1
|
Xu Y, Liu S, Zhu L, Dai L, Qian W, Zhang J, Li X, Pan W. Green tea protects against hippocampal neuronal apoptosis in diabetic encephalopathy by inhibiting JNK/MLCK signaling. Mol Med Rep 2021; 24:575. [PMID: 34132368 PMCID: PMC8223107 DOI: 10.3892/mmr.2021.12214] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
Although diabetic encephalopathy (DE) is a major late complication of diabetes, the pathophysiology of postural instability in DE remains poorly understood. Prior studies have suggested that neuronal apoptosis is closely associated with cognitive function, but the mechanism remains to be elucidated. Green tea, which is a non-fermented tea, contains a number of tea polyphenols, alkaloids, amino acids, polysaccharides and other components. Some studies have found that drinking green tea can reduce the incidence of neurodegenerative diseases and improve cognitive dysfunction. We previously found that myosin light chain kinase (MLCK) regulates apoptosis in high glucose-induced hippocampal neurons. In neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease, activation of the JNK signaling pathway promotes neuronal apoptosis. However, the relationship between JNK and MLCK remains to be elucidated. Green tea serum was obtained using seropharmacological methods and applied to hippocampal neurons. In addition, a type 1 diabetes rat model was established and green tea extract was administered, and the Morris water maze test, Cell Counting Kit-8 assays, flow cytometry, western blotting and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling assays were used to examine the effects of green tea on hippocampal neuronal apoptosis in diabetic rats. The results demonstrated that green tea can protect against hippocampal neuronal apoptosis by inhibiting the JNK/MLCK pathway and ultimately improves cognitive function in diabetic rats. The present study provided novel insights into the neuroprotective effects of green tea.
Collapse
Affiliation(s)
- Yongjie Xu
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Shengju Liu
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Liying Zhu
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Longguang Dai
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Wen Qian
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Jingzhi Zhang
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| | - Xing Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Wei Pan
- Department of Medical Laboratory, Affiliated Hospital of Guizhou Medical University, Guiyang Medical College, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
2
|
Dreumont N, Mimoun K, Pourié C, Quadros EV, Alberto JM, Umoret R, Helle D, Robert A, Daval JL, Guéant JL, Pourié G. Glucocorticoid Receptor Activation Restores Learning Memory by Modulating Hippocampal Plasticity in a Mouse Model of Brain Vitamin B 12 Deficiency. Mol Neurobiol 2021; 58:1024-1035. [PMID: 33078371 DOI: 10.1007/s12035-020-02163-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Cobalamin (Cbl, vitamin B12) deficiency or inborn errors of Cbl metabolism can produce neurologic disorders resistant to therapies, including cognitive dysfunction, mild mental retardation, memory impairment, and confusion. We used Cd320 KO mouse as a model for studying the pathological mechanisms of these disorders. Cd320 encodes the receptor (TCblR) needed for the cellular uptake of Cbl in the brain. The Cd320-/- mouse model presented an impaired learning memory that could be alleviated by a moderate stress, which produced also a greater increase of plasma corticosterone, compared to wild type animals. The present study investigated such a putative rescue mechanism in Cbl-deficient mice. At the molecular level in the brain of Cd320-/- mouse, the decreased methylation status led to a downregulation of glucocorticoid nuclear receptor (GR)/PPAR-gamma co-activator-1 alpha (PGC-1α) pathway. This was evidenced by the decreased expression of GR, decreased methylation of GR and PGC1α, and decreased dimerization and interaction of GR with PGC1α. This led to altered synaptic activity evidenced by decreased interaction between the NMDA glutamatergic receptor and the PSD95 post-synaptic protein and a lower expression of Egr-1 and synapsin 1, in Cd320-/- mice compared to the wild type animals. Intraperitoneal injection of hydrocortisone rescued these molecular changes and normalized the learning memory tests. Our study suggests adaptive influences of moderate stress on loss of memory and cognition due to brain Cbl deficiency. The GR pathway could be a potential target for innovative therapy of cognitive manifestations in patients with poor response to conventional Cbl treatment.
Collapse
Affiliation(s)
- Natacha Dreumont
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France
| | - Khalid Mimoun
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France
| | - Carine Pourié
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France
| | - Edward V Quadros
- SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, 11203, USA
| | | | - Rémy Umoret
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France
| | - Déborah Helle
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France
| | - Aurélie Robert
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France
| | - Jean-Luc Daval
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France
| | | | - Grégory Pourié
- Université de Lorraine, INSERM U1256, NGERE, F-54000, Nancy, France.
- NGERE, INSERM U1256, Faculté de Médecine, 9 avenue de la forêt de Haye, BP 50184, 54505, Vandoeuvre Les Nancy CEDEX, France.
| |
Collapse
|
3
|
Dong J, Fu H, Fu Y, You M, Li X, Wang C, Leng K, Wang Y, Chen J. Maternal Exposure to Di-(2-ethylhexyl) Phthalate Impairs Hippocampal Synaptic Plasticity in Male Offspring: Involvement of Damage to Dendritic Spine Development. ACS Chem Neurosci 2021; 12:311-322. [PMID: 33411500 DOI: 10.1021/acschemneuro.0c00612] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Exposure to di-(2-ethylhexyl) phthalate (DEHP), a widely used kind of plasticizer, can result in neurodevelopment impairments and learning and memory disorders. We studied the effects and possible mechanisms of maternal DEHP treatment on hippocampal synaptic plasticity in offspring. Pregnant Wistar rats were randomly divided into four groups and received 0, 30, 300, 750 (mg/kg)/d DEHP by gavage from gestational day (GD) 0 to postnatal day (PN) 21. Our data showed that DEHP exposure impaired hippocampal synaptic plasticity, damaged synaptic ultrastructure, and decreased synaptic protein levels in male pups. Furthermore, DEHP decreased the density of dendritic spines, affected F-actin polymerization, and downregulated the Rac1/PAK/LIMK1/cofilin signaling pathway in male offspring. However, the alterations in the hippocampi of female offspring were not observed. These results illustrate that maternal DEHP exposure could impair hippocampal synaptic plasticity by affecting synaptic structure and dendritic spine development in male offspring, which may be attributed to altered cytoskeleton construction induced by downregulation of the Rac1/PAK/LIMK1/cofilin signaling pathway.
Collapse
Affiliation(s)
- Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Hui Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Yuanyuan Fu
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Mingdan You
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Xudong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Chaonan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Kunkun Leng
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Yuan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang 110122, Peoples' Republic of China
| |
Collapse
|
4
|
Lin C, Chen P, Chan H, Huang Y, Chang NW. Peroxisome proliferator‐activated receptor alpha accelerates neuronal differentiation and this might involve the mitogen‐activated protein kinase pathway. Int J Dev Neurosci 2018; 71:46-51. [DOI: 10.1016/j.ijdevneu.2018.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 01/11/2023] Open
Affiliation(s)
- Chingju Lin
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Pei‐Yi Chen
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Hsu‐Chin Chan
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Yi‐Ping Huang
- Department of PhysiologyCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| | - Nai Wen Chang
- Department of BiochemistryCollege of Medicine, China Medical UniversityTaichungTaiwan, ROC
| |
Collapse
|
5
|
Jiao Q, Li X, An J, Zhang Z, Chen X, Tan J, Zhang P, Lu H, Liu Y. Cell-Cell Connection Enhances Proliferation and Neuronal Differentiation of Rat Embryonic Neural Stem/Progenitor Cells. Front Cell Neurosci 2017; 11:200. [PMID: 28785204 PMCID: PMC5519523 DOI: 10.3389/fncel.2017.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/26/2017] [Indexed: 01/22/2023] Open
Abstract
Cell-cell interaction as one of the niche signals plays an important role in the balance of stem cell quiescence and proliferation or differentiation. In order to address the effect and the possible mechanisms of cell-cell connection on neural stem/progenitor cells (NSCs/NPCs) proliferation and differentiation, upon passaging, NSCs/NPCs were either dissociated into single cell as usual (named Group I) or mechanically triturated into a mixture of single cell and small cell clusters containing direct cell-cell connections (named Group II). Then the biological behaviors including proliferation and differentiation of NSCs/NPCs were observed. Moreover, the expression of gap junction channel, neurotrophic factors and the phosphorylation status of MAPK signals were compared to investigate the possible mechanisms. Our results showed that, in comparison to the counterparts in Group I, NSCs/NPCs in Group II survived well with preferable neuronal differentiation. In coincidence with this, the expression of connexin 45 (Cx45), as well as brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) in Group II were significantly higher than those in Group I. Phosphorylation of ERK1/2 and JNK2 were significantly upregulated in Group II too, while no change was found about p38. Furthermore, the differences of NSCs/NPCs biological behaviors between Group I and II completely disappeared when ERK and JNK phosphorylation were inhibited. These results indicated that cell-cell connection in Group II enhanced NSCs/NPCs survival, proliferation and neuronal differentiation through upregulating the expression of gap junction and neurotrophic factors. MAPK signals- ERK and JNK might contribute to the enhancement. Efforts for maintaining the direct cell-cell connection are worth making to provide more favorable niches for NSCs/NPCs survival, proliferation and neuronal differentiation.
Collapse
Affiliation(s)
- Qian Jiao
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China.,Department of Physiology, Medical College of Qingdao UniversityQingdao, China
| | - Xingxing Li
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Jing An
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Zhichao Zhang
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Xinlin Chen
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Jing Tan
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Department of Anesthesiology, The First Affiliated Hospital, Xi'an Jiaotong University Health Science CenterXi'an, China
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital, Health Science Center, Xi'an Jiaotong UniversityXi'an, China
| | - Haixia Lu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| | - Yong Liu
- Institute of Neurobiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science CenterXi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong UniversityBeijing, China
| |
Collapse
|
6
|
Mathew RS, Tatarakis A, Rudenko A, Johnson-Venkatesh EM, Yang YJ, Murphy EA, Todd TP, Schepers ST, Siuti N, Martorell AJ, Falls WA, Hammack SE, Walsh CA, Tsai LH, Umemori H, Bouton ME, Moazed D. A microRNA negative feedback loop downregulates vesicle transport and inhibits fear memory. eLife 2016; 5. [PMID: 28001126 PMCID: PMC5293492 DOI: 10.7554/elife.22467] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
The SNARE-mediated vesicular transport pathway plays major roles in synaptic remodeling associated with formation of long-term memories, but the mechanisms that regulate this pathway during memory acquisition are not fully understood. Here we identify miRNAs that are up-regulated in the rodent hippocampus upon contextual fear-conditioning and identify the vesicular transport and synaptogenesis pathways as the major targets of the fear-induced miRNAs. We demonstrate that miR-153, a member of this group, inhibits the expression of key components of the vesicular transport machinery, and down-regulates Glutamate receptor A1 trafficking and neurotransmitter release. MiR-153 expression is specifically induced during LTP induction in hippocampal slices and its knockdown in the hippocampus of adult mice results in enhanced fear memory. Our results suggest that miR-153, and possibly other fear-induced miRNAs, act as components of a negative feedback loop that blocks neuronal hyperactivity at least partly through the inhibition of the vesicular transport pathway. DOI:http://dx.doi.org/10.7554/eLife.22467.001
Collapse
Affiliation(s)
- Rebecca S Mathew
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Antonis Tatarakis
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Andrii Rudenko
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - Erin M Johnson-Venkatesh
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Yawei J Yang
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, United States
| | - Elisabeth A Murphy
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States
| | - Travis P Todd
- Department of Psychology, University of Vermont, Burlington, United States
| | - Scott T Schepers
- Department of Psychology, University of Vermont, Burlington, United States
| | - Nertila Siuti
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Anthony J Martorell
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States
| | - William A Falls
- Department of Psychology, University of Vermont, Burlington, United States
| | | | - Christopher A Walsh
- Division of Genetics, Howard Hughes Medical Institute, Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, United States.,Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Li-Huei Tsai
- Department of Brain and Cognitive Sciences Massachusetts Institute of Technology, The Picower Institute for Learning and Memory, Cambridge, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Hisashi Umemori
- Department of Neurology, FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States
| | - Mark E Bouton
- Department of Psychology, University of Vermont, Burlington, United States
| | - Danesh Moazed
- Department of Cell Biology, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
7
|
Late Maternal Folate Supplementation Rescues from Methyl Donor Deficiency-Associated Brain Defects by Restoring Let-7 and miR-34 Pathways. Mol Neurobiol 2016; 54:5017-5033. [PMID: 27534418 PMCID: PMC5533871 DOI: 10.1007/s12035-016-0035-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022]
Abstract
The micronutrients folate and vitamin B12 are essential for the proper development of the central nervous system, and their deficiency during pregnancy has been associated with a wide range of disorders. They act as methyl donors in the one-carbon metabolism which critically influences epigenetic mechanisms. In order to depict further underlying mechanisms, we investigated the role of let-7 and miR-34, two microRNAs regulated by methylation, on a rat model of maternal deficiency. In several countries, public health policies recommend periconceptional supplementation with folic acid. However, the question about the duration and periodicity of supplementation remains. We therefore tested maternal supply (3 mg/kg/day) during the last third of gestation from embryonic days (E) 13 to 20. Methyl donor deficiency-related developmental disorders at E20, including cerebellar and interhemispheric suture defects and atrophy of selective cerebral layers, were associated with increased brain expression (by 2.5-fold) of let-7a and miR-34a, with subsequent downregulation of their regulatory targets such as Trim71 and Notch signaling partners, respectively. These processes could be reversed by siRNA strategy in differentiating neuroprogenitors lacking folate, with improvement of their morphological characteristics. While folic acid supplementation helped restoring the levels of let-7a and miR-34a and their downstream targets, it led to a reduction of structural and functional defects taking place during the perinatal period. Our data outline the potential role of let-7 and miR-34 and their related signaling pathways in the developmental defects following gestational methyl donor deficiency and support the likely usefulness of late folate supplementation in at risk women.
Collapse
|
8
|
Bradford AB, McNutt PM. Importance of being Nernst: Synaptic activity and functional relevance in stem cell-derived neurons. World J Stem Cells 2015; 7:899-921. [PMID: 26240679 PMCID: PMC4515435 DOI: 10.4252/wjsc.v7.i6.899] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/28/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
Functional synaptogenesis and network emergence are signature endpoints of neurogenesis. These behaviors provide higher-order confirmation that biochemical and cellular processes necessary for neurotransmitter release, post-synaptic detection and network propagation of neuronal activity have been properly expressed and coordinated among cells. The development of synaptic neurotransmission can therefore be considered a defining property of neurons. Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro, continuously cultured neurogenic cell lines have historically failed to meet these criteria. Therefore, in vitro-derived neuron models that develop synaptic transmission are critically needed for a wide array of studies, including molecular neuroscience, developmental neurogenesis, disease research and neurotoxicology. Over the last decade, neurons derived from various stem cell lines have shown varying ability to develop into functionally mature neurons. In this review, we will discuss the neurogenic potential of various stem cells populations, addressing strengths and weaknesses of each, with particular attention to the emergence of functional behaviors. We will propose methods to functionally characterize new stem cell-derived neuron (SCN) platforms to improve their reliability as physiological relevant models. Finally, we will review how synaptically active SCNs can be applied to accelerate research in a variety of areas. Ultimately, emphasizing the critical importance of synaptic activity and network responses as a marker of neuronal maturation is anticipated to result in in vitro findings that better translate to efficacious clinical treatments.
Collapse
|
9
|
Early methyl donor deficiency may induce persistent brain defects by reducing Stat3 signaling targeted by miR-124. Cell Death Dis 2013; 4:e755. [PMID: 23928694 PMCID: PMC3763440 DOI: 10.1038/cddis.2013.278] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 06/25/2013] [Accepted: 07/02/2013] [Indexed: 11/23/2022]
Abstract
The methyl donors folate (vitamin B9) and vitamin B12 are centrepieces of the one-carbon metabolism that has a key role in transmethylation reactions, and thus in epigenetic and epigenomic regulations. Low dietary intakes of folate and vitamin B12 are frequent, especially in pregnant women and in the elderly, and deficiency constitutes a risk factor for various diseases, including neurological and developmental disorders. In this respect, both vitamins are essential for normal brain development, and have a role in neuroplasticity and in the maintenance of neuronal integrity. The consequences of a methyl donor deficiency (MDD) were studied both in vivo in rats exposed in utero, and in vitro in hippocampal progenitors (H19-7 cell line). Deficiency was associated with growth retardation at embryonic day 20 (E20) and postnatally with long-term brain defects in selective areas. mRNA and protein levels of the transcription factor Stat3 were found to be decreased in the brains of deprived fetuses and in differentiating progenitors (62 and 48% for total Stat3 protein, respectively), along with a strong reduction in its phosphorylation at both Tyr705 and Ser727 residues. Vitamin shortage also affected upstream kinases of Stat3 signaling pathway (phospho-Erk1/2, phospho-Src, phospho-JNK, and phospho-p38) as well as downstream target gene products (Bcl-2 and Bcl-xL), thus promoting apoptosis. Conversely, the expression of the Stat3 regulator miR-124 was upregulated in deficiency conditions (≥65%), and its silencing by using siRNA partly restored Stat3 signaling in hippocampal neurons by increasing specifically the phosphorylation of Erk1/2 and Src kinases. Furthermore, miR-124 siRNA improved the phenotype of deprived cells, with enhanced neurite outgrowth. Taken together, our data suggest that downregulation of Stat3 signaling by miR-124 would be a key factor in the deleterious effects of MDD on brain development.
Collapse
|
10
|
Kumazawa-Manita N, Hama H, Miyawaki A, Iriki A. Tool use specific adult neurogenesis and synaptogenesis in rodent (Octodon degus) hippocampus. PLoS One 2013; 8:e58649. [PMID: 23516527 PMCID: PMC3596278 DOI: 10.1371/journal.pone.0058649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 02/07/2013] [Indexed: 01/24/2023] Open
Abstract
We previously demonstrated that degus (Octodon degus), which are a species of small caviomorph rodents, could be trained to use a T-shaped rake as a hand tool to expand accessible spaces. To elucidate the neurobiological underpinnings of this higher brain function, we compared this tool use learning task with a simple spatial (radial maze) memory task and investigated the changes that were induced in the hippocampal neural circuits known to subserve spatial perception and learning. With the exposure to an enriched environment in home cage, adult neurogenesis in the dentate gyrus of the hippocampus was augmented by tool use learning, but not radial maze learning, when compared to control conditions. Furthermore, the proportion of new synapses formed in the CA3 region of the hippocampus, the target area for projections of mossy fiber axons emanating from newborn neurons, was specifically increased by tool use learning. Thus, active tool use behavior by rodents, learned through multiple training sessions, requires the hippocampus to generate more novel neurons and synapses than spatial information processing in radial maze learning.
Collapse
Affiliation(s)
- Noriko Kumazawa-Manita
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Japan
| | - Hiroshi Hama
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Brain Science Institute, Wako, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako, Japan
- * E-mail:
| |
Collapse
|
11
|
Liu W, Yue W, Wu R. Overexpression of Bcl-2 promotes survival and differentiation of neuroepithelial stem cells after transplantation into rat aganglionic colon. Stem Cell Res Ther 2013; 4:7. [PMID: 23324128 PMCID: PMC3706929 DOI: 10.1186/scrt155] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 01/10/2013] [Indexed: 12/23/2022] Open
Abstract
Introduction Neural stem cell transplantation is a promising tool for the restoration of the enteric nervous system in a variety of motility disorders. However, limited cell viability after transplantation has restricted its regenerative capacity. The aim of this study was to evaluate the effect of transplantation of neuroepithelial stem cell (NESC) overexpressing anti-apoptotic gene Bcl-2 on the survival, differentiation and function of grafted cells in rat aganglionic colon. Methods NESCs were isolated from neural tube of embryonic rat (embryonic day 11.5) and manipulated to overexpress the Bcl-2 gene. After transplantation into the benzalkonium chloride-induced rat aganglionic colon, grafted cells were visualized in colonic sections. Apoptosis and differentiation of the implanted cells were assessed 1, 4 and 8 weeks post transplantation, respectively. Eight weeks post transplantation, neuronal function of the colon was assessed by measuring the response of muscle strips to electrical field stimulation. Results Transplantation with Bcl-2-NESCs reduced apoptosis within the transplant at 1 week compared with the vector-NESC grafted group. Our findings also indicated that overexpression of Bcl-2 in the transplanted NESCs enhanced differentiation into PGP9.5-positive and neuronal nitric oxide synthase-positive neurons at 8-week assessment. Moreover, electrical field stimulation-induced relaxation of colonic strips was also significantly increased in the Bcl-2-NESC grafted group. Conclusion Transplantation of NESCs genetically modified to overexpress Bcl-2 may have value for enhancing survival and neurogenesis of grafted cells in the adult gut environment and for improving the efficacy of stem cell therapy following a broad range of gastrointestinal motility disorders.
Collapse
|
12
|
Akchiche N, Bossenmeyer-Pourié C, Kerek R, Martin N, Pourié G, Koziel V, Helle D, Alberto JM, Ortiou S, Camadro JM, Léger T, Guéant JL, Daval JL. Homocysteinylation of neuronal proteins contributes to folate deficiency-associated alterations of differentiation, vesicular transport, and plasticity in hippocampal neuronal cells. FASEB J 2012; 26:3980-92. [PMID: 22713523 DOI: 10.1096/fj.12-205757] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the key role in neuronal development of a deficit in the methyl donor folate, little is known on the underlying mechanisms. We therefore studied the consequences of folate deficiency on proliferation, differentiation, and plasticity of the rat H19-7 hippocampal cell line. Folate deficit reduced proliferation (17%) and sensitized cells to differentiation-associated apoptosis (+16%). Decreased production (-58%) of S-adenosylmethionine (the universal substrate for transmethylation reactions) and increased expression of histone deacetylases (HDAC4,6,7) would lead to epigenomic changes that may impair the differentiation process. Cell polarity, vesicular transport, and synaptic plasticity were dramatically affected, with poor neurite outgrowth (-57%). Cell treatment by an HDAC inhibitor (SAHA) led to a noticeable improvement of cell polarity and morphology, with longer processes. Increased homocysteine levels (+55%) consecutive to folate shortage produced homocysteinylation, evidenced by coimmunoprecipitations and mass spectrometry, and aggregation of motor proteins dynein and kinesin, along with functional alterations, as reflected by reduced interactions with partner proteins. Prominent homocysteinylation of key neuronal proteins and subsequent aggregation certainly constitute major adverse effects of folate deficiency, affecting normal development with possible long-lasting consequences.
Collapse
Affiliation(s)
- Nassila Akchiche
- Inserm U954, Faculté de Médecine, 9 Avenue de la Forêt de Haye, F-54500 Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|