1
|
Chung WC, Xu K. Notch signaling pathway in pancreatic tumorigenesis. Adv Cancer Res 2023. [DOI: 10.1016/bs.acr.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
2
|
Melendez-Zajgla J, Maldonado V. The Role of lncRNAs in the Stem Phenotype of Pancreatic Ductal Adenocarcinoma. Int J Mol Sci 2021; 22:6374. [PMID: 34203589 PMCID: PMC8232220 DOI: 10.3390/ijms22126374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
Pancreatic ductal adenocarcinoma is one of the deadliest tumors. This neoplasia is characterized by an important cellular and phenotypic heterogeneity. In particular, it has been shown that at least two subtypes can be found: basal-like, which presents stem-like properties, and classical. Cancer stem cells have been isolated and characterized from these tumors, showing their dependance on general and tissue-specific stem transcription factors and signaling pathways. Nevertheless, little is known about their tissue microenvironment and cell non-autonomous regulators, such as long-non-coding RNAs. (lncRNAs). In this review, we summarize the current knowledge about the positive and negative effects of lncRNAs in the stemness phenotype of pancreatic ductal adenocarcinoma cancer (PDAC).
Collapse
Affiliation(s)
- Jorge Melendez-Zajgla
- Functional Genomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico;
| | - Vilma Maldonado
- Epigenomics Laboratory, Instituto Nacional de Medicina Genomica, Periferico Sur 4809, Tlalpan, Mexico City 14610, Mexico
| |
Collapse
|
3
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. The Role and Specific Mechanism of OCT4 in Cancer Stem Cells: A Review. Int J Stem Cells 2020; 13:312-325. [PMID: 32840233 PMCID: PMC7691851 DOI: 10.15283/ijsc20097] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Recently, evidences show that cancer stem cells (CSCs) are a type of cancer cell group with self-renewal and play a huge role in tumor recurrence, metastasis, and drug resistance. Finding new treatment directions and targets for cancer prognosis and reducing mortality has become a top priority. OCT4, as a transcription factor, participates in maintaining the stem characteristics of CSCs, but the mechanism of OCT4 is often overlooked. In this review, we try to illustrate the mechanism by which OCT4 plays a role in CSCs from the perspective of genetic modification of OCT4, non-coding RNA, complexes and signaling pathways associated with OCT4. Our ultimate goal is to provide new targets for cancer treatment to prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Yin X, Huang H, Huang S, Xu A, Fan F, Luo S, Yan H, Chen L, Sun C, Hu Y. A Novel Scoring System for Risk Assessment of Elderly Patients With Cytogenetically Normal Acute Myeloid Leukemia Based on Expression of Three AQP1 DNA Methylation-Associated Genes. Front Oncol 2020; 10:566. [PMID: 32373535 PMCID: PMC7186486 DOI: 10.3389/fonc.2020.00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/30/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Aquaporin 1 (AQP-1), a transmembrane water channel protein, has been proven to involve in many diseases' progression and prognosis. This research aims to explore the prognostic value of AQP-1 in elderly cytogenetically normal acute myeloid leukemia (CN-AML). Methods: Complete clinical and expression data of 226 elderly patients (aged > 60) with cytogenetically normal acute myeloid leukemia (CN-AML) were downloaded from the databases of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). We have explored prognostic significance of AQP-1, investigated the underlying mechanism, and developed a novel scoring system for the risk assessment of elderly patients with AML based on AQP1 methylation. Results: In the first and second independent group, AQP1 shows lower expression in CN-AML than normal people, while high AQP1 expression and AQP1 promoter hypomethylation were related to better overall survival (OS; P < 0.05). To understand the underlying mechanisms, we investigated differentially expressed genes (DEGs), miRNA and lncRNA associated with AQP1 methylation. A three-gene prognostic signature based on AQP1 methylation which was highly correlated with OS was established, and the performance was validated by Permutation Test and Leave-one-out Cross Validation method. Furthermore, an independent cohort was used to verify the prognostic value of this model. Conclusions: AQP1 methylation could serve as an independent prognostic biomarker in elderly CN-AML, and may provide new insights for the diagnosis and treatment for elderly CN-AML patients.
Collapse
Affiliation(s)
- Xuejiao Yin
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifan Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sui Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aoshuang Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjuan Fan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Matsuda Y, Fujii Y, Matsukawa M, Ishiwata T, Nishimura M, Arai T. Overexpression of carbohydrate sulfotransferase 15 in pancreatic cancer stroma is associated with worse prognosis. Oncol Lett 2019; 18:4100-4105. [PMID: 31516610 PMCID: PMC6732957 DOI: 10.3892/ol.2019.10764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/11/2019] [Indexed: 12/17/2022] Open
Abstract
Carbohydrate sulfotransferase 15 (CHST15) synthesizes matrix proteoglycan that regulates various pathogenic mediators and contributes to tissue remodeling and fibrosis during injury. CHST15 has been reported to promote tumor growth and invasion in various types of cancer. Our previous study reported the safety and efficacy of EUS-guided fine-needle injection (EUS-FNI) of STNM01, a double-stranded RNA oligonucleotide that specifically represses CHST15, for use in patients with pancreatic cancer. The present study aimed to determine the expression and clinicopathological characteristics of CHST15 in pancreatic cancer. Immunohistochemical staining was performed for CHST15 using pancreatic tissues from 64 patients (28 males and 36 females; age, 69.0±9.6 years) with pancreatic cancer who underwent surgery. For the evaluation of fibrosis, two categories were defined (mature and immature), based on the existence of collagen, myxoid stroma and fibroblasts, using hematoxylin and eosin specimens. The positive percentage of CHST15 was quantified, patients were divided into two groups according to high and low CHST15 expression in both the cancer and stroma tissues, and the association between CHST15 expression in cancer cells and the stroma was analyzed. Additionally, the present study analyzed the association between CHST15 expression and clinicopathological information, including overall and disease-free survival. The expression levels of CHST15 were detected in the cytoplasm of pancreatic cancer cells and fibroblasts in the cancer stroma. CHST15 expression in cancer cells was not identified to be associated with overall survival (P=0.52). However, patients with high CHST15 expression in the stroma exhibited worse overall survival compared with patients with low CHST15 expression (P=0.02). CHST15 expression in the stroma exhibited a positive association with that in cancer cells (P=0.01). High CHST15 expression in the stroma group was associated with a higher incidence of immature fibrosis (P=0.02) compared with mature fibrosis. CHST15 expression in cancer cells was associated with Union for International Cancer Control stage (P=0.02) and invasive front. Age and sex were not associated with CHST15 expression. The present study revealed that overexpression of CHST15 in stroma was associated with worse overall survival and immature fibrosis. Overexpression of CHST15 in cancer cells was associated with tumor stage. These results suggested that targeting therapy for CHST15 may be useful for stroma fibroblasts and cancer cells.
Collapse
Affiliation(s)
- Yoko Matsuda
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan.,Oncology Pathology, Department of Pathology and Host-Defense, Faculty of Medicine, Kagawa University, Kita, Kagawa 761-0793, Japan
| | - Yuko Fujii
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| | - Miho Matsukawa
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| | - Toshiyuki Ishiwata
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Makoto Nishimura
- Department of Endoscopy, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Itabashi, Tokyo 173-0015, Japan
| |
Collapse
|
6
|
Aoshima K, Fukui Y, Gulay KCM, Erdemsurakh O, Morita A, Kobayashi A, Kimura T. Notch2 signal is required for the maintenance of canine hemangiosarcoma cancer stem cell-like cells. BMC Vet Res 2018; 14:301. [PMID: 30285832 PMCID: PMC6171240 DOI: 10.1186/s12917-018-1624-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hemangiosarcoma (HSA) is a malignant tumor derived from endothelial cells which usually shows poor prognosis due to its high invasiveness, metastatic rate and severe hemorrhage from tumor ruptures. Since the pathogenesis of HSA is not yet complete, further understanding of its molecular basis is required. Results Here, we identified Notch2 signal as a key factor in maintaining canine HSA cancer stem cell (CSC)-like cells. We first cultured HSA cell lines in adherent serum-free condition and confirmed their CSC-like characteristics. Notch signal was upregulated in the CSC-like cells and Notch signal inhibition by a γ-secretase inhibitor significantly repressed their growth. Notch2, a Notch receptor, was highly expressed in the CSC-like cells. Constitutive activation of Notch2 increased clonogenicity and number of cells which were able to survive in serum-free condition. In contrast, inhibition of Notch2 activity showed opposite effects. These results suggest that Notch2 is an important factor for maintaining HSA CSC-like cells. Neoplastic cells in clinical cases also express Notch2 higher than endothelial cells in the normal blood vessels in the same slides. Conclusion This study provides foundation for further stem cell research in HSA and can provide a way to develop effective treatments to CSCs of endothelial tumors. Electronic supplementary material The online version of this article (10.1186/s12917-018-1624-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| | - Yuki Fukui
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Kevin Christian Montecillo Gulay
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Ochbayar Erdemsurakh
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsuya Morita
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
7
|
IL6 blockade potentiates the anti-tumor effects of γ-secretase inhibitors in Notch3-expressing breast cancer. Cell Death Differ 2017; 25:330-339. [PMID: 29027990 DOI: 10.1038/cdd.2017.162] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/23/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Notch pathways have important roles in carcinogenesis including pathways involving the Notch1 and Notch2 oncogenes. Pan-Notch inhibitors, such as gamma secretase inhibitors (GSIs), have been used in the clinical trials, but the outcomes of these trials have been insufficient and have yielded unclear. In the present study, we demonstrated that GSIs, such as MK-0752 and RO4929097, inhibit breast tumor growth, but increase the breast cancer stem cell (BCSC) population in Notch3-expressing breast cancer cells, in a process that is coupled with IL6 induction and is blocked by the IL6R antagonist Tocilizumab (TCZ). IL6 induction results from inhibition of Notch3-Hey2 signaling through MK-0752. Furthermore, HIF1α upregulates Notch3 expression via direct binding to the Notch3 promoter and subsequently downregulates BCSCs by decreasing the IL6 levels in Notch3-expressing breast cancer cells. Utilizing both breast cancer cell line xenografts and patient-derived xenografts (PDX), we showed that the combination of MK-0752 and Tocilizumab significantly decreases BCSCs and inhibits tumor growth and thus might serve as a novel therapeutic strategy for treating women with Notch3-expressing breast cancers.
Collapse
|
8
|
Motooka Y, Fujino K, Sato Y, Kudoh S, Suzuki M, Ito T. Pathobiology of Notch2 in lung cancer. Pathology 2017; 49:486-493. [DOI: 10.1016/j.pathol.2017.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/03/2017] [Accepted: 05/08/2017] [Indexed: 12/29/2022]
|
9
|
Depleted tumor suppressor miR-107 in plasma relates to tumor progression and is a novel therapeutic target in pancreatic cancer. Sci Rep 2017; 7:5708. [PMID: 28720759 PMCID: PMC5515843 DOI: 10.1038/s41598-017-06137-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
This study explored decreased tumor suppressor microRNA (miRNA) plasma levels in pancreatic cancer (PCa) patients to clarify their potential as novel biomarkers and therapeutic targets. We used the microRNA array-based approach to select candidates by comparing plasma levels between PCa patients and healthy volunteers. Six down-regulated miRNAs (miR-107, miR-126, miR-451, miR-145, miR-491-5p, and miR-146b-5p) were selected. Small- and large-scale analyses using samples from 100 PCa patients and 80 healthy volunteers revealed that miR-107 was the most down-regulated miRNA in PCa patients compared with healthy volunteers (P < 0.0001; area under the receiver-operating characteristic curve, 0.851). A low miR-107 plasma level was significantly associated with advanced T stage, N stage, and liver metastasis and was an independent factor predicting poor prognosis in PCa patients (P = 0.0424; hazard ratio, 2.95). miR-107 overexpression in PCa cells induced G1/S arrest with the production of p21 and inhibited cell proliferation through the transcriptional regulation of Notch2. In vivo, the restoration and maintenance of the miR-107 plasma level significantly inhibited tumor progression in mice. Depletion of the tumor suppressor miR-107 in plasma relates to tumor progression and poor outcomes. The restoration of the plasma miR-107 level might be a novel anticancer treatment strategy for PCa.
Collapse
|
10
|
Hubmann R, Sieghart W, Schnabl S, Araghi M, Hilgarth M, Reiter M, Demirtas D, Valent P, Zielinski C, Jäger U, Shehata M. Gliotoxin Targets Nuclear NOTCH2 in Human Solid Tumor Derived Cell Lines In Vitro and Inhibits Melanoma Growth in Xenograft Mouse Model. Front Pharmacol 2017; 8:319. [PMID: 28736522 PMCID: PMC5500618 DOI: 10.3389/fphar.2017.00319] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/15/2017] [Indexed: 12/04/2022] Open
Abstract
Deregulation of NOTCH2 signaling is implicated in a wide variety of human neoplasias. The current concept of targeting NOTCH is based on using gamma secretase inhibitors (GSI) to regulate the release of the active NOTCH intracellular domain. However, the clinical outcome of GSI remains unsatisfactory. Therefore we analyzed human solid tumor derived cell lines for their nuclear NOTCH activity and evaluated the therapeutic potential of the NOTCH2 transactivation inhibitor gliotoxin in comparison to the representative GSI DAPT. Electrophoretic mobility shift assays (EMSA) were used as a surrogate method for the detection of NOTCH/CSL transcription factor complexes. The effect of gliotoxin on cell viability and its clinical relevance was evaluated in vitro and in a melanoma xenograft mouse model. Cell lines derived from melanoma (518A2), hepatocellular carcinoma (SNU398, HCC-3, Hep3B), and pancreas carcinoma (PANC1) express high amounts of nuclear NOTCH2. Gliotoxin efficiently induced apoptosis in these cell lines whereas the GSI DAPT was ineffective. The specificity of gliotoxin was demonstrated in the well differentiated nuclear NOTCH negative cell line Huh7, which was resistant to gliotoxin treatment in vitro. In xenotransplanted 518A2 melanomas, a single day dosing schedule of gliotoxin was well tolerated without any study limiting side effects. Gliotoxin significantly reduced the tumor volume in early (83 mm3 vs. 115 mm3, p = 0.008) as well as in late stage (218 mm3 vs. 576 mm3, p = 0.005) tumor models. In conclusion, NOTCH2 appears to be a key target of gliotoxin in human neoplasias and gliotoxin deserves further evaluation as a potential therapeutic agent in cancer management.
Collapse
Affiliation(s)
- Rainer Hubmann
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Wolfgang Sieghart
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of ViennaVienna, Austria
| | - Susanne Schnabl
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Mohammad Araghi
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Martin Hilgarth
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Marlies Reiter
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Dita Demirtas
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria.,Department of Medicine I, Ludwig Boltzmann Cluster Oncology, Medical University of ViennaVienna, Austria
| | - Christoph Zielinski
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria.,Comprehensive Cancer Center Vienna, Drug and Target Screening Unit, Medical University of ViennaVienna, Austria
| | - Ulrich Jäger
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria.,Comprehensive Cancer Center Vienna, Drug and Target Screening Unit, Medical University of ViennaVienna, Austria
| | - Medhat Shehata
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria.,Comprehensive Cancer Center Vienna, Drug and Target Screening Unit, Medical University of ViennaVienna, Austria
| |
Collapse
|
11
|
Xu DD, Zhou PJ, Wang Y, Zhang Y, Zhang R, Zhang L, Chen SH, Fu WY, Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, Wang S, Wang X, Liu QY, Ren Z, Gu XK, Li YH, Liu Z, Wang YF. miR-150 Suppresses the Proliferation and Tumorigenicity of Leukemia Stem Cells by Targeting the Nanog Signaling Pathway. Front Pharmacol 2016; 7:439. [PMID: 27917123 PMCID: PMC5114241 DOI: 10.3389/fphar.2016.00439] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferation, a key feature of cancer cells, accounts for the majority of cancer-related diseases resulting in mortality. MicroRNAs (miRNAs) plays important post-transcriptional modulation roles by acting on multiple signaling pathways, but the underlying mechanism in proliferation and tumorigenicity is unclear. Here, we identified the role of miR-150 in proliferation and tumorigenicity in leukemia stem cells (LSCs; CD34+CD38- cells). miR-150 expression was significantly down-regulated in LSCs from leukemia cell lines and clinical samples. Functional assays demonstrated that increased miR-150 expression inhibited proliferation and clonal and clonogenic growth, enhanced chemosensitivity, and attenuated tumorigenic activity of LSCs in vitro. Transplantation animal studies revealed that miR-150 overexpression progressively abrogates tumor growth. Immunohistochemistry assays demonstrated that miR-150 overexpression enhanced caspase-3 level and reduced Ki-67 level. Moreover, luciferase reporter assays indicated Nanog is a direct and functional target of miR-150. Nanog silencing using small interfering RNA recapitulated anti-proliferation and tumorigenicity inhibition effects. Furthermore, miR-150 directly down-regulated the expression of other cancer stem cell factors including Notch2 and CTNNB1. These results provide insights into the specific biological behavior of miR-150 in regulating LSC proliferation and tumorigenicity. Targeting this miR-150/Nanog axis would be a helpful therapeutic strategy to treat acute myeloid leukemia.
Collapse
Affiliation(s)
- Dan-Dan Xu
- College of Life Science and Technology, Jinan UniversityGuangzhou, China; College of Biology Technolgy, Guangdong Food and Drug Vocational CollegeGuangzhou, China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Ying Wang
- College of Life Science and Technology, Jinan UniversityGuangzhou, China; Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical TechnologyMaoming, China
| | - Yi Zhang
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven CT, USA
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center Guangzhou, China
| | - Li Zhang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Su-Hong Chen
- College of Biology Technolgy, Guangdong Food and Drug Vocational College Guangzhou, China
| | - Wu-Yu Fu
- Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology Maoming, China
| | - Bi-Bo Ruan
- Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology Maoming, China
| | - Hai-Peng Xu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Chao-Zhi Hu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Lu Tian
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Jin-Hong Qin
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Sheng Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xiao Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Zhe Ren
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xue-Kui Gu
- The First Affiliated Hospital, Guangzhou Hospital of Traditional Chinese Medicine Guangzhou, China
| | - Yao-He Li
- The First Affiliated Hospital, Guangzhou Hospital of Traditional Chinese Medicine Guangzhou, China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| |
Collapse
|
12
|
Yu DD, Guo SW, Jing YY, Dong YL, Wei LX. A review on hepatocyte nuclear factor-1beta and tumor. Cell Biosci 2015; 5:58. [PMID: 26464794 PMCID: PMC4603907 DOI: 10.1186/s13578-015-0049-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/01/2015] [Indexed: 01/06/2023] Open
Abstract
Hepatocyte nuclear factor-1beta (HNF1β) was initially identified as a liver-specific transcription factor. It is a homeobox transcription factor that functions as a homodimer or heterodimer with HNF1α. HNF1β plays an important role in organogenesis during embryonic stage, especially of the liver, kidney, and pancreas. Mutations in the HNF1β gene cause maturity-onset diabetes of the young type 5 (MODY5), renal cysts, genital malformations, and pancreas atrophy. Recently, it has been shown that the expression of HNF1β is associated with cancer risk in several tumors, including hepatocellular carcinoma, pancreatic carcinoma, renal cancer, ovarian cancer, endometrial cancer, and prostate cancer. HNF1β also regulates the expression of genes associated with stem/progenitor cells, which indicates that HNF1β may play an important role in stem cell regulation. In this review, we discuss some of the current developments about HNF1β and tumor, the relationship between HNF1β and stem/progenitor cells, and the potential pathogenesis of HNF1β in various tumors.
Collapse
Affiliation(s)
- Dan-Dan Yu
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Shi-Wei Guo
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Ying-Ying Jing
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Yu-Long Dong
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| | - Li-Xin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, 200438 Shanghai, China
| |
Collapse
|
13
|
Rao CV, Mohammed A. New insights into pancreatic cancer stem cells. World J Stem Cells 2015; 7:547-555. [PMID: 25914762 PMCID: PMC4404390 DOI: 10.4252/wjsc.v7.i3.547] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/10/2014] [Accepted: 12/17/2014] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) has been one of the deadliest of all cancers, with almost uniform lethality despite aggressive treatment. Recently, there have been important advances in the molecular, pathological and biological understanding of pancreatic cancer. Even after the emergence of recent new targeted agents and the use of multiple therapeutic combinations, no treatment option is viable in patients with advanced cancer. Developing novel strategies to target progression of PC is of intense interest. A small population of pancreatic cancer stem cells (CSCs) has been found to be resistant to chemotherapy and radiation therapy. CSCs are believed to be responsible for tumor initiation, progression and metastasis. The CSC research has recently achieved much progress in a variety of solid tumors, including pancreatic cancer to some extent. This leads to focus on understanding the role of pancreatic CSCs. The focus on CSCs may offer new targets for prevention and treatment of this deadly cancer. We review the most salient developments in important areas of pancreatic CSCs. Here, we provide a review of current updates and new insights on the role of CSCs in pancreatic tumor progression with special emphasis on DclK1 and Lgr5, signaling pathways altered by CSCs, and the role of CSCs in prevention and treatment of PC.
Collapse
|
14
|
Qu X, Nyeng P, Xiao F, Dorantes J, Jensen J. Growth Factor Independence-1 ( Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation. Cell Mol Gastroenterol Hepatol 2014; 1:233-247.e1. [PMID: 28247862 PMCID: PMC5301134 DOI: 10.1016/j.jcmgh.2014.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The genetic specification of the compartmentalized pancreatic acinar/centroacinar unit is poorly understood. Growth factor independence-1 (Gfi1) is a zinc finger transcriptional repressor that regulates hematopoietic stem cell maintenance, pre-T-cell differentiation, formation of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. METHODS Gfi1 knockout mice were analyzed at histological and molecular levels, including qRT-PCR, in situ hybridization, immunohistochemistry, and electron microscopy. RESULTS Loss of Gfi1 impacted formation and structure of the pancreatic acinar/centroacinar unit. Histologic and ultrastructural analysis of Gfi1-null pancreas revealed specific defects at the level of pancreatic acinar cells as well as the centroacinar cells (CACs) in Gfi1-/- mice when compared with wild-type littermates. Pancreatic endocrine differentiation, islet architecture, and function were unaffected. Organ domain patterning and the formation of ductal cells occurred normally during the murine secondary transition (E13.5-E14.5) in the Gfi1-/- pancreas. However, at later gestational time points (E18.5), expression of cellular markers for CACs was substantially reduced in Gfi1-/- mice, corroborated by electron microscopy imaging of the acinar/centroacinar unit. The reduction in CACs was correlated with an exocrine organ defect. Postnatally, Gfi1 deficiency resulted in severe pancreatic acinar dysplasia, including loss of granulation, autolytic vacuolation, and a proliferative and apoptotic response. CONCLUSIONS Gfi1 plays an important role in regulating the development of pancreatic CACs and the function of pancreatic acinar cells.
Collapse
Key Words
- BPL, Bauhinia purpurea lectin
- BrdU, bromodeoxyuridine
- CACs, centroacinar cells
- Centroacinar Cells
- Claudin 10
- DIG, digoxigenin
- EM, electron micrographs
- Gfi1, growth factor independence-1
- Growth Factor Independence-1 (Gfi1)
- PBS, phosphate-buffered saline
- SD, standard deviation
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
- TipPC, tip progenitor cells
- TrPC, trunk progenitor cells
- WT, wild type
- qRT-PCR, quantitative real-time polymerase chain reaction
- rER, rough endoplasmic reticulum
Collapse
Affiliation(s)
- Xiaoling Qu
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio
| | - Pia Nyeng
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
| | - Fan Xiao
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jorge Dorantes
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio
| | - Jan Jensen
- Cleveland Clinic, Department of Stem Cell Biology and Regenerative Medicine, Cleveland, Ohio,Correspondence Address correspondence to: Jan Jensen, PhD, Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, Ohio 44195.
| |
Collapse
|
15
|
Quan M, Wang P, Cui J, Gao Y, Xie K. The roles of FOXM1 in pancreatic stem cells and carcinogenesis. Mol Cancer 2013; 12:159. [PMID: 24325450 PMCID: PMC3924162 DOI: 10.1186/1476-4598-12-159] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/28/2013] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia.
Collapse
Affiliation(s)
| | | | | | | | - Keping Xie
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Knockdown of Oct4 and Nanog expression inhibits the stemness of pancreatic cancer cells. Cancer Lett 2013; 340:113-23. [PMID: 23872274 DOI: 10.1016/j.canlet.2013.07.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/04/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer is notorious for its difficult diagnosis at early stage and poor recurrence-free prognosis. This study aimed to investigate the possible involvement of Oct4 and Nanog in pancreatic cancer. The high expressions of Oct4 and Nanog in human pancreatic cancer tissues were found to indicate a worse prognostic value of patients. The pancreatic cancer stem cells (PCSCs) that isolated from PANC-1 cell line by flow cytometry exhibited high expressions of Oct4 and Nanog. To investigate whether Oct4 and Nanog play crucial role in maintaining the stemness of PCSCs, double knockdown of Oct4 and Nanog demonstrated that Oct4 and Nanog significantly reduced proliferation, migration, invasion, chemoresistance, and tumorigenesis of PCSCs in vitro and in vivo. The altered expression of the genes related to pancreatic carcinogenesis, metastasis, drug resistance and epithelial-mesenchymal transdifferentiation (EMT) might affect the biological characteristics of PCSCs. Our results suggest that Oct4 and Nanog may serve as a potential marker of prognosis and a novel target of therapy for pancreatic cancer.
Collapse
|