1
|
Wen J, Cai D, Gao W, He R, Li Y, Zhou Y, Klein T, Xiao L, Xiao Y. Osteoimmunomodulatory Nanoparticles for Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040692. [PMID: 36839060 PMCID: PMC9962115 DOI: 10.3390/nano13040692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/27/2023]
Abstract
Treatment of large bone fractures remains a challenge for orthopedists. Bone regeneration is a complex process that includes skeletal cells such as osteoblasts, osteoclasts, and immune cells to regulate bone formation and resorption. Osteoimmunology, studying this complicated process, has recently been used to develop biomaterials for advanced bone regeneration. Ideally, a biomaterial shall enable a timely switch from early stage inflammatory (to recruit osteogenic progenitor cells) to later-stage anti-inflammatory (to promote differentiation and terminal osteogenic mineralization and model the microstructure of bone tissue) in immune cells, especially the M1-to-M2 phenotype switch in macrophage populations, for bone regeneration. Nanoparticle (NP)-based advanced drug delivery systems can enable the controlled release of therapeutic reagents and the delivery of therapeutics into specific cell types, thereby benefiting bone regeneration through osteoimmunomodulation. In this review, we briefly describe the significance of osteoimmunology in bone regeneration, the advancement of NP-based approaches for bone regeneration, and the application of NPs in macrophage-targeting drug delivery for advanced osteoimmunomodulation.
Collapse
Affiliation(s)
- Jingyi Wen
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Donglin Cai
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
| | - Wendong Gao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Ruiying He
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430061, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200231, China
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Travis Klein
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Southport, QLD 4222, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
3
|
Zhou P, Qin L, Ge Z, Xie B, Huang H, He F, Ma S, Ren L, Shi J, Pei S, Dong G, Qi Y, Lan F. Design of chemically defined synthetic substrate surfaces for the in vitro maintenance of human pluripotent stem cells: A review. J Biomed Mater Res B Appl Biomater 2022; 110:1968-1990. [PMID: 35226397 DOI: 10.1002/jbm.b.35034] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 11/11/2022]
Abstract
Human pluripotent stem cells (hPSCs) have the potential of long-term self-renewal and differentiation into nearly all cell types in vitro. Prior to the downstream applications, the design of chemically defined synthetic substrates for the large-scale proliferation of quality-controlled hPSCs is critical. Although great achievements have been made, Matrigel and recombinant proteins are still widely used in the fundamental research and clinical applications. Therefore, much effort is still needed to improve the performance of synthetic substrates in the culture of hPSCs, realizing their commercial applications. In this review, we summarized the design of reported synthetic substrates and especially their limitations in terms of cell culture. Moreover, much attention was paid to the development of promising peptide displaying surfaces. Besides, the biophysical regulation of synthetic substrate surfaces as well as the three-dimensional culture systems were described.
Collapse
Affiliation(s)
- Ping Zhou
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Liying Qin
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhangjie Ge
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Biyao Xie
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Fei He
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Shengqin Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- Department of Laboratory Animal Centre, Changzhi Medical College, Changzhi, China
| | - Suying Pei
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Genxi Dong
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Yongmei Qi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Feng Lan
- Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen Key Laboratory of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Shenzhen, China
| |
Collapse
|
4
|
Shiwarski DJ, Tashman JW, Tsamis A, Bliley JM, Blundon MA, Aranda-Michel E, Jallerat Q, Szymanski JM, McCartney BM, Feinberg AW. Fibronectin-based nanomechanical biosensors to map 3D surface strains in live cells and tissue. Nat Commun 2020; 11:5883. [PMID: 33208732 PMCID: PMC7675982 DOI: 10.1038/s41467-020-19659-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
Mechanical forces are integral to cellular migration, differentiation and tissue morphogenesis; however, it has proved challenging to directly measure strain at high spatial resolution with minimal perturbation in living sytems. Here, we fabricate, calibrate, and test a fibronectin (FN)-based nanomechanical biosensor (NMBS) that can be applied to the surface of cells and tissues to measure the magnitude, direction, and strain dynamics from subcellular to tissue length-scales. The NMBS is a fluorescently-labeled, ultra-thin FN lattice-mesh with spatial resolution tailored by adjusting the width and spacing of the lattice from 2-100 µm. Time-lapse 3D confocal imaging of the NMBS demonstrates 2D and 3D surface strain tracking during mechanical deformation of known materials and is validated with finite element modeling. Analysis of the NMBS applied to single cells, cell monolayers, and Drosophila ovarioles highlights the NMBS's ability to dynamically track microscopic tensile and compressive strains across diverse biological systems where forces guide structure and function.
Collapse
Affiliation(s)
- Daniel J Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joshua W Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alkiviadis Tsamis
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jaci M Bliley
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Malachi A Blundon
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Edgar Aranda-Michel
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Quentin Jallerat
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - John M Szymanski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Brooke M McCartney
- Department of Biology, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Adam W Feinberg
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
- Department of Materials Science & Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
5
|
Abstract
The spectrum of ischemic heart diseases, encompassing acute myocardial infarction to heart failure, represents the leading cause of death worldwide. Although extensive progress in cardiovascular diagnoses and therapy has been made, the prevalence of the disease continues to increase. Cardiac regeneration has a promising perspective for the therapy of heart failure. Recently, extracellular matrix (ECM) has been shown to play an important role in cardiac regeneration and repair after cardiac injury. There is also evidence that the ECM could be directly used as a drug to promote cardiomyocyte proliferation and cardiac regeneration. Increasing evidence supports that applying ECM biomaterials to maintain heart function recovery is an important approach to apply the concept of cardiac regenerative medicine to clinical practice in the future. Here, we will introduce the essential role of cardiac ECM in cardiac regeneration and summarize the approaches of delivering ECM biomaterials to promote cardiac repair in this review.
Collapse
Affiliation(s)
- Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Minghui Bao
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
6
|
Liu J, Shang J, Chen Y, Tian Y, Yang Q, Chen M, Xiong B, Zhang XB. A surface-engineered NIR light-responsive actuator for controllable modulation of collective cell migration. J Mater Chem B 2019; 7:5528-5534. [PMID: 31451832 DOI: 10.1039/c9tb01038f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical signal transduction is fundamental for maintaining and regulating cellular processes and functions. Here, we proposed a novel near-infrared (NIR) light-responsive optomechanical actuator for the directional regulation of collective cell adhesion and migration. This optomechanical actuator that is made up of a thermal-responsive copolymer hydrogel and gold nanorods (AuNRs), enables non-invasive activation by NIR light stimulation. The activation of the optomechanical actuator leads to hydrogel contraction and an increase in Young's modulus, which could be used for applying contraction force to cells cultured on the surface of the hydrogel actuator. By grafting cell adhesive peptide ligands, the cells could attach onto the surface of the actuator and displayed a NIR light illumination intensity dependent migration rate along a random orientation. To achieve the controllable modulation of cell behaviors, we employed a microcontact printing strategy for patterned presentation of adhesive ligands on this actuator and achieved directional cell alignment and cell migration through optomechanical actuation. These demonstrations suggest that this robust optomechanical actuator is promising for the optical modulation of cellular events and cell functions in various bioapplications.
Collapse
Affiliation(s)
- Jiayu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Fang Y, Zhang T, Zhang L, Gong W, Sun W. Biomimetic design and fabrication of scaffolds integrating oriented micro-pores with branched channel networks for myocardial tissue engineering. Biofabrication 2019; 11:035004. [PMID: 30870827 DOI: 10.1088/1758-5090/ab0fd3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ability to fabricate three-dimensional (3D) thick vascularized myocardial tissue could enable scientific and technological advances in tissue engineering and drug screening, and may accelerate its application in myocardium repair. In this study, we developed a novel biomimetic scaffold integrating oriented micro-pores with branched channel networks to mimic the anisotropy and vasculature of native myocardium. The oriented micro-pores were fabricated using an 'Oriented Thermally Induced Phase Separation (OTIPS)' technique, and the channel network was produced by embedding and subsequently dissolving a 3D-printed carbohydrate template after crosslinking. Micro-holes were incorporated on the wall of channels, which greatly enhanced the permeability of channels. The effect of the sacrificial template on the formation of oriented micro- pores was assessed. The mechanical properties of the scaffold were tuned by varying the temperature gradient and chitosan/collagen ratio to match the specific stiffness of native heart tissue. The engineered cardiac tissue achieved synchronized beating with electrical stimulation. Calcium transient results suggested the formation of connection between cardiomyocytes within scaffold. All the results demonstrated that the reported scaffold has the potential to induce formation of a perfusable vascular network and to create thick vascularized cardiac tissue that may advance further clinical applications.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, People's Republic of China. 'Biomanufacturing and Engineering Living Systems' Innovation International Talents Base (111 Base), Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
8
|
Sensi F, D'Angelo E, D'Aronco S, Molinaro R, Agostini M. Preclinical three-dimensional colorectal cancer model: The next generation of in vitro drug efficacy evaluation. J Cell Physiol 2018; 234:181-191. [PMID: 30277557 DOI: 10.1002/jcp.26812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022]
Abstract
Colorectal cancer (CRC), the third most common cancer diagnosed in both men and women in the United States, shows a highly ineffective therapeutic management. In these years neither substantial improvements nor new therapeutic approaches have been provided to patients. Performing the early lead discovery phases of new cancer drugs in cellular models, resembling as far as possible the real in vivo tumor environment, may be more effective in predicting their future success in the later clinical phases. In this review, we critically describe the most representative bioengineered models for anticancer drug screening in CRC from the conventional two-dimensional models to the new-generation three-dimensional scaffold-based ones. The scaffold aims to replace the extracellular matrix, thus influencing the biomechanical, biochemical, and biological properties of cells and tissues. In this scenario, we believe that reconstitution of tumor condition is mandatory for an alternative in vitro methods to study cancer development and therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Sensi
- Department of Women and Children Health, University of Padua, Padua, Italy.,Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Edoardo D'Angelo
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy
| | - Sara D'Aronco
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Roberto Molinaro
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Marco Agostini
- Nano-Inspired Biomedicine Lab, Istituto di Ricerca Pediatrica - Città della Speranza, Padua, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
9
|
Rizo-Gorrita M, Luna-Oliva I, Serrera-Figallo MÁ, Gutiérrez-Pérez JL, Torres-Lagares D. Comparison of Cytomorphometry and Early Cell Response of Human Gingival Fibroblast (HGFs) between Zirconium and New Zirconia-Reinforced Lithium Silicate Ceramics (ZLS). Int J Mol Sci 2018; 19:E2718. [PMID: 30208663 PMCID: PMC6164961 DOI: 10.3390/ijms19092718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/02/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
New zirconia-reinforced lithium silicate ceramics (ZLS) could be a viable alternative to zirconium (Y-TZP) in the manufacture of implantological abutments-especially in aesthetic cases-due to its good mechanical, optical, and biocompatibility properties. Although there are several studies on the ZLS mechanical properties, there are no studies regarding proliferation, spreading, or cytomorphometry. We designed the present study which compares the surface, cellular proliferation, and cellular morphology between Y-TZP (Vita YZ® T [Vita Zahnfabrik (Postfach, Germany)]) and ZLS (Celtra® Duo [Degudent (Hanau-Wolfgang, Germany)]). The surface characterization was performed with energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), and optical profilometry. Human gingival fibroblasts (HGFs) were subsequently cultured on both materials and early cellular response and cell morphology were compared through nuclear and cytoskeletal measurement parameters using confocal microscopy. The results showed greater proliferation and spreading on the surface of Y-TZP. This could indicate that Y-TZP continues to be a gold standard in terms of transgingival implant material: Nevertheless, more in vitro and in vivo research is necessary to confirm the results obtained in this study.
Collapse
Affiliation(s)
- María Rizo-Gorrita
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n, 41009 Seville, Spain.
| | - Irene Luna-Oliva
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n, 41009 Seville, Spain.
| | | | - José-Luis Gutiérrez-Pérez
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n, 41009 Seville, Spain.
| | - Daniel Torres-Lagares
- Department of Oral Surgery, College of Dentistry, Seville University, Calle de Avicena s/n, 41009 Seville, Spain.
| |
Collapse
|
10
|
Rico-Varela J, Ho D, Wan LQ. In Vitro Microscale Models for Embryogenesis. ADVANCED BIOSYSTEMS 2018; 2:1700235. [PMID: 30533517 PMCID: PMC6286056 DOI: 10.1002/adbi.201700235] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/15/2022]
Abstract
Embryogenesis is a highly regulated developmental process requiring complex mechanical and biochemical microenvironments to give rise to a fully developed and functional embryo. Significant efforts have been taken to recapitulate specific features of embryogenesis by presenting the cells with developmentally relevant signals. The outcomes, however, are limited partly due to the complexity of this biological process. Microtechnologies such as micropatterned and microfluidic systems, along with new emerging embryonic stem cell-based models, could potentially serve as powerful tools to study embryogenesis. The aim of this article is to review major studies involving the culturing of pluripotent stem cells using different geometrical patterns, microfluidic platforms, and embryo/embryoid body-on-a-chip modalities. Indeed, new research opportunities have emerged for establishing in vitro culture for studying human embryogenesis and for high-throughput pharmacological testing platforms and disease models to prevent defects in early stages of human development.
Collapse
Affiliation(s)
- Jennifer Rico-Varela
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Dominic Ho
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Leo Q. Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
- Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
- Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| |
Collapse
|
11
|
Martinez-Fierro ML, Hernández-Delgadillo GP, Flores-Morales V, Cardenas-Vargas E, Mercado-Reyes M, Rodriguez-Sanchez IP, Delgado-Enciso I, Galván-Tejada CE, Galván-Tejada JI, Celaya-Padilla JM, Garza-Veloz I. Current model systems for the study of preeclampsia. Exp Biol Med (Maywood) 2018; 243:576-585. [PMID: 29415560 DOI: 10.1177/1535370218755690] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy complex disease, distinguished by high blood pressure and proteinuria, diagnosed after the 20th gestation week. Depending on the values of blood pressure, urine protein concentrations, symptomatology, and onset of disease there is a wide range of phenotypes, from mild forms developing predominantly at the end of pregnancy to severe forms developing in the early stage of pregnancy. In the worst cases severe forms of PE could lead to systemic endothelial dysfunction, eclampsia, and maternal and/or fetal death. Worldwide the fetal morbidity and mortality related to PE is calculated to be around 8% of the total pregnancies. PE still being an enigma regarding its etiology and pathophysiology, in general a deficient trophoblast invasion during placentation at first stage of pregnancy, in combination with maternal conditions are accepted as a cause of endothelial dysfunction, inflammatory alterations and appearance of symptoms. Depending on the PE multifactorial origin, several in vitro, in vivo, and in silico models have been used to evaluate the PE pathophysiology as well as to identify or test biomarkers predicting, diagnosing or prognosing the syndrome. This review focuses on the most common models used for the study of PE, including those related to placental development, abnormal trophoblast invasion, uteroplacental ischemia, angiogenesis, oxygen deregulation, and immune response to maternal-fetal interactions. The advances in mathematical and computational modeling of metabolic network behavior, gene prioritization, the protein-protein interaction network, the genetics of PE, and the PE prediction/classification are discussed. Finally, the potential of these models to enable understanding of PE pathogenesis and to evaluate new preventative and therapeutic approaches in the management of PE are also highlighted. Impact statement This review is important to the field of preeclampsia (PE), because it provides a description of the principal in vitro, in vivo, and in silico models developed for the study of its principal aspects, and to test emerging therapies or biomarkers predicting the syndrome before their evaluation in clinical trials. Despite the current advance, the field still lacking of new methods and original modeling approaches that leads to new knowledge about pathophysiology. The part of in silico models described in this review has not been considered in the previous reports.
Collapse
Affiliation(s)
- M L Martinez-Fierro
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,2 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - G P Hernández-Delgadillo
- 3 Laboratorio de Investigación en Farmacología, 27779 Universidad Autónoma de Zacatecas , 98160 Zacatecas, México
| | - V Flores-Morales
- 4 Laboratorio de Síntesis Asimétrica y Bioenergética (LSAyB), 27779 Universidad Autónoma de Zacatecas , 98160 Zacatecas, México
| | - E Cardenas-Vargas
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,5 Hospital General Zacatecas "Luz Gonzalez Cosio", Secretaria de Salud de Zacatecas, 98160 Zacatecas, México
| | - M Mercado-Reyes
- 6 Laboratorio de Biología de la Conservación, Unidad Académica de Ciencias Biológicas, 27779 Universidad Autónoma de Zacatecas , 98060 Zacatecas, México
| | - I P Rodriguez-Sanchez
- 7 Departamento de Génetica, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, 64460 Monterrey, México
| | - I Delgado-Enciso
- 8 Faculty of Medicine, Universidad de Colima, 28040 Colima, Mexico.,9 State Cancer Institute, Health Secretary of Colima, 28060 Colima, Mexico
| | - C E Galván-Tejada
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - J I Galván-Tejada
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - J M Celaya-Padilla
- 10 Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México.,11 CONACYT - Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| | - I Garza-Veloz
- 1 Molecular Medicine Laboratory, Unidad Académica de Medicina Humana y Ciencias de la Salud, Universidad Autónoma de Zacatecas, 98160 Zacatecas, México.,2 Posgrado en Ingeniería y Tecnología Aplicada, Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, 98000 Zacatecas, México
| |
Collapse
|
12
|
Raymond MJ, Ray P, Kaur G, Fredericks M, Singh AV, Wan LQ. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality. Cell Mol Bioeng 2016; 10:63-74. [PMID: 28360944 DOI: 10.1007/s12195-016-0467-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Michael J Raymond
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Poulomi Ray
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Gurleen Kaur
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Michael Fredericks
- Department of Computer Science, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Ajay V Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180; Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th Street, Troy NY 12180
| |
Collapse
|
13
|
Whang M, Kim J. Synthetic hydrogels with stiffness gradients for durotaxis study and tissue engineering scaffolds. Tissue Eng Regen Med 2016; 13:126-139. [PMID: 30603392 PMCID: PMC6170857 DOI: 10.1007/s13770-016-0026-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 12/21/2022] Open
Abstract
Migration of cells along the right direction is of paramount importance in a number of in vivo circumstances such as immune response, embryonic developments, morphogenesis, and healing of wounds and scars. While it has been known for a while that spatial gradients in chemical cues guide the direction of cell migration, the significance of the gradient in mechanical cues, such as stiffness of extracellular matrices (ECMs), in directed migration of cells has only recently emerged. With advances in synthetic chemistry, micro-fabrication techniques, and methods to characterize mechanical properties at a length scale even smaller than a single cell, synthetic ECMs with spatially controlled stiffness have been created with variations in design parameters. Since then, the synthetic ECMs have served as platforms to study the migratory behaviors of cells in the presence of the stiffness gradient of ECM and also as scaffolds for the regeneration of tissues. In this review, we highlight recent studies in cell migration directed by the stiffness gradient, called durotaxis, and discuss the mechanisms of durotaxis. We also summarize general methods and design principles to create synthetic ECMs with the stiffness gradients and, finally, conclude by discussing current limitations and future directions of synthetic ECMs for the study of durotaxis and the scaffold for tissue engineering.
Collapse
Affiliation(s)
- Minji Whang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| | - Jungwook Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Korea
| |
Collapse
|
14
|
Raymond MJ, Ray P, Kaur G, Singh AV, Wan LQ. Cellular and Nuclear Alignment Analysis for Determining Epithelial Cell Chirality. Ann Biomed Eng 2015; 44:1475-86. [PMID: 26294010 DOI: 10.1007/s10439-015-1431-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/14/2015] [Indexed: 01/17/2023]
Abstract
Left-right (LR) asymmetry is a biologically conserved property in living organisms that can be observed in the asymmetrical arrangement of organs and tissues and in tissue morphogenesis, such as the directional looping of the gastrointestinal tract and heart. The expression of LR asymmetry in embryonic tissues can be appreciated in biased cell alignment. Previously an in vitro chirality assay was reported by patterning multiple cells on microscale defined geometries and quantified the cell phenotype-dependent LR asymmetry, or cell chirality. However, morphology and chirality of individual cells on micropatterned surfaces has not been well characterized. Here, a Python-based algorithm was developed to identify and quantify immunofluorescence stained individual epithelial cells on multicellular patterns. This approach not only produces results similar to the image intensity gradient-based method reported previously, but also can capture properties of single cells such as area and aspect ratio. We also found that cell nuclei exhibited biased alignment. Around 35% cells were misaligned and were typically smaller and less elongated. This new imaging analysis approach is an effective tool for measuring single cell chirality inside multicellular structures and can potentially help unveil biophysical mechanisms underlying cellular chiral bias both in vitro and in vivo.
Collapse
Affiliation(s)
- Michael J Raymond
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY, 12180, USA
| | - Poulomi Ray
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY, 12180, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Gurleen Kaur
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA
| | - Ajay V Singh
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY, 12180, USA.,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.,Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Heisenbergstr 3, 70569, Stuttgart, Germany
| | - Leo Q Wan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Biotech 2147, 110 8th Street, Troy, NY, 12180, USA. .,Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA. .,Center for Modeling, Simulation and Imaging in Medicine, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180, USA.
| |
Collapse
|
15
|
Higuera GA, Fernandes H, Spitters TWGM, van de Peppel J, Aufferman N, Truckenmueller R, Escalante M, Stoop R, van Leeuwen JP, de Boer J, Subramaniam V, Karperien M, van Blitterswijk C, van Boxtel A, Moroni L. Spatiotemporal proliferation of human stromal cells adjusts to nutrient availability and leads to stanniocalcin-1 expression in vitro and in vivo. Biomaterials 2015; 61:190-202. [PMID: 26004234 DOI: 10.1016/j.biomaterials.2015.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/05/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023]
Abstract
Cells and tissues are intrinsically adapted to molecular gradients and use them to maintain or change their activity. The effect of such gradients is particularly important for cell populations that have an intrinsic capacity to differentiate into multiple cell lineages, such as bone marrow derived mesenchymal stromal cells (MSCs). Our results showed that nutrient gradients prompt the spatiotemporal organization of MSCs in 3D culture. Cells adapted to their 3D environment without significant cell death or cell differentiation. Kinetics data and whole-genome gene expression analysis suggest that a low proliferation activity phenotype predominates in stromal cells cultured in 3D, likely due to increasing nutrient limitation. These differences implied that despite similar surface areas available for cell attachment, higher cell concentrations in 3D reduced MSCs proliferation, while activating hypoxia related-pathways. To further understand the in vivo effects of both proliferation and cell concentrations, we increased cell concentrations in small (1.8 μl) implantable wells. We found that MSCs accumulation and conditioning by nutrient competition in small volumes leads to an ideal threshold of cell-concentration for the induction of blood vessel formation, possibly signaled by the hypoxia-related stanniocalcin-1 gene.
Collapse
Affiliation(s)
- Gustavo A Higuera
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands.
| | - Hugo Fernandes
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Tim W G M Spitters
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Jeroen van de Peppel
- Erasmus Medical Center, Internal Medicine, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Nils Aufferman
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Roman Truckenmueller
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Maryana Escalante
- Biophysical Engineering Group, Mesa(+) Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Reinout Stoop
- TNO, Metabolic Health Research, Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | - Johannes P van Leeuwen
- Erasmus Medical Center, Internal Medicine, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Jan de Boer
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Vinod Subramaniam
- Biophysical Engineering Group, Mesa(+) Institute for Nanotechnology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Marcel Karperien
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Clemens van Blitterswijk
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Anton van Boxtel
- Systems and Control Group, Wageningen University, PO Box 17, 6700 AA Wageningen, The Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA - Institute for Biomedical Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| |
Collapse
|
16
|
Astrocytes increase ATP exocytosis mediated calcium signaling in response to microgroove structures. Sci Rep 2015; 5:7847. [PMID: 25597401 PMCID: PMC4297955 DOI: 10.1038/srep07847] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 01/14/2023] Open
Abstract
Following central nervous system (CNS) injury, activated astrocytes form glial scars, which inhibit axonal regeneration, leading to long-term functional deficits. Engineered nanoscale scaffolds guide cell growth and enhance regeneration within models of spinal cord injury. However, the effects of micro-/nanosize scaffolds on astrocyte function are not well characterized. In this study, a high throughput (HTP) microscale platform was developed to study astrocyte cell behavior on micropatterned surfaces containing 1 μm spacing grooves with a depth of 250 or 500 nm. Significant changes in cell and nuclear elongation and alignment on patterned surfaces were observed, compared to on flat surfaces. The cytoskeleton components (particularly actin filaments and focal adhesions) and nucleus-centrosome axis were aligned along the grooved direction as well. More interestingly, astrocytes on micropatterned surfaces showed enhanced mitochondrial activity with lysosomes localized at the lamellipodia of the cells, accompanied by enhanced adenosine triphosphate (ATP) release and calcium activities. These data indicate that the lysosome-mediated ATP exocytosis and calcium signaling may play an important role in astrocytic responses to substrate topology. These new findings have furthered our understanding of the biomechanical regulation of astrocyte cell–substrate interactions, and may benefit the optimization of scaffold design for CNS healing.
Collapse
|
17
|
Zeng Y, Lu JQ. Optothermally responsive nanocomposite generating mechanical forces for cells enabled by few-walled carbon nanotubes. ACS NANO 2014; 8:11695-11706. [PMID: 25327464 DOI: 10.1021/nn505042b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We have designed and fabricated a nanocomposite substrate that can deliver spatially and temporally defined mechanical forces onto cells. This nanocomposite substrate comprises a 1.5-mm-thick near-infrared (NIR) mechanoresponsive bottom layer of few-walled carbon nanotubes (FWCNTs) that are uniformly distributed and covalently connected to thermally responsive poly(N-isopropylacrylamide) and an approximately 0.15-mm-thick cell-seeding top layer of collagen-functionalized poly(acrylic acid)-co-poly(N-isopropylacrylamide) that interpenetrates into the bottom layer. Covalent coupling of all the components and uniform distribution of FWCNTs lead to a large local mechanoresponse. As an example, 50% change in strain at the point of irradiation on the order of 0.05 Hz can be produced reversibly under NIR stimulation with 0.02 wt % FWCNTs. We have further demonstrated that the mechanical strain imposed by NIR stimulation can be transmitted onto cells. Human fetal hepatocytes change shape with no sign of detrimental effect on cell viability. To the best of our knowledge, this is the first demonstration of a nanocomposite platform that can generate fast and controlled mechanical force to actuate cells. Since the amplitude, location, and timing of force can be controlled remotely with NIR, the nanocomposite substrate offers the potential to provide accurately designed force sequences for tissue engineering.
Collapse
Affiliation(s)
- Yuze Zeng
- School of Engineering, University of California-Merced , Merced, California 95343, United States
| | | |
Collapse
|
18
|
Wood FM. Skin regeneration: the complexities of translation into clinical practise. Int J Biochem Cell Biol 2014; 56:133-40. [PMID: 25448410 DOI: 10.1016/j.biocel.2014.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/22/2014] [Accepted: 10/22/2014] [Indexed: 12/01/2022]
Abstract
The integration of engineering into biological science has resulted in the capacity to provide tissue engineered solutions for tissue damage. Skin regeneration remains the goal of skin repair to reduce the long term consequences of scarring to the individual. A scar is abnormal in its architecture, chemistry and cell phenotype, tissue engineering of scaffolds and cells opens up the potential of tissue regeneration into the future. Tissue engineering solutions have been applied to skin many decades despite technical success the clinical application has been modest. To realise the potential of the developing technologies needs alignment of not only the science and engineering but also the commercial upscaling of production in a safe and regulated framework for clinical use. In addition the education and training for the introduction of new technology within the health system is essential, bringing together the technology and systems for utilisation to optimise the patient outcome. This article is part of a Directed Issue entitled: Regenerative Medicine: The challenge of translation.
Collapse
Affiliation(s)
- Fiona M Wood
- Burns Service of Western Australia, Burn Injury Research Unit, University of Western Australia, Australia.
| |
Collapse
|
19
|
Griffin DR, Borrajo J, Soon A, Acosta-Vélez GF, Oshita V, Darling N, Mack J, Barker T, Iruela-Arispe ML, Segura T. Hybrid photopatterned enzymatic reaction (HyPER) for in situ cell manipulation. Chembiochem 2014; 15:233-42. [PMID: 24399784 DOI: 10.1002/cbic.201300687] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/11/2013] [Indexed: 11/09/2022]
Abstract
The ability to design artificial extracellular matrices as cell-instructive scaffolds has opened the door to technologies capable of studying the fate of cells in vitro and to guiding tissue repair in vivo. One main component of the design of artificial extracellular matrices is the incorporation of biochemical cues to guide cell phenotype and multicellular organization. The extracellular matrix (ECM) is composed of a heterogeneous mixture of proteins that present a variety of spatially discrete signals to residing cell populations. In contrast, most engineered ECMs do not mimic this heterogeneity. In recent years, photo-deprotection has been used to spatially immobilize signals. However, this approach has been limited mostly to small peptides. Here we combine photo-deprotection with enzymatic reaction to achieve spatially controlled immobilization of active bioactive signals that range from small molecules to large proteins. A peptide substrate for transglutaminase factor XIII (FXIIIa) was caged with a photo-deprotectable group, which was then immobilized to the bulk of a cell-compatible hydrogel. With focused light, the substrate can be deprotected and used to immobilize patterned bioactive signals. This approach offers an innovative strategy to immobilize delicate bioactive signals, such as growth factors, without loss of activity and enables in situ cell manipulation of encapsulated cells.
Collapse
Affiliation(s)
- Donald R Griffin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095 (USA)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu M, Liu N, Zang R, Li Y, Yang ST. Engineering stem cell niches in bioreactors. World J Stem Cells 2013; 5:124-35. [PMID: 24179601 PMCID: PMC3812517 DOI: 10.4252/wjsc.v5.i4.124] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/05/2013] [Accepted: 07/04/2013] [Indexed: 02/06/2023] Open
Abstract
Stem cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells and amniotic fluid stem cells have the potential to be expanded and differentiated into various cell types in the body. Efficient differentiation of stem cells with the desired tissue-specific function is critical for stem cell-based cell therapy, tissue engineering, drug discovery and disease modeling. Bioreactors provide a great platform to regulate the stem cell microenvironment, known as "niches", to impact stem cell fate decision. The niche factors include the regulatory factors such as oxygen, extracellular matrix (synthetic and decellularized), paracrine/autocrine signaling and physical forces (i.e., mechanical force, electrical force and flow shear). The use of novel bioreactors with precise control and recapitulation of niche factors through modulating reactor operation parameters can enable efficient stem cell expansion and differentiation. Recently, the development of microfluidic devices and microbioreactors also provides powerful tools to manipulate the stem cell microenvironment by adjusting flow rate and cytokine gradients. In general, bioreactor engineering can be used to better modulate stem cell niches critical for stem cell expansion, differentiation and applications as novel cell-based biomedicines. This paper reviews important factors that can be more precisely controlled in bioreactors and their effects on stem cell engineering.
Collapse
Affiliation(s)
- Meimei Liu
- Meimei Liu, Ning Liu, Ru Zang, Shang-Tian Yang, William G Lowrie Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH 43210, United States
| | | | | | | | | |
Collapse
|
21
|
Vunjak-Novakovic G. Biomimetic Platforms for Tissue Engineering. Isr J Chem 2013. [DOI: 10.1002/ijch.201300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Wan LQ, Ronaldson K, Guirguis M, Vunjak-Novakovic G. Micropatterning of cells reveals chiral morphogenesis. Stem Cell Res Ther 2013; 4:24. [PMID: 23672821 PMCID: PMC3706915 DOI: 10.1186/scrt172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Invariant left-right (LR) patterning or chirality is critical for embryonic development. The loss or reversal of LR asymmetry is often associated with malformations and disease. Although several theories have been proposed, the exact mechanism of the initiation of the LR symmetry has not yet been fully elucidated. Recently, chirality has been detected within single cells as well as multicellular structures using several in vitro approaches. These studies demonstrated the universality of cell chirality, its dependence on cell phenotype, and the role of physical boundaries. In this review, we discuss the theories for developmental LR asymmetry, compare various in vitro cell chirality model systems, and highlight possible roles of cell chirality in stem cell differentiation. We emphasize that the in vitro cell chirality systems have great promise for helping unveil the nature of chiral morphogenesis in development.
Collapse
|
23
|
Abstract
The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.
Collapse
|
24
|
Edalat F, Sheu I, Manoucheri S, Khademhosseini A. Material strategies for creating artificial cell-instructive niches. Curr Opin Biotechnol 2012; 23:820-5. [PMID: 22705446 DOI: 10.1016/j.copbio.2012.05.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/26/2022]
Abstract
There has been a tremendous growth in the use of biomaterials serving as cellular scaffolds for tissue engineering applications. Recently, advanced material strategies have been developed to incorporate structural, mechanical, and biochemical signals that can interact with the cell and the in vivo environment in a biologically specific manner. In this article, strategies such as the use of composite materials and material processing methods to better mimic the extracellular matrix, integration of mechanical and topographical properties of materials in scaffold design, and incorporation of biochemical cues such as cytokines in tethered, soluble, or time-released forms are presented. Finally, replication of the dynamic forces and biochemical gradients of the in vivo cellular environment through the use of microfluidics is highlighted.
Collapse
Affiliation(s)
- Faramarz Edalat
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Each one of us is a self-organizing mass of multiple cell types. From fertilization of the embryo our tissue structures develop until an adult morphology is achieved. At that point our capacity for self-organization is directed to maintaining that morphology in the face of the insults of our daily life and the processes of aging. When a given insult overwhelms our capacity to repair by regeneration the result is scar repair.
Collapse
Affiliation(s)
- Fiona Wood
- Burns Service of Western Australia, Burn Injury Research Unit, University of Western Australia, McComb Research Foundation, Western Australia.
| |
Collapse
|
26
|
Toni R, Tampieri A, Zini N, Strusi V, Sandri M, Dallatana D, Spaletta G, Bassoli E, Gatto A, Ferrari A, Martin I. Ex situ bioengineering of bioartificial endocrine glands: A new frontier in regenerative medicine of soft tissue organs. Ann Anat 2011; 193:381-94. [DOI: 10.1016/j.aanat.2011.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/14/2011] [Accepted: 06/17/2011] [Indexed: 01/14/2023]
|
27
|
Moraes C, Sun Y, Simmons CA. (Micro)managing the mechanical microenvironment. Integr Biol (Camb) 2011; 3:959-71. [PMID: 21931883 DOI: 10.1039/c1ib00056j] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical forces are critical components of the cellular microenvironment and play a pivotal role in driving cellular processes in vivo. Dissecting cellular responses to mechanical forces is challenging, as even "simple" mechanical stimulation in vitro can cause multiple interdependent changes in the cellular microenvironment. These stimuli include solid deformation, fluid flows, altered physical and chemical surface features, and a complex transfer of loads between the various interacting components of a biological culture system. The active mechanical and biochemical responses of cells to these stimuli in generating internal forces, reorganizing cellular structures, and initiating intracellular signals that specify cell fate and remodel the surrounding environment further complicates cellular response to mechanical forces. Moreover, cells present a non-linear response to combinations of mechanical forces, materials, chemicals, surface features, matrix properties and other effectors. Microtechnology-based approaches to these challenges can yield key insights into the mechanical nature of cellular behaviour, by decoupling stimulation parameters; enabling multimodal control over combinations of stimuli; and increasing experimental throughput to systematically probe cellular response. In this critical review, we briefly discuss the complexities inherent in the mechanical stimulation of cells; survey and critically assess the applications of present microtechnologies in the field of experimental mechanobiology; and explore opportunities and possibilities to use these tools to obtain a deeper understanding of mechanical interactions between cells and their environment.
Collapse
Affiliation(s)
- Christopher Moraes
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | |
Collapse
|
28
|
Abstract
Stem cells are central to developing new treatment options for tissue regeneration and constructing controllable models for biological research. Bioengineered cell culture environments that combine microenvironmental control with tissue-specific transport and signaling are critical tools in our efforts to study tissue development, regeneration, and disease under conditions that predict the human in vivo context. We propose that experimentation at the interfaces of biology, engineering, and medical sciences is critical for unlocking the full potential of stem cells. Here, we focus on the design and utilization of in vitro platforms that recapitulate the environments associated with tissue development, disease, and regeneration.
Collapse
|
29
|
Bouten C, Dankers P, Driessen-Mol A, Pedron S, Brizard A, Baaijens F. Substrates for cardiovascular tissue engineering. Adv Drug Deliv Rev 2011; 63:221-41. [PMID: 21277921 DOI: 10.1016/j.addr.2011.01.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/26/2010] [Accepted: 01/14/2011] [Indexed: 12/29/2022]
Abstract
Cardiovascular tissue engineering aims to find solutions for the suboptimal regeneration of heart valves, arteries and myocardium by creating 'living' tissue replacements outside (in vitro) or inside (in situ) the human body. A combination of cells, biomaterials and environmental cues of tissue development is employed to obtain tissues with targeted structure and functional properties that can survive and develop within the harsh hemodynamic environment of the cardiovascular system. This paper reviews the up-to-date status of cardiovascular tissue engineering with special emphasis on the development and use of biomaterial substrates. Key requirements and properties of these substrates, as well as methods and readout parameters to test their efficacy in the human body, are described in detail and discussed in the light of current trends toward designing biologically inspired microenviroments for in situ tissue engineering purposes.
Collapse
|
30
|
Scharnweber T, Truckenmüller R, Schneider AM, Welle A, Reinhardt M, Giselbrecht S. Rapid prototyping of microstructures in polydimethylsiloxane (PDMS) by direct UV-lithography. LAB ON A CHIP 2011; 11:1368-71. [PMID: 21327278 DOI: 10.1039/c0lc00567c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Microstructuring of polydimethylsiloxane (PDMS) is a key step for many lab-on-a-chip (LOC) applications. In general, the structure is generated by casting the liquid prepolymer against a master. The production of the master in turn calls for special equipment and know how. Furthermore, a given master only allows the reproduction of the defined structure. We report on a simple, cheap and practical method to produce microstructures in already cured PDMS by direct UV-lithography followed by chemical development. Due to the available options during the lithographic process like multiple exposures, the method offers a high design flexibility granting easy access to complex and stepped structures. Furthermore, no master is needed and the use of pre-cured PDMS allows processing at ambient (light) conditions. Features down to approximately 5 µm and a depth of 10 µm can be realised. As a proof of principle, we demonstrate the feasibility of the process by applying the structures to various established soft lithography techniques.
Collapse
Affiliation(s)
- Tim Scharnweber
- Institute for Biological Interfaces, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Sant S, Khademhosseini A. Fabrication and characterization of tough elastomeric fibrous scaffolds for tissue engineering applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2011; 2010:3546-8. [PMID: 21096824 DOI: 10.1109/iembs.2010.5627486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Development of biodegradable tough elastomeric scaffolds are important for engineering tissues such as myocardium and heart valves that experience dynamic environments in vivo. Biomaterial scaffolds should ideally provide appropriate physical, chemical and mechanical cues to the seeded cells to closely mimic the native ECM. Collagen fibers form an important component of native myocardium as well as heart valve leaflets and provide necessary tensile properties to these tissues. Amongst various polymers, collagen mimicking biodegradable elastomer, Poly-(glycerol-sebacate) (PGS) has shown great promise in microfabricated scaffolds for cardiac tissue engineering. However, its use is limited by its solubility and the ability to cast nano-/microfibrous structures. For its superior mechanical properties, thermal or UV crosslinking of the pre-polymer is required under high temperatures and vacuum limiting fabrication of fibers. In this work, we fabricated electrospun PGS fibers were fabricated by simply blending it with biodegradable polycaprolactone (PCL) polymer without any post-processing. It was hypothesized that microfibrous PGS-PCL scaffolds would provide appropriate physical (fibrous structure) and chemical (balanced hydrophilicity and hydrophobicity) to the cells in addition to the mechanical properties.
Collapse
|
32
|
Kim BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaike T, Cho CS. Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 2011. [DOI: 10.1016/j.progpolymsci.2010.10.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Chiu L, Radisic M, Vunjak-Novakovic G. Bioactive scaffolds for engineering vascularized cardiac tissues. Macromol Biosci 2010; 10:1286-301. [PMID: 20857391 PMCID: PMC3627738 DOI: 10.1002/mabi.201000202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Functional vascularization is a key requirement for the development and function of most tissues, and most critically cardiac muscle. Rapid and irreversible loss of cardiomyocytes during cardiac infarction directly results from the lack of blood supply. Contractile cardiac grafts, engineered using cardiovascular cells in conjunction with biomaterial scaffolds, are an actively studied method for cardiac repair. In this article, we focus on biomaterial scaffolds designed to mediate the development and maturation of vascular networks, by immobilized growth factors. The interactive effects of multiple vasculogenic factors are discussed in the context of cardiac tissue engineering.
Collapse
Affiliation(s)
- Loraine Chiu
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 164 College Street, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Milica Radisic
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, 164 College Street, Room 407, Toronto, Ontario, Canada M5S 3G9
| | - Gordana Vunjak-Novakovic
- Columbia University, Department of Biomedical Engineering, 622 west 168 Street, VC12=234, New York NY 10032, U.S.A
| |
Collapse
|
34
|
Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING. CAN J CHEM ENG 2010; 88:899-911. [PMID: 21874065 DOI: 10.1002/cjce.20411] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell-material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell-material interactions in context with the long-term goals of tissue engineering.
Collapse
Affiliation(s)
- Shilpa Sant
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139
| | | | | | | | | |
Collapse
|
35
|
Wan LQ, Kang SM, Eng G, Grayson WL, Lu XL, Huo B, Gimble J, Guo XE, Mow VC, Vunjak-Novakovic G. Geometric control of human stem cell morphology and differentiation. Integr Biol (Camb) 2010; 2:346-53. [PMID: 20652175 DOI: 10.1039/c0ib00016g] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During tissue morphogenesis, stem cells and progenitor cells migrate, proliferate, and differentiate, with striking changes in cell shape, size, and acting mechanical stresses. The local cellular function depends on the spatial distribution of cytokines as well as local mechanical microenvironments in which the cells reside. In this study, we controlled the organization of human adipose derived stem cells using micro-patterning technologies, to investigate the influence of multi-cellular form on spatial distribution of cellular function at an early stage of cell differentiation. The underlying role of cytoskeletal tension was probed through drug treatment. Our results show that the cultivation of stem cells on geometric patterns resulted in pattern- and position-specific cell morphology, proliferation and differentiation. The highest cell proliferation occurred in the regions with large, spreading cells (such as the outer edge of a ring and the short edges of rectangles). In contrast, stem cell differentiation co-localized with the regions containing small, elongated cells (such as the inner edge of a ring and the regions next to the short edges of rectangles). The application of drugs that inhibit the formation of actomyosin resulted in the lack of geometrically specific differentiation patterns. This study confirms the role of substrate geometry on stem cell differentiation, through associated physical forces, and provides a simple and controllable system for studying biophysical regulation of cell function.
Collapse
Affiliation(s)
- Leo Q Wan
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, New York, NY 10027, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hall ZW, Kahler D, Manganiello M, Egli D, James D, Marolt D, Marlot D, Fasano C, Ichida J, Noggle S, Solomon SL, McKeon D, Smith K, Marshall C. Breaking ground on translational stem cell research. Ann N Y Acad Sci 2010; 1189 Suppl 1:E1-15. [PMID: 20233361 DOI: 10.1111/j.1749-6632.2010.05495.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sponsored by the New York Stem Cell Foundation (NYSCF), the "Fourth Annual Translational Stem Cell Research Conference: Breaking Ground" convened October 13-14, 2009 at The Rockefeller University in New York City to discuss translational stem cell research. Attracting over 400 scientists, patient advocates, and stem cell research supporters from fifteen countries, the two-day conference featured an afternoon of panel discussions, intended for a broad audience, followed by a second day of scientific talks and poster presentations. This report summarizes both days of this exciting conference.
Collapse
Affiliation(s)
- Zach W Hall
- The New York Stem Cell Foundation, 163 Amsterdam Avenue, New York, NY 10023, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Jakab K, Marga F, Norotte C, Murphy K, Vunjak-Novakovic G, Forgacs G. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2010; 2:022001. [PMID: 20811127 PMCID: PMC3635954 DOI: 10.1088/1758-5082/2/2/022001] [Citation(s) in RCA: 330] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Biofabrication of living structures with desired topology and functionality requires the interdisciplinary effort of practitioners of the physical, life and engineering sciences. Such efforts are being undertaken in many laboratories around the world. Numerous approaches are pursued, such as those based on the use of natural or artificial scaffolds, decellularized cadaveric extracellular matrices and, most lately, bioprinting. To be successful in this endeavor, it is crucial to provide in vitro micro-environmental clues for the cells resembling those in the organism. Therefore, scaffolds, populated with differentiated cells or stem cells, of increasing complexity and sophistication are being fabricated. However, no matter how sophisticated scaffolds are, they can cause problems stemming from their degradation, eliciting immunogenic reactions and other a priori unforeseen complications. It is also being realized that ultimately the best approach might be to rely on the self-assembly and self-organizing properties of cells and tissues and the innate regenerative capability of the organism itself, not just simply prepare tissue and organ structures in vitro followed by their implantation. Here we briefly review the different strategies for the fabrication of three-dimensional biological structures, in particular bioprinting. We detail a fully biological, scaffoldless, print-based engineering approach that uses self-assembling multicellular units as bio-ink particles and employs early developmental morphogenetic principles, such as cell sorting and tissue fusion.
Collapse
Affiliation(s)
- Karoly Jakab
- Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Francoise Marga
- Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Cyrille Norotte
- Department of Biology, University of Missouri, Columbia, MO 65211, USA
| | - Keith Murphy
- Organovo, Inc., 5871 Oberlin Drive, San Diego, CA 92121, USA
| | | | - Gabor Forgacs
- Department of Physics & Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biology, University of Missouri, Columbia, MO 65211, USA
- Department of Biomedical Engineering, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
38
|
Cukierman E, Bassi DE. Physico-mechanical aspects of extracellular matrix influences on tumorigenic behaviors. Semin Cancer Biol 2010; 20:139-45. [PMID: 20452434 PMCID: PMC2941524 DOI: 10.1016/j.semcancer.2010.04.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Tumor progression in vitro has traditionally been studied in the context of two-dimensional (2D) environments. However, it is now well accepted that 2D substrates are unnaturally rigid compared to the physiological substrate known as extracellular matrix (ECM) that is in direct contact with both normal and tumorigenic cells in vivo. Hence, the patterns of interactions, as well as the strategies used by cells in order to penetrate the ECM, and migrate through a three-dimensional (3D) environment are notoriously different than those observed in 2D. Several substrates, such as collagen I, laminin, or complex mixtures of ECM components have been used as surrogates of native 3D ECM to more accurately study cancer cell behaviors. In addition, 3D matrices developed from normal or tumor-associated fibroblasts have been produced to recapitulate the mesenchymal 3D environment that assorted cells encounter in vivo. Some of these substrates are being used to evaluate physico-mechanical effects on tumor cell behavior. Physiological 3D ECMs exhibit a wide range of rigidities amongst different tissues while the degree of stromal stiffness is known to change during tumorigenesis. In this review we describe some of the physico-mechanical characteristics of tumor-associated ECMs believed to play important roles in regulating epithelial tumorigenic behaviors.
Collapse
Affiliation(s)
- Edna Cukierman
- Fox Chase Cancer Center, Cancer Biology, 333 Cottman Avenue, Philadelphia, PA 19111-2497, USA.
| | | |
Collapse
|
39
|
Tibbitt MW, Kloxin AM, Dyamenahalli KU, Anseth KS. Controlled two-photon photodegradation of PEG hydrogels to study and manipulate subcellular interactions on soft materials. SOFT MATTER 2010; 6:5100-5108. [PMID: 21984881 PMCID: PMC3188553 DOI: 10.1039/c0sm00174k] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell adhesion and detachment to and from the extracellular matrix (ECM) are critical regulators of cell function and fate due to the exchange of mechanical signals between the cell and its microenvironment. To study this cell mechanobiology, researchers have developed several innovative methods to investigate cell adhesion in vitro; however, most of these culture platforms are unnaturally stiff or static. To better capture the soft, dynamic nature of the ECM, we present a PEG-based hydrogel in which the context and geometry of the extracellular space can be precisely controlled in situ via two-photon induced erosion. Here, we characterize the two-photon erosion process, demonstrate its efficacy in the presence of cells, and subsequently exploit it to induce subcellular detachment from soft hydrogels. A working space was established for a range of laser powers required to induce complete erosion of the gel, and these data are plotted with model predictions. From this working space, two-photon irradiation parameters were selected for complete erosion in the presence of cells. Micron-scale features were eroded on and within a gel to demonstrate the resolution of patterning with these irradiation conditions. Lastly, two-photon irradiation was used to erode the material at the cell-gel interface to remove cell adhesion sites selectively, and cell retraction was monitored to quantify the mesenchymal stem cell (MSC) response to subcellular detachment from soft materials.
Collapse
Affiliation(s)
- Mark W. Tibbitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
| | - April M. Kloxin
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO
| | | | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO
| |
Collapse
|