1
|
Cen YY, Gao XL, Feng YH, Zhou C, Li CJ, Liu F, Shen JF, Zhang YY. The Double-Edged Effect of Connexins and Pannexins of Glial Cells in Central and Peripheral Nervous System After Nerve Injury. Mol Neurobiol 2025:10.1007/s12035-025-04991-6. [PMID: 40310549 DOI: 10.1007/s12035-025-04991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Glial cells play pivotal roles in homeostatic regulation and driving reactive pathologic changes after nerve injury. Connexins (Cxs) and pannexins (Panxs) have emerged as seminal proteins implicated in cell-cell communication, exerting a profound impact on the response processes of glial cell activation, proliferation, protein synthesis and secretion, as well as apoptosis following nerve injury. These influences are mediated through various forms, including protein monomers, hemichannel (HC), and gap junction (GJ), mainly by regulating intercellular or intracellular signaling pathways. Multiple Cx and Panx isoforms have been detected in central nervous system (CNS) or peripheral nervous system (PNS). Each isoform exhibits distinct cellular and subcellular localization, and the differential regulation and functional roles of various protein isoforms are observed post-injury. The quantitative and functional alterations of the same protein isoform in different studies remain inconsistent, attributable to factors such as the predominant mode of protein polymerization, the specific injury model, and the injury site. Similarly, the same protein isoforms have different roles in regulating the response processes after nerve injury, thus exerting a double-edged sword effect. This review describes the regulatory mechanisms and bidirectional effects of Cxs and Panxs. Additionally, it surveys the current status of research and application of drugs as therapeutic targets for neuropathic injuries. We summarize comprehensive and up-to-date information on these proteins in the glial cell response to nerve injury, providing new perspectives for future mechanistic exploration and development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Yue-Yan Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Xin-Lin Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Yu-Heng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital of Sichuan University, Chengdu, China
| | - Chun-Jie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renminnan Road, Chengdu, 610041, China.
| |
Collapse
|
2
|
Stancu M, Wohlfrom H, Heß M, Grothe B, Leibold C, Kopp-Scheinpflug C. Ambient sound stimulation tunes axonal conduction velocity by regulating radial growth of myelin on an individual, axon-by-axon basis. Proc Natl Acad Sci U S A 2024; 121:e2316439121. [PMID: 38442165 PMCID: PMC10945791 DOI: 10.1073/pnas.2316439121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Adaptive myelination is the emerging concept of tuning axonal conduction velocity to the activity within specific neural circuits over time. Sound processing circuits exhibit structural and functional specifications to process signals with microsecond precision: a time scale that is amenable to adjustment in length and thickness of myelin. Increasing activity of auditory axons by introducing sound-evoked responses during postnatal development enhances myelin thickness, while sensory deprivation prevents such radial growth during development. When deprivation occurs during adulthood, myelin thickness was reduced. However, it is unclear whether sensory stimulation adjusts myelination in a global fashion (whole fiber bundles) or whether such adaptation occurs at the level of individual fibers. Using temporary monaural deprivation in mice provided an internal control for a) differentially tracing structural changes in active and deprived fibers and b) for monitoring neural activity in response to acoustic stimulation of the control and the deprived ear within the same animal. The data show that sound-evoked activity increased the number of myelin layers around individual active axons, even when located in mixed bundles of active and deprived fibers. Thicker myelination correlated with faster axonal conduction velocity and caused shorter auditory brainstem response wave VI-I delays, providing a physiologically relevant readout. The lack of global compensation emphasizes the importance of balanced sensory experience in both ears throughout the lifespan of an individual.
Collapse
Affiliation(s)
- Mihai Stancu
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
- Graduate School of Systemic Neurosciences, Planegg-Martinsried82152, Germany
| | - Hilde Wohlfrom
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Martin Heß
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| | - Benedikt Grothe
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Christian Leibold
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau79110, Germany
| | - Conny Kopp-Scheinpflug
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried82152, Germany
| |
Collapse
|
3
|
Abrams CK. Mechanisms of Diseases Associated with Mutation in GJC2/Connexin 47. Biomolecules 2023; 13:biom13040712. [PMID: 37189458 DOI: 10.3390/biom13040712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Connexins are members of a family of integral membrane proteins that provide a pathway for both electrical and metabolic coupling between cells. Astroglia express connexin 30 (Cx30)-GJB6 and Cx43-GJA1, while oligodendroglia express Cx29/Cx31.3-GJC3, Cx32-GJB1, and Cx47-GJC2. Connexins organize into hexameric hemichannels (homomeric if all subunits are identical or heteromeric if one or more differs). Hemichannels from one cell then form cell-cell channels with a hemichannel from an apposed cell. (These are termed homotypic if the hemichannels are identical and heterotypic if the hemichannels differ). Oligodendrocytes couple to each other through Cx32/Cx32 or Cx47/Cx47 homotypic channels and they couple to astrocytes via Cx32/Cx30 or Cx47/Cx43 heterotypic channels. Astrocytes couple via Cx30/Cx30 and Cx43/Cx43 homotypic channels. Though Cx32 and Cx47 may be expressed in the same cells, all available data suggest that Cx32 and Cx47 cannot interact heteromerically. Animal models wherein one or in some cases two different CNS glial connexins have been deleted have helped to clarify the role of these molecules in CNS function. Mutations in a number of different CNS glial connexin genes cause human disease. Mutations in GJC2 lead to three distinct phenotypes, Pelizaeus Merzbacher like disease, hereditary spastic paraparesis (SPG44) and subclinical leukodystrophy.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Connexins Signatures of the Neurovascular Unit and Their Physio-Pathological Functions. Int J Mol Sci 2022; 23:ijms23179510. [PMID: 36076908 PMCID: PMC9455936 DOI: 10.3390/ijms23179510] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Central nervous system (CNS) homeostasis is closely linked to the delicate balance of the microenvironment in which different cellular components of the neurovascular unit (NVU) coexist. Intercellular communication plays a pivotal role in exchanges of signaling molecules and mediators essential for survival functions, as well as in the removal of disturbing elements that can lead to related pathologies. The specific signatures of connexins (Cxs), proteins which form either gap junctions (GJs) or hemichannels (HCs), represent the biological substrate of the pathophysiological balance. Connexin 43 (Cx43) is undoubtedly one of the most important factors in glia–neuro–vascular crosstalk. Herein, Cxs signatures of every NVU component are highlighted and their critical influence on functional processes in healthy and pathological conditions of nervous microenvironment is reviewed.
Collapse
|
5
|
Gargareta VI, Reuschenbach J, Siems SB, Sun T, Piepkorn L, Mangana C, Späte E, Goebbels S, Huitinga I, Möbius W, Nave KA, Jahn O, Werner HB. Conservation and divergence of myelin proteome and oligodendrocyte transcriptome profiles between humans and mice. eLife 2022; 11:77019. [PMID: 35543322 PMCID: PMC9094742 DOI: 10.7554/elife.77019] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Human myelin disorders are commonly studied in mouse models. Since both clades evolutionarily diverged approximately 85 million years ago, it is critical to know to what extent the myelin protein composition has remained similar. Here, we use quantitative proteomics to analyze myelin purified from human white matter and find that the relative abundance of the structural myelin proteins PLP, MBP, CNP, and SEPTIN8 correlates well with that in C57Bl/6N mice. Conversely, multiple other proteins were identified exclusively or predominantly in human or mouse myelin. This is exemplified by peripheral myelin protein 2 (PMP2), which was specific to human central nervous system myelin, while tetraspanin-2 (TSPAN2) and connexin-29 (CX29/GJC3) were confined to mouse myelin. Assessing published scRNA-seq-datasets, human and mouse oligodendrocytes display well-correlating transcriptome profiles but divergent expression of distinct genes, including Pmp2, Tspan2, and Gjc3. A searchable web interface is accessible via www.mpinat.mpg.de/myelin. Species-dependent diversity of oligodendroglial mRNA expression and myelin protein composition can be informative when translating from mouse models to humans.
Collapse
Affiliation(s)
- Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Josefine Reuschenbach
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lars Piepkorn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Carolina Mangana
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Erik Späte
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Inge Huitinga
- University of Amsterdam, Swammerdam Institute for Life Sciences, Brain Plasticity Group, Amsterdam, Netherlands.,Neuroimmunology Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Electron Microscopy Unit, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olaf Jahn
- Neuroproteomics Group, Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Translational Neuroproteomics Group, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
6
|
Connexin Mutations and Hereditary Diseases. Int J Mol Sci 2022; 23:ijms23084255. [PMID: 35457072 PMCID: PMC9027513 DOI: 10.3390/ijms23084255] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/04/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023] Open
Abstract
Inherited diseases caused by connexin mutations are found in multiple organs and include hereditary deafness, congenital cataract, congenital heart diseases, hereditary skin diseases, and X-linked Charcot–Marie–Tooth disease (CMT1X). A large number of knockout and knock-in animal models have been used to study the pathology and pathogenesis of diseases of different organs. Because the structures of different connexins are highly homologous and the functions of gap junctions formed by these connexins are similar, connexin-related hereditary diseases may share the same pathogenic mechanism. Here, we analyze the similarities and differences of the pathology and pathogenesis in animal models and find that connexin mutations in gap junction genes expressed in the ear, eye, heart, skin, and peripheral nerves can affect cellular proliferation and differentiation of corresponding organs. Additionally, some dominant mutations (e.g., Cx43 p.Gly60Ser, Cx32 p.Arg75Trp, Cx32 p.Asn175Asp, and Cx32 p.Arg142Trp) are identified as gain-of-function variants in vivo, which may play a vital role in the onset of dominant inherited diseases. Specifically, patients with these dominant mutations receive no benefits from gene therapy. Finally, the complete loss of gap junctional function or altered channel function including permeability (ions, adenosine triphosphate (ATP), Inositol 1,4,5-trisphosphate (IP3), Ca2+, glucose, miRNA) and electric activity are also identified in vivo or in vitro.
Collapse
|
7
|
Mesnil M, Defamie N, Naus C, Sarrouilhe D. Brain Disorders and Chemical Pollutants: A Gap Junction Link? Biomolecules 2020; 11:51. [PMID: 33396565 PMCID: PMC7824109 DOI: 10.3390/biom11010051] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/07/2023] Open
Abstract
The incidence of brain pathologies has increased during last decades. Better diagnosis (autism spectrum disorders) and longer life expectancy (Parkinson's disease, Alzheimer's disease) partly explain this increase, while emerging data suggest pollutant exposures as a possible but still underestimated cause of major brain disorders. Taking into account that the brain parenchyma is rich in gap junctions and that most pollutants inhibit their function; brain disorders might be the consequence of gap-junctional alterations due to long-term exposures to pollutants. In this article, this hypothesis is addressed through three complementary aspects: (1) the gap-junctional organization and connexin expression in brain parenchyma and their function; (2) the effect of major pollutants (pesticides, bisphenol A, phthalates, heavy metals, airborne particles, etc.) on gap-junctional and connexin functions; (3) a description of the major brain disorders categorized as neurodevelopmental (autism spectrum disorders, attention deficit hyperactivity disorders, epilepsy), neurobehavioral (migraines, major depressive disorders), neurodegenerative (Parkinson's and Alzheimer's diseases) and cancers (glioma), in which both connexin dysfunction and pollutant involvement have been described. Based on these different aspects, the possible involvement of pollutant-inhibited gap junctions in brain disorders is discussed for prenatal and postnatal exposures.
Collapse
Affiliation(s)
- Marc Mesnil
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Norah Defamie
- Laboratoire STIM, ERL7003 CNRS-Université de Poitiers, 1 rue G. Bonnet–TSA 51 106, 86073 Poitiers, France; (M.M.); (N.D.)
| | - Christian Naus
- Faculty of Medicine, Department of Cellular & Physiological Sciences, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada;
| | - Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculté de Médecine et Pharmacie, 6 rue de La Milétrie, bât D1, TSA 51115, 86073 Poitiers, France
| |
Collapse
|
8
|
Adadey SM, Wonkam-Tingang E, Twumasi Aboagye E, Nayo-Gyan DW, Boatemaa Ansong M, Quaye O, Awandare GA, Wonkam A. Connexin Genes Variants Associated with Non-Syndromic Hearing Impairment: A Systematic Review of the Global Burden. Life (Basel) 2020; 10:life10110258. [PMID: 33126609 PMCID: PMC7693846 DOI: 10.3390/life10110258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/18/2020] [Accepted: 10/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations in connexins are the most common causes of hearing impairment (HI) in many populations. Our aim was to review the global burden of pathogenic and likely pathogenic (PLP) variants in connexin genes associated with HI. We conducted a systematic review of the literature based on targeted inclusion/exclusion criteria of publications from 1997 to 2020. The databases used were PubMed, Scopus, Africa-Wide Information, and Web of Science. The protocol was registered on PROSPERO, the International Prospective Register of Systematic Reviews, with the registration number “CRD42020169697”. The data extracted were analyzed using Microsoft Excel and SPSS version 25 (IBM, Armonk, New York, United States). A total of 571 independent studies were retrieved and considered for data extraction with the majority of studies (47.8% (n = 289)) done in Asia. Targeted sequencing was found to be the most common technique used in investigating connexin gene mutations. We identified seven connexin genes that were associated with HI, and GJB2 (520/571 publications) was the most studied among the seven. Excluding PLP in GJB2, GJB6, and GJA1 the other connexin gene variants (thus GJB3, GJB4, GJC3, and GJC1 variants) had conflicting association with HI. Biallelic GJB2 PLP variants were the most common and widespread variants associated with non-syndromic hearing impairment (NSHI) in different global populations but absent in most African populations. The most common GJB2 alleles found to be predominant in specific populations include; p.Gly12ValfsTer2 in Europeans, North Africans, Brazilians, and Americans; p.V37I and p.L79Cfs in Asians; p.W24X in Indians; p.L56Rfs in Americans; and the founder mutation p.R143W in Africans from Ghana, or with putative Ghanaian ancestry. The present review suggests that only GJB2 and GJB3 are recognized and validated HI genes. The findings call for an extensive investigation of the other connexin genes in many populations to elucidate their contributions to HI, in order to improve gene-disease pair curations, globally.
Collapse
Affiliation(s)
- Samuel Mawuli Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 54, Legon GA184, Accra, Greater Accra Region, Ghana; (S.M.A.); (O.Q.); (G.A.A.)
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P.O. Box LG 54, Legon Accra GA184, Greater Accra Region, Ghana; (E.T.A.); (M.B.A.)
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa;
| | - Edmond Wonkam-Tingang
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa;
| | - Elvis Twumasi Aboagye
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P.O. Box LG 54, Legon Accra GA184, Greater Accra Region, Ghana; (E.T.A.); (M.B.A.)
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa;
| | - Daniel Wonder Nayo-Gyan
- Department of Applied Chemistry and Biochemistry, C. K. Tedam University of Technology and Applied Sciences, P.O. Box 24, Navrongo 00000, Upper East Region, Ghana;
| | - Maame Boatemaa Ansong
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P.O. Box LG 54, Legon Accra GA184, Greater Accra Region, Ghana; (E.T.A.); (M.B.A.)
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 54, Legon GA184, Accra, Greater Accra Region, Ghana; (S.M.A.); (O.Q.); (G.A.A.)
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P.O. Box LG 54, Legon Accra GA184, Greater Accra Region, Ghana; (E.T.A.); (M.B.A.)
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 54, Legon GA184, Accra, Greater Accra Region, Ghana; (S.M.A.); (O.Q.); (G.A.A.)
- Department of Biochemistry, Cell and Molecular Biology, University of Ghana, P.O. Box LG 54, Legon Accra GA184, Greater Accra Region, Ghana; (E.T.A.); (M.B.A.)
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa;
- Correspondence: ; Tel.: +27-21-4066307
| |
Collapse
|
9
|
Adadey SM, Esoh KK, Quaye O, Amedofu GK, Awandare GA, Wonkam A. GJB4 and GJC3 variants in non-syndromic hearing impairment in Ghana. Exp Biol Med (Maywood) 2020; 245:1355-1367. [PMID: 32524838 PMCID: PMC7441344 DOI: 10.1177/1535370220931035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
IMPACT STATEMENT Although connexins are known to be the major genetic factors associated with HI, only a few studies have investigated GJB4 and GJC3 variants among hearing-impaired patients. This study is the first to report GJB4 and GJC3 variants from an African HI cohort. We have demonstrated that GJB4 and GJC3 genes may not contribute significantly to HI in Ghana, hence these genes should not be considered for routine clinical screening in Ghana. However, it is important to study a larger population to determine the association of GJB4 and GJC3 variants with HI.
Collapse
Affiliation(s)
- Samuel M Adadey
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG 54, Ghana
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | | | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG 54, Ghana
| | | | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra LG 54, Ghana
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
10
|
Wu X, Zhang W, Li Y, Lin X. Structure and Function of Cochlear Gap Junctions and Implications for the Translation of Cochlear Gene Therapies. Front Cell Neurosci 2019; 13:529. [PMID: 31827424 PMCID: PMC6892400 DOI: 10.3389/fncel.2019.00529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Connexins (Cxs) are ubiquitous membrane proteins that are found throughout vertebrate organs, acting as building blocks of the gap junctions (GJs) known to play vital roles in the normal function of many organs. Mutations in Cx genes (particularly GJB2, which encodes Cx26) cause approximately half of all cases of congenital hearing loss in newborns. Great progress has been made in understanding GJ function and the molecular mechanisms for the role of Cxs in the cochlea. Data reveal that multiple types of Cxs work together to ensure normal development and function of the cochlea. These findings include many aspects not proposed in the classic K+ recycling theory, such as the formation of normal cochlear morphology (e.g., the opening of the tunnel of Corti), the fine-tuning of the innervation of nerve fibers to the hair cells (HCs), the maturation of the ribbon synapses, and the initiation of the endocochlear potential (EP). New data, especially those collected from targeted modification of major Cx genes in the mouse cochlea, have demonstrated that Cx26 plays an essential role in the postnatal maturation of the cochlea. Studies also show that Cx26 and Cx30 assume very different roles in the EP generation, given that only Cx26 is required for normal hearing. This article will review our current understanding of the molecular structure, cellular distribution, and major functions of cochlear GJs. Potential implications of the knowledge of cochlear GJs on the design and implementation of translational studies of cochlear gene therapies for Cx mutations are also discussed.
Collapse
Affiliation(s)
- Xuewen Wu
- Department of Otolaryngology, Head-Neck and Surgery, Xiangya Hospital of Central South University, Changsha, China
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| | - Wenjuan Zhang
- Department of Otolaryngology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yihui Li
- Department of Pharmacy, Changsha Hospital of Traditional Medicine, Changsha, China
| | - Xi Lin
- Department of Otolaryngology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Diseases of connexins expressed in myelinating glia. Neurosci Lett 2019; 695:91-99. [DOI: 10.1016/j.neulet.2017.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 11/23/2022]
|
12
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
13
|
Rash JE, Vanderpool KG, Yasumura T, Hickman J, Beatty JT, Nagy JI. KV1 channels identified in rodent myelinated axons, linked to Cx29 in innermost myelin: support for electrically active myelin in mammalian saltatory conduction. J Neurophysiol 2016; 115:1836-59. [PMID: 26763782 PMCID: PMC4869480 DOI: 10.1152/jn.01077.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022] Open
Abstract
Saltatory conduction in mammalian myelinated axons was thought to be well understood before recent discoveries revealed unexpected subcellular distributions and molecular identities of the K(+)-conductance pathways that provide for rapid axonal repolarization. In this study, we visualize, identify, localize, quantify, and ultrastructurally characterize axonal KV1.1/KV1.2 channels in sciatic nerves of rodents. With the use of light microscopic immunocytochemistry and freeze-fracture replica immunogold labeling electron microscopy, KV1.1/KV1.2 channels are localized to three anatomically and compositionally distinct domains in the internodal axolemmas of large myelinated axons, where they form densely packed "rosettes" of 9-nm intramembrane particles. These axolemmal KV1.1/KV1.2 rosettes are precisely aligned with and ultrastructurally coupled to connexin29 (Cx29) channels, also in matching rosettes, in the surrounding juxtaparanodal myelin collars and along the inner mesaxon. As >98% of transmembrane proteins large enough to represent ion channels in these specialized domains, ∼500,000 KV1.1/KV1.2 channels define the paired juxtaparanodal regions as exclusive membrane domains for the voltage-gated K(+)conductance that underlies rapid axonal repolarization in mammals. The 1:1 molecular linkage of KV1 channels to Cx29 channels in the apposed juxtaparanodal collars, plus their linkage to an additional 250,000-400,000 Cx29 channels along each inner mesaxon in every large-diameter myelinated axon examined, supports previously proposed K(+)conductance directly from juxtaparanodal axoplasm into juxtaparanodal myeloplasm in mammalian axons. With neither Cx29 protein nor myelin rosettes detectable in frog myelinated axons, these data showing axon-to-myelin linkage by abundant KV1/Cx29 channels in rodent axons support renewed consideration of an electrically active role for myelin in increasing both saltatory conduction velocity and maximum propagation frequency in mammalian myelinated axons.
Collapse
Affiliation(s)
- John E Rash
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado; Program in Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, Colorado; and
| | - Kimberly G Vanderpool
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Thomas Yasumura
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jordan Hickman
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan T Beatty
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James I Nagy
- Department of Physiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Kagiava A, Theophilidis G, Sargiannidou I, Kyriacou K, Kleopa KA. Oxaliplatin-induced neurotoxicity is mediated through gap junction channels and hemichannels and can be prevented by octanol. Neuropharmacology 2015; 97:289-305. [PMID: 26044641 DOI: 10.1016/j.neuropharm.2015.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/16/2015] [Accepted: 05/16/2015] [Indexed: 12/22/2022]
Abstract
Oxaliplatin-induced neurotoxicity (OIN) is a common complication of chemotherapy without effective treatment. In order to clarify the mechanisms of both acute and chronic OIN, we used an ex-vivo mouse sciatic nerve model. Exposure to 25 μM oxaliplatin caused a marked prolongation in the duration of the nerve evoked compound action potential (CAP) by nearly 1200% within 300 min while amplitude remained constant for over 20 h. This oxaliplatin effect was almost completely reversed by the gap junction (GJ) inhibitor octanol in a concentration-dependent manner. Further GJ blockers showed similar effects although with a narrower therapeutic window. To clarify the target molecule we studied sciatic nerves from connexin32 (Cx32) and Cx29 knockout (KO) mice. The oxaliplatin effect and neuroprotection by octanol partially persisted in Cx29 better than in Cx32 KO nerves, suggesting that oxaliplatin affects both, but Cx32 GJ channels more than Cx29 hemichannels. Oxaliplatin also accelerated neurobiotin uptake in HeLa cells expressing the human ortholog of Cx29, Cx31.3, as well as dye transfer between cells expressing the human Cx32, and this effect was blocked by octanol. Oxaliplatin caused no morphological changes initially (up to 3 h of exposure), but prolonged nerve exposure caused juxtaparonodal axonal edema, which was prevented by octanol. Our study indicates that oxaliplatin causes forced opening of Cx32 channels and Cx29 hemichannels in peripheral myelinated fibers leading to disruption of axonal K(+) homeostasis. The GJ blocker octanol prevents OIN at very low concentrations and should be further studied as a neuroprotectant.
Collapse
Affiliation(s)
- Alexia Kagiava
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - George Theophilidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Irene Sargiannidou
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Molecular Pathology and Electron Microscopy, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Laboratory, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus; Neurology Clinics, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia, Cyprus.
| |
Collapse
|
15
|
Plotkin LI, Stains JP. Connexins and pannexins in the skeleton: gap junctions, hemichannels and more. Cell Mol Life Sci 2015; 72:2853-67. [PMID: 26091748 PMCID: PMC4503509 DOI: 10.1007/s00018-015-1963-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
Abstract
Regulation of bone homeostasis depends on the concerted actions of bone-forming osteoblasts and bone-resorbing osteoclasts, controlled by osteocytes, cells derived from osteoblasts surrounded by bone matrix. The control of differentiation, viability and function of bone cells relies on the presence of connexins. Connexin43 regulates the expression of genes required for osteoblast and osteoclast differentiation directly or by changing the levels of osteocytic genes, and connexin45 may oppose connexin43 actions in osteoblastic cells. Connexin37 is required for osteoclast differentiation and its deletion results in increased bone mass. Less is known on the role of connexins in cartilage, ligaments and tendons. Connexin43, connexin45, connexin32, connexin46 and connexin29 are expressed in chondrocytes, while connexin43 and connexin32 are expressed in ligaments and tendons. Similarly, although the expression of pannexin1, pannexin2 and pannexin3 has been demonstrated in bone and cartilage cells, their function in these tissues is not fully understood.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Dr., MS 5035, Indianapolis, IN, 46202, USA,
| | | |
Collapse
|
16
|
Lee MY, Takada T, Takada Y, Kappy MD, Beyer LA, Swiderski DL, Godin AL, Brewer S, King WM, Raphael Y. Mice with conditional deletion of Cx26 exhibit no vestibular phenotype despite secondary loss of Cx30 in the vestibular end organs. Hear Res 2015; 328:102-12. [PMID: 26232528 DOI: 10.1016/j.heares.2015.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/19/2023]
Abstract
Connexins are components of gap junctions which facilitate transfer of small molecules between cells. One member of the connexin family, Connexin 26 (Cx26), is prevalent in gap junctions in sensory epithelia of the inner ear. Mutations of GJB2, the gene encoding Cx26, cause significant hearing loss in humans. The vestibular system, however, does not usually show significant functional deficits in humans with this mutation. Mouse models for loss of Cx26 function demonstrate hearing loss and cochlear pathology but the extent of vestibular dysfunction and organ pathology are less well characterized. To understand the vestibular effects of Cx26 mutations, we evaluated vestibular function and histology of the vestibular sensory epithelia in a conditional knockout (CKO) mouse with Cx26 loss of function. Transgenic C57BL/6 mice, in which cre-Sox10 drives excision of the Cx26 gene from non-sensory cells flanking the sensory epithelium of the inner ear (Gjb2-CKO), were compared to age-matched wild types. Animals were sacrificed at ages between 4 and 40 weeks and their cochlear and vestibular sensory organs harvested for histological examination. Cx26 immunoreactivity was prominent in the peripheral vestibular system and the cochlea of wild type mice, but absent in the Gjb2-CKO specimens. The hair cell population in the cochleae of the Gjb2-CKO mice was severely depleted but in the vestibular organs it was intact, despite absence of Cx26 expression. The vestibular organs appeared normal at the latest time point examined, 40 weeks. To determine whether compensation by another connexin explains survival of the normal vestibular sensory epithelium, we evaluated the presence of Cx30 in the Gjb2-CKO mouse. We found that Cx30 labeling was normal in the cochlea, but it was decreased or absent in the vestibular system. The vestibular phenotype of the mutants was not different from wild-types as determined by time on the rotarod, head stability tests and physiological responses to vestibular stimulation. Thus presence of Cx30 in the cochlea does not compensate for Cx26 loss, and the absence of both connexins from vestibular sensory epithelia is no more injurious than the absence of one of them. Further studies to uncover the physiological foundation for this difference between the cochlea and the vestibular organs may help in designing treatments for GJB2 mutations.
Collapse
Affiliation(s)
- Min Young Lee
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Tomoko Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Yohei Takada
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Michelle D Kappy
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Lisa A Beyer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Donald L Swiderski
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Ashley L Godin
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Shannon Brewer
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - W Michael King
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109-5648, USA.
| |
Collapse
|
17
|
Hodson DJ, Legros C, Desarménien MG, Guérineau NC. Roles of connexins and pannexins in (neuro)endocrine physiology. Cell Mol Life Sci 2015; 72:2911-28. [PMID: 26084873 DOI: 10.1007/s00018-015-1967-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/12/2022]
Abstract
To ensure appropriate secretion in response to demand, (neuro)endocrine tissues liberate massive quantities of hormones, which act to coordinate and synchronize biological signals in distant secretory and nonsecretory cell populations. Intercellular communication plays a central role in this control. With regard to molecular identity, junctional cell-cell communication is supported by connexin-based gap junctions. In addition, connexin hemichannels, the structural precursors of gap junctions, as well as pannexin channels have recently emerged as possible modulators of the secretory process. This review focuses on the expression of connexins and pannexins in various (neuro)endocrine tissues, including the adrenal cortex and medulla, the anterior pituitary, the endocrine hypothalamus and the pineal, thyroid and parathyroid glands. Upon a physiological or pathological stimulus, junctional intercellular coupling can be acutely modulated or persistently remodeled, thus offering multiple regulatory possibilities. The functional roles of gap junction-mediated intercellular communication in endocrine physiology as well as the involvement of connexin/pannexin-related hemichannels are also discussed.
Collapse
Affiliation(s)
- David J Hodson
- Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, W12 0NN, UK
| | | | | | | |
Collapse
|
18
|
Abrams CK, Freidin M. GJB1-associated X-linked Charcot-Marie-Tooth disease, a disorder affecting the central and peripheral nervous systems. Cell Tissue Res 2015; 360:659-73. [PMID: 25370202 DOI: 10.1007/s00441-014-2014-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 09/22/2014] [Indexed: 11/24/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) is a group of inherited diseases characterized by exclusive or predominant involvement of the peripheral nervous system. Mutations in GJB1, the gene encoding Connexin 32 (Cx32), a gap-junction channel forming protein, cause the most common X-linked form of CMT, CMT1X. Cx32 is expressed in Schwann cells and oligodendrocytes, the myelinating glia of the peripheral and central nervous systems, respectively. Thus, patients with CMT1X have both central and peripheral nervous system manifestations. Study of the genetics of CMT1X and the phenotypes of patients with this disorder suggest that the peripheral manifestations of CMT1X are likely to be due to loss of function, while in the CNS gain of function may contribute. Mice with targeted ablation of Gjb1 develop a peripheral neuropathy similar to that seen in patients with CMT1X, supporting loss of function as a mechanism for the peripheral manifestations of this disorder. Possible roles for Cx32 include the establishment of a reflexive gap junction pathway in the peripheral and central nervous system and of a panglial syncitium in the central nervous system.
Collapse
Affiliation(s)
- Charles K Abrams
- Departments of Neurology and Physiology & Pharmacology, State University of New York, Brooklyn, NY, 11203, USA,
| | | |
Collapse
|
19
|
Wingard JC, Zhao HB. Cellular and Deafness Mechanisms Underlying Connexin Mutation-Induced Hearing Loss - A Common Hereditary Deafness. Front Cell Neurosci 2015; 9:202. [PMID: 26074771 PMCID: PMC4448512 DOI: 10.3389/fncel.2015.00202] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/11/2015] [Indexed: 11/30/2022] Open
Abstract
Hearing loss due to mutations in the connexin gene family, which encodes gap junctional proteins, is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2) mutations are responsible for ~50% of non-syndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. However, there is no apparent, demonstrable relationship between specific changes in connexin (channel) functions and the phenotypes of mutation-induced hearing loss. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Cx30 (GJB6), Cx29 (GJC3), Cx31 (GJB3), and Cx43 (GJA1) mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation-induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes remain unclear. Also, little is known about specific mutation-induced pathological changes in vivo and little information is available for humans. Such further studies are urgently required.
Collapse
Affiliation(s)
- Jeffrey C Wingard
- Department of Otolaryngology, University of Kentucky Medical Center , Lexington, KY , USA
| | - Hong-Bo Zhao
- Department of Otolaryngology, University of Kentucky Medical Center , Lexington, KY , USA
| |
Collapse
|
20
|
Nishii K, Shibata Y, Kobayashi Y. Connexin mutant embryonic stem cells and human diseases. World J Stem Cells 2014; 6:571-578. [PMID: 25426253 PMCID: PMC4178256 DOI: 10.4252/wjsc.v6.i5.571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.
Collapse
|
21
|
Jagger DJ, Forge A. Connexins and gap junctions in the inner ear--it's not just about K⁺ recycling. Cell Tissue Res 2014; 360:633-44. [PMID: 25381570 PMCID: PMC4452565 DOI: 10.1007/s00441-014-2029-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/06/2014] [Indexed: 12/19/2022]
Abstract
Normal development, function and repair of the sensory epithelia in the inner ear are all dependent on gap junctional intercellular communication. Mutations in the connexin genes GJB2 and GJB6 (encoding CX26 and CX30) result in syndromic and non-syndromic deafness via various mechanisms. Clinical vestibular defects, however, are harder to connect with connexin dysfunction. Cx26 and Cx30 proteins are widely expressed in the epithelial and connective tissues of the cochlea, where they may form homomeric or heteromeric gap junction channels in a cell-specific and spatiotemporally complex fashion. Despite the study of mutant channels and animal models for both recessive and dominant autosomal deafness, it is still unclear why gap junctions are essential for auditory function, and why Cx26 and Cx30 do not compensate for each other in vivo. Cx26 appears to be essential for normal development of the auditory sensory epithelium, but may be dispensable during normal hearing. Cx30 appears to be essential for normal repair following sensory cell loss. The specific modes of intercellular signalling mediated by inner ear gap junction channels remain undetermined, but they are hypothesised to play essential roles in the maintenance of ionic and metabolic homeostasis in the inner ear. Recent studies have highlighted involvement of gap junctions in the transfer of essential second messengers between the non-sensory cells, and have proposed roles for hemichannels in normal hearing. Here, we summarise the current knowledge about the molecular and functional properties of inner ear gap junctions, and about tissue pathologies associated with connexin mutations.
Collapse
Affiliation(s)
- Daniel J Jagger
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK,
| | | |
Collapse
|
22
|
Söhl G, Hombach S, Degen J, Odermatt B. The oligodendroglial precursor cell line Oli-neu represents a cell culture system to examine functional expression of the mouse gap junction gene connexin29 (Cx29). Front Pharmacol 2013; 4:83. [PMID: 23825458 PMCID: PMC3695394 DOI: 10.3389/fphar.2013.00083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/10/2013] [Indexed: 11/13/2022] Open
Abstract
The potential gap junction forming mouse connexin29 (Cx29) protein is concomitantly expressed with connexin32 (Cx32) in peripheral myelin forming Schwann cells and together with both Cx32 and connexin47 (Cx47) in oligodendrocytes of the CNS. To study the genomic structure and functional expression of Cx29, either primary cells or cell culture systems might be selected, from which the latter are easier to cultivate. Both structure and expression of Cx29 is still not fully understood. In the mouse sciatic nerve, brain and the oligodendroglial precursor cell line Oli-neu the Cx29 gene is processed in two transcript isoforms both harboring a unique reading frame. In contrast to Cx32 and Cx47, only Cx29 protein is abundantly expressed in undifferentiated as well as differentiated Oli-neu cells but the absence of Etbr dye transfer after microinjection concealed the function of Cx29-mediated gap junction communication between those cells. Although HeLa cells stably transfected with Cx29 or Cx29-eGFP neither demonstrated any permeability for Lucifer yellow nor for neurobiotin, blocking of Etbr uptake from the media by gap junction blockers does suppose a role of Cx29 in hemi-channel function. Thus, we conclude that, due to its high abundance of Cx29 expression and its reproducible culture conditions, the oligodendroglial precursor cell line Oli-neu might constitute an appropriate cell culture system to study molecular mechanisms or putative extracellular stimuli to functionally open Cx29 channels or hemi-channels.
Collapse
Affiliation(s)
- Goran Söhl
- Abteilung Molekulargenetik, Institut für Genetik, Universität Bonn Bonn, Germany
| | | | | | | |
Collapse
|
23
|
May D, Tress O, Seifert G, Willecke K. Connexin47 protein phosphorylation and stability in oligodendrocytes depend on expression of Connexin43 protein in astrocytes. J Neurosci 2013; 33:7985-96. [PMID: 23637189 PMCID: PMC6618970 DOI: 10.1523/jneurosci.5874-12.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/11/2013] [Accepted: 03/31/2013] [Indexed: 01/07/2023] Open
Abstract
Panglial networks are essential for normal physiology in the CNS, and the function of distinct connexins participating in these networks is not well understood. We generated Connexin32 (Cx32)-deficient mice with additional deletion of astrocytic Cx43 to explore the role of both connexins in panglial networks. Cx43/Cx32 double knock-out (dKO) mice revealed strong microglial activation in corpus callosum and cingulum along with severe astrogliosis and scar formation. In addition, most of the fine myelinated fibers projecting from the corpus callosum into the cortex were lost. Myelin loss was caused by a strong decrease of oligodendrocytes in the cingulum of Cx43/Cx32dKO mice. Immunoblot analyses using newly generated specific Cx47 antibodies revealed that oligodendrocytic Cx47 is phosphorylated in vivo depending on astrocytic Cx43 expression. In Cx43-deficient mice, Cx47 protein levels were strongly decreased, whereas Cx47 mRNA levels were not altered. Using Cx43G138R/Cx30KO mice, we show that Cx47 expression depends on the presence of astrocytic Cx43 protein and that its gap junctional channel function is not necessary for Cx47 stabilization. In consequence, Cx43/Cx32dKO mice additionally lack Cx47 expression and therefore cannot form oligodendrocytic gap junctions, which explains the phenotypic similarities to Cx32/Cx47dKO mice. Our findings provide strong evidence that phosphorylation and stability of oligodendrocytic Cx47 proteins is dependent on astrocytic Cx43 expression. These results further unravel the complexity of panglial networks and show that results of previous studies using astrocytic Cx43-deficient mice have to be reconsidered.
Collapse
Affiliation(s)
- Dennis May
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, D-53115 Bonn, Germany, and
| | - Oliver Tress
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, D-53115 Bonn, Germany, and
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, D-53105 Bonn, Germany
| | - Klaus Willecke
- Life and Medical Sciences Institute, Molecular Genetics, University of Bonn, D-53115 Bonn, Germany, and
| |
Collapse
|
24
|
Werner HB, Krämer-Albers EM, Strenzke N, Saher G, Tenzer S, Ohno-Iwashita Y, De Monasterio-Schrader P, Möbius W, Moser T, Griffiths IR, Nave KA. A critical role for the cholesterol-associated proteolipids PLP and M6B in myelination of the central nervous system. Glia 2013; 61:567-86. [PMID: 23322581 DOI: 10.1002/glia.22456] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/30/2012] [Indexed: 12/13/2022]
Abstract
The formation of central nervous system myelin by oligodendrocytes requires sterol synthesis and is associated with a significant enrichment of cholesterol in the myelin membrane. However, it is unknown how oligodendrocytes concentrate cholesterol above the level found in nonmyelin membranes. Here, we demonstrate a critical role for proteolipids in cholesterol accumulation. Mice lacking the most abundant myelin protein, proteolipid protein (PLP), are fully myelinated, but PLP-deficient myelin exhibits a reduced cholesterol content. We therefore hypothesized that "high cholesterol" is not essential in the myelin sheath itself but is required for an earlier step of myelin biogenesis that is fully compensated for in the absence of PLP. We also found that a PLP-homolog, glycoprotein M6B, is a myelin component of low abundance. By targeting the Gpm6b-gene and crossbreeding, we found that single-mutant mice lacking either PLP or M6B are fully myelinated, while double mutants remain severely hypomyelinated, with enhanced neurodegeneration and premature death. As both PLP and M6B bind membrane cholesterol and associate with the same cholesterol-rich oligodendroglial membrane microdomains, we suggest a model in which proteolipids facilitate myelination by sequestering cholesterol. While either proteolipid can maintain a threshold level of cholesterol in the secretory pathway that allows myelin biogenesis, lack of both proteolipids results in a severe molecular imbalance of prospective myelin membrane. However, M6B is not efficiently sorted into mature myelin, in which it is 200-fold less abundant than PLP. Thus, only PLP contributes to the high cholesterol content of myelin by association and co-transport.
Collapse
Affiliation(s)
- Hauke B Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Goettingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abrams CK, Scherer SS. Gap junctions in inherited human disorders of the central nervous system. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1818:2030-47. [PMID: 21871435 PMCID: PMC3771870 DOI: 10.1016/j.bbamem.2011.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 08/04/2011] [Accepted: 08/10/2011] [Indexed: 12/15/2022]
Abstract
CNS glia and neurons express connexins, the proteins that form gap junctions in vertebrates. We review the connexins expressed by oligodendrocytes and astrocytes, and discuss their proposed physiologic roles. Of the 21 members of the human connexin family, mutations in three are associated with significant central nervous system manifestations. For each, we review the phenotype and discuss possible mechanisms of disease. Mutations in GJB1, the gene for connexin 32 (Cx32) cause the second most common form of Charcot-Marie-Tooth disease (CMT1X). Though the only consistent phenotype in CMT1X patients is a peripheral demyelinating neuropathy, CNS signs and symptoms have been found in some patients. Recessive mutations in GJC2, the gene for Cx47, are one cause of Pelizaeus-Merzbacher-like disease (PMLD), which is characterized by nystagmus within the first 6 months of life, cerebellar ataxia by 4 years, and spasticity by 6 years of age. MRI imaging shows abnormal myelination. A different recessive GJC2 mutation causes a form of hereditary spastic paraparesis, which is a milder phenotype than PMLD. Dominant mutations in GJA1, the gene for Cx43, cause oculodentodigital dysplasia (ODDD), a pleitropic disorder characterized by oculo-facial abnormalities including micropthalmia, microcornia and hypoplastic nares, syndactyly of the fourth to fifth fingers and dental abnormalities. Neurologic manifestations, including spasticity and gait difficulties, are often but not universally seen. Recessive GJA1 mutations cause Hallermann-Streiff syndrome, a disorder showing substantial overlap with ODDD. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Charles K. Abrams
- Department of Neurology and Physiology & Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, 1-718-270-1270 Phone, 1-718-270-8944 Fax,
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania School of Medicine, Room 450 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, PA 19104-6077, 215-573-3198,
| |
Collapse
|
26
|
Xu J, Nicholson BJ. The role of connexins in ear and skin physiology - functional insights from disease-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:167-78. [PMID: 22796187 DOI: 10.1016/j.bbamem.2012.06.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 06/23/2012] [Accepted: 06/29/2012] [Indexed: 12/20/2022]
Abstract
Defects in several different connexins have been associated with several different diseases. The most common of these is deafness, where a few mutations in connexin (Cx) 26 have been found to contribute to over 50% of the incidence of non-syndromic deafness in different human populations. Other mutations in Cx26 or Cx30 have also been associated with various skin phenotypes linked to deafness (palmoplanta keratoderma, Bart-Pumphrey syndrome, Vohwinkel syndrome, keratitis-ichthyosis-deafness syndrome, etc.). The large array of disease mutants offers unique opportunities to gain insights into the underlying function of gap junction proteins and their channels in the normal and pathogenic physiologies of the cochlea and epidermis. This review focuses on those mutants where the impact on channel function has been assessed, and correlated with the disease phenotype, or organ function in knock-out mouse models. These approaches have provided evidence supporting a role of gap junctions and hemichannels in K(+) removal and recycling in the ear, as well as possible roles for nutrient passage, in the cochlea. In contrast, increases in hemichannel opening leading to increased cell death, were associated with several keratitis-ichthyosis-deafness syndrome skin disease/hearing mutants. In addition to providing clues for therapeutic strategies, these findings allow us to better understand the specific functions of connexin channels that are important for normal tissue function. This article is part of a Special Issue entitled: The communicating junctions, roles and dysfunctions.
Collapse
Affiliation(s)
- Ji Xu
- Department of Physiology, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
27
|
Theis M, Giaume C. Connexin-based intercellular communication and astrocyte heterogeneity. Brain Res 2012; 1487:88-98. [PMID: 22789907 DOI: 10.1016/j.brainres.2012.06.045] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 06/10/2012] [Accepted: 06/13/2012] [Indexed: 12/21/2022]
Abstract
This review gives an overview of the current knowledge on connexin-mediated communication in astrocytes, covering gap junction and hemichannel functions mediated by connexins. Astroglia is the main brain cell type that expresses the largest amount of connexin and exhibits high level of gap junctional communication compared to neurons and oligodendrocytes. However, in certain developmental and regional situations, astrocytes are also coupled with oligodendrocytes and neurons. This heterotypic coupling is infrequent and minor in terms of extent of the coupling area, which does not mean that it is not important in terms of cell interaction. Here, we present an update on heterogeneity of connexin expression and function at the molecular, subcellular, cellular and networking levels. Interestingly, while astrocytes were initially considered as a homogenous population, there is now increasing evidence for morphological, developmental, molecular and physiological heterogeneity of astrocytes. Consequently, the specificity of gap junction channel- and hemichannel-mediated communication, which tends to synchronize cell populations, is also a parameter to take into account when neuroglial interactions are investigated. This article is part of a Special Issue entitled Electrical Synapses.
Collapse
Affiliation(s)
- Martin Theis
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, D-53105 Bonn, Germany.
| | | |
Collapse
|
28
|
Functional chromaffin cell plasticity in response to stress: focus on nicotinic, gap junction, and voltage-gated Ca2+ channels. J Mol Neurosci 2012; 48:368-86. [PMID: 22252244 DOI: 10.1007/s12031-012-9707-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
An increase in circulating catecholamines constitutes one of the mechanisms whereby human body responds to stress. In response to chronic stressful situations, the adrenal medullary tissue exhibits crucial morphological and functional changes that are consistent with an improvement of chromaffin cell stimulus-secretion coupling efficiency. Stimulus-secretion coupling encompasses multiple intracellular (chromaffin cell excitability, Ca(2+) signaling, exocytosis, endocytosis) and intercellular pathways (splanchnic nerve-mediated synaptic transmission, paracrine and endocrine communication, gap junctional coupling), each of them being potentially subjected to functional remodeling upon stress. This review focuses on three chromaffin cell incontrovertible actors, the cholinergic nicotinic receptors and the voltage-dependent T-type Ca(2+) channels that are directly involved in Ca(2+)-dependent events controlling catecholamine secretion and electrical activity, and the gap junctional communication involved in the modulation of catecholamine secretion. We show here that these three actors react differently to various stressors, sometimes independently, sometimes in concert or in opposition.
Collapse
|
29
|
Shibata SB, Budenz CL, Bowling SA, Pfingst BE, Raphael Y. Nerve maintenance and regeneration in the damaged cochlea. Hear Res 2011; 281:56-64. [PMID: 21596129 PMCID: PMC3196294 DOI: 10.1016/j.heares.2011.04.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Revised: 04/22/2011] [Accepted: 04/23/2011] [Indexed: 12/22/2022]
Abstract
Following the onset of sensorineural hearing loss, degeneration of mechanosensitive hair cells and spiral ganglion cells (SGCs) in humans and animals occurs to variable degrees, with a trend for greater neural degeneration with greater duration of deafness. Emergence of the cochlear implant prosthesis has provided much needed aid to many hearing impaired patients and has become a well-recognized therapy worldwide. However, ongoing peripheral nerve fiber regression and subsequent degeneration of SGC bodies can reduce the neural targets of cochlear implant stimulation and diminish its function. There is increasing interest in bio-engineering approaches that aim to enhance cochlear implant efficacy by preventing SGC body degeneration and/or regenerating peripheral nerve fibers into the deaf sensory epithelium. We review the advancements in maintaining and regenerating nerves in damaged animal cochleae, with an emphasis on the therapeutic capacity of neurotrophic factors delivered to the inner ear after an insult. Additionally, we summarize the histological process of neuronal degeneration in the inner ear and describe different animal models that have been employed to study this mechanism. Research on enhancing the biological infrastructure of the deafened cochlea in order to improve cochlear implant efficacy is of immediate clinical importance.
Collapse
Affiliation(s)
- Seiji B. Shibata
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Cameron L. Budenz
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Sara A. Bowling
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Bryan E. Pfingst
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| | - Yehoash Raphael
- Kresge Hearing Research Institute, Department of Otolaryngology, The University of Michigan, Ann Arbor, MI, 48109-5648, USA
| |
Collapse
|
30
|
Bedner P, Steinhäuser C, Theis M. Functional redundancy and compensation among members of gap junction protein families? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1971-84. [PMID: 22044799 DOI: 10.1016/j.bbamem.2011.10.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 10/08/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Gap junctions are intercellular conduits for small molecules made up by protein subunits called connexins. A large number of connexin genes were found in mouse and man, and most cell types express several connexins, lending support to the view that redundancy and compensation among family members exist. This review gives an overview of the current knowledge on redundancy and functional compensation - or lack thereof. It takes into account the different properties of connexin subunits which comprise gap junctional intercellular channels, but also the compatibility of connexins in gap junctions. Most insight has been gained by the investigation of mice deficient for one or more connexins and transgenic mice with functional replacement of one connexin gene by another. Most single deficient mice show phenotypical alterations limited to critical developmental time points or to specific organs and tissues, while mice doubly deficient for connexins expressed in the same cell type usually show more severe phenotypical alterations. Replacement of a connexin by another connexin in some cases gave rise to rescue of phenotypical alterations of connexin deficiencies, which were restricted to specific tissues. In many tissues, connexin substitution did not restore phenotypical alterations of connexin deficiencies, indicating that connexins are specialized in function. In some cases, fatal consequences arose from the replacement. The current consensus gained from such studies is that redundancy and compensation among connexins exists at least to a limited extent. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
|
31
|
Colomer C, Martin AO, Desarménien MG, Guérineau NC. Gap junction-mediated intercellular communication in the adrenal medulla: an additional ingredient of stimulus-secretion coupling regulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1937-51. [PMID: 21839720 DOI: 10.1016/j.bbamem.2011.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 07/25/2011] [Indexed: 01/28/2023]
Abstract
The traditional understanding of stimulus-secretion coupling in adrenal neuroendocrine chromaffin cells states that catecholamines are released upon trans-synaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. Although this statement remains largely true, it deserves to be tempered. In addition to its neurogenic control, catecholamine secretion also depends on a local gap junction-mediated communication between chromaffin cells. We review here the insights gained since the first description of gap junctions in the adrenal medullary tissue. Adrenal stimulus-secretion coupling now appears far more intricate than was previously envisioned and its deciphering represents a challenge for neurobiologists engaged in the study of the regulation of neuroendocrine secretion. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.
Collapse
Affiliation(s)
- Claude Colomer
- Institut de Génomique Fonctionnelle, F-34000 Montpellier, France
| | | | | | | |
Collapse
|
32
|
Tress O, Maglione M, Zlomuzica A, May D, Dicke N, Degen J, Dere E, Kettenmann H, Hartmann D, Willecke K. Pathologic and phenotypic alterations in a mouse expressing a connexin47 missense mutation that causes Pelizaeus-Merzbacher-like disease in humans. PLoS Genet 2011; 7:e1002146. [PMID: 21750683 PMCID: PMC3131295 DOI: 10.1371/journal.pgen.1002146] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/01/2011] [Indexed: 11/25/2022] Open
Abstract
Gap junction channels are intercellular conduits that allow diffusional exchange of ions, second messengers, and metabolites. Human oligodendrocytes express the gap junction protein connexin47 (Cx47), which is encoded by the GJC2 gene. The autosomal recessive mutation hCx47M283T causes Pelizaeus-Merzbacher-like disease 1 (PMLD1), a progressive leukodystrophy characterized by hypomyelination, retarded motor development, nystagmus, and spasticity. We introduced the human missense mutation into the orthologous position of the mouse Gjc2 gene and inserted the mCx47M282T coding sequence into the mouse genome via homologous recombination in embryonic stem cells. Three-week-old homozygous Cx47M282T mice displayed impaired rotarod performance but unchanged open-field behavior. 10-15-day-old homozygous Cx47M282T and Cx47 null mice revealed a more than 80% reduction in the number of cells participating in glial networks after biocytin injections into oligodendrocytes in sections of corpus callosum. Homozygous expression of mCx47M282T resulted in reduced MBP expression and astrogliosis in the cerebellum of ten-day-old mice which could also be detected in Cx47 null mice of the same age. Three-month-old homozygous Cx47M282T mice exhibited neither altered open-field behavior nor impaired rotarod performance anymore. Adult mCx47M282T expressing mice did not show substantial myelin alterations, but homozygous Cx47M282T mice, additionally deprived of connexin32, which is also expressed in oligodendrocytes, died within six weeks after birth and displayed severe myelin defects accompanied by astrogliosis and activated microglia. These results strongly suggest that PMLD1 is caused by the loss of Cx47 channel function that results in impaired panglial coupling in white matter tissue.
Collapse
Affiliation(s)
- Oliver Tress
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Marta Maglione
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Armin Zlomuzica
- Center for the Study and Treatment of Mental Health, Ruhr-Universität Bochum, Bochum, Germany
| | - Dennis May
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Nikolai Dicke
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Joachim Degen
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| | - Ekrem Dere
- Université Pierre et Marie Curie (Paris VI), UMR 7102, Neurobiologie des Processus Adaptatifs, Paris, France
| | - Helmut Kettenmann
- Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Dieter Hartmann
- Department of Anatomy, Division of Neuroanatomy, University of Bonn, Bonn, Germany
| | - Klaus Willecke
- Institute of Genetics, Division of Molecular Genetics, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Maglione M, Tress O, Haas B, Karram K, Trotter J, Willecke K, Kettenmann H. Oligodendrocytes in mouse corpus callosum are coupled via gap junction channels formed by connexin47 and connexin32. Glia 2010; 58:1104-17. [PMID: 20468052 DOI: 10.1002/glia.20991] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
According to previously published ultrastructural studies, oligodendrocytes in white matter exhibit gap junctions with astrocytes, but not among each other, while in vitro oligodendrocytes form functional gap junctions. We have studied functional coupling among oligodendrocytes in acute slices of postnatal mouse corpus callosum. By whole-cell patch clamp we dialyzed oligodendrocytes with biocytin, a gap junction-permeable tracer. On average 61 cells were positive for biocytin detected by labeling with streptavidin-Cy3. About 77% of the coupled cells stained positively for the oligodendrocyte marker protein CNPase, 9% for the astrocyte marker GFAP and 14% were negative for both CNPase and GFAP. In the latter population, the majority expressed Olig2 and some NG2, markers for oligodendrocyte precursors. Oligodendrocytes are known to express Cx47, Cx32 and Cx29, astrocytes Cx43 and Cx30. In Cx47-deficient mice, the number of coupled cells was reduced by 80%. Deletion of Cx32 or Cx29 alone did not significantly reduce the number of coupled cells, but coupling was absent in Cx32/Cx47-double-deficient mice. Cx47-ablation completely abolished coupling of oligodendrocytes to astrocytes. In Cx43-deficient animals, oligodendrocyte-astrocyte coupling was still present, but coupling to oligodendrocyte precursors was not observed. In Cx43/Cx30-double deficient mice, oligodendrocyte-to-astrocyte coupling was almost absent. Uncoupled oligodendrocytes showed a higher input resistance. We conclude that oligodendrocytes in white matter form a functional syncytium predominantly among each other dependent on Cx47 and Cx32 expression, while astrocytic connexins expression can promote the size of this network.
Collapse
Affiliation(s)
- Marta Maglione
- Max-Delbrück-Center for Molecular Medicine, Cellular Neuroscience, 13092 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Giaume C, Theis M. Pharmacological and genetic approaches to study connexin-mediated channels in glial cells of the central nervous system. ACTA ACUST UNITED AC 2009; 63:160-76. [PMID: 19963007 DOI: 10.1016/j.brainresrev.2009.11.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/18/2022]
Abstract
This review gives an overview of connexin expression in glial cells of the central nervous system, the different modes of connexin action, including gap junctional channels and hemichannels, as well as the available methodologies to measure their activity. We summarize the strengths and limitations of current pharmacological and genetic approaches to interfere with connexin channel functions. We outline new avenues not only to study specific mechanisms by which connexins exert these functions but also to selectively investigate well-defined coupling compartments among glial networks.
Collapse
|
35
|
Colomer C, Desarménien MG, Guérineau NC. Revisiting the stimulus-secretion coupling in the adrenal medulla: role of gap junction-mediated intercellular communication. Mol Neurobiol 2009; 40:87-100. [PMID: 19444654 PMCID: PMC2879034 DOI: 10.1007/s12035-009-8073-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 04/28/2009] [Indexed: 01/09/2023]
Abstract
The current view of stimulation-secretion coupling in adrenal neuroendocrine chromaffin cells holds that catecholamines are released upon transsynaptic sympathetic stimulation mediated by acetylcholine released from the splanchnic nerve terminals. However, this traditional vertical scheme would merit to be revisited in the light of recent data. Although electrical discharges invading the splanchnic nerve endings are the major physiological stimulus to trigger catecholamine release in vivo, growing evidence indicates that intercellular chromaffin cell communication mediated by gap junctions represents an additional route by which biological signals (electrical activity, changes in intracellular Ca(2+) concentration,...) propagate between adjacent cells and trigger subsequent catecholamine exocytosis. Accordingly, it has been proposed that gap junctional communication efficiently helps synapses to lead chromaffin cell function and, in particular, hormone secretion. The experimental clues supporting this hypothesis are presented and discussed with regards to both interaction with the excitatory cholinergic synaptic transmission and physiopathology of the adrenal medulla.
Collapse
Affiliation(s)
- Claude Colomer
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille 34094 MONTPELLIER CEDEX 5,FR
| | - Michel G. Desarménien
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille 34094 MONTPELLIER CEDEX 5,FR
| | - Nathalie C. Guérineau
- IGF, Institut de génomique fonctionnelle
CNRS : UMR5203INSERM : U661Université Montpellier IUniversité Montpellier II - Sciences et Techniques du Languedoc141, Rue de la Cardonille 34094 MONTPELLIER CEDEX 5,FR
| |
Collapse
|
36
|
Spontaneous association of glial cells with regrowing neurites in mixed cultures of dissociated spiral ganglia. Neuroscience 2009; 161:227-35. [PMID: 19324078 DOI: 10.1016/j.neuroscience.2009.03.044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/10/2009] [Accepted: 03/11/2009] [Indexed: 11/23/2022]
Abstract
Evidence from developmental and regeneration studies of the cochlea and other tissues gives reason to hypothesize a role for nonneural cells in the growth and regeneration of cochlear spiral ganglion nerve fibers. We examined the spontaneous associations of regrowing neurites and nonneural cells in mixed cultures of dissociated newborn mouse spiral ganglia. After 7 days in vitro, nonneural cells formed a confluent layer in the culture well. Regrowing neurites grew atop this layer, forming non-uniform patterns that were similar to those formed by endogenously expressed laminin-1, entactin and integrin beta4, but not fibronectin or tenascin. In cultures grown for 42 h and maintained in three different growth media, all regrowing neurites were preferentially associated with spindle-shaped nonneural cells. The spindle-shaped cells incorporated bromodeoxyuridine in culture and were immunoreactive for the proteins S100, laminin-1, laminin-2, SRY-related high-mobility-group box 10 transcription factor (Sox10), neurotrophin receptor (P75) and connexin29 but negative for fibronectin and glial fibrillary acidic protein. These cells existed in the culture within a much larger, general population of fibronectin positive cells. Immunolabeling of fixed cochleas from neonatal mice localized Sox10, P75 and connexin29, to peripheral nerve bundles. The observed expressions of protein markers and the bipolar, spindle shape of the neurite-associated cells indicate that they are derived in vitro from the original Schwann or satellite cells in the ganglion or spiral lamina. The spontaneous and preferential association of neurites in culture with mitotic Schwann cells highlights the potential contribution neurite-Schwann cell interactions may have in promoting the growth and regrowth of damaged spiral ganglion neurons in the cochlea.
Collapse
|
37
|
Ruf N, Uhlenberg B. Analysis of human alternative first exons and copy number variation of the GJA12 gene in patients with Pelizaeus-Merzbacher-like disease. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:226-32. [PMID: 18521858 DOI: 10.1002/ajmg.b.30792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pelizaeus-Merzbacher-like disease (PMLD) is a heterogeneous disease with primary hypomyelination of the central nervous system. Only the minority of patients have mutations in the coding region of the GJA12 gene encoding gap junction protein alpha 12, a subunit of intercellular channels highly expressed by oligodendrocytes, the myelin forming cells of the central nervous system. No other gene has been found so far to be mutated in PMLD besides GJA12. We therefore extended the mutational screening in the GJA12 gene, searched for alternative first exons-as described in mice-determined the human 5'-end of the gene, screened therein for mutations and analyzed for copy number variations of the GJA12 gene in 14 patients with PMLD. Unlike in mice we did not find alternative first exons but detected a unique 79 bp first exon in human adolescent brain and spinal cord. No mutation in this non-coding region was found in our cohort. Copy number variation of the GJA12 gene was assessed by real-time PCR TaqMan gene expression technology, but neither patient showed an aberrant copy number. These data confirm that GJA12 alterations are a rare cause of PMLD-even after extending the screening for copy number variation and for mutations in the non-coding region of GJA12. Full genome scans in informative families and further screenings of candidate genes are feasible approaches to elucidate the genetic background of the majority of patients with PMLD.
Collapse
Affiliation(s)
- Nico Ruf
- Department of Neuropediatrics, Charité, University Medical School, Berlin, Germany
| | | |
Collapse
|
38
|
Hoang Dinh E, Ahmad S, Chang Q, Tang W, Stong B, Lin X. Diverse deafness mechanisms of connexin mutations revealed by studies using in vitro approaches and mouse models. Brain Res 2009; 1277:52-69. [PMID: 19230829 DOI: 10.1016/j.brainres.2009.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 02/01/2009] [Accepted: 02/04/2009] [Indexed: 12/12/2022]
Abstract
Mutations in connexins (Cxs), the constitutive protein subunits of gap junction (GJ) intercellular channels, are one of the most common human genetic defects that cause severe prelingual non-syndromic hearing impairments. Many subtypes of Cxs (e.g., Cxs 26, 29, 30, 31, 43) and pannexins (Panxs) are expressed in the cochlea where they contribute to the formation of a GJ-based intercellular communication network. Cx26 and Cx30 are the predominant cochlear Cxs and they co-assemble in most GJ plaques to form hybrid GJs. The cellular localization of specific Cx subtypes provides a basis for understanding the molecular structure of GJs and hemichannels in the cochlea. Information about the interactions among the various co-assembled Cx partners is critical to appreciate the functional consequences of various types of genetic mutations. In vitro studies of reconstituted GJs in cell lines have yielded surprisingly heterogeneous mechanisms of dysfunction caused by various Cx mutations. Availability of multiple lines of Cx-mutant mouse models has provided some insight into the pathogenesis processes in the cochlea of deaf mice. Here we summarize recent advances in understanding the structure and function of cochlear GJs and give a critical review of current findings obtained from both in vitro studies and mouse models on the mechanisms of Cx mutations that lead to cell death in the cochlea and hearing loss.
Collapse
Affiliation(s)
- Emilie Hoang Dinh
- Department of Otolaryngology, Emory University School of Medicine, 615 Michael Street, Atlanta, GA 30322-3030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Gap junctions and connexins in the inner ear: their roles in homeostasis and deafness. Curr Opin Otolaryngol Head Neck Surg 2009; 16:452-7. [PMID: 18797288 DOI: 10.1097/moo.0b013e32830e20b0] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Mutations in GJB2 and GJB6, the genes encoding the gap-junction proteins connexin 26 and connexin 30, are the most common cause of autosomal recessive nonsyndromic deafness in many populations across the world. In this review, we discuss current ideas about the roles of gap junctions in the inner ear and the implications of connexin mutations on auditory function. RECENT FINDINGS In recent years, a complex picture of the roles of gap junctions in cochlear physiology emerged. Rather than being mere conduits for the circulation of potassium ions in the inner ear, gap junctions have been implicated in intercellular signaling among nonsensory cells and may be involved in the maintenance of the endothelial barrier in the stria vascularis. Studies of mutant channels and mouse models for connexin-related deafness have provided valuable insights into some of the mechanisms by which connexin dysfunction causes cochlear degeneration. They have also identified potential therapeutic interventions for specific connexin mutations, such as the restoration of normal connexin 26 protein levels in GJB6-associated deafness. SUMMARY Despite recent advances, a better understanding of the complexity of gap-junctional communication in the inner ear and the structure-function relationships of connexin proteins is required for the development of mechanism-based treatments of connexin-associated hearing loss.
Collapse
|
40
|
Tanaka M, Yamaguchi K, Tatsukawa T, Theis M, Willecke K, Itohara S. Connexin43 and bergmann glial gap junctions in cerebellar function. Front Neurosci 2008; 2:225-33. [PMID: 19225596 PMCID: PMC2622757 DOI: 10.3389/neuro.01.038.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/10/2008] [Indexed: 11/13/2022] Open
Abstract
Connexin43 (Cx43), a major component of astrocytic gap junctions, is abundantly expressed in Bergmann glial cells (BGCs) in the cerebellum, but the function of Cx43 in BGCs is largely unknown. BGCs are specialized astrocytes closely associated with Purkinje cells. Here, we review our recent studies of the role of Cx43 in gap junctional coupling between BGCs and in cerebellar function. We generated Cx43 conditional knockout mice with an S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre), in which there was a significant postnatal loss of Cx43 in BGCs and cerebellar astrocytes. Gap junctional coupling between BGCs measured by dye coupling was virtually abolished in Cx43fl/fl:S100b-Cre mice. Electrophysiologic and behavioral analyses suggested that Cx43-mediated gap junctions and Cx43 hemichannels in BGCs are not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning. These findings raise questions regarding the regional differences in the impact of the loss of Cx43 in the brain.
Collapse
|
41
|
Human hereditary hearing impairment: mouse models can help to solve the puzzle. Hum Genet 2008; 124:325-48. [DOI: 10.1007/s00439-008-0556-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 08/29/2008] [Indexed: 12/31/2022]
|
42
|
Köster-Patzlaff C, Hosseini SM, Reuss B. Layer specific changes of astroglial gap junctions in the rat cerebellar cortex by persistent Borna Disease Virus infection. Brain Res 2008; 1219:143-58. [PMID: 18538309 DOI: 10.1016/j.brainres.2008.04.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/10/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
Neonatal Borna Disease Virus (BDV) infection of the Lewis rat brain, leads to Purkinje cell degeneration, in association with astroglial activation. Since astroglial gap junctions (GJ) are known to influence neuronal degeneration, we investigated BDV dependent changes in astroglial GJ connexins (Cx) Cx43, and Cx30 in the Lewis rat cerebellum, 4, and 8 weeks after neonatal infection. On the mRNA level, RT-PCR demonstrated a BDV dependent increase in cerebellar Cx43, and a decrease in Cx30, 8, but not 4 weeks p.i. On the protein level, Western blot analysis revealed no overall upregulation of Cx43, but an increase of its phosphorylated forms, 8 weeks p.i. Cx30 protein was downregulated. Immunohistochemistry revealed a BDV dependent reduction of Cx43 in the granular layer (GL), 4 weeks p.i. 8 weeks p.i., Cx43 immunoreactivity recovered in the GL, and was induced in the molecular layer (ML). Cx30 revealed a BDV dependent decrease in the GL, both 4, and 8 weeks p.i. Changes in astroglial Cxs correlated not with expression of the astrogliotic marker GFAP, which was upregulated in radial glia. With regard to functional coupling, primary cerebellar astroglial cultures, revealed a BDV dependent increase of Cx43, and Cx30 immunoreactivity and in spreading of the GJ permeant dye Lucifer Yellow. These results demonstrate a massive, BDV dependent reorganization of astroglial Cx expression, and of functional GJ coupling in the cerebellar cortex, which might be of importance for the BDV dependent neurodegeneration in this brain region.
Collapse
|
43
|
Tanaka M, Yamaguchi K, Tatsukawa T, Nishioka C, Nishiyama H, Theis M, Willecke K, Itohara S. Lack of Connexin43-mediated bergmann glial gap junctional coupling does not affect cerebellar long-term depression, motor coordination, or eyeblink conditioning. Front Behav Neurosci 2008; 2:1. [PMID: 18958191 PMCID: PMC2525865 DOI: 10.3389/neuro.08.001.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 04/10/2008] [Indexed: 11/13/2022] Open
Abstract
Bergmann glial cells are specialized astrocytes in the cerebellum. In the mature cerebellar molecular layer, Bergmann glial processes are closely associated with Purkinje cells, enclosing Purkinje cell dendritic synapses with a glial sheath. There is intensive gap junctional coupling between Bergmann glial processes, but their significance in cerebellar functions is not known. Connexin43 (Cx43), a major component of astrocytic gap junction channels, is abundantly expressed in Bergmann glial cells. To examine the role of Cx43-mediated gap junctions between Bergmann glial cells in cerebellar functions, we generated Cx43 conditional knockout mice with the S100b-Cre transgenic line (Cx43fl/fl:S100b-Cre), which exhibited a significant loss of Cx43 in the Bergmann glial cells and astrocytes in the cerebellum with a postnatal onset. The Cx43fl/fl:S100b-Cre mice had normal cerebellar architecture. Although gap junctional coupling between the Bergmann glial cells measured by spreading of microinjected Lucifer yellow was virtually abolished in Cx43fl/fl:S100b-Cre mice, electrophysiologic analysis revealed that cerebellar long-term depression could be induced and maintained normally in their cerebellar slices. In addition, at the behavioral level, Cx43fl/fl:S100b-Cre mice had normal motor coordination in the rotarod task and normal conditioned eyelid response. Our findings suggest that Cx43-mediated gap junctional coupling between Bergmann glial cells is not necessary for the neuron-glia interactions required for cerebellum-dependent motor coordination and motor learning.
Collapse
|
44
|
Ahn M, Lee J, Gustafsson A, Enriquez A, Lancaster E, Sul JY, Haydon PG, Paul DL, Huang Y, Abrams CK, Scherer SS. Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. J Neurosci Res 2008; 86:992-1006. [PMID: 17972320 PMCID: PMC2663799 DOI: 10.1002/jnr.21561] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In rodents, oligodendrocytes and myelinating Schwann cells express connexin32 (Cx32) and Cx29, which have different localizations in the two cell types. We show here that, in contrast to Cx32, Cx29 does not form gap junction plaques or functional gap junctions in transfected cells. Furthermore, when expressed together, Cx29 and Cx32 are not colocalized and do not coimmunoprecipitate. To determine the structural basis of their divergent behavior, we generated a series of chimeric Cx32-Cx29 proteins by exchanging their intracellular loops and/or their C-terminal cytoplasmic tails. Although some chimerae reach the cell membrane, others appear to be largely localized intracellularly; none form gap junction plaques or functional gap junctions. Substituting the C-terminus or the intracellular loop and the C-terminus of Cx32 with those of Cx29 does not disrupt their colocalization or coimmunoprecipitation with Cx32. Substituting the C-terminus of Cx29 with that of Cx32 does not disrupt the coimmunoprecipitation or the colocalization with Cx29, whereas substituting both the intracellular loop and the C-terminus of Cx32 with those of Cx29 diminishes the coimmunoprecipitation with Cx29. Conversely, the Cx32 chimera that contains the intracellular loop of Cx29 coimmunoprecipitates with Cx29, indicating that the intracellular loop participates in Cx29-Cx29 interactions. These data indicate that homomeric interactions of Cx29 and especially Cx32 largely require other domains: the N-terminus, transmembrane domains, and extracellular loops. Substituting the intracellular loop and/or tail of Cx32 with those of Cx29 appears to prevent Cx32 from forming functional gap junctions.
Collapse
Affiliation(s)
- Meejin Ahn
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jonathan Lee
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Andreas Gustafsson
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Alan Enriquez
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Eric Lancaster
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jai-Yoon Sul
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Philip G. Haydon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David L. Paul
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Yan Huang
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles K. Abrams
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
45
|
Abstract
Hearing impairment is a frequent condition in humans. Identification of the causative genes for the early onset forms of isolated deafness began 15 years ago and has been very fruitful. To date, approximately 50 causative genes have been identified. Yet, limited information regarding the underlying pathogenic mechanisms can be derived from hearing tests in deaf patients. This chapter describes the success of mouse models in the elucidation of some pathophysiological processes in the auditory sensory organ, the cochlea. These models have revealed a variety of defective structures and functions at the origin of deafness genetic forms. This is illustrated by three different examples: (1) the DFNB9 deafness form, a synaptopathy of the cochlear sensory cells where otoferlin is defective; (2) the Usher syndrome, in which deafness is related to abnormal development of the hair bundle, the mechanoreceptive structure of the sensory cells to sound; (3) the DFNB1 deafness form, which is the most common form of inherited deafness in Caucasian populations, mainly caused by connexin-26 defects that alter gap junction communication between nonsensory cochlear cells.
Collapse
Affiliation(s)
- Michel Leibovici
- Institut Pasteur, Unite de Genetique et Physiologie de l'Audition, Paris, France
| | | | | |
Collapse
|
46
|
Li J, Habbes HW, Eiberger J, Willecke K, Dermietzel R, Meier C. Analysis of connexin expression during mouse Schwann cell development identifies connexin29 as a novel marker for the transition of neural crest to precursor cells. Glia 2007; 55:93-103. [PMID: 17024657 DOI: 10.1002/glia.20427] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Connexins are transmembrane proteins forming gap junction channels for direct intercellular and, for example in myelinating glia cells, intracellular communication. In mature myelin-forming Schwann cells, expression of multiple connexins, i.e. connexin (Cx) 43, Cx29, Cx32, and Cx46 (after nerve injury) has been detected. However, little is known about connexin protein expression during Schwann cell development. Here we use histochemical methods on wildtype and Cx29lacZ transgenic mice to investigate the developmental expression of connexins in the Schwann cell lineage. Our data demonstrate that in the mouse Cx43, Cx29, and Cx32 protein expression is activated in a developmental sequence that is clearly correlated with major developmental steps in the lineage. Only Cx43 was expressed from neural crest cells onwards. Cx29 protein expression was absent from neural crest cells but appeared as neural crest cells generated precursors (embryonic day 12) both in vivo and in vitro. This identifies Cx29 as a novel marker for cells of the defined Schwann cell lineage. The only exception to this were dorsal roots, where the expression of Cx29 was delayed four days relative to ventral roots and spinal nerves. Expression of Cx32 commenced postnatally, coinciding with the onset of myelination. Thus, the coordinated expression of connexin proteins in cells of the embryonic and postnatal Schwann cell lineage might point to a potential role in peripheral nerve development and maturation.
Collapse
Affiliation(s)
- Jing Li
- Department of Neuroanatomy and Molecular Brain Research, Ruhr-University Bochum, D-44801 Bochum, Germany
| | | | | | | | | | | |
Collapse
|