation of glycation products as a result of hyperglycemic condition increases oxidative stress, and elevates chronic inflammatory mediators that could in turn adversely change the cellular environment and alter the epigenetic status. This process contributes to the alteration of regulatory genes expression, leading to the development of diabetes-induced bone complications and impaired odontogenic capacity of pulp. Indeed, epigenetic mechanisms mediate the interaction between gene expression and DM cellular environment. Further investigations on epigenetic factors involved in DM oral complications may provide novel therapeutic targets.
Collapse
Affiliation(s)
- Setareh Kazemi Veysari
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Mona Asghari
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Fatemeh Farshad
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, 1417614411, Iran.
| |
Collapse
|
11
|
Hong H, Zeng K, Zhou C, Chen X, Xu Z, Li M, Liu L, Zeng Q, Tao Q, Wei X. The pluripotent factor OCT4A enhances the self-renewal of human dental pulp stem cells by targeting lncRNA FTX in an LPS-induced inflammatory microenvironment. Stem Cell Res Ther 2023; 14:109. [PMID: 37106382 PMCID: PMC10142416 DOI: 10.1186/s13287-023-03313-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Regulating the pluripotency of human dental pulp stem cells (hDPSCs) is key for the self-repair of injured dental pulp. We previously found that OCT4A promotes the proliferation and odontogenic differentiation of human dental pulp cells (hDPCs). Recent studies have shown the interaction between OCT4A and lncRNAs in pluripotency maintenance of various stem cells. The aim of this study was to explore the underlying roles and mechanisms of OCT4A and its related lncRNAs in the proliferation and multidirectional differentiation of hDPSCs in an inflammatory microenvironment. METHODS Human lncRNA microarrays were applied to screen out the differentially expressed lncRNAs in hDPSCs between the OCT4A-overexpressing and vector groups. Lipopolysaccharide (LPS) was used to simulate the inflammatory microenvironment. The effects of OCT4A and the lncRNA FTX on the proliferation and multidifferentiation of hDPSCs were observed by the CCK-8 assay, EdU staining, real-time PCR, western blotting, and Alizarin red and oil red O staining. Bioinformatics analysis and chromatin immunoprecipitation (ChIP) assays were performed to clarify the targeted mechanism of OCT4A on FTX. The regulation by FTX of the expression of OCT4A and its downstream pluripotent transcription factors SOX2 and c-MYC was further detected by real-time PCR and western blotting. RESULTS The microarray results showed that 978 lncRNAs (250 of which were upregulated and 728 downregulated) were potentially differentially expressed genes (fold change ≥ 2, P < 0.05). LPS stimulation attenuated the self-renewal of hDPSCs. OCT4A enhanced the cell proliferation and multidifferentiation capacities of hDPSCs in an inflammatory microenvironment, while FTX exhibited the opposite effects. OCT4A negatively regulated FTX function by binding to specific regions on the FTX promoter, thereby inhibiting the transcription of FTX. Moreover, overexpression of FTX downregulated the expression of OCT4A, SOX2 and c-MYC, whereas knockdown of FTX facilitated their expression. CONCLUSIONS OCT4A was found to be a crucial factor maintaining the self-renewal of hDPSCs by transcriptionally targeting FTX in an inflammatory microenvironment. Moreover, we proposed a novel function of FTX in negatively regulating the pluripotency and multilineage differentiation capacity of hDPSCs. The hierarchical organization between OCT4A and FTX expanded the understanding of the network between transcription factors and lncRNAs in fine-tuning the pluripotency/differentiation balance of adult stem cells, and provided prospective targets for optimizing dental-derived stem cell sources for regenerative endodontics.
Collapse
Affiliation(s)
- Hong Hong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Kai Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Can Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Xiaochuan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Zhezhen Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Mengjie Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Lu Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Qian Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China
| | - Qian Tao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
| | - Xi Wei
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
12
|
Selvestrel D, Stocco G, Aloi M, Arrigo S, Cardile S, Cecchin E, Congia M, Curci D, Gatti S, Graziano F, Langefeld CD, Lucafò M, Martelossi S, Martinelli M, Pagarin S, Scarallo L, Stacul EF, Strisciuglio C, Thompson S, Zuin G, Decorti G, Bramuzzo M. DNA methylation of the TPMT gene and azathioprine pharmacokinetics in children with very early onset inflammatory bowel disease. Biomed Pharmacother 2023; 157:113901. [PMID: 36462311 DOI: 10.1016/j.biopha.2022.113901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Thiopurine methyltransferase (TPMT) is a crucial enzyme for azathioprine biotransformation and its activity is higher in very early onset inflammatory bowel disease (VEO-IBD) patients than in adolescents with IBD (aIBD). AIMS The aims of this pharmacoepigenetic study were to evaluate differences in peripheral blood DNA methylation of the TPMT gene and in azathioprine pharmacokinetics in patients with VEO-IBD compared to aIBD. METHODS The association of age with whole genome DNA methylation profile was evaluated in a pilot group of patients and confirmed by a meta-analysis on 3 cohorts of patients available on the public functional genomics data repository. Effects of candidate CpG sites in the TPMT gene were validated in a larger cohort using pyrosequencing. TPMT activity and azathioprine metabolites (TGN) were measured in patients' erythrocytes by HPLC and associated with patients' age group and TPMT DNA methylation. RESULTS Whole genome DNA methylation pilot analysis, combined with the meta-analysis revealed cg22736354, located on TPMT downstream neighboring region, as the only statistically significant CpG whose methylation increases with age, resulting lower in VEO-IBD patients compared to aIBD (median 9.6% vs 12%, p = 0.029). Pyrosequencing confirmed lower cg22736354 methylation in VEO-IBD patients (median 4.0% vs 6.0%, p = 4.6 ×10-5). No differences in TPMT promoter methylation were found. Reduced cg22736354 methylation was associated with lower TGN concentrations (rho = 0.31, p = 0.01) in patients with VEO-IBD and aIBD. CONCLUSION Methylation of cg22736354 in TPMT gene neighborhood is lower in patients with VEO-IBD and is associated with reduced azathioprine inactivation and increased TGN concentrations.
Collapse
Affiliation(s)
| | - Gabriele Stocco
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Marina Aloi
- Women's and Children's Health Department, Pediatric Gastroenterology and Hepatology Unit, Sapienza University of Rome, Rome, Italy
| | - Serena Arrigo
- Pediatric Gastroenterology and Endoscopy Unit, Institute 'Giannina Gaslini', Genoa, Italy
| | - Sabrina Cardile
- Hepatology and Gastroenterology Unit, Bambino Gesù Hospital, Rome, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mauro Congia
- Pediatric Clinic and Rare Diseases, Microcitemic Pediatric Hospital Antonio Cao, Azienda Ospedaliera Brotzu, Cagliari, Italy
| | - Debora Curci
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy
| | - Simona Gatti
- Department of Pediatrics, Università Politecnica delle Marche, Ancona, Italy
| | | | - Carl D Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marianna Lucafò
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | | | - Massimo Martinelli
- Department of Translational Medical Science, Section of Pediatrics, University of Naples "Federico II", Naples, Italy
| | - Sofia Pagarin
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Luca Scarallo
- University of Florence-Meyer Hospital, Florence, Italy
| | | | - Caterina Strisciuglio
- Departement of Woman, Child and General and Specialistic Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Susan Thompson
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Giovanna Zuin
- Department of Pediatrics, University of Milano-Bicocca, Foundation MBBM/San Gerardo Hospital, Monza, Italy
| | - Giuliana Decorti
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
| | - Matteo Bramuzzo
- Gastroenterology, Digestive Endoscopy and Nutrition Unit, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
13
|
Epigenetic Regulation of Methylation in Determining the Fate of Dental Mesenchymal Stem Cells. Stem Cells Int 2022; 2022:5015856. [PMID: 36187229 PMCID: PMC9522499 DOI: 10.1155/2022/5015856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are crucial in tooth development and periodontal health, and their multipotential differentiation and self-renewal ability play a critical role in tissue engineering and regenerative medicine. Methylation modifications could promote the appropriate biological behavior by postsynthetic modification of DNA or protein and make the organism adapt to developmental and environmental prompts by regulating gene expression without changing the DNA sequence. Methylation modifications involved in DMSC fate include DNA methylation, RNA methylation, and histone modifications, which have been proven to exert a significant effect on the regulation of the fate of DMSCs, such as proliferation, self-renewal, and differentiation potential. Understanding the regulation of methylation modifications on the behavior and the immunoinflammatory responses involved in DMSCs contributes to further study of the mechanism of methylation on tissue regeneration and inflammation. In this review, we briefly summarize the key functions of histone methylation, RNA methylation, and DNA methylation in the differentiation potential and self-renewal of DMSCs as well as the opportunities and challenges for their application in tissue regeneration and disease therapy.
Collapse
|
14
|
DNA Methylation and Histone Modification in Dental-derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2022; 18:2797-2816. [PMID: 35896859 DOI: 10.1007/s12015-022-10413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/16/2022]
Abstract
Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs (ncRNAs), is essential for the regulation of multiple cellular processes. Dental-derived mesenchymal stem cells (DMSCs), a kind of multipotent cells derived from dental tissues, are impactful in regenerative medicine. Recent studies have shown that epigenetic regulation plays a major role in DMSCs. Therefore, exploring how epigenetic regulation is involved in DMSCs may be of guiding significance for tissue repair and regeneration or for exploring more effective treatments. A number of research of ncRNAs in DMSCs have been reported. However, little is known about the roles of DNA methylation and histone modifications in DMSCs. In this review, we summarize the important roles of DNA methylation and histone modifications of the fate of DMSCs.
Collapse
|
15
|
Tian C, Chai J, Liu W, Zhang X, Li Y, Zuo H, Yuan G, Zhang H, Liu H, Chen Z. Role of the Demethylase AlkB Homolog H5 in the Promotion of Dentinogenesis. Front Physiol 2022; 13:923185. [PMID: 35784864 PMCID: PMC9240783 DOI: 10.3389/fphys.2022.923185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Dentinogenesis is a key process in tooth formation and is regulated by a series of pre- and post-transcriptional regulations. N6-methyl-adenosine (m6A), which is the most prevalent internal chemical modification that can be removed by the RNA demethylase AlkB homolog H5 (ALKBH5), has recently been reported to be involved in several biological processes. However, the exact function of ALKBH5-mediated m6A modification in tooth development remains unclear. Here, we showed that Alkbh5 was expressed in pre-odontoblasts, polarizing odontoblasts, and secretory odontoblasts. Alkbh5 overexpression in the mouse dental papilla cell line mDPC6T promoted odontoblastic differentiation. Conditional knockout of Alkbh5 in Dmp1-expressing odontoblasts led to a decrease in number of odontoblasts and increased pre-dentin formation. Mechanistically, RNA sequencing and m6A sequencing of Alkbh5-overexpressing mDPC6T cells revealed that Alkbh5 promoted odontoblast differentiation by prolonging the half-life of Runx2 transcripts in an m6A-dependent manner and by activating the phosphatidylinositol 3-kinase/protein kinase B pathway. Notably, the loss of Alkbh5 expression in odontoblasts impaired tertiary dentin formation in vivo. These results suggested that the RNA demethylase ALKBH5 plays a role in dentinogenesis.
Collapse
Affiliation(s)
- Cheng Tian
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Chai
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Weidong Liu
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinye Zhang
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yashu Li
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Haojian Zhang
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, School of Medicine, Wuhan University, Wuhan, China
| | - Huan Liu
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Huan Liu, ; Zhi Chen,
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Sciences of Stomatology, Key Laboratory of Oral Biomedicine, Ministry of Education (Hubei-MOST KLOS & KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- *Correspondence: Huan Liu, ; Zhi Chen,
| |
Collapse
|
16
|
Hydroquinone destabilizes BIM mRNA through upregulation of p62 in chronic myeloid leukemia cells. Biochem Pharmacol 2022; 199:115017. [DOI: 10.1016/j.bcp.2022.115017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 11/21/2022]
|
17
|
Gao S, Ge LH, Zhao YM, Li P, Li YY, Zhao W. Hsa-miRNA-143-3p regulates the odontogenic differentiation of human stem cells from the apical papilla by targeting NFIC. Int Endod J 2022; 55:263-274. [PMID: 34807471 DOI: 10.1111/iej.13666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
AIM To evaluate the effects of hsa-miRNA-143-3p on the cytodifferentiation of human stem cells from the apical papilla (hSCAPs) and the post-transcriptional regulation of Nuclear factor I-C (NFIC). METHODOLOGY miRNA expression profiles in human immature permanent teeth and during hSCAP differentiation were examined. hSCAPs were treated with miR-143-3p overexpression or silencing viruses, and the proliferation and odontogenic and osteogenic differentiation of these stem cells, and the involvement of the NFIC pathway, were investigated. Luciferase reporter and NFIC mutant plasmids were used to confirm NFIC mRNA as a direct target of miR-143-3p. NFIC expression analysis in the miR-143-3p overexpressing hSCAPs was used to investigate whether miR-143-3p functioned by targeting NFIC. Student's t-test and chi-square tests were used for statistical analysis. RESULTS miR-143-3p expression was screened by microarray profiling and was found to be significantly reduced during hSCAP differentiation (p < .05). Overexpression of miR-143-3p inhibited the mineralization of hSCAPs significantly (p < .05) and downregulated the levels of odontogenic differentiation markers (NFIC [p < .05], DSP [p < .01] and KLF4 [p < .01]), whereas silencing of miR-143-3p had the opposite effect. The luciferase reporter gene detection and bioinformatic approaches identified NFIC mRNA as a potential target of miR-143-3p. NFIC overexpression reversed the inhibitory effect of miR-143-3p on the odontogenic differentiation of hSCAPs. CONCLUSIONS miR-143-3p maintained the stemness of hSCAPs and modulated their differentiation negatively by directly targeting NFIC. Thus, inhibition of this miRNA represents a potential strategy to promote the regeneration of damaged tooth roots.
Collapse
Affiliation(s)
- Shuo Gao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li-Hong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Yu-Ming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, Peking University Health Science Center, Peking University, Beijing, China
| | - Pei Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yao-Yin Li
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wei Zhao
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Li Y, Zhao X, Sun M, Pei D, Li A. Deciphering the Epigenetic Code of Stem Cells Derived From Dental Tissues. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.807046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Stem cells derived from dental tissues (DSCs) exhibit multipotent regenerative potential in pioneering tissue engineering regimens. The multipotency of DSCs is critically regulated by an intricate range of factors, of which the epigenetic influence is considered vital. To gain a better understanding of how epigenetic alterations are involved in the DSC fate determination, the present review overviews the current knowledge relating to DSC epigenetic modifications, paying special attention to the landscape of epigenetic modifying agents as well as the related signaling pathways in DSC regulation. In addition, insights into the future opportunities of epigenetic targeted therapies mediated by DSCs are discussed to hold promise for the novel therapeutic interventions in future translational medicine.
Collapse
|
19
|
Liu Y, Gan L, Cui DX, Yu SH, Pan Y, Zheng LW, Wan M. Epigenetic regulation of dental pulp stem cells and its potential in regenerative endodontics. World J Stem Cells 2021; 13:1647-1666. [PMID: 34909116 PMCID: PMC8641018 DOI: 10.4252/wjsc.v13.i11.1647] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/07/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Regenerative endodontics (RE) therapy means physiologically replacing damaged pulp tissue and regaining functional dentin–pulp complex. Current clinical RE procedures recruit endogenous stem cells from the apical papilla, periodontal tissue, bone marrow and peripheral blood, with or without application of scaffolds and growth factors in the root canal space, resulting in cementum-like and bone-like tissue formation. Without the involvement of dental pulp stem cells (DPSCs), it is unlikely that functional pulp regeneration can be achieved, even though acceptable repair can be acquired. DPSCs, due to their specific odontogenic potential, high proliferation, neurovascular property, and easy accessibility, are considered as the most eligible cell source for dentin–pulp regeneration. The regenerative potential of DPSCs has been demonstrated by recent clinical progress. DPSC transplantation following pulpectomy has successfully reconstructed neurovascularized pulp that simulates the physiological structure of natural pulp. The self-renewal, proliferation, and odontogenic differentiation of DPSCs are under the control of a cascade of transcription factors. Over recent decades, epigenetic modulations implicating histone modifications, DNA methylation, and noncoding (nc)RNAs have manifested as a new layer of gene regulation. These modulations exhibit a profound effect on the cellular activities of DPSCs. In this review, we offer an overview about epigenetic regulation of the fate of DPSCs; in particular, on the proliferation, odontogenic differentiation, angiogenesis, and neurogenesis. We emphasize recent discoveries of epigenetic molecules that can alter DPSC status and promote pulp regeneration through manipulation over epigenetic profiles.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lu Gan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Di-Xin Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Si-Han Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yue Pan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Li-Wei Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Mian Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
20
|
Functional Dental Pulp Regeneration: Basic Research and Clinical Translation. Int J Mol Sci 2021; 22:ijms22168991. [PMID: 34445703 PMCID: PMC8396610 DOI: 10.3390/ijms22168991] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases account for a large proportion of dental visits, the current treatments for which are root canal therapy (RCT) and pulp revascularisation. Despite the clinical signs of full recovery and histological reconstruction, true regeneration of pulp tissues is still far from being achieved. The goal of regenerative endodontics is to promote normal pulp function recovery in inflamed or necrotic teeth that would result in true regeneration of the pulpodentinal complex. Recently, rapid progress has been made related to tissue engineering-mediated pulp regeneration, which combines stem cells, biomaterials, and growth factors. Since the successful isolation and characterisation of dental pulp stem cells (DPSCs) and other applicable dental mesenchymal stem cells, basic research and preclinical exploration of stem cell-mediated functional pulp regeneration via cell transplantation and cell homing have received considerably more attention. Some of this effort has translated into clinical therapeutic applications, bringing a ground-breaking revolution and a new perspective to the endodontic field. In this article, we retrospectively examined the current treatment status and clinical goals of pulpal and periapical diseases and scrutinized biological studies of functional pulp regeneration with a focus on DPSCs, biomaterials, and growth factors. Then, we reviewed preclinical experiments based on various animal models and research strategies. Finally, we summarised the current challenges encountered in preclinical or clinical regenerative applications and suggested promising solutions to address these challenges to guide tissue engineering-mediated clinical translation in the future.
Collapse
|
21
|
Ferreira RS, Assis RIF, Feltran GDS, do Rosário Palma IC, Françoso BG, Zambuzzi WF, Andia DC, da Silva RA. Genome-wide DNA (hydroxy) methylation reveals the individual epigenetic landscape importance on osteogenic phenotype acquisition in periodontal ligament cells. J Periodontol 2021; 93:435-448. [PMID: 34291826 DOI: 10.1002/jper.21-0218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/24/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Mesenchymal cells' biology has been an important investigative tool to maximize bone regeneration through tissue engineering. Here we used mesenchymal cells from periodontal ligament (PDLCs) with high (h-) and low (l-) osteogenic potential, isolated from different donors, to investigate the impact of the individual epigenetic and transcriptional profiles on the osteogenic potential. METHODS Genome-wide and gene-specific DNA (hydroxy) methylation, mRNA expression and immunofluorescence analysis were carried out in h- and l-PDLCs at DMEM (non-induced to osteogenesis) and OM (induced-3rd and 10th days of osteogenic differentiation) groups in vitro. RESULTS Genome-wide results showed distinct epigenetic profile among PDLCs with most of the differences on 10th day of OM; DMEMs showed higher concentrations (xOM) of differentially methylated probes in gene body, intronic and open sea (3rd day), increasing this concentration in TSS200 and island regions, at 10 days. At basal levels, h- and l-PDLCs showed different transcriptional profiles; l-PDLCs demonstrated higher levels of NANOG/OCT4/SOX2, BAPX1, DNMT3A, TET1/3, and lower levels of RUNX2 transcripts, confirmed by NANOG/OCT4 and RUNX2 immunofluorescence. After osteogenic induction, the distinct transcriptional profile of multipotentiality genes was maintained among PDLCs. In l-PDLCs, the anti-correlation between DNA methylation and gene expression in RUNX2 and NANOG indicates methylation could play a role in modulating both transcripts. CONCLUSIONS Epigenetic and transcriptional distinct profiles detected at basal levels among PDLCs were maintained after osteogenic induction. We cannot discard the existence of a complex that represses osteogenesis, suggesting the individual donors' characteristics have significant impact on the osteogenic phenotype acquisition.
Collapse
Affiliation(s)
- Rogério S Ferreira
- School of Dentistry, Health Science Institute, Paulista University, São Paulo, Brazil
| | - Rahyza I F Assis
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Geórgia da S Feltran
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | | | - Beatriz G Françoso
- School of Dentistry, Health Science Institute, Paulista University, São Paulo, Brazil
| | - Willian F Zambuzzi
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - Denise C Andia
- School of Dentistry, Health Science Institute, Paulista University, São Paulo, Brazil
| | - Rodrigo A da Silva
- Department of Dentistry, University of Taubaté, Taubaté, Brazil.,Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
22
|
Assis RIF, Schmidt AG, Racca F, da Silva RA, Zambuzzi WF, Silvério KG, Nociti FH, Pecorari VG, Wiench M, Andia DC. DNMT1 Inhibitor Restores RUNX2 Expression and Mineralization in Periodontal Ligament Cells. DNA Cell Biol 2021; 40:662-674. [PMID: 33751901 DOI: 10.1089/dna.2020.6239] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Periodontal ligament cells (PDLCs) have well documented osteogenic potential; however, this commitment can be highly heterogenous, limiting their applications in tissue regeneration. In this study, we use PDLC populations characterized by high and low osteogenic potential (h-PDLCs and l-PDLCs, respectively) to identify possible sources of such heterogeneity and to investigate whether the osteogenic differentiation can be enhanced by epigenetic modulation. In h-PDLCs, low basal expression levels of pluripotency markers (NANOG, OCT4), DNA methyltransferases (DNMT1, DNMT3B), and enzymes involved in active DNA demethylation (TET1, TET3) were prerequisite to high osteogenic potential. Furthermore, these genes were downregulated upon early osteogenesis, possibly allowing for the increase in expression of the key osteogenic transcription factors, Runt-related transcription factor 2 (RUNX2) and SP7, and ultimately, mineral nodule formation. l-PDLCs appeared locked in the multipotent state and this was further enhanced upon early osteogenic stimulation, correlating with low RUNX2 expression and impaired mineralization. Further upregulation of DNMTs was also evident, while pretreatment with RG108, the DNMTs' inhibitor, enhanced the osteogenic program in l-PDLCs through downregulation of DNMTs, increased RUNX2 expression and nuclear localization, accelerated expression of osteogenic markers, and increased mineralization. These findings point toward the role of DNMTs and Ten Eleven Translocations (TETs) in osteogenic commitment and support application of epigenetic approaches to modulate biomineralization in PDLCs.
Collapse
Affiliation(s)
- Rahyza I F Assis
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Arthur G Schmidt
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| | - Francesca Racca
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Rodrigo A da Silva
- Program in Environmental and Experimental Pathology, Paulista University-UNIP, São Paulo, Brazil
| | - William F Zambuzzi
- Department of Chemistry and Biochemistry, Biosciences Institute, São Paulo State University, Botucatu, Brazil
| | - Karina G Silvério
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Vanessa G Pecorari
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| | - Malgorzata Wiench
- Institute of Clinical Sciences, Institute of Cancer and Genomic Sciences, School of Dentistry, University of Birmingham, Birmingham, United Kingdom
| | - Denise C Andia
- Health Science Institute, School of Dentistry, Paulista University-UNIP, São Paulo, Brazil
| |
Collapse
|
23
|
Li J, Deng Q, Fan W, Zeng Q, He H, Huang F. Melatonin-induced suppression of DNA methylation promotes odontogenic differentiation in human dental pulp cells. Bioengineered 2020; 11:829-840. [PMID: 32718272 PMCID: PMC8291816 DOI: 10.1080/21655979.2020.1795425] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Differentiation potency of human dental pulp cells (hDPCs) is essential for dentin regeneration. DNA methylation is one of the major epigenetic mechanisms and is suggested to involve in differentiation of hDPCs, the machinery of which includes DNA methyltransferase enzymes (DNMTs) and methyl-CpG-binding domain proteins (MBDs). Our previous study has found that melatonin (MT) promoted hDPC differentiation, but its mechanism remains elusive. We aimed to investigate the role of DNA methylation in the promotion of MT to differentiation of hDPCs in vitro. hDPCs were cultured in basal growth medium (CO) or odontogenic medium (OM) exposed to MT at different concentrations (0, 10-12, 10-10, 10-8, 10-6, 10-4 M). The cell growth was analyzed using Cell Counting Kit-8 assay, and mineralized tissue formation was measured using Alizarin red staining. The expression of the 10 genes (DNMT1, DNMT3A, DNMT3B, MBD1-6, MeCP2) was determined using real-time qPCR and western blotting. The abundance of MeCP2 in the nuclei was evaluated using immunofluorescence analysis. Global methylation level was tested using ELISA. We found that mineralized tissue formation significantly increased in OM with MT at 10-4 M, while the levels of MeCP2 and global DNA methylation level declined. The expression of MBD1, MBD3, and MBD4 significantly increased in OM alone, and the expession of DNMT1 and MBD2 was decreased. These results indicate that MT promotes odontogenic differentiation of hDPCs in vitro by regulating the levels of DNMT1, MeCP2, and global DNA methylation, suggesting that MT-induced DNA methylation machinery may play an important role in tooth regeneration.
Collapse
Affiliation(s)
- Jingzhou Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qianyi Deng
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Hospital of Stomatology,Guanghua School of Stomatology,Sun Yat-sen University, Guangzhou, China
| | - Qi Zeng
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Department of Oral Anatomy and Physiology, Hospital of Stomatology,Guanghua School of Stomatology,Sun Yat-sen University, Guangzhou, China
| | - Fang Huang
- Department of Pediatric Dentistry, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
24
|
Epigenetic Regulation of Dental Pulp Stem Cell Fate. Stem Cells Int 2020; 2020:8876265. [PMID: 33149742 PMCID: PMC7603635 DOI: 10.1155/2020/8876265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/05/2023] Open
Abstract
Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs, affects gene expression without modifying the primary DNA sequence and modulates cell fate. Mesenchymal stem cells derived from dental pulp, also called dental pulp stem cells (DPSCs), exhibit multipotent differentiation capacity and can promote various biological processes, including odontogenesis, osteogenesis, angiogenesis, myogenesis, and chondrogenesis. Over the past decades, increased attention has been attracted by the use of DPSCs in the field of regenerative medicine. According to a series of studies, epigenetic regulation is essential for DPSCs to differentiate into specialized cells. In this review, we summarize the mechanisms involved in the epigenetic regulation of the fate of DPSCs.
Collapse
|
25
|
Choi H, Roh J. LH-induced Transcriptional Regulation of Klf4 Expression in Granulosa Cells Occurs via the cAMP/PKA Pathway and Requires a Putative Sp1 Binding Site. Int J Mol Sci 2020; 21:ijms21197385. [PMID: 33036290 PMCID: PMC7582263 DOI: 10.3390/ijms21197385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 02/07/2023] Open
Abstract
Krüppel-like factor 4 (Klf4) plays an important role in the transition from proliferation to differentiation in a wide variety of cells. Previous studies demonstrated its critical role in the luteal transition of preovulatory granulosa cells (GCs). This study used cultured rat preovulatory GCs to investigate the mechanism by which luteinizing hormone (LH) regulates Klf4 gene expression. Klf4 mRNA and protein were rapidly and transiently induced by LH treatment, reaching peak levels after 45 min and declining to basal levels by 3 h. Pretreatment with the protein synthesis inhibitor cycloheximide had no effect on LH-stimulated Klf4 expression, indicating that Klf4 is an immediate early gene in response to LH. To investigate the signaling pathway involved in LH-induced Klf4 regulation, the protein kinase A (PKA) and protein kinase C (PKC) pathways were evaluated. A-kinase agonists, but not a C-kinase agonist, mimicked LH in inducing Klf4 transcription. In addition, specific inhibitors of A-kinase abolished the stimulatory effect of LH on Klf4 expression. Truncation of a Klf4 expression construct to −715 bp (pKlf4-715/luc) had no effect on transcriptional activity, whereas deletion to −402 bp (pKlf4-402/luc) dramatically reduced it. ChIP analysis revealed in vivo binding of endogenous Sp1 to the −715/−500 bp region and maximal transcriptional responsiveness to LH required the Sp1 binding element at −698/−688 bp, which is highly conserved in mice, rats, and humans. These findings demonstrate that Klf4 is activated by LH via the cAMP/PKA pathway and a putative Sp1 binding element at −698/−688 bp is indispensable for activation and suggest that Klf4 could be a target for strategies for treating luteal phase insufficiency induced by an aberrant response to the LH surge.
Collapse
|
26
|
Xia CP, Pan T, Zhang N, Guo JR, Yang BW, Zhang D, Li J, Xu K, Meng Z, He H. Sp1 promotes dental pulp stem cell osteoblastic differentiation through regulating noggin. Mol Cell Probes 2020; 50:101504. [PMID: 31904417 DOI: 10.1016/j.mcp.2019.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 02/08/2023]
Abstract
Based on the high self-renewal ability and osteoblastic differentiation capacity, dental pulp stem cells (DPSCs) are suggested to be promising cell source for osteogenesis. Therefore, illustrating the mechanism of osteoblastic differentiation of DPSCs is required. This current study aims to illustrate the role and mechanism of Sp1 in regulating osteoblastic differentiation of DPSCs. In this study, we downregulated Sp1 in DPSCs and evaluated the osteoblastic differentiation by measuring Runx2 and OCN expression with Western blot analysis and by Alizarin red staining. Furthermore, we investigated the mechanism of Sp1 regulating noggin with Firefly luciferase reporter gene assay and ChIP assay, and correspondingly evaluated the function of noggin in Sp1-regulated osteoblastic differentiation of DPSCs. We found that knockdown of Sp1 inhibits the expression of ALP, Runx2, COL1A1 and OCN, and decreases ALP staining, Alizarin red staining. Sp1 binds to noggin promoter and inhibits noggin expression, thus correspondingly regulates DPSCs osteoblastic differentiation. In conclusion, our study revealed that Sp1 regulates DPSCs osteoblastic differentiation through noggin and that Sp1/noggin can provide new perspective for enhancing DPSCs osteogenesis.
Collapse
Affiliation(s)
- Chun-Peng Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd., Wuhan, 430079, China; Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China
| | - Tao Pan
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital, Liaocheng University, Liaocheng, 252000, China
| | - Jian-Ran Guo
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Bing-Wu Yang
- Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Di Zhang
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Jun Li
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Kai Xu
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China
| | - Zhen Meng
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng University, 67 Dongchangxi Road, Liaocheng, 252000, China; Precision Biomedical Key Laboratory of Liaocheng, Liaocheng People's Hospital, 67 Dongchangxi Road, Liaocheng, 252000, China.
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd., Wuhan, 430079, China; Department of Orthodontics, School & Hospital of Stomatology, Wuhan University, 237 Luoyu Rd, Wuhan, 430079, China.
| |
Collapse
|
27
|
Gonzalez-Molina J, Gramolelli S, Liao Z, Carlson JW, Ojala PM, Lehti K. MMP14 in Sarcoma: A Regulator of Tumor Microenvironment Communication in Connective Tissues. Cells 2019; 8:cells8090991. [PMID: 31466240 PMCID: PMC6770050 DOI: 10.3390/cells8090991] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Sarcomas are deadly malignant tumors of mesenchymal origin occurring at all ages. The expression and function of the membrane-type matrix metalloproteinase MMP14 is closely related to the mesenchymal cell phenotype, and it is highly expressed in most sarcomas. MMP14 regulates the activity of multiple extracellular and plasma membrane proteins, influencing cell–cell and cell–extracellular matrix (ECM) communication. This regulation mediates processes such as ECM degradation and remodeling, cell invasion, and cancer metastasis. Thus, a comprehensive understanding of the biology of MMP14 in sarcomas will shed light on the mechanisms controlling the key processes in these diseases. Here, we provide an overview of the function and regulation of MMP14 and we discuss their relationship with clinical and pre-clinical MMP14 data in both adult and childhood sarcomas.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden.
| | - Silvia Gramolelli
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Zehuan Liao
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Joseph W Carlson
- Department of Oncology-Pathology, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Päivi M Ojala
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Section of Virology, Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1NY, UK
| | - Kaisa Lehti
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 17177 Stockholm, Sweden.
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|