1
|
Cardano M, Buscemi G, Zannini L. Sex Disparities in P53 Regulation and Functions: Novel Insights for Personalized Cancer Therapies. Cells 2025; 14:363. [PMID: 40072091 PMCID: PMC11898824 DOI: 10.3390/cells14050363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Epidemiological studies have revealed significant sex differences in the incidence of tumors unrelated to reproductive functions, with females demonstrating a lesser risk and a better response to therapy than males. However, the reasons for these disparities are still unknown and cancer therapies are generally sex-unbiased. The tumor-suppressor protein p53 is a transcription factor that can activate the expression of multiple target genes mainly involved in the maintenance of genome stability and tumor prevention. It is encoded by TP53, which is the most-frequently mutated gene in human cancers and therefore constitutes an attractive target for therapy. Recently, evidence of sex differences has emerged in both p53 regulations and functions, possibly providing novel opportunities for personalized cancer medicine. Here, we will review and discuss current knowledge about sexual disparities in p53 pathways, their role in tumorigenesis and cancer progression, and their importance in the therapy choice process, finally highlighting the importance of considering sex contribution in both basic research and clinical practice.
Collapse
|
2
|
Gurugubelli KR, Ballambattu VB. Perspectives on folate with special reference to epigenetics and neural tube defects. Reprod Toxicol 2024; 125:108576. [PMID: 38479591 DOI: 10.1016/j.reprotox.2024.108576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Folate is a micronutrient essential for DNA synthesis, cell division, fetal growth and development. Folate deficiency leads to genomic instability. Inadequate intake of folate during conception may lead to neural tube defects (NTDs) in the offspring. Folate influences the DNA methylation, histone methylation and homocysteine mediated gene methylation. DNA methylation influences the expression of microRNAs (miRNAs). Folate deficiency may be associated with miRNAs misregulation leading to NTDs. Mitochondrial epigenetics and folate metabolism has proved to be involved in embryogenesis and neural tube development. Folate related genetic variants also cause the occurrence of NTDs. Unmetabolized excessive folate may affect health adversely. Hence estimation of folate levels in the blood plays an important role in high-risk cases.
Collapse
Affiliation(s)
- Krishna Rao Gurugubelli
- Department of Biochemistry, Andhra Medical College (AMC), Visakhapatnam, Andhra Pradesh, India
| | - Vishnu Bhat Ballambattu
- Aarupadai Veedu Medical College & Hospital (AVMC & H), Vinayaka Mission's Research Foundation (DU), Kirumambakkam, Puducherry, India.
| |
Collapse
|
3
|
Boschen KE, Dragicevich CJ, Fish EW, Hepperla AJ, Simon JM, Parnell SE. Gastrulation-stage alcohol exposure induces similar rates of craniofacial malformations in male and female C57BL/6J mice. Birth Defects Res 2024; 116:e2292. [PMID: 38116840 PMCID: PMC10872400 DOI: 10.1002/bdr2.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND Prenatal alcohol exposure during gastrulation (embryonic day [E] 7 in mice, ~3rd week of human pregnancy) impairs eye, facial, and cortical development, recapitulating birth defects characteristic of Fetal Alcohol Syndrome (FAS). However, it is not known whether the prevalence or severity of craniofacial features associated with FAS is affected by biological sex. METHODS The current study administered either alcohol (2.9 g/kg, two i.p. doses, 4 hr apart) or vehicle to pregnant C57BL/6J females on E7, prior to gonadal sex differentiation, and assessed fetal morphology at E17. RESULTS Whereas sex did not affect fetal size in controls, alcohol-exposed females were smaller than both control females and alcohol-treated males. Alcohol exposure increased the incidence of eye defects to a similar degree in males and females. Together, these data suggest that females might be more sensitive to the general developmental effects of alcohol, but not effects specific to the craniofacies. Whole transcriptomic analysis of untreated E7 embryos found 214 differentially expressed genes in females vs. males, including those in pathways related to cilia and mitochondria, histone demethylase activity, and pluripotency. CONCLUSION Gastrulation-stage alcohol induces craniofacial malformations in male and female mouse fetuses at similar rates and severity, though growth deficits are more prevalent females. These findings support the investigation of biological sex as a contributing factor in prenatal alcohol studies.
Collapse
Affiliation(s)
- Karen E. Boschen
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Constance J. Dragicevich
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Eric W. Fish
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Austin J. Hepperla
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy M. Simon
- Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E. Parnell
- Bowles Center for Alcohol Studies, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Reue K, Arnold AP. Inclusion of Sex as a Biological Variable in Biomedical Sciences at the Undergraduate Level and Beyond. J Womens Health (Larchmt) 2023; 32:891-896. [PMID: 37585516 PMCID: PMC10457603 DOI: 10.1089/jwh.2022.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
To improve research on women's health, and to achieve better understanding of the factors controlling disease across diverse populations of humans, it is imperative to study sex differences in physiology and disease. After the introduction of the "SABV policy" at NIH, which requires investigators using animals or humans to consider sex as a biological factor, it became clear that many investigators were unaware of concepts of sexual differentiation or methods that can be used to study sex as a biological variable (SABV). To remedy this situation, efforts have increased to teach concepts and methods of SABV at all educational levels. The UCLA Scientific Center of Research Excellence (SCORE) grant "Sex differences in the metabolic syndrome" promotes education about SABV through three primary mechanisms: (1) through didactic course content for students at the undergraduate level, (2) by providing pilot funding for early career investigators to study the role of sex in metabolism-related areas, and (3) through curation of a video library, which may be useful for investigators performing research at the graduate, postgraduate, and faculty levels.
Collapse
Affiliation(s)
- Karen Reue
- Departments of Human Genetics and Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arthur P. Arnold
- Laboratory of Neuroendocrinology, Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
5
|
Cheng MI, Li JH, Riggan L, Chen B, Tafti RY, Chin S, Ma F, Pellegrini M, Hrncir H, Arnold AP, O'Sullivan TE, Su MA. The X-linked epigenetic regulator UTX controls NK cell-intrinsic sex differences. Nat Immunol 2023; 24:780-791. [PMID: 36928413 DOI: 10.1038/s41590-023-01463-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/14/2023] [Indexed: 03/18/2023]
Abstract
Viral infection outcomes are sex biased, with males generally more susceptible than females. Paradoxically, the numbers of antiviral natural killer (NK) cells are increased in males. We demonstrate that while numbers of NK cells are increased in male mice, they display decreased effector function compared to females in mice and humans. These differences were not solely dependent on gonadal hormones, because they persisted in gonadectomized mice. Kdm6a (which encodes the protein UTX), an epigenetic regulator that escapes X inactivation, was lower in male NK cells, while NK cell-intrinsic UTX deficiency in female mice increased NK cell numbers and reduced effector responses. Furthermore, mice with NK cell-intrinsic UTX deficiency showed increased lethality to mouse cytomegalovirus. Integrative multi-omics analysis revealed a critical role for UTX in regulating chromatin accessibility and gene expression critical for NK cell homeostasis and effector function. Collectively, these data implicate UTX as a critical molecular determinant of sex differences in NK cells.
Collapse
Affiliation(s)
- Mandy I Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Joey H Li
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Luke Riggan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Bryan Chen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rana Yakhshi Tafti
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Scott Chin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA
| | - Haley Hrncir
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| | - Maureen A Su
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Arnold AP, Chen X, Grzybowski MN, Ryan JM, Sengelaub DR, Mohanroy T, Furlan VA, Grisham W, Malloy L, Takizawa A, Wiese CB, Vergnes L, Skaletsky H, Page DC, Reue K, Harley VR, Dwinell MR, Geurts AM. A "Four Core Genotypes" rat model to distinguish mechanisms underlying sex-biased phenotypes and diseases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527738. [PMID: 36798326 PMCID: PMC9934672 DOI: 10.1101/2023.02.09.527738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Background We have generated a rat model similar to the Four Core Genotypes mouse model, allowing comparison of XX and XY rats with the same type of gonad. The model detects novel sex chromosome effects (XX vs. XY) that contribute to sex differences in any rat phenotype. Methods XY rats were produced with an autosomal transgene of Sry , the testis-determining factor gene, which were fathers of XX and XY progeny with testes. In other rats, CRISPR-Cas9 technology was used to remove Y chromosome factors that initiate testis differentiation, producing fertile XY gonadal females that have XX and XY progeny with ovaries. These groups can be compared to detect sex differences caused by sex chromosome complement (XX vs. XY) and/or by gonadal hormones (rats with testes vs. ovaries). Results We have measured numerous phenotypes to characterize this model, including gonadal histology, breeding performance, anogenital distance, levels of reproductive hormones, body and organ weights, and central nervous system sexual dimorphisms. Serum testosterone levels were comparable in adult XX and XY gonadal males. Numerous phenotypes previously found to be sexually differentiated by the action of gonadal hormones were found to be similar in XX and XY rats with the same type of gonad, suggesting that XX and XY rats with the same type of gonad have comparable levels of gonadal hormones at various stages of development. Conclusion The results establish a powerful new model to discriminate sex chromosome and gonadal hormone effects that cause sexual differences in rat physiology and disease.
Collapse
|
7
|
Cabrera Zapata LE, Garcia-Segura LM, Cambiasso MJ, Arevalo MA. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int J Mol Sci 2022; 23:ijms232012288. [PMID: 36293143 PMCID: PMC9603441 DOI: 10.3390/ijms232012288] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
For many decades to date, neuroendocrinologists have delved into the key contribution of gonadal hormones to the generation of sex differences in the developing brain and the expression of sex-specific physiological and behavioral phenotypes in adulthood. However, it was not until recent years that the role of sex chromosomes in the matter started to be seriously explored and unveiled beyond gonadal determination. Now we know that the divergent evolutionary process suffered by X and Y chromosomes has determined that they now encode mostly dissimilar genetic information and are subject to different epigenetic regulations, characteristics that together contribute to generate sex differences between XX and XY cells/individuals from the zygote throughout life. Here we will review and discuss relevant data showing how particular X- and Y-linked genes and epigenetic mechanisms controlling their expression and inheritance are involved, along with or independently of gonadal hormones, in the generation of sex differences in the brain.
Collapse
Affiliation(s)
- Lucas E. Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | | | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Correspondence: (M.J.C.); (M.A.A.)
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.J.C.); (M.A.A.)
| |
Collapse
|
8
|
Abstract
Understanding sex differences in physiology and disease requires the identification of the molecular agents that cause phenotypic sex differences. Two groups of such agents are genes located on the sex chromosomes, and gonadal hormones. The former have coherent linkage to chromosomes that form differently in the two sexes under the influence of genomic forces that are not related to reproductive function, whereas the latter have a direct or indirect relationship to reproduction. Evidence published in the past 5 years supports the identification of several agents of sexual differentiation encoded by the X chromosome in mice, including Kdm5c, Kdm6a, Ogt and Xist. These X chromosome agents have wide pleiotropic effects, potentially influencing sex differences in many different tissues, a characteristic shared with the gonadal hormones. The identification of X chromosome agents of sexual differentiation will facilitate understanding of complex intersecting gene pathways underlying sex differences in disease.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Ocañas SR, Ansere VA, Tooley KB, Hadad N, Chucair-Elliott AJ, Stanford DR, Rice S, Wronowski B, Pham KD, Hoffman JM, Austad SN, Stout MB, Freeman WM. Differential Regulation of Mouse Hippocampal Gene Expression Sex Differences by Chromosomal Content and Gonadal Sex. Mol Neurobiol 2022; 59:4669-4702. [PMID: 35589920 PMCID: PMC9119800 DOI: 10.1007/s12035-022-02860-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/25/2022] [Indexed: 01/23/2023]
Abstract
Common neurological disorders, like Alzheimer's disease (AD), multiple sclerosis (MS), and autism, display profound sex differences in prevalence and clinical presentation. However, sex differences in the brain with health and disease are often overlooked in experimental models. Sex effects originate, directly or indirectly, from hormonal or sex chromosomal mechanisms. To delineate the contributions of genetic sex (XX v. XY) versus gonadal sex (ovaries v. testes) to the epigenomic regulation of hippocampal sex differences, we used the Four Core Genotypes (FCG) mouse model which uncouples chromosomal and gonadal sex. Transcriptomic and epigenomic analyses of ~ 12-month-old FCG mouse hippocampus, revealed genomic context-specific regulatory effects of genotypic and gonadal sex on X- and autosome-encoded gene expression and DNA modification patterns. X-chromosomal epigenomic patterns, classically associated with X-inactivation, were established almost entirely by genotypic sex, independent of gonadal sex. Differences in X-chromosome methylation were primarily localized to gene regulatory regions including promoters, CpG islands, CTCF binding sites, and active/poised chromatin, with an inverse relationship between methylation and gene expression. Autosomal gene expression demonstrated regulation by both genotypic and gonadal sex, particularly in immune processes. These data demonstrate an important regulatory role of sex chromosomes, independent of gonadal sex, on sex-biased hippocampal transcriptomic and epigenomic profiles. Future studies will need to further interrogate specific CNS cell types, identify the mechanisms by which sex chromosomes regulate autosomes, and differentiate organizational from activational hormonal effects.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kyla B Tooley
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - David R Stanford
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Shannon Rice
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Benjamin Wronowski
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA
| | - Jessica M Hoffman
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Steven N Austad
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael B Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, 825 NE 13thStreet, Oklahoma City, OK, 73104, USA.
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Arnold AP. Integrating Sex Chromosome and Endocrine Theories to Improve Teaching of Sexual Differentiation. Cold Spring Harb Perspect Biol 2022; 14:a039057. [PMID: 35667790 PMCID: PMC9438782 DOI: 10.1101/cshperspect.a039057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Major sex differences in mammalian tissues are functionally tied to reproduction and evolved as adaptations to meet different reproductive needs of females and males. They were thus directly controlled by gonadal hormones. Factors encoded on the sex chromosomes also cause many sex differences in diverse tissues because they are present in different doses in XX and XY cells. The sex chromosome effects likely evolved not because of demands of reproduction, but as side effects of genomic forces that adaptively reduced sexual inequality. Sex-specific effects of particular factors, including gonadal hormones, therefore, are not necessarily explained as adaptations for reproduction, but also as potential factors offsetting, rather than producing, sex differences. The incorporation of these concepts would improve future teaching about sexual differentiation.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California 90095-7239, USA
| |
Collapse
|
11
|
The spectrum of sex differences in cancer. Trends Cancer 2022; 8:303-315. [PMID: 35190302 PMCID: PMC8930612 DOI: 10.1016/j.trecan.2022.01.013] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/08/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Sex differences in cellular and systems biology have been evolutionarily selected to optimize reproductive success in all species with little (sperm) and big (ova) gamete producers. They are evident from the time of fertilization and accrue throughout development through genetic, epigenetic, and circulating sex hormone-dependent mechanisms. Among other effects, they significantly impact on chromatin organization, metabolism, cell cycle regulation, immunity, longevity, and cancer risk and survival. Sex differences in cancer should be expected and accounted for in basic, translational, and clinical oncology research.
Collapse
|
12
|
Wierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, den Braber A, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Calhoun VD, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Chaim‐Avancini TM, Ching CRK, Clark VP, Conrod PJ, Conzelmann A, Crivello F, Davey CG, Dickie EW, Ehrlich S, van't Ent D, Fisher SE, Fouche J, Franke B, Fuentes‐Claramonte P, de Geus EJC, Di Giorgio A, Glahn DC, Gotlib IH, Grabe HJ, Gruber O, Gruner P, Gur RE, Gur RC, Gurholt TP, de Haan L, Haatveit B, Harrison BJ, Hartman CA, Hatton SN, Heslenfeld DJ, van den Heuvel OA, Hickie IB, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James AC, Jiang J, Jönsson EG, Joska JA, Kalnin AJ, Klein M, Koenders L, Kolskår KK, Krämer B, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lee PH, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald BC, McDonald C, McIntosh AM, McMahon KL, McPhilemy G, et alWierenga LM, Doucet GE, Dima D, Agartz I, Aghajani M, Akudjedu TN, Albajes‐Eizagirre A, Alnæs D, Alpert KI, Andreassen OA, Anticevic A, Asherson P, Banaschewski T, Bargallo N, Baumeister S, Baur‐Streubel R, Bertolino A, Bonvino A, Boomsma DI, Borgwardt S, Bourque J, den Braber A, Brandeis D, Breier A, Brodaty H, Brouwer RM, Buitelaar JK, Busatto GF, Calhoun VD, Canales‐Rodríguez EJ, Cannon DM, Caseras X, Castellanos FX, Chaim‐Avancini TM, Ching CRK, Clark VP, Conrod PJ, Conzelmann A, Crivello F, Davey CG, Dickie EW, Ehrlich S, van't Ent D, Fisher SE, Fouche J, Franke B, Fuentes‐Claramonte P, de Geus EJC, Di Giorgio A, Glahn DC, Gotlib IH, Grabe HJ, Gruber O, Gruner P, Gur RE, Gur RC, Gurholt TP, de Haan L, Haatveit B, Harrison BJ, Hartman CA, Hatton SN, Heslenfeld DJ, van den Heuvel OA, Hickie IB, Hoekstra PJ, Hohmann S, Holmes AJ, Hoogman M, Hosten N, Howells FM, Hulshoff Pol HE, Huyser C, Jahanshad N, James AC, Jiang J, Jönsson EG, Joska JA, Kalnin AJ, Klein M, Koenders L, Kolskår KK, Krämer B, Kuntsi J, Lagopoulos J, Lazaro L, Lebedeva IS, Lee PH, Lochner C, Machielsen MWJ, Maingault S, Martin NG, Martínez‐Zalacaín I, Mataix‐Cols D, Mazoyer B, McDonald BC, McDonald C, McIntosh AM, McMahon KL, McPhilemy G, van der Meer D, Menchón JM, Naaijen J, Nyberg L, Oosterlaan J, Paloyelis Y, Pauli P, Pergola G, Pomarol‐Clotet E, Portella MJ, Radua J, Reif A, Richard G, Roffman JL, Rosa PGP, Sacchet MD, Sachdev PS, Salvador R, Sarró S, Satterthwaite TD, Saykin AJ, Serpa MH, Sim K, Simmons A, Smoller JW, Sommer IE, Soriano‐Mas C, Stein DJ, Strike LT, Szeszko PR, Temmingh HS, Thomopoulos SI, Tomyshev AS, Trollor JN, Uhlmann A, Veer IM, Veltman DJ, Voineskos A, Völzke H, Walter H, Wang L, Wang Y, Weber B, Wen W, West JD, Westlye LT, Whalley HC, Williams SCR, Wittfeld K, Wolf DH, Wright MJ, Yoncheva YN, Zanetti MV, Ziegler GC, de Zubicaray GI, Thompson PM, Crone EA, Frangou S, Tamnes CK. Greater male than female variability in regional brain structure across the lifespan. Hum Brain Mapp 2022; 43:470-499. [PMID: 33044802 PMCID: PMC8675415 DOI: 10.1002/hbm.25204] [Show More Authors] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/10/2020] [Accepted: 09/05/2020] [Indexed: 12/25/2022] Open
Abstract
For many traits, males show greater variability than females, with possible implications for understanding sex differences in health and disease. Here, the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Consortium presents the largest-ever mega-analysis of sex differences in variability of brain structure, based on international data spanning nine decades of life. Subcortical volumes, cortical surface area and cortical thickness were assessed in MRI data of 16,683 healthy individuals 1-90 years old (47% females). We observed significant patterns of greater male than female between-subject variance for all subcortical volumetric measures, all cortical surface area measures, and 60% of cortical thickness measures. This pattern was stable across the lifespan for 50% of the subcortical structures, 70% of the regional area measures, and nearly all regions for thickness. Our findings that these sex differences are present in childhood implicate early life genetic or gene-environment interaction mechanisms. The findings highlight the importance of individual differences within the sexes, that may underpin sex-specific vulnerability to disorders.
Collapse
Affiliation(s)
- Lara M Wierenga
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
| | - Gaelle E Doucet
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Boys Town National Research HospitalOmahaNebraskaUSA
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, CityUniversity of LondonLondonUK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Research & InnovationGGZ inGeestAmsterdamThe Netherlands
- Institute of Education and Child Studies, Forensic Family and Youth CareLeiden UniversityLeidenThe Netherlands
| | - Theophilus N Akudjedu
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
- Institute of Medical Imaging & Visualisation, Faculty of Health & Social SciencesBournemouth UniversityBournemouthUK
| | - Anton Albajes‐Eizagirre
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Dag Alnæs
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Alan Anticevic
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Philip Asherson
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Nuria Bargallo
- Imaging Diagnostic CenterHospital ClínicBarcelonaSpain
- Magnetic Resonance Image Core FacilityIDIBAPSBarcelonaSpain
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | | | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Aurora Bonvino
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
| | - Dorret I Boomsma
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of PsychiatryUniversity of LübeckLübeckGermany
| | - Josiane Bourque
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
| | - Anouk den Braber
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
- Alzheimer CenterAmsterdam UMC, Location VUMCAmsterdamThe Netherlands
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric HospitalUniversity of ZurichZurichSwitzerland
- Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
- Neuroscience Centre ZurichUniversity and ETH ZurichZurichSwitzerland
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Henry Brodaty
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Dementia Centre for Research Collaboration, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Jan K Buitelaar
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
- Karakter Child and Adolescent Psychiatry University CentreNijmegenThe Netherlands
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Vince D Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State, Georgia TechAtlantaGeorgiaUSA
| | - Erick J Canales‐Rodríguez
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and GenomicsCardiff UniversityCardiffUK
| | - Francisco X Castellanos
- Department of Child and Adolescent PsychiatryNYU Grossman School of MedicineNew YorkNew YorkUSA
- Nathan Kline Institute for Psychiatric ResearchOrangeburgNew YorkUSA
| | - Tiffany M Chaim‐Avancini
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Christopher RK Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
- Mind Research NetworkAlbuquerqueNew MexicoUSA
| | - Patricia J Conrod
- CHU Sainte‐Justine Research CenterMontrealQuebecCanada
- Department of PsychiatryUniversity of MontrealMontrealCanada
| | - Annette Conzelmann
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyUniversity of TübingenTübingenGermany
- Department of Psychology (Clinical Psychology II)PFH – Private University of Applied SciencesGöttingenGermany
| | - Fabrice Crivello
- Groupe d'Imagerie NeurofonctionnelleInstitut des Maladies NeurodégénérativesBordeauxFrance
| | - Christopher G Davey
- Centre for Youth Mental HealthUniversity of MelbourneParkvilleVictoriaAustralia
- OrygenParkvilleVictoriaAustralia
| | - Erin W Dickie
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental Neurosciences; Technische Universität Dresden, Faculty of MedicineUniversity Hospital C.G. CarusDresdenGermany
| | - Dennis van't Ent
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | - Simon E Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jean‐Paul Fouche
- Department of Psychiatry and Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Barbara Franke
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
| | - Paola Fuentes‐Claramonte
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Eco JC de Geus
- Department of Biological PsychologyVU University AmsterdamAmsterdamThe Netherlands
| | | | - David C Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- Olin Center for Neuropsychiatric Research, Institute of LivingHartford HospitalHartfordConnecticutUSA
| | - Ian H Gotlib
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Hans J Grabe
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Oliver Gruber
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Patricia Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - Raquel E Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Ruben C Gur
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Lieuwe de Haan
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Ben J Harrison
- Melbourne Neuropsychiatry Centre, Department of PsychiatryThe University of Melbourne & Melbourne HealthMelbourneAustralia
| | - Catharina A Hartman
- Interdisciplinary Center Psychopathology and Emotion regulationUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sean N Hatton
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Dirk J Heslenfeld
- Departments of Experimental and Clinical PsychologyVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamThe Netherlands
- Department of Anatomy & Neurosciences, Amsterdam NeuroscienceAmsterdam UMC, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Ian B Hickie
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Pieter J Hoekstra
- Department of PsychiatryUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental HealthUniversity of Heidelberg, Medical Faculty MannheimMannheimGermany
| | - Avram J Holmes
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
- Department of PsychologyYale UniversityNew HavenConnecticutUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Martine Hoogman
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Norbert Hosten
- Institute of Diagnostic Radiology and NeuroradiologyUniversity Medicine GreifswaldGreifswaldGermany
| | - Fleur M Howells
- Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Chaim Huyser
- De Bascule, Academic center child and adolescent psychiatryDuivendrechtThe Netherlands
- Amsterdam UMC Department of Child and Adolescent PsychiatryAmsterdamThe Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Anthony C James
- Department of PsychiatryWarneford HospitalOxfordUK
- Highfield UnitWarneford HospitalOxfordUK
| | - Jiyang Jiang
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - John A Joska
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Andrew J Kalnin
- Department of RadiologyThe Ohio State University College of MedicineColumbusOhioUSA
| | | | - Marieke Klein
- Department of Psychiatry, University Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Laura Koenders
- Department of Early PsychosisAmsterdam UMCAmsterdamThe Netherlands
| | - Knut K Kolskår
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
- Sunnaas Rehabilitation Hospital HTNesoddenNorway
| | - Bernd Krämer
- Section for Experimental Psychopathology and Neuroimaging, Department of General PsychiatryHeidelberg University HospitalHeidelbergGermany
| | - Jonna Kuntsi
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience Thompson InstituteBirtinyaQueenslandAustralia
- University of the Sunshine CoastSunshine CoastQueenslandAustralia
| | - Luisa Lazaro
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Child and Adolescent Psychiatry and PsychologyHospital ClínicBarcelonaSpain
- August Pi i Sunyer Biomedical Research Institut (IDIBAPS)BarcelonaSpain
- Department of MedicineUniversity of BarcelonaBarcelonaSpain
| | - Irina S Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Phil H Lee
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - Christine Lochner
- SA MRC Unit on Risk and Resilience in Mental Disorders, Department of PsychiatryStellenbosch UniversityCape TownWestern CapeSouth Africa
| | | | - Sophie Maingault
- Institut des maladies neurodégénérativesUniversité de BordeauxBordeauxFrance
| | - Nicholas G Martin
- Genetic EpidemiologyQIMR Berghofer Medical Research InstituteBrisbaneQueenslandAustralia
| | - Ignacio Martínez‐Zalacaín
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - David Mataix‐Cols
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
| | - Bernard Mazoyer
- University of BordeauxBordeauxFrance
- Bordeaux University HospitalBordeauxFrance
| | - Brenna C McDonald
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | | | - Katie L McMahon
- Herston Imaging Research Facility and School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life SciencesMaastricht UniversityMaastrichtThe Netherlands
| | - José M Menchón
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Clinical SciencesUniversity of BarcelonaBarcelonaSpain
| | - Jilly Naaijen
- Department of Cognitive NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Lars Nyberg
- Department of Radiation SciencesUmeå UniversityUmeåSweden
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Jaap Oosterlaan
- Emma Children's Hospital, Amsterdam UMC University of Amsterdam and Vrije Universiteit AmsterdamEmma Neuroscience Group, Department of Pediatrics, Amsterdam Reproduction & DevelopmentAmsterdamThe Netherlands
- Clinical Neuropsychology SectionVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - Paul Pauli
- Department of PsychologyUniversity of WürzburgWürzburgGermany
- Centre of Mental Health, Medical FacultyUniversity of WürzburgWürzburgGermany
| | - Giulio Pergola
- Department of Basic Medical Science, Neuroscience and Sense OrgansUniversity of Bari Aldo MoroBariItaly
- Lieber Institute for Brain DevelopmentJohns Hopkins Medical CampusBaltimoreMary LandUSA
| | - Edith Pomarol‐Clotet
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Maria J Portella
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of PsychiatryInstitut d'Investigació Biomèdica Sant PauBarcelonaSpain
| | - Joaquim Radua
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care ServicesStockholm County CouncilStockholmSweden
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Early Psychosis: Interventions and Clinical‐detection (EPIC) lab, Department of Psychosis StudiesInstitute of Psychiatry, Psychology and Neuroscience, King's College LondonLondonUK
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital FrankfurtFrankfur am MaintGermany
| | - Geneviève Richard
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
| | - Joshua L Roffman
- Department of PsychiatryMassachusetts General Hospital and Harvard Medical SchoolCharlestownMassachusettsUSA
| | - Pedro GP Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthew D Sacchet
- Center for Depression, Anxiety, and Stress ResearchMcLean Hospital, Harvard Medical SchoolBelmontMassachusettsUSA
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
- Neuropsychiatric InstituteThe Prince of Wales HospitalRandwickNew South WalesAustralia
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationBarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
| | | | - Andrew J Saykin
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
- Indiana Alzheimer Disease CenterIndianapolisIndianaUSA
| | - Mauricio H Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Kang Sim
- West Region, Institute of Mental HealthSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Andrew Simmons
- Department of Neuroimaging, Institute of PsychiatryPsychology and Neurology, King's College LondonLondonUK
| | - Jordan W Smoller
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic MedicineMassachusetts General HospitalBostonMassachusettsUSA
| | - Iris E Sommer
- Department of Biomedical Sciences of Cells and Systems, Rijksuniversiteit GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carles Soriano‐Mas
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM)MadridSpain
- Department of Psychiatry, Bellvitge University HospitalBellvitge Biomedical Research Institute‐IDIBELLBarcelonaSpain
- Department of Psychobiology and Methodology in Health SciencesUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - Dan J Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Dept of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Lachlan T Strike
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Philip R Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - Henk S Temmingh
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Alexander S Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Julian N Trollor
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - Anne Uhlmann
- Department of Psychiatry and Mental HealthUniversity of Cape TownCape TownWestern CapeSouth Africa
- Department of Child and Adolescent Psychiatry and PsychotherapyFaculty of Medicine Carl Gustav Carus of TU DresdenDresdenGermany
| | - Ilya M Veer
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Dick J Veltman
- Department of Psychiatry & Amsterdam NeuroscienceAmsterdam UMC, location VUMCAmsterdamThe Netherlands
| | - Aristotle Voineskos
- Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - Henry Völzke
- Institute for Community MedicineUniversity Medicine GreifswaldGreifswaldGermany
- DZHK (German Centre for Cardiovascular Research), partner site GreifswaldGreifswaldGermany
- DZD (German Center for Diabetes Research), partner site GreifswaldGreifswaldGermany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité ‐ Universitätsmedizin Berlin, corporate member of Freie Universität BerlinHumboldt‐Universität zu Berlin, and Berlin Institute of HealthBerlinGermany
| | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Yang Wang
- Department of RadiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Bernd Weber
- Institute for Experimental Epileptology and Cognition ResearchUniversity Hospital BonnBonnGermany
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of PsychiatryUniversity of New South WalesSydneyNew South WalesAustralia
| | - John D West
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Lars T Westlye
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and AddictionOslo University HospitalOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Heather C Whalley
- Division of PsychiatryUniversity of EdinburghEdinburghUK
- Division of PsychiatryRoyal Edinburgh HospitalEdinburghUK
| | | | - Katharina Wittfeld
- Department of Psychiatry and PsychotherapyUniversity Medicine GreifswaldGreifswaldGermany
- German Center for Neurodegenerative Diseases (DZNE)Site Rostock/GreifswaldGreifswaldGermany
| | - Daniel H Wolf
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Margaret J Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Yuliya N Yoncheva
- Department of Child and Adolescent Psychiatry, NYU Child Study CenterHassenfeld Children's Hospital at NYU LangoneNew YorkNew YorkUSA
| | - Marcus V Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
- Instituto de Ensino e PesquisaHospital Sírio‐LibanêsSão PauloBrazil
| | - Georg C Ziegler
- Division of Molecular Psychiatry, Center of Mental HealthUniversity of WürzburgWürzburgGermany
| | - Greig I de Zubicaray
- Faculty of Health, Institute of Health and Biomedical InnovationQueensland University of Technology (QUT)BrisbaneQueenslandAustralia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Eveline A Crone
- Institute of PsychologyLeiden UniversityLeidenThe Netherlands
- Leiden Institute for Brain and CognitionLeidenThe Netherlands
- Department of Psychology, Education and Child Studies (DPECS), Erasmus School of Social and Behavioral SciencesErasmus University RotterdamThe Netherlands
| | - Sophia Frangou
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Centre for Brain HealthUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Christian K Tamnes
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Institute of Clinical MedicineUniversity of OsloOsloNorway
- Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway
- PROMENTA Research Center, Department of PsychologyUniversity of OsloOsloNorway
| |
Collapse
|
13
|
Taylor AM, Chadwick CI, Mehrabani S, Hrncir H, Arnold AP, Evans CJ. Sex differences in kappa opioid receptor antinociception is influenced by the number of X chromosomes in mouse. J Neurosci Res 2022; 100:183-190. [PMID: 32731302 PMCID: PMC8452150 DOI: 10.1002/jnr.24704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 01/03/2023]
Abstract
Kappa opioid receptor (KOR) agonists produce robust analgesia with minimal abuse liability and are considered promising pharmacological agents to manage chronic pain and itch. The KOR system is also notable for robust differences between the sexes, with females exhibiting lower analgesic response than males. Sexually dimorphic traits can be due to either the influence of gonadal hormones during development or adulthood, or due to the complement of genes expressed on the X or Y chromosome. Previous studies examining sex differences in KOR antinociception have relied on surgical or pharmacological manipulation of the gonads to determine whether sex hormones influence KOR function. While there are conflicting reports whether gonadal hormones influence KOR function, no study has examined these effects in context with sex chromosomes. Here, we use two genetic mouse models, the four core genotypes and XY*, to isolate the chromosomal and hormonal contributions to sex differences in KOR analgesia. Mice were treated with systemic KOR agonist (U50,488H) and thermal analgesia measured in the tail withdrawal assay. We found that KOR antinociception was influenced predominantly by the number of the X chromosomes. These data suggest that the dose and/or parental imprint on X gene(s) contribute significantly to the sexually dimorphism in KOR analgesia.
Collapse
Affiliation(s)
- Anna M.W. Taylor
- Department of Pharmacology, University of Alberta, Edmonton, Canada,Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Caylin I. Chadwick
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Sadaf Mehrabani
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, USA
| | - Haley Hrncir
- Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, USA
| | - Arthur P. Arnold
- Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, USA
| | - Christopher J. Evans
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, USA
| |
Collapse
|
14
|
Abstract
Significant sex differences exist across cellular, tissue organization, and body system scales to serve the distinct sex-specific functions required for reproduction. They are present in all animals that reproduce sexually and have widespread impacts on normal development, aging, and disease. Observed from the moment of fertilization, sex differences are patterned by sexual differentiation, a lifelong process that involves mechanisms related to sex chromosome complement and the epigenetic and acute activational effects of sex hormones. In this mini-review, we examine evidence for sex differences in cellular responses to DNA damage, their underlying mechanisms, and how they might relate to sex differences in cancer incidence and response to DNA-damaging treatments.
Collapse
Affiliation(s)
- Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
15
|
Fish EW, Tucker SK, Peterson RL, Eberhart JK, Parnell SE. Loss of tumor protein 53 protects against alcohol-induced facial malformations in mice and zebrafish. Alcohol Clin Exp Res 2021; 45:1965-1979. [PMID: 34581462 DOI: 10.1111/acer.14688] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/26/2021] [Accepted: 07/30/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alcohol exposure during the gastrulation stage of development causes the craniofacial and brain malformations that define fetal alcohol syndrome. These malformations, such as a deficient philtrum, are exemplified by a loss of midline tissue and correspond, at least in part, to regionally selective cell death in the embryo. The tumor suppressor protein Tp53 is an important mechanism for cell death, but the role of Tp53 in the consequences of alcohol exposure during the gastrulation stage has yet to be examined. The current studies used mice and zebrafish to test whether genetic loss of Tp53 is a conserved mechanism to protect against the effects of early developmental stage alcohol exposure. METHODS Female mice, heterozygous for a mutation in the Tp53 gene, were mated with Tp53 heterozygous males, and the resulting embryos were exposed during gastrulation on gestational day 7 (GD 7) to alcohol (two maternal injections of 2.9 g/kg, i.p., 4 h apart) or a vehicle control. Zebrafish mutants or heterozygotes for the tp53zdf1 M214K mutation and their wild-type controls were exposed to alcohol (1.5% or 2%) beginning 6 h postfertilization (hpf), the onset of gastrulation. RESULTS Examination of GD 17 mice revealed that eye defects were the most common phenotype among alcohol-exposed fetuses, occurring in nearly 75% of the alcohol-exposed wild-type fetuses. Tp53 gene deletion reduced the incidence of eye defects in both the heterozygous and mutant fetuses (to about 35% and 20% of fetuses, respectively) and completely protected against alcohol-induced facial malformations. Zebrafish (4 days postfertilization) also demonstrated alcohol-induced reductions of eye size and trabeculae length that were less common and less severe in tp53 mutants, indicating a protective effect of tp53 deletion. CONCLUSIONS These results identify an evolutionarily conserved role of Tp53 as a pathogenic mechanism for alcohol-induced teratogenesis.
Collapse
Affiliation(s)
- Eric W Fish
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott K Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Rachel L Peterson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Johann K Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, Texas, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, North Carolina, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA.,Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
16
|
Funk LC, Wan J, Ryan SD, Kaur C, Sullivan R, Roopra A, Weaver BA. p53 Is Not Required for High CIN to Induce Tumor Suppression. Mol Cancer Res 2021; 19:112-123. [PMID: 32948674 PMCID: PMC7810023 DOI: 10.1158/1541-7786.mcr-20-0488] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/14/2020] [Accepted: 09/13/2020] [Indexed: 11/16/2022]
Abstract
Chromosomal instability (CIN) is a hallmark of cancer. While low levels of CIN can be tumor promoting, high levels of CIN cause cell death and tumor suppression. The widely used chemotherapeutic, paclitaxel (Taxol), exerts its anticancer effects by increasing CIN above a maximally tolerated threshold. One significant outstanding question is whether the p53 tumor suppressor is required for the cell death and tumor suppression caused by high CIN. Both p53 loss and reduction of the mitotic kinesin, centromere-associated protein-E, cause low CIN. Combining both genetic insults in the same cell leads to high CIN. Here, we test whether high CIN causes cell death and tumor suppression even in the absence p53. Despite a surprising sex-specific difference in tumor spectrum and latency in p53 heterozygous animals, these studies demonstrate that p53 is not required for high CIN to induce tumor suppression. Pharmacologic induction of high CIN results in equivalent levels of cell death due to loss of essential chromosomes in p53+/+ and p53-/- cells, further demonstrating that high CIN elicits cell death independently of p53 function. IMPLICATIONS: These results provide support for the efficacy of anticancer therapies that induce high CIN, even in tumors that lack functional p53.
Collapse
Affiliation(s)
- Laura C Funk
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jun Wan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Sean D Ryan
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Charanjeet Kaur
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ruth Sullivan
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| | - Avtar Roopra
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin
| | - Beth A Weaver
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin.
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
17
|
Arnold AP. Four Core Genotypes and XY* mouse models: Update on impact on SABV research. Neurosci Biobehav Rev 2020; 119:1-8. [PMID: 32980399 PMCID: PMC7736196 DOI: 10.1016/j.neubiorev.2020.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022]
Abstract
The impact of two mouse models is reviewed, the Four Core Genotypes and XY* models. The models are useful for determining if the causes of sex differences in phenotypes are either hormonal or sex chromosomal, or both. Used together, the models also can distinguish between the effects of X or Y chromosome genes that contribute to sex differences in phenotypes. To date, the models have been used to uncover sex chromosome contributions to sex differences in a wide variety of phenotypes, including brain and behavior, autoimmunity and immunity, cardiovascular disease, metabolism, and Alzheimer's Disease. In some cases, use of the models has been a strategy leading to discovery of specific X or Y genes that protect from or exacerbate disease. Sex chromosome and hormonal factors interact, in some cases to reduce the effects of each other. Future progress will come from more extensive application of these models, and development of similar models in other species.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095-7239, United States.
| |
Collapse
|
18
|
Tolla E, Stevenson TJ. Sex Differences and the Neuroendocrine Regulation of Seasonal Reproduction by Supplementary Environmental Cues. Integr Comp Biol 2020; 60:1506-1516. [PMID: 32869105 DOI: 10.1093/icb/icaa096] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seasonal rhythms in reproduction are conserved across nature and optimize the timing of breeding to environmental conditions favorable for offspring and parent survival. The primary predictive cue for timing seasonal breeding is photoperiod. Supplementary cues, such as food availability, social signals, and temperature, fine-tune the timing of reproduction. Male and female animals show differences in the sensory detection, neural integration, and physiological responses to the same supplementary cue. The neuroendocrine regulation of sex-specific integration of predictive and supplementary cues is not well characterized. Recent findings indicate that epigenetic modifications underlie the organization of sex differences in the brain. It has also become apparent that deoxyribonucleic acid methylation and chromatin modifications play an important role in the regulation and timing of seasonal rhythms. This article will highlight evidence for sex-specific responses to supplementary cues using data collected from birds and mammals. We will then emphasize that supplementary cues are integrated in a sex-dependent manner due to the neuroendocrine differences established and maintained by the organizational and activational effects of reproductive sex hormones. We will then discuss how epigenetic processes involved in reproduction provide a novel link between early-life organizational effects in the brain and sex differences in the response to supplementary cues.
Collapse
Affiliation(s)
- Elisabetta Tolla
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Tyler J Stevenson
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
19
|
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, Rhee G, Rosen SF, Chen S, Klein RS, Imoukhuede P, Luo J. Sex differences in cancer mechanisms. Biol Sex Differ 2020; 11:17. [PMID: 32295632 PMCID: PMC7161126 DOI: 10.1186/s13293-020-00291-x] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
We now know that cancer is many different diseases, with great variation even within a single histological subtype. With the current emphasis on developing personalized approaches to cancer treatment, it is astonishing that we have not yet systematically incorporated the biology of sex differences into our paradigms for laboratory and clinical cancer research. While some sex differences in cancer arise through the actions of circulating sex hormones, other sex differences are independent of estrogen, testosterone, or progesterone levels. Instead, these differences are the result of sexual differentiation, a process that involves genetic and epigenetic mechanisms, in addition to acute sex hormone actions. Sexual differentiation begins with fertilization and continues beyond menopause. It affects virtually every body system, resulting in marked sex differences in such areas as growth, lifespan, metabolism, and immunity, all of which can impact on cancer progression, treatment response, and survival. These organismal level differences have correlates at the cellular level, and thus, males and females can fundamentally differ in their protections and vulnerabilities to cancer, from cellular transformation through all stages of progression, spread, and response to treatment. Our goal in this review is to cover some of the robust sex differences that exist in core cancer pathways and to make the case for inclusion of sex as a biological variable in all laboratory and clinical cancer research. We finish with a discussion of lab- and clinic-based experimental design that should be used when testing whether sex matters and the appropriate statistical models to apply in data analysis for rigorous evaluations of potential sex effects. It is our goal to facilitate the evaluation of sex differences in cancer in order to improve outcomes for all patients.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA.
| | - Joseph S Lagas
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Nathan Rockwell
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Sarah F Rosen
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Si Chen
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Robyn S Klein
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Princess Imoukhuede
- Department of Biomedical Engineering, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, 63110, USA
| |
Collapse
|
20
|
Arnold AP. Sexual differentiation of brain and other tissues: Five questions for the next 50 years. Horm Behav 2020; 120:104691. [PMID: 31991182 PMCID: PMC7440839 DOI: 10.1016/j.yhbeh.2020.104691] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
This paper is part of the celebration of the 50th anniversary of founding of the journal Hormones and Behavior, the official journal of the Society for Behavioral Neuroendocrinology. All sex differences in phenotypic development stem from the sexual imbalance in X and Y chromosomes, which are the only known differences in XX and XY zygotes. The sex chromosome genes act within cells to cause differences in phenotypes of XX and XY cells throughout the body. In the gonad, they determine the type of gonad, leading to differences in secretion of testicular vs. ovarian hormones, which cause further sex differences in tissue function. These current ideas of sexual differentiation are briefly contrasted with a hormones-only view of sexual differentiation of the last century. The multiple, independent action of diverse sex-biasing agents means that sex-biased factors can be synergistic, increasing sex differences, or compensatory, making the two sexes more equal. Several animal models have been fruitful in demonstrating sex chromosome effects, and interactions with gonadal hormones. MRI studies of human brains demonstrate variation in brain structure associated with both differences in gonadal hormones, and in the number of X and Y chromosomes. Five unanswered questions are posed as a challenge to future investigators to improve understanding of sexual differentiation throughout the body.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department Integrative Biology and Physiology, University of California, Los Angeles, United States of America.
| |
Collapse
|
21
|
Peper JS, Burke SM, Wierenga LM. Sex differences and brain development during puberty and adolescence. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:25-54. [PMID: 33008529 DOI: 10.1016/b978-0-444-64123-6.00003-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sex differences in behavior, and whether these behavioral differences are related to sex differences in brain development, has been a longstanding topic of debate. Presumably, sex differences can provide critically important leads for explaining the etiology of various illnesses that show (i) large sex differences in prevalence and (ii) have an origin before or during adolescence. The general aim of this chapter is to provide an overview of scientific studies on sex differences in normative brain and behavioral development across puberty and adolescence, including the (sex) hormone-driven transition phase of puberty. Moreover, we describe the literature on brain and behavioral development in gender dysphoria, a severe and persistent incongruence between the self-identified gender and the assigned sex at birth. From the literature it becomes clear there is evidence for a specific link between pubertal maturation and developmental changes in arousal, motivation, and emotion. However, this link is rather similar between boys and girls. Moreover, although there is substantial evidence for sex differences in mean brain structure, these have not always been linked to sex differences in behavior, cognition, or psychopathology. Furthermore, there is little evidence for sex differences in brain development and thus, studies so far have been unable to explain sex differences in cognition. Suggestions for future research and methodologic considerations are provided.
Collapse
Affiliation(s)
- Jiska S Peper
- Department of Psychology, Leiden University, Leiden, The Netherlands.
| | - Sarah M Burke
- Department of Psychology, Leiden University, Leiden, The Netherlands
| | - Lara M Wierenga
- Department of Psychology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
22
|
Haupt S, Caramia F, Herschtal A, Soussi T, Lozano G, Chen H, Liang H, Speed TP, Haupt Y. Identification of cancer sex-disparity in the functional integrity of p53 and its X chromosome network. Nat Commun 2019; 10:5385. [PMID: 31772231 PMCID: PMC6879765 DOI: 10.1038/s41467-019-13266-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
The disproportionately high prevalence of male cancer is poorly understood. We tested for sex-disparity in the functional integrity of the major tumor suppressor p53 in sporadic cancers. Our bioinformatics analyses expose three novel levels of p53 impact on sex-disparity in 12 non-reproductive cancer types. First, TP53 mutation is more frequent in these cancers among US males than females, with poorest survival correlating with its mutation. Second, numerous X-linked genes are associated with p53, including vital genomic regulators. Males are at unique risk from alterations of their single copies of these genes. High expression of X-linked negative regulators of p53 in wild-type TP53 cancers corresponds with reduced survival. Third, females exhibit an exceptional incidence of non-expressed mutations among p53-associated X-linked genes. Our data indicate that poor survival in males is contributed by high frequencies of TP53 mutations and an inability to shield against deregulated X-linked genes that engage in p53 networks.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Alan Herschtal
- Department of Biometrics Novotech, Carlton, Victoria, 3053, Australia
| | - Thierry Soussi
- Department of Oncology-Pathology, Karolinska Institute, Cancer Center Karolinska, Solna, Sweden.,INSERM, U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Guillermina Lozano
- The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hu Chen
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Terence P Speed
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia.,Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, Victoria, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Zhao J, Tian Y, Zhang H, Qu L, Chen Y, Liu Q, Luo Y, Wu X. p53 Mutant p53 N236S Induces Neural Tube Defects in Female Embryos. Int J Biol Sci 2019; 15:2006-2015. [PMID: 31523200 PMCID: PMC6743294 DOI: 10.7150/ijbs.31451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/26/2019] [Indexed: 12/18/2022] Open
Abstract
The p53 is one of the most important tumor suppressors through surveillance of DNA damages and abnormal proliferation signals, and activation the cell cycle arrest and apoptosis in response to stress. However, the mutation of p53 is known to be oncogenic by both loss of function in inhibiting cell cycle progress and gain of function in promoting abnormal proliferation. In the present study, we have established a knock in mouse model containing an Asn-to-Ser substitution at p53 amino acid 236 by homologous recombination (p53N236S). Other than tumorigenesis phenotype, we found that p53S/S mice displayed female-specific phenotype of open neural tube in brain (exencephaly) and spinal cord (spina bifida). The occurrence rate for embryonic exencephaly is 68.5% in female p53S/S mice, which is much more than that of in p53-/- mice (37.1%) in the same genetic background. Further study found that p53N236S mutation increased neuronal proliferation and decreased neuronal differentiation and apoptosis. To rescue the phenotype, we inhibited cell proliferation by crossing Wrn-/- mice with p53S/S mice. The occurrence of NTDs in p53S/S Wrn-/- mice was 35.2%, thus suggesting that the inhibition of cell proliferation through a Wrn defect partially rescued the exencephaly phenotype in p53S/S mice. We also report that p53S decreased expression of UTX at mRNA and protein level via increasing Xist transcript, result in high female-specific H3K27me3 expression and repressed Mash1 transcription, which facilitating abnormal proliferation, differentiation, and apoptosis, result in the mis-regulation of neurodevelopment and neural tube defects (NTDs).
Collapse
Affiliation(s)
- Jinzhi Zhao
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yingbing Tian
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Huihui Zhang
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Lianhua Qu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Yu Chen
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Qing Liu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Ying Luo
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming, Yunnan 650500, China
| |
Collapse
|
24
|
Loss of p53 Causes Stochastic Aberrant X-Chromosome Inactivation and Female-Specific Neural Tube Defects. Cell Rep 2019; 27:442-454.e5. [DOI: 10.1016/j.celrep.2019.03.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 02/11/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022] Open
|
25
|
Arnold AP. The mouse as a model of fundamental concepts related to Turner syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:76-85. [PMID: 30779420 DOI: 10.1002/ajmg.c.31681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Although XO mice do not show many of the overt phenotypic features of Turner syndrome (TS; 45,X or XO), mice and humans share different classes of genes on the X chromosome that are more or less likely to cause TS phenotypes. Based on the evolutionary history of the sex chromosomes, and the pattern of dosage balancing among sex chromosomal and autosomal genes in functional gene networks, it is possible to prioritize types of X genes for study as potential causes of features of TS. For example, X-Y gene pairs are among the most interesting because of the convergent effects of X and Y genes that both are likely to prevent the effects of TS in XX and XY individuals. Many of the high-priority genes are shared by mouse and human X chromosomes, but are easier to study in genetically tractable mouse models. Several mouse models, used primarily for the study of sex differences in physiology and disease, also produce XO mice that can be investigated to understand the effects of X monosomy. Using these models will lead to the identification of specific X genes that make a difference when present in one or two copies. These studies will help to achieve a better appreciation of the contribution of these specific X genes to the syndromic features of TS.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, California
| |
Collapse
|
26
|
Liu J, Li Z, Ye R, Liu J, Ren A. Periconceptional folic acid supplementation and sex difference in prevention of neural tube defects and their subtypes in China: results from a large prospective cohort study. Nutr J 2018; 17:115. [PMID: 30541549 PMCID: PMC6291989 DOI: 10.1186/s12937-018-0421-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Folic acid (FA) supplementation is known to prevent neural tube defects (NTDs). We examined whether this preventive effect differs by the sex of the infant. METHODS Data were gathered from a large population-based cohort study in China that evaluated the effects of FA supplementation on NTDs. All births at 20 complete gestational weeks, including live births, stillbirths, and pregnancy terminations, and all NTDs, regardless of gestational age, were recorded. In a northern China province, a total of 30,801 singleton live births to women whose use of FA supplements during the first trimester was known at the time were included in the study. The birth prevalence of NTDs was classified by sex, subtype, and maternal FA supplementation. Male to female rate ratios [RR] and their 95% confidence intervals [CI] were calculated. RESULTS A total of 106 NTDs cases were recorded. The overall prevalence of NTDs was 2.5‰ among males and 4.4‰ among females; NTDs were less prevalent among males than among females (RR, 0.58; 95% CI, 0.54-0.63). There was a higher prevalence of anencephaly (RR, 0.34; 95% CI, 0.27-0.43) and spina bifida (RR, 0.73; 95% CI, 0.63-0.84) among females. However, FA supplementation led to significantly greater decreases in the rates of anencephaly (4.8‰) and total NTDs (7.6‰) in females than in males (1.6‰ and 2.8‰, respectively). CONCLUSIONS FA supplementation successfully reduces the prevalence of NTDs in both male and female infants, although we found a significantly greater decrease in anencephaly and total NTDs in females than in males. How the protective effects of FA supplementation affect the sexes differently needs to be studied further.
Collapse
Affiliation(s)
- Jufen Liu
- Institute of Reproductive and Child Health / Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, 100191 People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191 People’s Republic of China
| | - Zhiwen Li
- Institute of Reproductive and Child Health / Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, 100191 People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191 People’s Republic of China
| | - Rongwei Ye
- Institute of Reproductive and Child Health / Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, 100191 People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191 People’s Republic of China
| | - Jianmeng Liu
- Institute of Reproductive and Child Health / Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, 100191 People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191 People’s Republic of China
| | - Aiguo Ren
- Institute of Reproductive and Child Health / Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, 100191 People’s Republic of China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, 100191 People’s Republic of China
| |
Collapse
|
27
|
Liu J, Xie J, Li Z, Greene NDE, Ren A. Sex differences in the prevalence of neural tube defects and preventive effects of folic acid (FA) supplementation among five counties in northern China: results from a population-based birth defect surveillance programme. BMJ Open 2018; 8:e022565. [PMID: 30413501 PMCID: PMC6231556 DOI: 10.1136/bmjopen-2018-022565] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Sex differences in prevalence of neural tube defects (NTDs) have previously been recognised; however, the different susceptibility of men and women have not been examined in relation to the effects of folic acid (FA) supplementation. We hypothesised that FA may have a disproportionate effect that alters the sex-specific prevalence of NTDs. SETTING Data from two time points, before (2003-2004) and after (2011-2016) the start of the supplementation programme, were obtained from a population-based birth defect surveillance programme among five counties in northern China. All live births (28 or more complete gestational weeks), all stillbirths of at least 20 weeks' gestational age and pregnancy terminations at any gestational age following the prenatal diagnosis of NTDs were included. PARTICIPANTS A total of 25 249 and 83 996 births before and after the programme were included respectively. PRIMARY AND SECONDARY OUTCOME MEASURES The prevalence of NTDs by sex and subtype, Male:female rate ratios and their 95% CI were calculated. RESULTS Overall, NTDs were less prevalent among men than among women (rate ratio (RR) 0.92; 95% CI 0.90 to 0.94), so was anencephaly (RR 0.77; 95% CI 0.73 to 0.81) and encephalocele (RR 0.75; 95% CI 0.61 to 0.92), while spina bifida showed a male predominance (RR 1.10; 95% CI 1.05 to 1.15). The overall prevalence of NTDs decreased by 78/10 000 in men and 108.7/10 000 in women from 2003 to 2004 to 2011 to 2016. There was a significant sex difference in the magnitude of reduction, being greater in women than men, particularly for anencephaly. CONCLUSIONS The prevalence of NTDs decreased in both sexes after the implementation of a massive FA supplementation programme. While female predominance was observed in open NTDs and total NTDs, they also had a greater rate of decrease in NTDs after the supplementation programme.
Collapse
Affiliation(s)
- Jufen Liu
- Institute of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jing Xie
- Institute of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zhiwen Li
- Institute of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Aiguo Ren
- Institute of Reproductive and Child Health, Key Laboratory of Reproductive Health, National Health Commission of the People’s Republic of China, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| |
Collapse
|
28
|
Fischer NW, Prodeus A, Gariépy J. Survival in males with glioma and gastric adenocarcinoma correlates with mutant p53 residual transcriptional activity. JCI Insight 2018; 3:121364. [PMID: 30089713 DOI: 10.1172/jci.insight.121364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND There is currently no clinical distinction between different TP53 mutations, despite increasing evidence that not all mutations have equally deleterious effects on the activity of the encoded tumor suppressor protein p53. The objective of this study was to determine whether these biological differences have clinical significance. METHODS This retrospective cohort analysis included 2,074 patients with sporadic TP53 mutations (403 unique mutations) and 1,049 germline TP53 mutation carriers (188 unique mutations). Survival was projected by stratifying patients according to their p53 mutant-specific residual transcriptional activity scores. RESULTS Pan-cancer survival analyses revealed a strong association between increased mutant p53 residual activity and improved survival in males with glioma and gastric adenocarcinoma (P = 0.002 and P = 0.02) that was not present in the female cohorts (P = 0.16 and P = 0.50). Male glioma and gastric cancer patients with TP53 mutations resulting in >5% transcriptional activity had 3.1-fold (95% CI, 2.4-3.8; P = 0.002; multivariate analysis hazard ratio [HR]) and 4.6-fold (95% CI, 3.7-5.6; P = 0.001; multivariate analysis HR) lower risk of death as compared with patients harboring inactive (0% activity) p53 mutants. The correlation between mutant p53 residual activity with survival was recapitulated in the dataset of germline TP53 mutation carriers (HR = 3.0, 95% CI, 2.7-3.4, P < 0.001 [females]; HR = 2.2, 95% CI, 1.8-2.6, P < 0.001 [males]), where brain and gastric tumors were more common among males (P < 0.001 and P = 0.001, respectively). CONCLUSION The retention of mutant p53 transcriptional activity prognosticates superior survival for men with glioma and gastric adenocarcinoma harboring sporadic TP53 mutations. Among germline TP53 mutation carriers, increased residual transcriptional activity is correlated with prolonged lifetime cancer survival and delayed tumor onset, and males are more prone to develop brain and gastric tumors. FUNDING Canadian Institutes of Health Research (no. 148556).
Collapse
Affiliation(s)
- Nicholas W Fischer
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Aaron Prodeus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jean Gariépy
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
29
|
Wierenga LM, Sexton JA, Laake P, Giedd JN, Tamnes CK. A Key Characteristic of Sex Differences in the Developing Brain: Greater Variability in Brain Structure of Boys than Girls. Cereb Cortex 2018; 28:2741-2751. [PMID: 28981610 PMCID: PMC6041809 DOI: 10.1093/cercor/bhx154] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022] Open
Abstract
In many domains, including cognition and personality, greater variability is observed in males than in females in humans. However, little is known about how variability differences between sexes are represented in the brain. The present study tested whether there is a sex difference in variance in brain structure using a cohort of 643 males and 591 females aged between 3 and 21 years. The broad age-range of the sample allowed us to test if variance differences in the brain differ across age. We observed significantly greater male than female variance for several key brain structures, including cerebral white matter and cortex, hippocampus, pallidum, putamen, and cerebellar cortex volumes. The differences were observed at both upper and lower extremities of the distributions and appeared stable across development. These findings move beyond mean levels by showing that sex differences were pronounced for variability, thereby providing a novel perspective on sex differences in the developing brain.
Collapse
Affiliation(s)
- Lara M Wierenga
- Brain and Development Research Center, Leiden University, RB Leiden, The Netherlands
| | - Joseph A Sexton
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Petter Laake
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Jay N Giedd
- Department of Psychiatry, University of California, San Diego, CA, USA
| | | | | |
Collapse
|
30
|
de Souza Santos R, Frank AP, Clegg DJ. The impact of sex and sex hormones on cell function. Steroids 2017; 128:72-74. [PMID: 29104097 DOI: 10.1016/j.steroids.2017.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 11/23/2022]
Abstract
The influence of sex on cellular function and metabolism is often ill defined in many human and animal studies. The National Institute of Health (NIH) recognized this gap in scientific knowledge and mandated that sex be factored into the design and data analysis of all cell culture and animal studies. Therefore, it is critical to understand how to incorporate sex in pre-clinical and clinical research. Here, we discuss how the sexual identify of cells influences experimental responses in cell culture and we highlight the importance of the culture media and its constituents to the function of cells. We further discuss the importance of understanding the influence and interactions between sex hormones and sex chromosomes. A deeper understanding of how sex chromosomes and sex hormones function as variables in complex biological systems may lead to better, more personalized medical therapies.
Collapse
Affiliation(s)
- Roberta de Souza Santos
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| | - Aaron P Frank
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| | - Deborah J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
31
|
Ippolito JE, Yim AKY, Luo J, Chinnaiyan P, Rubin JB. Sexual dimorphism in glioma glycolysis underlies sex differences in survival. JCI Insight 2017; 2:92142. [PMID: 28768910 DOI: 10.1172/jci.insight.92142] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/27/2017] [Indexed: 01/10/2023] Open
Abstract
The molecular bases for sex differences in cancer remain undefined and how to incorporate them into risk stratification remains undetermined. Given sex differences in metabolism and the inverse correlation between fluorodeoxyglucose (FDG) uptake and survival, we hypothesized that glycolytic phenotyping would improve glioma subtyping. Using retrospectively acquired lower-grade glioma (LGG) transcriptome data from The Cancer Genome Atlas (TCGA), we discovered male-specific decreased survival resulting from glycolytic gene overexpression. Patients within this high-glycolytic group showed significant differences in the presence of key genomic alterations (i.e., 1p/19q codeletion, CIC, EGFR, NF1, PTEN, FUBP1, and IDH mutations) compared with the low-glycolytic group. Although glycolytic stratification defined poor prognostic males independent of grade, histology, TP53, and ATRX mutation status, we unexpectedly found that females with high-glycolytic gene expression and wild-type IDH survived longer than all other wild-type patients. Validation with an independent metabolomics dataset from grade 2 gliomas determined that glycolytic metabolites selectively stratified males and also uncovered a potential sexual dimorphism in pyruvate metabolism. These findings identify a potential synergy between patient sex, tumor metabolism, and genomic alterations in determining outcome for glioma patients.
Collapse
Affiliation(s)
| | | | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, and.,Siteman Cancer Center Biostatistics Core, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Beaumont Health and Oakland University School of Medicine, Royal Oak, Michigan, USA
| | - Joshua B Rubin
- Department of Pediatrics, and.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
32
|
Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. Nat Rev Neurosci 2017. [PMID: 28638119 DOI: 10.1038/nrn.2017.61] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The study of sex differences in the brain is a topic of neuroscientific study that has broad reaching implications for culture, society and biomedical science. Recent research in rodent models has led to dramatic shifts in our views of the mechanisms underlying the sexual differentiation of the brain. These include the surprising discoveries of a role for immune cells and inflammatory mediators in brain masculinization and a role for epigenetic suppression in brain feminization. How and to what degree these findings will translate to human brain development will be questions of central importance in future research in this field.
Collapse
|
33
|
de Souza Santos R, Frank AP, Nelson MD, Garcia MM, Palmer BF, Clegg DJ. Sex, Gender, and Transgender: Metabolic Impact of Cross Hormone Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:611-627. [PMID: 29224113 DOI: 10.1007/978-3-319-70178-3_27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most preclinical and clinical, animal, and human research has been biased with respect to sex and even more so with respect to gender. In fact, little is known about the impact of sex and even less about the influence of gender on overall metabolic processes. The National Institutes of Health has recognized this gap in scientific knowledge and now mandates that studies be conducted in both sexes and to include gender as variables influencing physiological processes such as metabolism. It is therefore critical to understand and appreciate how to incorporate sex and gender in preclinical and clinical research in order to enhance our understanding of the mechanisms by which metabolic processes differ by sex and gender. In this chapter, we define sex and gender and discuss when sex and gender are not aligned, such as that which occurs in transgender individuals, and how this impacts metabolic processes. We discuss the importance of understanding the influence and interactions between sex hormones and sex chromosomes rather than focusing on their relative contributions to metabolism in isolation. This knowledge will optimize therapies specific for individuals which need to encompass sex and gender.
Collapse
Affiliation(s)
- Roberta de Souza Santos
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Aaron P Frank
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michael Douglas Nelson
- Applied Physiology and Advanced Imaging Lab, University of Texas, Arlington, TX, USA.,Kinesiology, University of Texas, Arlington, TX, USA.,Bioengineering, University of Texas, Arlington, TX, USA.,Cedars-Sinai Medical Center, University of Texas, Arlington, TX, USA
| | - Maurice M Garcia
- Division of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Cedars-Sinai Medical Center Transgender Surgery and Health Program, Los Angeles, CA, USA.,Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Deborah J Clegg
- Biomedical Research Department, Diabetes and Obesity Research Division, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
34
|
Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ 2016; 7:68. [PMID: 27999654 PMCID: PMC5154145 DOI: 10.1186/s13293-016-0115-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 11/08/2016] [Indexed: 12/15/2022] Open
Abstract
In animals with heteromorphic sex chromosomes, all sex differences originate from the sex chromosomes, which are the only factors that are consistently different in male and female zygotes. In mammals, the imbalance in Y gene expression, specifically the presence vs. absence of Sry, initiates the differentiation of testes in males, setting up lifelong sex differences in the level of gonadal hormones, which in turn cause many sex differences in the phenotype of non-gonadal tissues. The inherent imbalance in the expression of X and Y genes, or in the epigenetic impact of X and Y chromosomes, also has the potential to contribute directly to the sexual differentiation of non-gonadal cells. Here, we review the research strategies to identify the X and Y genes or chromosomal regions that cause direct, sexually differentiating effects on non-gonadal cells. Some mouse models are useful for separating the effects of sex chromosomes from those of gonadal hormones. Once direct “sex chromosome effects” are detected in these models, further studies are required to narrow down the list of candidate X and/or Y genes and then to identify the sexually differentiating genes themselves. Logical approaches to the search for these genes are reviewed here.
Collapse
Affiliation(s)
- Paul S Burgoyne
- Stem Cell Biology and Developmental Genetics, Mill Hill Laboratory, Francis Crick Institute, The Ridgeway, London, NW7 1AA UK
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 610 Charles Young Drive South, Los Angeles, CA 90095-7239 USA
| |
Collapse
|
35
|
Morselli E, Frank AP, Santos RS, Fátima LA, Palmer BF, Clegg DJ. Sex and Gender: Critical Variables in Pre-Clinical and Clinical Medical Research. Cell Metab 2016; 24:203-9. [PMID: 27508869 DOI: 10.1016/j.cmet.2016.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/21/2016] [Accepted: 07/22/2016] [Indexed: 01/15/2023]
Abstract
In this Essay, we discuss the critical need to incorporate sex and gender in pre-clinical and clinical research to enhance our understanding of the mechanisms by which metabolic processes differ by sex and gender. This knowledge will allow for development of personalized medicine which will optimize therapies specific for individuals.
Collapse
Affiliation(s)
- Eugenia Morselli
- Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Aaron P Frank
- Department of Biomedical Research, Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, CA 90048, USA
| | - Roberta S Santos
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, e Centro de Pesquisa em Obesidade e Comorbidades, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Luciana A Fátima
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP 05508-000, Brazil
| | - Biff F Palmer
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deborah J Clegg
- Department of Biomedical Research, Cedars-Sinai Diabetes and Obesity Research Institute, Los Angeles, CA 90048, USA.
| |
Collapse
|
36
|
Sun T, Plutynski A, Ward S, Rubin JB. An integrative view on sex differences in brain tumors. Cell Mol Life Sci 2015; 72:3323-42. [PMID: 25985759 PMCID: PMC4531141 DOI: 10.1007/s00018-015-1930-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
Abstract
Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biology of their tumors can differ. It is our view that sex-specific approaches to brain tumor screening and care will be enhanced by rigorously documenting differences in brain tumor rates and outcomes in males and females, and understanding the developmental and evolutionary origins of sex differences. Here we offer such an integrative perspective on brain tumors. It is our intent to encourage the consideration of sex differences in clinical and basic scientific investigations.
Collapse
Affiliation(s)
- Tao Sun
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Anya Plutynski
- />Department of Philosophy, Washington University in St Louis, St Louis, USA
| | - Stacey Ward
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Joshua B. Rubin
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
- />Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave, St Louis, MO 63110 USA
- />Campus Box 8208, 660 South Euclid Ave, St Louis, MO 63110 USA
| |
Collapse
|
37
|
Kawaharada K, Kawamata M, Ochiya T. Rat embryonic stem cells create new era in development of genetically manipulated rat models. World J Stem Cells 2015; 7:1054-1063. [PMID: 26328021 PMCID: PMC4550629 DOI: 10.4252/wjsc.v7.i7.1054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/15/2015] [Accepted: 07/17/2015] [Indexed: 02/07/2023] Open
Abstract
Embryonic stem (ES) cells are isolated from the inner cell mass of a blastocyst, and are used for the generation of gene-modified animals. In mice, the transplantation of gene-modified ES cells into recipient blastocysts leads to the creation of gene-targeted mice such as knock-in and knock-out mice; these gene-targeted mice contribute greatly to scientific development. Although the rat is considered a useful laboratory animal alongside the mouse, fewer gene-modified rats have been produced due to the lack of robust establishment methods for rat ES cells. A new method for establishing rat ES cells using signaling inhibitors was reported in 2008. By considering the characteristics of rat ES cells, recent research has made progress in improving conditions for the stable culture of rat ES cells in order to generate gene-modified rats efficiently. In this review, we summarize several advanced methods to maintain rat ES cells and generate gene-targeted rats.
Collapse
|
38
|
Tower J. Mitochondrial maintenance failure in aging and role of sexual dimorphism. Arch Biochem Biophys 2015; 576:17-31. [PMID: 25447815 PMCID: PMC4409928 DOI: 10.1016/j.abb.2014.10.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/08/2014] [Accepted: 10/18/2014] [Indexed: 12/31/2022]
Abstract
Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in Caenorhabditis elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, United States.
| |
Collapse
|
39
|
Itoh Y, Mackie R, Kampf K, Domadia S, Brown JD, O’Neill R, Arnold AP. Four core genotypes mouse model: localization of the Sry transgene and bioassay for testicular hormone levels. BMC Res Notes 2015; 8:69. [PMID: 25870930 PMCID: PMC4354741 DOI: 10.1186/s13104-015-0986-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 01/20/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The "four core genotypes" (FCG) mouse model has emerged as a major model testing if sex differences in phenotypes are caused by sex chromosome complement (XX vs. XY) or gonadal hormones or both. The model involves deletion of the testis-determining gene Sry from the Y chromosome and insertion of an Sry transgene onto an autosome. It produces XX and XY mice with testes, and XX and XY mice with ovaries, so that XX and XY mice with the same type of gonad can be compared to assess phenotypic effects of sex chromosome complement in cells and tissues. FINDINGS We used PCR to amplify the Sry transgene and adjacent genomic sequences, to resolve the location of the Sry transgene to chromosome 3 and confirmed this location by fluorescence in situ hybridization (FISH) of the Sry construct to metaphase chromosomes. Using quantitative PCR, we estimate that 12-14 copies of the transgene were inserted. The anogenital distance (AGD) of FCG pups at 27-29 days after birth was not different in XX vs. XY males, or XX vs. XY females, suggesting that differences between XX and XY mice with the same type of gonad are not caused by difference in prenatal androgen levels. CONCLUSION The Sry transgene in FCG mice is present in multiple copies at one locus on chromosome 3, which does not interrupt known genes. XX and XY mice with the same type of gonad do not show evidence of different androgen levels prenatally.
Collapse
Affiliation(s)
- Yuichiro Itoh
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Ryan Mackie
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Kathy Kampf
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Shelly Domadia
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| | - Judith D Brown
- />Institute for Systems Genomics and the Department of Allied Health Sciences, University of CT, Storrs, CT USA
| | - Rachel O’Neill
- />Institute for Systems Genomics and the Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT USA
| | - Arthur P Arnold
- />Department of Integrative Biology & Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, 610 Charles E. Young Drive South, Los Angeles, CA USA
| |
Collapse
|
40
|
Arnold AP. Conceptual frameworks and mouse models for studying sex differences in physiology and disease: why compensation changes the game. Exp Neurol 2014; 259:2-9. [PMID: 24509348 PMCID: PMC4125548 DOI: 10.1016/j.expneurol.2014.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 01/01/2023]
Abstract
A sophisticated mechanistic understanding of physiology and disease requires knowledge of how sex-biasing factors cause sex differences in phenotype. In therian mammals, all sex differences are downstream of the unequal effects of XX vs. XY sex chromosomes. Three major categories of sex-biasing factors are activational and organizational effects of gonadal hormones, and sex chromosome effects operating outside of the gonads. These three types of effects can be discriminated from each other with established experimental designs and animal models. Two important mouse models, which allow conclusions regarding the sex-biasing effects of sex chromosome complement, interacting with gonadal hormone effects, are the Four Core Genotypes model and the XY* model. Chromosome Y consomic strains give information about the role of the Y chromosome. An important recent change in sexual differentiation theory is the increasing realization that sex-biasing factors can counteract the effects of each other, reducing rather than producing sex differences in phenotype. This change in viewpoint rationalizes a change in experimental strategies for dissecting sex chromosome effects. The overall goal is to understand the sexome, defined as the sum of effects of sex-biasing factors on gene systems and networks.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology & Physiology, Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, USA.
| |
Collapse
|
41
|
Ngun TC, Ghahramani NM, Creek MM, Williams-Burris SM, Barseghyan H, Itoh Y, Sánchez FJ, McClusky R, Sinsheimer JS, Arnold AP, Vilain E. Feminized behavior and brain gene expression in a novel mouse model of Klinefelter Syndrome. ARCHIVES OF SEXUAL BEHAVIOR 2014; 43:1043-1057. [PMID: 24923877 PMCID: PMC4371776 DOI: 10.1007/s10508-014-0316-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/24/2013] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
Klinefelter Syndrome (KS) is the most common sex chromosome aneuploidy in men and is characterized by the presence of an additional X chromosome (XXY). In some Klinefelter males, certain traits may be feminized or shifted from the male-typical pattern towards a more female-typical one. Among them might be partner choice, one of the most sexually dimorphic traits in the animal kingdom. We investigated the extent of feminization in XXY male mice (XXYM) in partner preference and gene expression in the bed nucleus of the stria terminalis/preoptic area and the striatum in mice from the Sex Chromosome Trisomy model. We tested for partner preference using a three-chambered apparatus in which the test mouse was free to choose between stimulus animals of either sex. We found that partner preference in XXYM was feminized. These differences were likely due to interactions of the additional X chromosome with the Y. We also discovered genes that differed in expression in XXYM versus XYM. Some of these genes are feminized in their expression pattern. Lastly, we also identified genes that differed only between XXYM versus XYM and not XXM versus XYM. Genes that are both feminized and unique to XXYM versus XYM represent strong candidates for dissecting the molecular pathways responsible for phenotypes present in KS/XXYM but not XXM. In sum, our results demonstrated that investigating behavioral and molecular feminization in XXY males can provide crucial information about the pathophysiology of KS and may aid our understanding of sex differences in brain and behavior.
Collapse
Affiliation(s)
- Tuck C. Ngun
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Negar M. Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Michelle M. Creek
- Department of Counseling Psychology, University of Wisconsin–Madison, WI, USA
| | - Shayna M. Williams-Burris
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Hayk Barseghyan
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Yuichiro Itoh
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Francisco J. Sánchez
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
- Department of Counseling Psychology, University of Wisconsin–Madison, WI, USA
| | - Rebecca McClusky
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Janet S. Sinsheimer
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA, USA
- Department of Biomath, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
- Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
42
|
Lu X, Wang Z, Wang J, Shangguan S, Bao Y, Lu P, Wang L. An association study betweenSUFUgene polymorphisms and neural tube defects. Int J Neurosci 2013; 124:436-42. [DOI: 10.3109/00207454.2013.849249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Chen X, Williams-Burris SM, McClusky R, Ngun TC, Ghahramani N, Barseghyan H, Reue K, Vilain E, Arnold AP. The Sex Chromosome Trisomy mouse model of XXY and XYY: metabolism and motor performance. Biol Sex Differ 2013; 4:15. [PMID: 23926958 PMCID: PMC3751353 DOI: 10.1186/2042-6410-4-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/27/2013] [Indexed: 11/29/2022] Open
Abstract
Background Klinefelter syndrome (KS), caused by XXY karyotype, is characterized by low testosterone, infertility, cognitive deficits, and increased prevalence of health problems including obesity and diabetes. It has been difficult to separate direct genetic effects from hormonal effects in human studies or in mouse models of KS because low testosterone levels are confounded with sex chromosome complement. Methods In this study, we present the Sex Chromosome Trisomy (SCT) mouse model that produces XXY, XYY, XY, and XX mice in the same litters, each genotype with either testes or ovaries. The independence of sex chromosome complement and gonadal type allows for improved recognition of sex chromosome effects that are not dependent on levels of gonadal hormones. All mice were gonadectomized and treated with testosterone for 3 weeks. Body weight, body composition, and motor function were measured. Results Before hormonal manipulation, XXY mice of both sexes had significantly greater body weight and relative fat mass compared to XY mice. After gonadectomy and testosterone replacement, XXY mice (both sexes) still had significantly greater body weight and relative fat mass, but less relative lean mass compared to XY mice. Liver, gonadal fat pad, and inguinal fat pad weights were also higher in XXY mice, independent of gonadal sex. In several of these measures, XX mice also differed from XY mice, and gonadal males and females differed significantly on almost every metabolic measure. The sex chromosome effects (except for testis size) were also seen in gonadally female mice before and after ovariectomy and testosterone treatment, indicating that they do not reflect group differences in levels of testicular secretions. XYY mice were similar to XY mice on body weight and metabolic variables but performed worse on motor tasks compared to other groups. Conclusions We find that the new SCT mouse model for XXY and XYY recapitulates features found in humans with these aneuploidies. We illustrate that this model has significant promise for unveiling the role of genetic effects compared to hormonal effects in these syndromes, because many phenotypes are different in XXY vs. XY gonadal female mice which have never been exposed to testicular secretions.
Collapse
Affiliation(s)
- Xuqi Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Shayna M Williams-Burris
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Rebecca McClusky
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Tuck C Ngun
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Negar Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Hayk Barseghyan
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Department of Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Departments of Pediatrics and Urology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
44
|
Bear A, Monteiro A. Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects. Bioessays 2013; 35:725-32. [PMID: 23804281 DOI: 10.1002/bies.201300009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes. Recently, however, new evidence indicates that both vertebrates and insects rely on sex hormones as well as cell-autonomous mechanisms to develop sexual traits. Collectively, these new data challenge the traditional vertebrate definitions of primary and secondary sexual development, call for a redefinition of these terms, and indicate the need for research aimed at explaining the relative dependence on cell-autonomous versus hormonally guided sexual development in animals.
Collapse
Affiliation(s)
- Ashley Bear
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| | | |
Collapse
|
45
|
Manzl C, Baumgartner F, Peintner L, Schuler F, Villunger A. Possible pitfalls investigating cell death responses in genetically engineered mouse models and derived cell lines. Methods 2013; 61:130-7. [PMID: 23454286 PMCID: PMC3693039 DOI: 10.1016/j.ymeth.2013.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 01/02/2023] Open
Abstract
Genetically engineered mouse models are frequently used to identify pathophysiological consequences of deregulated cell death. Targeting pro-apoptotic or anti-apoptotic proteins of the extrinsic or intrinsic apoptotic signalling cascade is state of the art since more than two decades. Such animal models have been increasingly made use of over the past years to study loss- or gain-of-function consequences of one or more components of the molecular machinery leading to cell death. These studies have helped to separate redundant from non-redundant functions of apoptosis-related proteins in normal physiology and sometimes unravelled unexpected phenotypes. However, correct interpretation of data derived from knockout mice or derived cells and cell lines is often flawed by the comparison of cells originating from different inbred or mixed genetic backgrounds. Here we want to highlight some basic problems associated with genetic background-based modulation of cell death sensitivity and describe some methods that we use to investigate cell death responses in hematopoietic and non-hematopoietic cells. Thereby, we show that hematopoietic cells derived from wild type mice on a C57BL/6:129/SvJ recombinant mixed genetic background are significantly more resistant to spontaneous cell death or DNA-damage induced apoptosis in vitro than cells derived from inbred C57BL/6 mice. Furthermore, we show as an example that C57BL/6 mice are more susceptible to γ-irradiation induced cell death after whole body irradiation in vivo and subsequent T cell lymphomagenesis.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
46
|
Haupt S, Mitchell C, Corneille V, Shortt J, Fox S, Pandolfi PP, Castillo-Martin M, Bonal DM, Cordon-Cardo C, Lozano G, Haupt Y. Loss of PML cooperates with mutant p53 to drive more aggressive cancers in a gender-dependent manner. Cell Cycle 2013; 12:1722-31. [PMID: 23656786 DOI: 10.4161/cc.24805] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED p53 mutations and downregulation of promyelocytic leukemia (PML) are common genetic alterations in human cancers. In healthy cells these two key tumor suppressors exist in a positive regulatory loop, promoting cell death and cellular senescence. However, the influence of their interplay on tumorigenesis has not been explored directly in vivo. The contribution of PML to mutant p53 driven cancer was evaluated in a mouse model harboring a p53 mutation (p53 (wild-type/R172H) ) that recapitulates a frequent p53 mutation (p53 (R175H) ) in human sporadic and Li-Fraumeni cancers. These mice with PML displayed perturbation of the hematopoietic compartment, manifested either as lymphoma or extramedullary hematopoiesis (EMH). EMH was associated with peripheral blood leucocytosis and macrocytic anemia, suggestive of myeloproliferative- myelodysplastic overlap. In contrast, a complete loss of PML from these mice resulted in a marked alteration in tumor profile. While the incidence of lymphomas was unaltered, EMH was not detected and the majority of mice succumbed to sarcomas. Further, males lacking PML exhibited a high incidence of soft tissue sarcomas and reduced survival, while females largely developed osteosarcomas, without impact on survival. Together, these findings demonstrate that PML is an important tumor suppressor dictating disease development in a pertinent mouse model of human cancer. KEY POINTS (1) A mutant p53 allele disrupts hematopoiesis in mice, by promoting lymphomas and myeloproliferative / myelodysplastic overlap. (2) Coincidental p53 allele mutation and PML loss shifts the tumor profile toward sarcoma formation, which is paralleled in human leiomyosarcomas (indicated by immunohistochemistry; IHC).
Collapse
Affiliation(s)
- Sue Haupt
- Research Division, Peter MacCallum Cancer Centre, East Melbourne, VIC Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Arnold AP, Chen X, Link JC, Itoh Y, Reue K. Cell-autonomous sex determination outside of the gonad. Dev Dyn 2013; 242:371-9. [PMID: 23361913 PMCID: PMC3672066 DOI: 10.1002/dvdy.23936] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/07/2013] [Accepted: 01/16/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The classic model of sex determination in mammals states that the sex of the individual is determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different because of the cell-autonomous sex-biasing action of X and Y genes. RESULTS Recent studies of mice, in which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome complement has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high-fat diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing effects of gonadal hormones and sex chromosome genes. CONCLUSIONS Other cell-autonomous sex chromosome effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of ineffective sex chromosome dosage compensation mechanisms.
Collapse
Affiliation(s)
- Arthur P Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
48
|
Chen X, McClusky R, Itoh Y, Reue K, Arnold AP. X and Y chromosome complement influence adiposity and metabolism in mice. Endocrinology 2013; 154:1092-104. [PMID: 23397033 PMCID: PMC3578992 DOI: 10.1210/en.2012-2098] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three different models of MF1 strain mice were studied to measure the effects of gonadal secretions and sex chromosome type and number on body weight and composition, and on related metabolic variables such as glucose homeostasis, feeding, and activity. The 3 genetic models varied sex chromosome complement in different ways, as follows: 1) "four core genotypes" mice, comprising XX and XY gonadal males, and XX and XY gonadal females; 2) the XY* model comprising groups similar to XO, XX, XY, and XXY; and 3) a novel model comprising 6 groups having XO, XX, and XY chromosomes with either testes or ovaries. In gonadally intact mice, gonadal males were heavier than gonadal females, but sex chromosome complement also influenced weight. The male/female difference was abolished by adult gonadectomy, after which mice with 2 sex chromosomes (XX or XY) had greater body weight and percentage of body fat than mice with 1 X chromosome. A second sex chromosome of either type, X or Y, had similar effects, indicating that the 2 sex chromosomes each possess factors that influence body weight and composition in the MF1 genetic background. Sex chromosome complement also influenced metabolic variables such as food intake and glucose tolerance. The results reveal a role for the Y chromosome in metabolism independent of testes and gonadal hormones and point to a small number of X-Y gene pairs with similar coding sequences as candidates for causing these effects.
Collapse
|
49
|
Kawamata M, Ochiya T. Two distinct knockout approaches highlight a critical role for p53 in rat development. Sci Rep 2012; 2:945. [PMID: 23230510 PMCID: PMC3517977 DOI: 10.1038/srep00945] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/29/2012] [Indexed: 01/06/2023] Open
Abstract
Gene targeting in embryonic stem cells (ESCs) has become the principal technology for generating knockout models. Although numerous studies have predicted that the disruption of p53 leads to increased developmental anomalies and malignancies, most p53 knockout mice develop normally. Therefore, the role of p53 in animal development was examined using rat knockout models. Conventionally generated homozygous KO males developed normally, whereas females rarely survived due to neural tube defects. Mutant chimeras generated via blastocyst injection with p53-null ESCs exhibited high rates of embryonic lethality in both sexes. This phenotype could be observed in one month by the use of zinc-finger nucleases. The p53-null ESCs were resistant to apoptosis and differentiation, and exhibited severe chromosome instabilities in the chimera-contributed cells, suggesting an essential role for p53 in maintaining ESC quality and genomic integrity. These results demonstrate that p53 functions as a guardian of embryogenesis in the rats.
Collapse
Affiliation(s)
- Masaki Kawamata
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute , 1-1, Tsukiji, 5-chome, Chuo-ku, Tokyo 104-0045, Japan
| | | |
Collapse
|
50
|
Sasidhar MV, Itoh N, Gold SM, Lawson GW, Voskuhl RR. The XX sex chromosome complement in mice is associated with increased spontaneous lupus compared with XY. Ann Rheum Dis 2012; 71:1418-22. [PMID: 22580585 PMCID: PMC4452281 DOI: 10.1136/annrheumdis-2011-201246] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. METHODS Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. RESULTS Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. CONCLUSION These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.
Collapse
Affiliation(s)
- Manda V. Sasidhar
- Department of Neurology, David Geffen School of Medicine University of California Los Angeles, Charles Young Dr S, Los Angeles, CA 90095
| | - Noriko Itoh
- Department of Neurology, David Geffen School of Medicine University of California Los Angeles, Charles Young Dr S, Los Angeles, CA 90095
| | - Stefan M. Gold
- Department of Neurology, David Geffen School of Medicine University of California Los Angeles, Charles Young Dr S, Los Angeles, CA 90095
- Center for Molecular Neurobiology, University Hospital Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Gregory W. Lawson
- Division of Laboratory Animal Medicine, David Geffen School of Medicine University of California Los Angeles, 10833 LeConte Avenue, Los Angeles, CA 90095
| | - Rhonda R. Voskuhl
- Department of Neurology, David Geffen School of Medicine University of California Los Angeles, Charles Young Dr S, Los Angeles, CA 90095
| |
Collapse
|