1
|
Zou B, Wang D, Zhong J, He Z, Zhou Y, Yang H, Liu Y, Zeng G, Duan X. Mesenchymal stem cells attenuate hyperoxaluria-induced kidney injury and crystal depositions via inhibiting the activation of NLRP3 inflammasome. Life Sci 2025; 371:123608. [PMID: 40194762 DOI: 10.1016/j.lfs.2025.123608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/16/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
AIMS Calcium oxalate (CaOx) is the predominant form of kidney stones, associated with significant morbidity and recurrence rates. Mesenchymal stem cells (MSCs) have shown promise in treating renal injury, but their impact on CaOx stone formation remains unclear. MATERIALS AND METHODS We established a hyperoxaluria-induced AKI model in mice through intraperitoneal injection of glyoxylate. Two types of MSCs, bone marrow-derived MSCs (BMSCs) and umbilical cord-derived mesenchymal stem cells (UMSCs), were injected through tail vein injection. Histological evaluations and blood biochemical tests were performed to assess crystal deposition and kidney function. The inflammatory response and NLRP3 inflammasome activation were assessed using immunofluorescence, immunohistochemistry, TUNEL staining, and qPCR. In vitro, macrophages were cocultured in the presence of MSCs. ELISA was used to measure IL-1β and IL-18 release. MTS assays assessed renal epithelial cell protection. Western blotting evaluated NLRP3 inflammasome activation in macrophages. KEY FINDINGS Both BMSCs and UMSCs significantly inhibited CaOx crystal deposition and kidney injury by inhibiting NLRP3 inflammasome activation. In vitro, both MSC types suppressed NLRP3 inflammasome activation in macrophages through the NF-κB signaling pathway, leading to decreased release of IL-1β and IL-18 and enhanced protection of renal epithelial cells. This attenuation of renal tubular cell injury is a critical factor in preventing CaOx stone formation. SIGNIFICANCE Our findings reveal that Both BMSCs and UMSCs effectively attenuate hyperoxaluria-induced kidney injury and crystal deposition by inhibiting NLRP3 inflammasome activation. This discovery is helpful for developing new effective therapeutic means for nephrolithiasis.
Collapse
Affiliation(s)
- Bangyu Zou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University; Department of Urology, Changhai Hospital, First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ding Wang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jinghua Zhong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Zhiqing He
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Yuhao Zhou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Houmeng Yang
- Department of Urology, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yongda Liu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University
| | - Guohua Zeng
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| | - Xiaolu Duan
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou, China; Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, Guangzhou, China; Guangzhou Institute of Urology, Guangzhou Medical University.
| |
Collapse
|
2
|
Khalili MR, Ahmadloo S, Mousavi SA, Joghataei MT, Brouki Milan P, Naderi Gharahgheshlagh S, Mohebi SL, Haramshahi SMA, Hosseinpour Sarmadi V. Navigating mesenchymal stem cells doses and delivery routes in heart disease trials: A comprehensive overview. Regen Ther 2025; 29:117-127. [PMID: 40162019 PMCID: PMC11952810 DOI: 10.1016/j.reth.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/13/2025] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
In recent years, various clinical trials have been designed and implemented using mesenchymal stem cells (MSCs) for the treatment of heart diseases. Clinical trials exploring MSC-based treatments have proliferated, yet the lack of standardized protocols for MSC administration remains a significant challenge. Despite the growing popularity of MSC trials, questions persist regarding optimal dosing, administration routes, and frequency to achieve safety and efficacy, particularly in the context of cardiac regeneration. The current study has reviewed the clinical trials that have used MSCs for the treatment of heart diseases since 2009. The findings reveal diverse transplantation methods and varying MSCs quantities, highlighting the absence of a universal guideline for MSCs utilization in heart disease clinical trials.
Collapse
Affiliation(s)
- Mohammad Reza Khalili
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Salma Ahmadloo
- Institute for Cognitive and Brain Science, Shahid Beheshti University, Tehran, Iran
| | - Seyed Amin Mousavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Seyedeh Lena Mohebi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang JJ, Pogwizd SM, Fukuda K, Zimmermann WH, Fan C, Hare JM, Bolli R, Menasché P. Trials and tribulations of cell therapy for heart failure: an update on ongoing trials. Nat Rev Cardiol 2025; 22:372-385. [PMID: 39548233 DOI: 10.1038/s41569-024-01098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Heart failure (HF) remains a leading cause of mortality, responsible for 13% of all deaths worldwide. The prognosis for patients with HF is poor, with only a 50% survival rate within 5 years. A major challenge of ischaemia-driven HF is the loss of cardiomyocytes, compounded by the minimal regenerative capacity of the adult heart. To date, replacement of irreversibly damaged heart muscle can only be achieved by complete heart transplantation. In the past 20 years, cell therapy has emerged and evolved as a promising avenue for cardiac repair and regeneration. During this time, cell therapy for HF has encountered substantial barriers in both preclinical studies and clinical trials but the field continues to progress and evolve from lessons learned from such research. In this Review, we provide an overview of ongoing trials of cell-based and cell product-based therapies for the treatment of HF. Findings from these trials will facilitate the clinical translation of cardiac regenerative and reparative therapies not only by evaluating the safety and efficacy of specific cell-based therapeutics but also by establishing the feasibility of novel or underexplored treatment protocols such as repeated intravenous dosing, personalized patient selection based on pharmacogenomics, systemic versus intramural cell delivery, and epicardial engraftment of engineered tissue products.
Collapse
Affiliation(s)
- Jianyi Jay Zhang
- Department of Biomedical Engineering, School of Medicine, School of Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Steven M Pogwizd
- Division of Cardiovascular Disease, Department of Medicine, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen - Georg-August-University, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Lower Saxony, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Joshua M Hare
- Department of Medicine, Interdisciplinary Stem Cell Institute (ISCI), University of Miami, Miami, FL, USA
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, KY, USA
| | - Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, Paris, France
| |
Collapse
|
4
|
Ahmed OTF, Ahmed ZT, Dairi AW, Zain Al-Abeden MS, Alkahlot MH, Alkahlot RH, Al Jowf GI, Eijssen LMT, Haider KH. The inconclusive superiority debate of allogeneic versus autologous MSCs in treating patients with HFrEF: a systematic review and meta-analysis of RCTs. Stem Cell Res Ther 2025; 16:175. [PMID: 40221807 PMCID: PMC11993956 DOI: 10.1186/s13287-025-04209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/30/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Recent randomized controlled trials have consistently demonstrated the safety and potential efficacy of MSC therapy for heart failure patients. This study delves into mesenchymal stem cells' promising potential, offering a beacon of hope for the future of heart failure treatment with reduced ejection fraction (HFrEF). METHODS We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for this systematic review and meta-analysis. We searched four databases and registers for RCTs, including PubMed, EBSCO, clinicaltrials.gov, ICTRP, and other relevant websites. We then selected thirteen RCTs with 1184 participants based on our pre-defined inclusion/exclusion criteria. Two independent assessors extracted the data and performed a quality assessment. The data were then plotted for various outcomes, including death, hospitalization, major adverse cardiac events, pump function parameters, and 6-min walk distance. RESULTS The safety of MSC-based treatment has been consistently demonstrated with MSCs from autologous (AutoMSCs) and allogeneic (AlloMSCs) sources. This reassuring finding underscores the reliability of MSC-based therapy irrespective of their source. However, AutoMSCs showed a trend toward greater protective benefits. Subgroup analysis revealed no significant differences between AutoMSCs and AlloMSCs in improving LVEF; 0.86% (95% CI - 1.21-2.94%) for AlloMSCs versus 2.17% (- 0.48%; 95% CI - 1.33-5.67%) for AutoMSCs. AlloMSCs significantly reduced end-diastolic volume (LVEDV) by - 2.08 mL (95% CI - 3.52-0.64 mL). Only AlloMSCs significantly improved 6-min walking distance (6-MWD); 31.88 m (95% CI 5.03-58.74 m) for AlloMSCs versus 31.71 m (95% CI - 8.91-71.25 m) for AutoMSCs. The exclusion of studies using adipose-derived cells resulted in even better safety and a significant improvement in LVEF for AlloMSCs treatment. CONCLUSION Our findings suggest that AlloMSCs are at par with AutoMSCs in improving functional outcomes in heart failure patients. This underscores the need for future investigations in a larger patient cohort, emphasizing the urgency and importance of further research to fully understand the potential of MSCs in treating heart failure.
Collapse
Affiliation(s)
- Omar T F Ahmed
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Ziyad Tarek Ahmed
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Abdulrahman W Dairi
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | | | - Mohammed H Alkahlot
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Rana H Alkahlot
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia
| | - Ghazi I Al Jowf
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD, Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Lars M T Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, 6200 MD, Maastricht, The Netherlands
- Department of Bioinformatics - BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD, Maastricht, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, 6200 MD, Maastricht, The Netherlands
| | - Khawaja Husnain Haider
- College of Medicine, Sulaiman Alrajhi University, 52726, Al-Bukairiyah, Saudi Arabia.
- Cellular and Molecular Pharmacology, Sulaiman Alrajhi Medical School, PO Box 777, 51941, Al Bukairiyah, Saudi Arabia.
| |
Collapse
|
5
|
Chiu A, Rutkowski JM, Zhang Q, Zhao F. Tissue-Engineered Therapeutics for Lymphatic Regeneration: Solutions for Myocardial Infarction and Secondary Lymphedema. Adv Healthc Mater 2025; 14:e2403551. [PMID: 39806804 PMCID: PMC11936459 DOI: 10.1002/adhm.202403551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/12/2024] [Indexed: 01/16/2025]
Abstract
The lymphatic system, which regulates inflammation and fluid homeostasis, is damaged in various diseases including myocardial infarction (MI) and breast-cancer-related lymphedema (BCRL). Mounting evidence suggests that restoring tissue fluid drainage and clearing excess immune cells by regenerating damaged lymphatic vessels can aid in cardiac repair and lymphedema amelioration. Current treatments primarily address symptoms rather than underlying causes due to a lack of regenerative therapies, highlighting the importance of the lymphatic system as a promising novel therapeutic target. Here cutting-edge research on engineered lymphatic tissues, growth factor therapies, and cell-based approaches designed to enhance lymphangiogenesis and restore lymphatic function is explored. Special focus is placed on how therapies with potential for immediate lymphatic reconstruction, originally designed for treating BCRL, can be applied to MI to augment cardiac repair and reduce heart failure risk. The integration of these novel treatments can significantly improve patient outcomes by promoting lymphatic repair, preventing pathological remodeling, and offering new avenues for managing lymphatic-associated diseases.
Collapse
Affiliation(s)
- Alvis Chiu
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX 77843-3120
| | - Joseph M. Rutkowski
- Department of Medical Physiology, College of Medicine, Texas A&M University, Medical Research and Education Building, 8447 Riverside Pkwy, Bryan, TX 77807-3260
| | - Qixu Zhang
- Department of Plastic Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, Texas 77030
| | - Feng Zhao
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, 5045 Emerging Technologies Building 3120 TAMU, College Station, TX 77843-3120
| |
Collapse
|
6
|
Gorjipour F, Bohloolighashghaei S, Sotoudeheian M, Pazoki Toroudi H. Fetal adnexa-derived allogeneic mesenchymal stem cells for cardiac regeneration: the future trend of cell-based therapy for age-related adverse conditions. Hum Cell 2025; 38:61. [PMID: 39998714 DOI: 10.1007/s13577-025-01190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Heart failure is known as the leading cause of mortality and morbidity in adults, not only in USA but worldwide. Since the world's population is aging, the burden of cardiovascular disorders is increasing. Mesenchymal stem/stromal cells (MSCs) from a patient's bone marrow or other tissues have been widely used as the primary source of stem cells for cellular cardiomyoplasty. The incongruencies that exist between various cell-therapy approaches for cardiac diseases could be attributed to variations in cell processing methods, quality of the process, and cell donors. Off-the-shelf preparations of MSCs, enabled by batch processing of the cells and controlled cell processing factories in regulated facilities, may offer opportunities to overcome these problems. In this study, for the first time, we focused on the fetal membranes and childbirth byproducts as a promising source of cells for regenerative medicine. While many studies have described the advantages of cells derived from these organs, their advantage as a source of younger cells has not been sufficiently covered by the literature. Thus, herein, we highlight challenges that may arise from the impairment of the regenerative capacity of MSCs due to donor age and how allograft cells from fetal adnexa can be a promising substitute for the aged patients' stem cells for myocardial regeneration. Moreover, obstacles to the use of off-the-shelf cell-therapy preparations in regenerative medicine are briefly summarized here.
Collapse
Affiliation(s)
- Fazel Gorjipour
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamidreza Pazoki Toroudi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sheikhi K, Ghaderi S, Firouzi H, Rahimibarghani S, Shabani E, Afkhami H, Yarahmadi A. Recent advances in mesenchymal stem cell therapy for multiple sclerosis: clinical applications and challenges. Front Cell Dev Biol 2025; 13:1517369. [PMID: 39963155 PMCID: PMC11830822 DOI: 10.3389/fcell.2025.1517369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS), is characterized by inflammation, demyelination, and neurodegeneration, leading to diverse clinical manifestations such as fatigue, sensory impairment, and cognitive dysfunction. Current pharmacological treatments primarily target immune modulation but fail to arrest disease progression or entirely reverse CNS damage. Mesenchymal stem cell (MSC) therapy offers a promising alternative, leveraging its immunomodulatory, neuroprotective, and regenerative capabilities. This review provides an in-depth analysis of MSC mechanisms of action, including immune system regulation, promotion of remyelination, and neuroregeneration. It examines preclinical studies and clinical trials evaluating the efficacy, safety, and limitations of MSC therapy in various MS phenotypes. Special attention is given to challenges such as delivery routes, dosing regimens, and integrating MSCs with conventional therapies. By highlighting advancements and ongoing challenges, this review underscores the potential of MSCs to revolutionize MS treatment, paving the way for personalized and combinatory therapeutic approaches.
Collapse
Affiliation(s)
- Kamran Sheikhi
- Kurdistan University of Medical Sciences, Kurdistan, Iran
| | | | - Hassan Firouzi
- Department of Medical Laboratory, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sarvenaz Rahimibarghani
- Department of Physical Medicine and Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
8
|
Sajjad MW, Muzamil F, Sabir M, Ashfaq UA. Regenerative Medicine and Nanotechnology Approaches against Cardiovascular Diseases: Recent Advances and Future Prospective. Curr Stem Cell Res Ther 2025; 20:50-71. [PMID: 38343052 DOI: 10.2174/011574888x263530230921074827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 01/31/2025]
Abstract
Regenerative medicine refers to medical research focusing on repairing, replacing, or regenerating damaged or diseased tissues or organs. Cardiovascular disease (CVDs) is a significant health issue globally and is the leading cause of death in many countries. According to the Centers for Disease Control and Prevention (CDC), one person dies every 34 seconds in the United States from cardiovascular diseases, and according to a World Health Organization (WHO) report, cardiovascular diseases are the leading cause of death globally, taking an estimated 17.9 million lives each year. Many conventional treatments are available using different drugs for cardiovascular diseases, but these treatments are inadequate. Stem cells and nanotechnology are promising research areas for regenerative medicine treating CVDs. Regenerative medicines are a revolutionary strategy for advancing and successfully treating various diseases, intending to control cardiovascular disorders. This review is a comprehensive study of different treatment methods for cardiovascular diseases using different types of biomaterials as regenerative medicines, the importance of different stem cells in therapeutics, the expanded role of nanotechnology in treatment, the administration of several types of stem cells, their tracking, imaging, and the final observation of clinical trials on many different levels as well as it aims to keep readers up to pace on emerging therapeutic applications of some specific organs and disorders that may improve from regenerative medicine shortly.
Collapse
Affiliation(s)
- Muhammad Waseem Sajjad
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Fatima Muzamil
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Maida Sabir
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
9
|
Sajjad U, Ahmed M, Iqbal MZ, Riaz M, Mustafa M, Biedermann T, Klar AS. Exploring mesenchymal stem cells homing mechanisms and improvement strategies. Stem Cells Transl Med 2024; 13:1161-1177. [PMID: 39550211 PMCID: PMC11631218 DOI: 10.1093/stcltm/szae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 05/16/2024] [Indexed: 11/18/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenerative medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation. Notably, allogenically transplanted MSCs can also home to the damaged tissue site. Therefore, MSCs hold great therapeutic potential for curing various diseases. However, one major obstacle to this approach is attracting MSCs specifically to the injury site following systemic administration. In this review, we describe the molecular pathways governing the homing mechanism of MSCs and various strategies for improving this process, including targeted stem cell administration, target tissue modification, in vitro priming, cell surface engineering, genetic modifications, and magnetic guidance. These strategies are crucial for directing MSCs precisely to the injury site and, consequently, enhancing their migration and local tissue repair properties. Specifically, our review provides a guide to improving the therapeutic efficacy of clinical applications of MSCs through optimized in vivo administration and homing capacities.
Collapse
Affiliation(s)
- Umar Sajjad
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Ahmed
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - M Zohaib Iqbal
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Mahrukh Riaz
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Muhammad Mustafa
- KAM School of Life Sciences, Forman Christian College University, Lahore, Pakistan
| | - Thomas Biedermann
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Agnes S Klar
- Tissue Biology Research Unit, Department of Surgery, University Children’s Hospital Zurich, Wagistrasse 12, CH-8952, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Seyihoglu B, Orhan I, Okudur N, Aygun HK, Bhupal M, Yavuz Y, Can A. 20 years of treating ischemic cardiomyopathy with mesenchymal stromal cells: a meta-analysis and systematic review. Cytotherapy 2024; 26:1443-1457. [PMID: 39078351 DOI: 10.1016/j.jcyt.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/31/2024]
Abstract
This meta-analysis and systematic review compiles comparative data from 2004 to 2024, investigating the safety and efficacy of mesenchymal stem/stromal cells (MSCs) derived from various tissues for the treatment of ischemic cardiomyopathy (ICM) and associated heart failure. In addition, this review highlights the limitations of these interventions and provides valuable insights for future therapeutic approaches. Relevant articles were retrieved from the PubMed® database using targeted keywords. Our inclusion criteria included clinical trials with patients over 18 years of age, case reports and pilot studies. Animal experiments, in vitro studies, correlational and longitudinal studies, and study designs and protocols were excluded. Forty-nine original articles resulted in follow-up reports of 45 trials. MSCs from bone marrow, umbilical cord and adipose tissue were moderately well tolerated. Of the 1408 participants who received MSCs, 33 trials (67.3%) reported the occurrence of death or serious adverse events. These events resulted in 80 deaths (52% of reported cases) following MSC administration. Importantly, 41.3% of these deaths (n = 33) were not considered to be related to the intervention itself, while 40% of these deaths had no reported cause. As the primary outcome, the mean increase in left ventricular ejection fraction (LVEF) from baseline was 5.75% (95% CI: 3.38% -8.11%, p < 0.0001, I2 = 90,9%) in the randomized controlled trials only (n = 24) within the treatment groups and 3.19% (95% CI: 1.63% to 4.75%, p < 0.0001, I2 = 74,17%) in the control groups after the intervention. When the above results were compared using the standardized mean difference (SDM), a significance in favor of the treatment group was also found (SDM = 0.41; 95% CI: 0.19-0.64, p < 0.001, I2 = 71%). Although improvements were also seen in the control groups, 33.3% (n = 15) of the studies showed no significant difference between the control and treatment groups. The 6-minute walking test (6MWT) and New York Heart Association (NYHA) class scores, used for assessing exercise tolerance and quality of life (QoL), respectively, further supported the improvements in the treatment group. These improvements were noted as 62.5% (n = 10) for the 6MWT and 54.5% (n = 12) for the NYHA class scores. According to the risk of bias analysis, 4 trials were of good quality (11.8%), 15 were of fair quality (44.1%), and 15 were of poor quality (44.1%). Major limitations of these studies included small sample size, diagnostic challenges/lack, uncertain cell dosage and potential bias in patient selection. Despite the ongoing debate surrounding cell administration for ICM, there are supporting signs of improved clinical and laboratory outcomes, as well as improved QoL in the MSC-treated groups. However, it is important to recognize the limitations of each study, highlighting the need for larger, controlled trials to validate these findings.
Collapse
Affiliation(s)
| | - Inci Orhan
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Nil Okudur
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | | | - Melissa Bhupal
- Ankara University School of Medicine, Sihhiye, Ankara, Türkiye
| | - Yasemin Yavuz
- Department of Biostatistics, Ankara University School of Medicine, Sihhiye, Ankara 06410, Türkiye
| | - Alp Can
- Department of Histology and Embryology Laboratory for Stem Cells and Reproductive Cell Biology, Ankara University School of Medicine, Sihhiye, Ankara 06410, Türkiye.
| |
Collapse
|
11
|
Najafipour H, Rostamzadeh F, Jafarinejad-Farsangi S, Bagheri-Hosseinabadi Z, Jafari E, Farsinejad A, Bagheri MM. Human platelet lysate combined with mesenchymal stem cells pretreated with platelet lysate improved cardiac function in rats with myocardial infarction. Sci Rep 2024; 14:27701. [PMID: 39533052 PMCID: PMC11557824 DOI: 10.1038/s41598-024-79050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a leading cause of heart failure, disability and mortality worldwide. In this study, the effects of intramyocardial injection of human platelet lysate (HPL), bone marrow mesenchymal stem cells pretreated with HPL (PMSCs), and PMSC lysate (lys), alone and in combination were investigated on MI-induced by LAD ligation in male Wistar rats. The experiment was carried out on sham, vehicle (Veh), HPL, PMSCs, PMSC lysate (PMSC lys), HPL + PMSCs, and HPL + PMSC lys groups. SBP, DBP, and ± dp/dt max were monitored by the PowerLab physiograph. The MSC characteristics and CD31, NKX2.5, and cardiac troponin I (cTnI) contents were determined by flow cytometry, immunohistochemistry, and immunofluorescence, respectively. SBP, DBP, and ± dp/dt max that decreased in the MI group were recovered by HPL, PMSC, PMSC lys, HPL + PMSC, and HPL + PMSC lys treatments. CD31 density was higher in all treated groups compared to the Veh group. CD31 density in the HPL + PMSCs and HPL + PMSC lys groups was higher than in the PMSCs group. The number of Dil+/NKX2.5 + and Dil+/cTnI + cells was higher in the HPL + PMSCs group compared to the PMSCs group. The HPL and PMSCs mitigates heart injuries and cardiac dysfunction after MI. HPL provides an appropriate environment for cardiomyocyte differentiation from PMSCs.
Collapse
Affiliation(s)
- Hamid Najafipour
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Boulevard Jihad, Ebne-Sina Avenue, 7619813159, Kerman, Iran.
| | - Seedieh Jafarinejad-Farsangi
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Bagheri-Hosseinabadi
- Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, and Department of Clinical Biochemistry, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinejad
- Stem Cell and Regenerative Medicine Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohmmad Mehdi Bagheri
- Gastroenterology and Hepatology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
12
|
Sayed A, ElRefaei M, Awad K, Salah H, Mandrola J, Foy A. Heart Failure and All-Cause Hospitalizations in Patients With Heart Failure: A Meta-Analysis. JAMA Netw Open 2024; 7:e2446684. [PMID: 39602122 DOI: 10.1001/jamanetworkopen.2024.46684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
Importance Heart failure (HF) hospitalization is a common end point in HF trials; however, how HF hospitalization is associated with all-cause hospitalization in terms of proportionality, correlation of treatment effects, and concomitant reporting has not been studied. Objective To determine the ratio of HF to all-cause hospitalizations, whether reported treatment effects on HF hospitalization are associated with treatment effects on all-cause hospitalization, and how often all-cause hospitalization is reported alongside HF hospitalization. Data Sources PubMed was searched from inception to September 2, 2024, for randomized clinical trials (RCTs) of HF treatments using MeSH (medical subject heading) terms and keywords associated with heart failure, ventricular failure, ventricular dysfunction, and cardiac failure, as well as the names of specific journals. Study Selection RCTs of HF treatments and reporting on HF hospitalization published in 1 of 3 leading medical journals (New England Journal of Medicine, The Lancet, or JAMA). Data Extraction and Synthesis The PRISMA guidelines were followed. Data extraction was performed by 2 reviewers, and disagreements were resolved by consensus. Trial baseline characteristics and outcome data on HF and all-cause hospitalizations were extracted. The ratio of HF to all-cause hospitalizations was calculated. The association of HF hospitalization effects with all-cause hospitalization effects was evaluated using hierarchical bayesian models with weak priors. The posterior distribution was used to calculate the HF hospitalization treatment effects that would need to be observed before a high probability (97.5%) of a reduction in all-cause hospitalization could be achieved. The proportion of trials reporting all-cause hospitalization was calculated. Main Outcomes and Measures HF and all-cause hospitalizations. Results Of 113 trials enrolling 261 068 patients (median proportion of female participants, 25.4% [IQR, 21.3%-34.2%]; median age, 66.2 [IQR, 62.8-70.0] years), 60 (53.1%) reported on all-cause hospitalization. The weighted median ratio of HF to all-cause hospitalizations was 45.9% (IQR, 30.7%-51.7%). This ratio was higher in trials with greater proportions of New York Heart Association class III or IV HF, with lower left ventricular ejection fractions, investigating nonpharmaceutical interventions, and that restricted recruitment to patients with HF and reduced ejection fraction. Reported effects on HF and all-cause hospitalizations were well-correlated (R2 = 90.1%; 95% credible interval, 62.3%-99.8%). In a large trial, the intervention would have to decrease the odds of HF hospitalization by 16% to ensure any reduction, 36% to ensure a 10% reduction, and 56% to ensure a 20% reduction in the odds of all-cause hospitalization with 97.5% probability. Conclusions and Relevance In this meta-analysis of HF trials, all-cause hospitalization was underreported despite a large burden of non-HF hospitalizations. Large reductions in HF hospitalization must be observed before clinically relevant reductions in all-cause hospitalization can be inferred.
Collapse
Affiliation(s)
- Ahmed Sayed
- Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas
| | | | - Kamal Awad
- Faculty of Medicine, Zagazig University, Cairo, Egypt
| | - Husam Salah
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina
| | | | - Andrew Foy
- Division of Cardiology, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
13
|
Barone L, Cucchiara M, Palano MT, Bassani B, Gallazzi M, Rossi F, Raspanti M, Zecca PA, De Antoni G, Pagiatakis C, Papait R, Bernardini G, Bruno A, Gornati R. Dental pulp mesenchymal stem cell (DPSCs)-derived soluble factors, produced under hypoxic conditions, support angiogenesis via endothelial cell activation and generation of M2-like macrophages. J Biomed Sci 2024; 31:99. [PMID: 39491013 PMCID: PMC11533415 DOI: 10.1186/s12929-024-01087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Cell therapy has emerged as a revolutionary tool to repair damaged tissues by restoration of an adequate vasculature. Dental Pulp stem cells (DPSC), due to their easy biological access, ex vivo properties, and ability to support angiogenesis have been largely explored in regenerative medicine. METHODS Here, we tested the capability of Dental Pulp Stem Cell-Conditioned medium (DPSC-CM), produced in normoxic (DPSC-CM Normox) or hypoxic (DPSC-CM Hypox) conditions, to support angiogenesis via their soluble factors. CMs were characterized by a secretome protein array, then used for in vivo and in vitro experiments. In in vivo experiments, DPSC-CMs were associated to an Ultimatrix sponge and injected in nude mice. After excision, Ultimatrix were assayed by immunohistochemistry, electron microscopy and flow cytometry, to evaluate the presence of endothelial, stromal, and immune cells. For in vitro procedures, DPSC-CMs were used on human umbilical-vein endothelial cells (HUVECs), to test their effects on cell adhesion, migration, tube formation, and on their capability to recruit human CD14+ monocytes. RESULTS We found that DPSC-CM Hypox exert stronger pro-angiogenic activities, compared with DPSC-CM Normox, by increasing the frequency of CD31+ endothelial cells, the number of vessels and hemoglobin content in the Ultimatrix sponges. We observed that Utimatrix sponges associated with DPSC-CM Hypox or DPSC-CM Normox shared similar capability to recruit CD45- stromal cells, CD45+ leukocytes, F4/80+ macrophages, CD80+ M1-macrophages and CD206+ M2-macropages. We also observed that DPSC-CM Hypox and DPSC-CM Normox have similar capabilities to support HUVEC adhesion, migration, induction of a pro-angiogenic gene signature and the generation of capillary-like structures, together with the ability to recruit human CD14+ monocytes. CONCLUSIONS Our results provide evidence that DPSCs-CM, produced under hypoxic conditions, can be proposed as a tool able to support angiogenesis via macrophage polarization, suggesting its use to overcome the issues and restrictions associated with the use of staminal cells.
Collapse
Affiliation(s)
- Ludovica Barone
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Martina Cucchiara
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Federica Rossi
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Mario Raspanti
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Piero Antonio Zecca
- Department of Medicine and Technological Innovation, University of Insubria, 21100, Varese, Italy
| | - Gianluca De Antoni
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Christina Pagiatakis
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Roberto Papait
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Giovanni Bernardini
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Antonino Bruno
- Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy.
| | - Rosalba Gornati
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
| |
Collapse
|
14
|
Yuce K. The Application of Mesenchymal Stem Cells in Different Cardiovascular Disorders: Ways of Administration, and the Effectors. Stem Cell Rev Rep 2024; 20:1671-1691. [PMID: 39023739 DOI: 10.1007/s12015-024-10765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The heart is an organ with a low ability to renew and repair itself. MSCs have cell surface markers such as CD45-, CD34-, CD31-, CD4+, CD11a+, CD11b+, CD15+, CD18+, CD25+, CD49d+, CD50+, CD105+, CD73+, CD90+, CD9+, CD10+, CD106+, CD109+, CD127+, CD120a+, CD120b+, CD124+, CD126+, CD140a+, CD140b+, adherent properties and the ability to differentiate into cells such as adipocytes, osteoblasts and chondrocytes. Autogenic, allogeneic, normal, pretreated and genetically modified MSCs and secretomes are used in preclinical and clinical studies. MSCs and their secretomes (the total released molecules) generally have cardioprotective effects. Studies on cardiovascular diseases using MSCs and their secretomes include myocardial infraction/ischemia, fibrosis, hypertrophy, dilated cardiomyopathy and atherosclerosis. Stem cells or their secretomes used for this purpose are administered to the heart via intracoronary (Antegrade intracoronary and retrograde coronary venous injection), intramyocardial (Transendocardial and epicardial injection) and intravenous routes. The protective effects of MSCs and their secretomes on the heart are generally attributed to their differentiation into cardiomyocytes and endothelial cells, their immunomodulatory properties, paracrine effects, increasing blood vessel density, cardiac remodeling, and ejection fraction and decreasing apoptosis, the size of the wound, end-diastolic volume, end-systolic volume, ventricular myo-mass, fibrosis, matrix metalloproteins, and oxidative stress. The present review aims to assist researchers and physicians in selecting the appropriate cell type, secretomes, and technique to increase the chance of success in designing therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Kemal Yuce
- Physiology, Department of Basic Medical Sciences, Medicine Faculty, Selcuk University, Konya, Türkiye.
| |
Collapse
|
15
|
Xu C, Xie Y, Wang B. Genetically modified mesenchymal stromal cells: a cell-based therapy offering more efficient repair after myocardial infarction. Stem Cell Res Ther 2024; 15:323. [PMID: 39334266 PMCID: PMC11438184 DOI: 10.1186/s13287-024-03942-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Myocardial infarction (MI) is a serious complication of coronary artery disease. This condition is common worldwide and has a profound impact on patients' lives and quality of life. Despite significant advances in the treatment of heart disease in modern medicine, the efficient treatment of MI still faces a number of challenges. Problems such as scar formation and loss of myocardial function after a heart attack still limit patients' recovery. Therefore, the search for a new therapeutic tool that can promote repair and regeneration of myocardial tissue has become crucial. In this context, mesenchymal stromal cells (MSCs) have attracted much attention as a potential therapeutic tool. MSCs are a class of adult stem cells with multidirectional differentiation potential, derived from bone marrow, fat, placenta and other tissues, and possessing properties such as self-renewal and immunomodulation. The application of MSCs may provide a new direction for the treatment of MI. These stem cells have the potential to differentiate into cardiomyocytes and vascular endothelial cells in damaged tissue and to repair and protect myocardial tissue through anti-inflammatory, anti-fibrotic and pro-neovascularization mechanisms. However, the clinical results of MSCs transplantation for the treatment of MI are less satisfactory due to the limitations of the native function of MSCs. Genetic modification has overcome problems such as the low survival rate of transplanted MSCs in vivo and enhanced their functions of promoting neovascularization and differentiation into cardiomyocytes, paving the way for them to become an effective tool for repair therapy after MI. In previous studies, MSCs have shown some therapeutic potential in experimental animals and preliminary clinical trials. This review aims to provide readers with a comprehensive and in-depth understanding to promote the wider application of engineering MSCs in the field of MI therapy, offering new hope for recovery and improved survival of cardiac patients.
Collapse
Affiliation(s)
- Congwang Xu
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China
| | - Bin Wang
- Clinical Stem Cell Center, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese, Medicine321 Zhongshan Road, Nanjing, 210008, People's Republic of China.
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210000, People's Republic of China.
| |
Collapse
|
16
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
17
|
Safwan M, Bourgleh MS, Aldoush M, Haider KH. Tissue-source effect on mesenchymal stem cells as living biodrugs for heart failure: Systematic review and meta-analysis. World J Cardiol 2024; 16:469-483. [PMID: 39221190 PMCID: PMC11362808 DOI: 10.4330/wjc.v16.i8.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs), as living biodrugs, have entered advanced phases of clinical assessment for cardiac function restoration in patients with myocardial infarction and heart failure. While MSCs are available from diverse tissue sources, bone-marrow-derived MSCs (BM-MSCs) remain the most well-studied cell type, besides umbilical-cord-derived MSCs (UC-MSCs). The latter offers advantages, including noninvasive availability without ethical considerations. AIM To compare the safety and efficacy of BM-MSCs and UC-MSCs in terms of left ventricular ejection fraction (LVEF), 6-min walking distance (6MWD), and major adverse cardiac events (MACEs). METHODS Five databases were systematically searched to identify randomized controlled trials (RCTs). Thirteen RCTs (693 patients) were included using predefined eligibility criteria. Weighted mean differences and odds ratio (OR) for the changes in the estimated treatment effects. RESULTS UC-MSCs significantly improved LVEF vs controls by 5.08% [95% confidence interval (CI): 2.20%-7.95%] at 6 mo and 2.78% (95%CI: 0.86%-4.70%) at 12 mo. However, no significant effect was observed for BM-MSCs vs controls. No significant changes were observed in the 6MWD with either of the two cell types. Also, no differences were observed for MACEs, except rehospitalization rates, which were lower only with BM-MSCs (odds ratio 0.48, 95%CI: 0.24-0.97) vs controls. CONCLUSION UC-MSCs significantly improved LVEF compared with BM-MSCs. Their advantageous characteristics position them as a promising alternative to MSC-based therapy.
Collapse
Affiliation(s)
- Moaz Safwan
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Mariam Safwan Bourgleh
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Mohamed Aldoush
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia
| | - Khawaja Husnain Haider
- Department of Basic Sciences, Sulaiman Al Rajhi University, Al Bukairiyah 51941, Saudi Arabia.
| |
Collapse
|
18
|
Kavousi S, Hosseinpour A, Bahmanzadegan Jahromi F, Attar A. Efficacy of mesenchymal stem cell transplantation on major adverse cardiovascular events and cardiac function indices in patients with chronic heart failure: a meta-analysis of randomized controlled trials. J Transl Med 2024; 22:786. [PMID: 39174960 PMCID: PMC11342608 DOI: 10.1186/s12967-024-05352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/29/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND The effects of mesenchymal stem cells (MSCs) on heart failure (HF) have been controversial. This study was conducted to investigate whether the transplantation of MSCs after HF could help improve clinical outcomes and myocardial performance indices. METHODS Using a systematic approach, electronic databases were searched for randomized controlled trials (RCTs), which evaluated the transplantation of MSCs after HF. The outcomes owf interest included clinical outcomes and myocardial function indices. We also assessed the role of age, cause of heart failure, cell origin, cell number, type of donor (autologous/allogeneic), and route of cell delivery on these outcomes. Using the random-effects method, a relative risk (RR) or mean difference (MD) and their corresponding 95% confidence intervals (CI) were pooled. RESULTS Seventeen RCTs including 1684 patients (927 and 757 patients in the intervention and control arms, respectively) were enrolled. The RR (95% CI) of mortality was 0.78 (0.62; 0.99, p = 0.04) in the MSC group compared to the controls. HF rehospitalization decreased in the MSC group (RR = 0.85 (0.71-1.01), p = 0.06), but this was only significant in those who received autologous MSCs (RR = 0.67 (0.49; 0.90), p = 0.008). LVEF was significantly increased among those who received MSC (MD = 3.38 (1.89; 4.87), p < 0.001). LVESV (MD = -9.14 (-13.25; -5.03), p < 0.001), LVEDV (MD = -8.34 -13.41; -3.27), p < 0.001), and scar size (standardized MD = -0.32 (-0.60; -0.05), p = 0.02) were significantly decreased. NYHA class (MD = -0.19 (-0.34; -0.06), p = 0.006), BNP level (standardized MD = -0.28 (-0.50; -0.06), p = 0.01), and MLHFQ (MD = -11.55 (-16.77; -6.33), p = 0.005) significantly decreased and 6-min walk test significantly improved (MD = 36.86 (11.22; 62.50), p = 0.001) in the MSC group. Trials were not affected by the participants' etiology of heart failure, while trials with the autologous source of cells, MSC doses lower than 100 million cells, and intracoronary injection performed significantly better in some of the outcomes. CONCLUSION Transplantation of MSCs for ischemic or dilated heart failure patients may reduce all-cause mortality and improve clinical condition. Moreover, this treatment would improve left ventricular function indices and reduce scar size.
Collapse
Affiliation(s)
- Shahin Kavousi
- Shiraz University of Medical Sciences and Health Services, Shiraz, Iran
| | | | | | - Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, Iran.
| |
Collapse
|
19
|
Yahyazadeh R, Baradaran Rahimi V, Askari VR. Stem cell and exosome therapies for regenerating damaged myocardium in heart failure. Life Sci 2024; 351:122858. [PMID: 38909681 DOI: 10.1016/j.lfs.2024.122858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Finding novel treatments for cardiovascular diseases (CVDs) is a hot topic in medicine; cell-based therapies have reported promising news for controlling dangerous complications of heart disease such as myocardial infarction (MI) and heart failure (HF). Various progenitor/stem cells were tested in various in-vivo, in-vitro, and clinical studies for regeneration or repairing the injured tissue in the myocardial to accelerate the healing. Fetal, adult, embryonic, and induced pluripotent stem cells (iPSC) have revealed the proper potency for cardiac tissue repair. As an essential communicator among cells, exosomes with specific contacts (proteins, lncRNAs, and miRNAs) greatly promote cardiac rehabilitation. Interestingly, stem cell-derived exosomes have more efficiency than stem cell transplantation. Therefore, stem cells induced pluripotent stem cells (iPSCs), embryonic stem cells (ESCs), cardiac stem cells (CDC), and skeletal myoblasts) and their-derived exosomes will probably be considered an alternative therapy for CVDs remedy. In addition, stem cell-derived exosomes have been used in the diagnosis/prognosis of heart diseases. In this review, we explained the advances of stem cells/exosome-based treatment, their beneficial effects, and underlying mechanisms, which will present new insights in the clinical field in the future.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Liu Y, Ren J, Bai R, He S, Peng Z, Yin W, Guo R, Niu J, Zhang W, Xia Z, Fan X, Yang K, Li B, Yang H, Song H, Xie J. Overexpression of NDNF Improves the Cytoprotective Effects of Aged Human Bone Marrow Mesenchymal Stem Cells by Modulating Oxidative Stress and Apoptosis. Stem Cells Dev 2024; 33:432-437. [PMID: 38801165 DOI: 10.1089/scd.2023.0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
The therapeutic potential of autologous stem cell transplantation for heart repair diminishes in the elderly due to stem cell aging. Rejuvenating aged stem cells to enhance their protective effects on injured cardiomyocytes is crucial for aging patients with heart failure. In this study, we aimed to investigate whether neuron-derived neurotrophic factor (NDNF) over-expression improves the protective effect of aged stem cells for injured cardiomyocytes and explore the underlying mechanism. Human bone marrow was collected from both young and old patients, and bone marrow mesenchymal stem cells (BMSCs) were cultured. Lentivirus expression vectors carrying NDNF genes were used to transfect aged BMSCs. Fatal hypoxia-induced injury in H9C2 cells served as an in vitro ischemia model. The conditioned medium from different BMSC groups was applied to assess the beneficial effects on hypoxia-induced damage in myocardial H9C2 cells. Results revealed that the conditioned medium of NDNF over-expressed old BMSCs increased H9C2 cell viability and reduced oxidative stress and apoptosis levels under fatal hypoxia. NDNF over-expressed old BMSCs exhibited an antiapoptotic role by upregulating the antiapoptotic gene Bcl-2 and downregulating the proapoptotic genes Bax. Additionally, the protective effects were mediated through the elevation of phosphorylated AKT. Our data support the promise of NDNF as a potential target to enhance the protective effects of autologous aged BMSCs on ischemic cardiomyocytes and then improve the curative effects of stem cell for ischemic heart injury in aged patients.
Collapse
Affiliation(s)
- Yang Liu
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Juan Ren
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Ruidan Bai
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Sheng He
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Zexu Peng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Yin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Rui Guo
- Department of Pathology, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jianqiang Niu
- Department of Urology Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Weiguo Zhang
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Zhongnian Xia
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Xuemei Fan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Kun Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Bin Li
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Hailan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Huifang Song
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
21
|
Hosseinpour A, Kamalpour J, Dehdari Ebrahimi N, Mirhosseini SA, Sadeghi A, Kavousi S, Attar A. Comparative effectiveness of mesenchymal stem cell versus bone-marrow mononuclear cell transplantation in heart failure: a meta-analysis of randomized controlled trials. Stem Cell Res Ther 2024; 15:202. [PMID: 38971816 PMCID: PMC11227704 DOI: 10.1186/s13287-024-03829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND There is no clear evidence on the comparative effectiveness of bone-marrow mononuclear cell (BMMNC) vs. mesenchymal stromal cell (MSC) stem cell therapy in patients with chronic heart failure (HF). METHODS Using a systematic approach, eligible randomized controlled trials (RCTs) of stem cell therapy (BMMNCs or MSCs) in patients with HF were retrieved to perform a meta-analysis on clinical outcomes (major adverse cardiovascular events (MACE), hospitalization for HF, and mortality) and echocardiographic indices (including left ventricular ejection fraction (LVEF)) were performed using the random-effects model. A risk ratio (RR) or mean difference (MD) with corresponding 95% confidence interval (CI) were pooled based on the type of the outcome and subgroup analysis was performed to evaluate the potential differences between the types of cells. RESULTS The analysis included a total of 36 RCTs (1549 HF patients receiving stem cells and 1252 patients in the control group). Transplantation of both types of cells in patients with HF resulted in a significant improvement in LVEF (BMMNCs: MD (95% CI) = 3.05 (1.11; 4.99) and MSCs: MD (95% CI) = 2.82 (1.19; 4.45), between-subgroup p = 0.86). Stem cell therapy did not lead to a significant change in the risk of MACE (MD (95% CI) = 0.83 (0.67; 1.06), BMMNCs: RR (95% CI) = 0.59 (0.31; 1.13) and MSCs: RR (95% CI) = 0.91 (0.70; 1.19), between-subgroup p = 0.12). There was a marginally decreased risk of all-cause death (MD (95% CI) = 0.82 (0.68; 0.99)) and rehospitalization (MD (95% CI) = 0.77 (0.61; 0.98)) with no difference among the cell types (p > 0.05). CONCLUSION Both types of stem cells are effective in improving LVEF in patients with heart failure without any noticeable difference between the cells. Transplantation of the stem cells could not decrease the risk of major adverse cardiovascular events compared with controls. Future trials should primarily focus on the impact of stem cell transplantation on clinical outcomes of HF patients to verify or refute the findings of this study.
Collapse
Affiliation(s)
- Alireza Hosseinpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jahangir Kamalpour
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Alireza Sadeghi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahin Kavousi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Armin Attar
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
22
|
Nativi-Nicolau J, Yilmaz A, Dasgupta N, Macey R, Cochrane J, Peatman J, Summers C, Luth J, Zolty R. Six-minute walk test as clinical end point in cardiomyopathy clinical trials, including ATTR-CM: a systematic literature review. J Comp Eff Res 2024; 13:e230158. [PMID: 38869839 PMCID: PMC11234454 DOI: 10.57264/cer-2023-0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Aim: The six-minute walk test (6MWT) is a common measure of functional capacity in patients with heart failure (HF). Primary clinical study end points in cardiomyopathy (CM) trials, including transthyretin-mediated amyloidosis with CM (ATTR-CM), are often limited to hospitalization and mortality. Objective: To investigate the relationship between the 6MWT and hospitalization or mortality in CM, including ATTR-CM. Method: A PRISMA-guided systematic literature review was conducted using search terms for CM, 6MWT, hospitalization and mortality. Results: Forty-one studies were identified that reported 6MWT data and hospitalization or mortality data for patients with CM. The data suggest that a greater 6MWT distance is associated with a reduced risk of hospitalization or mortality in CM. Conclusion: The 6MWT is an accepted alternative end point in CM trials, including ATTR-CM.
Collapse
Affiliation(s)
| | - Ali Yilmaz
- Division of Cardiovascular Imaging, University Hospital Münster, 48149, Münster, Germany
| | - Noel Dasgupta
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Richard Macey
- Adelphi Values PROVE, Bollington, Cheshire, UK, SK10 5JB
| | - James Cochrane
- Adelphi Values PROVE, Bollington, Cheshire, UK, SK10 5JB
| | - Judith Peatman
- Adelphi Values PROVE, Bollington, Cheshire, UK, SK10 5JB
| | - Catherine Summers
- Medical Affairs Department, Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Jennifer Luth
- Medical Affairs Department, Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Ronald Zolty
- Division of Cardiovascular Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198 USA
| |
Collapse
|
23
|
Fatehi Hassanabad A, Zarzycki AN, Fedak PWM. Cellular and molecular mechanisms driving cardiac tissue fibrosis: On the precipice of personalized and precision medicine. Cardiovasc Pathol 2024; 71:107635. [PMID: 38508436 DOI: 10.1016/j.carpath.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Cardiac fibrosis is a significant contributor to heart failure, a condition that continues to affect a growing number of patients worldwide. Various cardiovascular comorbidities can exacerbate cardiac fibrosis. While fibroblasts are believed to be the primary cell type underlying fibrosis, recent and emerging data suggest that other cell types can also potentiate or expedite fibrotic processes. Over the past few decades, clinicians have developed therapeutics that can blunt the development and progression of cardiac fibrosis. While these strategies have yielded positive results, overall clinical outcomes for patients suffering from heart failure continue to be dire. Herein, we overview the molecular and cellular mechanisms underlying cardiac tissue fibrosis. To do so, we establish the known mechanisms that drive fibrosis in the heart, outline the diagnostic tools available, and summarize the treatment options used in contemporary clinical practice. Finally, we underscore the critical role the immune microenvironment plays in the pathogenesis of cardiac fibrosis.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
24
|
Ahmed ZT, Zain Al-Abeden MS, Al Abdin MG, Muqresh MA, Al Jowf GI, Eijssen LMT, Haider KH. Dose-response relationship of MSCs as living Bio-drugs in HFrEF patients: a systematic review and meta-analysis of RCTs. Stem Cell Res Ther 2024; 15:165. [PMID: 38867306 PMCID: PMC11170815 DOI: 10.1186/s13287-024-03713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/01/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) have emerged as living biodrugs for myocardial repair and regeneration. Recent randomized controlled trials (RCTs) have reported that MSC-based therapy is safe and effective in heart failure patients; however, its dose-response relationship has yet to be established. We aimed to determine the optimal MSC dose for treating HF patients with reduced ejection fraction (EF) (HFrEF). METHODS The preferred reporting items for systematic reviews and meta-analyses (PRISMA) and Cochrane Handbook guidelines were followed. Four databases and registries, i.e., PubMed, EBSCO, clinicaltrials.gov, ICTRP, and other websites, were searched for RCTs. Eleven RCTs with 1098 participants (treatment group, n = 606; control group, n = 492) were selected based on our inclusion/exclusion criteria. Two independent assessors extracted the data and performed quality assessments. The data from all eligible studies were plotted for death, major adverse cardiac events (MACE), left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and 6-minute walk distance (6-MWD) as safety, efficacy, and performance parameters. For dose-escalation assessment, studies were categorized as low-dose (< 100 million cells) or high-dose (≥ 100 million cells). RESULTS MSC-based treatment is safe across low and high doses, with nonsignificant effects. However, low-dose treatment had a more significant protective effect than high-dose treatment. Subgroup analysis revealed the superiority of low-dose treatment in improving LVEF by 3.01% (95% CI; 0.65-5.38%) compared with high-dose treatment (-0.48%; 95% CI; -2.14-1.18). MSC treatment significantly improved the 6-MWD by 26.74 m (95% CI; 3.74-49.74 m) in the low-dose treatment group and by 36.73 m (95% CI; 6.74-66.72 m) in the high-dose treatment group. The exclusion of studies using ADRCs resulted in better safety and a significant improvement in LVEF from low- and high-dose MSC treatment. CONCLUSION Low-dose MSC treatment was safe and superior to high-dose treatment in restoring efficacy and functional outcomes in heart failure patients, and further analysis in a larger patient group is warranted.
Collapse
Affiliation(s)
- Ziyad T Ahmed
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairiyah, 52726, Saudi Arabia
| | | | | | - Mohamad Ayham Muqresh
- College of Medicine, Sulaiman Al Rajhi University, Al-Bukairiyah, 52726, Saudi Arabia
| | - Ghazi I Al Jowf
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, 6200 MD, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Lars M T Eijssen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences, Maastricht University Medical Centre, Maastricht, 6200 MD, The Netherlands
- Department of Bioinformatics- BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, 6200 MD, The Netherlands
- European Graduate School of Neuroscience, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | | |
Collapse
|
25
|
Olatunji G, Kokori E, Yusuf I, Ayanleke E, Damilare O, Afolabi S, Adetunji B, Mohammed S, Akinmoju O, Aboderin G, Aderinto N. Stem cell-based therapies for heart failure management: a narrative review of current evidence and future perspectives. Heart Fail Rev 2024; 29:573-598. [PMID: 37733137 DOI: 10.1007/s10741-023-10351-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Abstract
Heart failure (HF) is a prevalent and debilitating global cardiovascular condition affecting around 64 million individuals, placing significant strain on healthcare systems and diminishing patients' quality of life. The escalating prevalence of HF underscores the urgent need for innovative therapeutic approaches that target the root causes and aim to restore normal cardiac function. Stem cell-based therapies have emerged as promising candidates, representing a fundamental departure from conventional treatments focused primarily on symptom management. This review explores the evolving landscape of stem cell-based therapies for HF management. It delves into the mechanisms of action, clinical evidence from both positive and negative outcomes, ethical considerations, and regulatory challenges. Key findings include the potential for improved cardiac function, enhanced quality of life, and long-term benefits associated with stem cell therapies. However, adverse events and patient vulnerabilities necessitate stringent safety assessments. Future directions in stem cell-based HF therapies include enhancing efficacy and safety through optimized stem cell types, delivery techniques, dosing strategies, and long-term safety assessments. Personalized medicine, combining therapies, addressing ethical and regulatory challenges, and expanding access while reducing costs are crucial aspects of the evolving landscape.
Collapse
Affiliation(s)
- Gbolahan Olatunji
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Emmanuel Kokori
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Ismaila Yusuf
- Department of Medicine and Surgery, Obafemi Awolowo University, Osun, Nigeria
| | - Emmanuel Ayanleke
- Department of Medicine and Surgery, University of Ilorin, Ilorin, Nigeria
| | - Olakanmi Damilare
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Samson Afolabi
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Busayo Adetunji
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Saad Mohammed
- Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
| | | | - Gbolahan Aboderin
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria
| | - Nicholas Aderinto
- Department of Medicine and Surgery, Ladoke Akintola University Teaching Hospital, Ogbomoso, Nigeria.
| |
Collapse
|
26
|
Abouzid MR, Umer AM, Jha SK, Akbar UA, Khraisat O, Saleh A, Mohamed K, Esteghamati S, Kamel I. Stem Cell Therapy for Myocardial Infarction and Heart Failure: A Comprehensive Systematic Review and Critical Analysis. Cureus 2024; 16:e59474. [PMID: 38832190 PMCID: PMC11145929 DOI: 10.7759/cureus.59474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 06/05/2024] Open
Abstract
In exploring therapeutic options for ischemic heart disease (IHD) and heart failure, cell-based cardiac repair has gained prominence. This systematic review delves into the current state of knowledge surrounding cell-based therapies for cardiac repair. Employing a comprehensive search across relevant databases, the study identifies 35 included studies with diverse cell types and methodologies. Encouragingly, these findings reveal the promise of cell-based therapies in cardiac repair, demonstrating significant enhancements in left ventricular ejection fraction (LVEF) across the studies. Mechanisms of action involve growth factors that stimulate angiogenesis, differentiation, and the survival of transplanted cells. Despite these positive outcomes, challenges persist, including low engraftment rates, limitations in cell differentiation, and variations in clinical reproducibility. The optimal dosage and frequency of cell administration remain subjects of debate, with potential benefits from repeated dosing. Additionally, the choice between autologous and allogeneic stem cell transplantation poses a critical decision. This systematic review underscores the potential of cell-based therapies for cardiac repair, bearing implications for innovative treatments in heart diseases. However, further research is imperative to optimize cell type selection, delivery techniques, and long-term efficacy, fostering a more comprehensive understanding of cell-based cardiac repair.
Collapse
Affiliation(s)
- Mohamed R Abouzid
- Internal Medicine, Baptist Hospitals of Southeast Texas, Beaumont, USA
| | - Ahmed Muaaz Umer
- Internal Medicine Residency, Camden Clark Medical Center, Parkersburg, USA
| | - Suman Kumar Jha
- Internal Medicine, Sheer Memorial Adventist Hospital, Banepa, NPL
| | - Usman A Akbar
- Internal Medicine, Camden Clark Medical Center, Parkersburg, USA
| | - Own Khraisat
- Internal Medicine, King Hussein Medical City, Amman, JOR
| | - Amr Saleh
- Cardiovascular Medicine, Yale School of Medicine, New Haven, USA
| | - Kareem Mohamed
- Internal Medicine, University of Missouri Kansas City, Kansas City, USA
| | | | - Ibrahim Kamel
- Internal Medicine, Steward Carney Hospital, Boston, USA
| |
Collapse
|
27
|
Xiao Y, Xia L, Jiang W, Qin J, Zhao L, Li Z, Huang L, Li K, Yu P, Wei L, Jiang X, Chen Z, Yu X. Cardiopulmonary progenitors facilitate cardiac repair via exosomal transfer of miR-27b-3p targeting the SIK1-CREB1 axis. Cell Prolif 2024; 57:e13593. [PMID: 38185757 PMCID: PMC11056695 DOI: 10.1111/cpr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.
Collapse
Affiliation(s)
- Ying‐Ying Xiao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Luo‐Xing Xia
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen‐Jing Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Juan Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Ke‐Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Peng‐Jiu Yu
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li Wei
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xue‐Yan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Xi‐Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
28
|
Carvalho AB, Kasai-Brunswick TH, Campos de Carvalho AC. Advanced cell and gene therapies in cardiology. EBioMedicine 2024; 103:105125. [PMID: 38640834 PMCID: PMC11052923 DOI: 10.1016/j.ebiom.2024.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/21/2024] Open
Abstract
We review the evidence for the presence of stem/progenitor cells in the heart and the preclinical and clinical data using diverse cell types for the therapy of cardiac diseases. We highlight the failure of adult stem/progenitor cells to ameliorate heart function in most cardiac diseases, with the possible exception of refractory angina. The use of pluripotent stem cell-derived cardiomyocytes is analysed as a viable alternative therapeutic option but still needs further research at preclinical and clinical stages. We also discuss the use of direct reprogramming of cardiac fibroblasts into cardiomyocytes and the use of extracellular vesicles as therapeutic agents in ischemic and non-ischemic cardiac diseases. Finally, gene therapies and genome editing for the treatment of hereditary cardiac diseases, ablation of genes responsible for atherosclerotic disease, or modulation of gene expression in the heart are discussed.
Collapse
Affiliation(s)
- Adriana Bastos Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tais Hanae Kasai-Brunswick
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Carlos Campos de Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Universidade Federal do RIo de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
29
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
30
|
Huang QM, Long YL, Wang JN, Wu J, Tang WL, Wang XY, Zhang ZH, Zhuo YQ, Guan XH, Deng KY, Xin HB. Human amniotic MSCs-mediated anti-inflammation of CD206 hiIL-10 hi macrophages alleviates isoproterenol-induced ventricular remodeling in mice. Int Immunopharmacol 2024; 129:111660. [PMID: 38350357 DOI: 10.1016/j.intimp.2024.111660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND Human amniotic mesenchymal stem cells (hAMSCs) derived from amniotic membrane have multilineage differentiation, immunosuppressive, and anti-inflammation which makes them suitable for the treatment of various diseases. OBJECTIVE This study aimed to explore the therapeutic effect and molecular mechanism of hAMSCs in ventricular remodeling (VR). METHODS hAMSCs were characterized by a series of experiments such as flow cytometric analysis, immunofluorescence, differentiative induction and tumorigenicity. Mouse VR model was induced by isoproterenol (ISO) peritoneally, and the therapeutic effects and the potential mechanisms of hAMSCs transplantation were evaluated by echocardiography, carboxy fluorescein diacetate succinimidyl ester (CFSE) labeled cell tracing, histochemistry, qRT-PCR and western blot analysis. The co-culturing experiments were carried out for further exploring the mechanisms of hAMSCs-derived conditioned medium (CM) on macrophage polarization and fibroblast fibrosis in vitro. RESULTS hAMSCs transplantation significantly alleviated ISO-induced VR including cardiac hypertrophy and fibrosis with the improvements of cardiac functions. CFSE labeled hAMSCs kept an undifferentiated state in heart, indicating that hAMSCs-mediated the improvement of ISO-induced VR might be related to their paracrine effects. hAMSCs markedly inhibited ISO-induced inflammation and fibrosis, seen as the increase of M2 macrophage infiltration and the expressions of CD206 and IL-10, and the decreases of CD86, iNOS, COL3 and αSMA expressions in heart, suggesting that hAMSCs transplantation promoted the polarization of M2 macrophages and inhibited the polarization of M1 macrophages. Mechanically, hAMSCs-derived CM significantly increased the expressions of CD206, IL-10, Arg-1 and reduced the expressions of iNOS and IL-6 in RAW264.7 macrophages in vitro. Interestingly, RAW264.7-CM remarkably promoted the expressions of anti-inflammatory factors such as IL-10, IDO, and COX2 in hAMSCs. Furthermore, the CM derived from hAMSCs pretreated with RAW264.7-CM markedly inhibited the expressions of fibrogenesis genes such as αSMA and COL3 in 3T3 cells. CONCLUSION Our results demonstrated that hAMSCs effectively alleviated ISO-induced cardiac hypertrophy and fibrosis, and improved the cardiac functions in mice, and the underlying mechanisms might be related to inhibiting the inflammation and fibrosis during the ventricular remodeling through promoting the polarization of CD206hiIL-10hi macrophages in heart tissues. Our study strongly suggested that by taking the advantages of the potent immunosuppressive and anti-inflammatory effects, hAMSCs may provide an alternative therapeutic approach for prevention and treatment of VR clinically.
Collapse
Affiliation(s)
- Qi-Ming Huang
- College of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Ying-Lin Long
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jia-Nan Wang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Jie Wu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Wen-Long Tang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital, Nanchang 330031, Jiangxi, China
| | - Zhou-Hang Zhang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China
| | - You-Qiong Zhuo
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China; School of Food Science and Technology, Nanchang University, Nanchang 330052, Jiangxi, China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Ke-Yu Deng
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| | - Hong-Bo Xin
- College of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
31
|
Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart failure in the clinics: new perspectives in the era of precision medicine and artificial intelligence. Front Physiol 2024; 14:1344885. [PMID: 38264333 PMCID: PMC10803627 DOI: 10.3389/fphys.2023.1344885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/26/2023] [Indexed: 01/25/2024] Open
Abstract
Stem/progenitor cells have been widely evaluated as a promising therapeutic option for heart failure (HF). Numerous clinical trials with stem/progenitor cell-based therapy (SCT) for HF have demonstrated encouraging results, but not without limitations or discrepancies. Recent technological advancements in multiomics, bioinformatics, precision medicine, artificial intelligence (AI), and machine learning (ML) provide new approaches and insights for stem cell research and therapeutic development. Integration of these new technologies into stem/progenitor cell therapy for HF may help address: 1) the technical challenges to obtain reliable and high-quality therapeutic precursor cells, 2) the discrepancies between preclinical and clinical studies, and 3) the personalized selection of optimal therapeutic cell types/populations for individual patients in the context of precision medicine. This review summarizes the current status of SCT for HF in clinics and provides new perspectives on the development of computation-aided SCT in the era of precision medicine and AI/ML.
Collapse
Affiliation(s)
- Mohammed A. Chowdhury
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
- Department of Public Health and Health Sciences, Health Sciences Ph.D. Program, School of Health Sciences, University of South Dakota, Vermillion, SD, United States
- Department of Cardiology, North Central Heart, Avera Heart Hospital, Sioux Falls, SD, United States
| | - Jing J. Zhang
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Rodrigue Rizk
- Department of Computer Science, University of South Dakota, Vermillion, SD, United States
| | - William C. W. Chen
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| |
Collapse
|
32
|
Xiao Y, Xu RH, Dai Y. Nanoghosts: Harnessing Mesenchymal Stem Cell Membrane for Construction of Drug Delivery Platforms Via Optimized Biomimetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304824. [PMID: 37653618 DOI: 10.1002/smll.202304824] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Mesenchymal stem cells (MSCs) are becoming hotspots for application in disease therapies recently, combining with biomaterials and drug delivery system. A major advantage of MSCs applied in drug delivery system is that these cells enable specific targeting and releasing of cargos to the disease sites. However, the potential tumor tropic effects of MSCs raised concerns on biosafety. To solve this problem, there are emerging methods of isolating cell membranes and developing nanoformulations to perform drug delivery, which avoids concerns on biosafety without disturbing the membrane functions of specific polarizing and locating. These cargoes are so called "nanoghosts." This review article summarizes the current applications of nanoghosts, the promising potential of MSCs to be applied in membrane isolation and nanoghost construction, and possible approaches to develop better drug delivery system harnessing from MSC ghost cell membranes.
Collapse
Affiliation(s)
- Yuan Xiao
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ren-He Xu
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yunlu Dai
- Faculty of Health Sciences and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
33
|
Bhaskara M, Anjorin O, Wang M. Mesenchymal Stem Cell-Derived Exosomal microRNAs in Cardiac Regeneration. Cells 2023; 12:2815. [PMID: 38132135 PMCID: PMC10742005 DOI: 10.3390/cells12242815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Mesenchymal stem cell (MSC)-based therapy is one of the most promising modalities for cardiac repair. Accumulated evidence suggests that the therapeutic value of MSCs is mainly attributable to exosomes. MSC-derived exosomes (MSC-Exos) replicate the beneficial effects of MSCs by regulating various cellular responses and signaling pathways implicated in cardiac regeneration and repair. miRNAs constitute an important fraction of exosome content and are key contributors to the biological function of MSC-Exo. MSC-Exo carrying specific miRNAs provides anti-apoptotic, anti-inflammatory, anti-fibrotic, and angiogenic effects within the infarcted heart. Studying exosomal miRNAs will provide an important insight into the molecular mechanisms of MSC-Exo in cardiac regeneration and repair. This significant information can help optimize cell-free treatment and overcome the challenges associated with MSC-Exo therapeutic application. In this review, we summarize the characteristics and the potential mechanisms of MSC-derived exosomal miRNAs in cardiac repair and regeneration.
Collapse
Affiliation(s)
| | | | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
34
|
Chepeleva EV. Cell Therapy in the Treatment of Coronary Heart Disease. Int J Mol Sci 2023; 24:16844. [PMID: 38069167 PMCID: PMC10706847 DOI: 10.3390/ijms242316844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Heart failure is a leading cause of death in patients who have suffered a myocardial infarction. Despite the timely use of modern reperfusion therapies such as thrombolysis, surgical revascularization and balloon angioplasty, they are sometimes unable to prevent the development of significant areas of myocardial damage and subsequent heart failure. Research efforts have focused on developing strategies to improve the functional status of myocardial injury areas. Consequently, the restoration of cardiac function using cell therapy is an exciting prospect. This review describes the characteristics of various cell types relevant to cellular cardiomyoplasty and presents findings from experimental and clinical studies investigating cell therapy for coronary heart disease. Cell delivery methods, optimal dosage and potential treatment mechanisms are discussed.
Collapse
Affiliation(s)
- Elena V. Chepeleva
- Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15, Rechkunovskaya Str., 630055 Novosibirsk, Russia;
- Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 2, Timakova Str., 630060 Novosibirsk, Russia
| |
Collapse
|
35
|
Lee RH, Boregowda SV, Shigemoto-Kuroda T, Bae E, Haga CL, Abbery CA, Bayless KJ, Haskell A, Gregory CA, Ortiz LA, Phinney DG. TWIST1 and TSG6 are coordinately regulated and function as potency biomarkers in human MSCs. SCIENCE ADVANCES 2023; 9:eadi2387. [PMID: 37948519 PMCID: PMC10637745 DOI: 10.1126/sciadv.adi2387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Mesenchymal stem/stromal cells (MSCs) have been evaluated in >1500 clinical trials, but outcomes remain suboptimal because of knowledge gaps in quality attributes that confer potency. We show that TWIST1 directly represses TSG6 expression that TWIST1 and TSG6 are inversely correlated across bone marrow-derived MSC (BM-MSC) donor cohorts and predict interdonor differences in their proangiogenic, anti-inflammatory, and immune suppressive activity in vitro and in sterile inflammation and autoimmune type 1 diabetes preclinical models. Transcript profiling of TWIST1HiTSG6Low versus TWISTLowTSG6Hi BM-MSCs revealed previously unidentified roles for TWIST1/TSG6 in regulating cellular oxidative stress and TGF-β2 in modulating TSG6 expression and anti-inflammatory activity. TWIST1 and TSG6 levels also correlate to donor stature and predict differences in iPSC-derived MSC quality attributes. These results validate TWIST1 and TSG6 as biomarkers that predict interdonor differences in potency across laboratories and assay platforms, thereby providing a means to manufacture MSC products tailored to specific diseases.
Collapse
Affiliation(s)
- Ryang Hwa Lee
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Siddaraju V. Boregowda
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Taeko Shigemoto-Kuroda
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - EunHye Bae
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Christopher L. Haga
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| | - Colette A. Abbery
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Kayla J. Bayless
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Andrew Haskell
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Carl A. Gregory
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University, College Station, TX, 77845, USA
| | - Luis A. Ortiz
- Department of Environmental Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Donald G. Phinney
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, 33458, USA
| |
Collapse
|
36
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
37
|
Pepine CJ, Raval AN. The CardiAMP Cell Therapy for Heart Failure trial. Tex Heart Inst J 2023; 50:e238242. [PMID: 37881037 PMCID: PMC10658138 DOI: 10.14503/thij-23-8242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Affiliation(s)
- Carl J. Pepine
- Center for Regenerative Medicine, Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida
| | - Amish N. Raval
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
38
|
Carbone RG, Negrini S, Murdaca G, Fontana V, Puppo F. Stem cells treatment in chronic ischemic heart disease: a narrative review. AMERICAN JOURNAL OF STEM CELLS 2023; 12:65-72. [PMID: 38021453 PMCID: PMC10658134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023]
Abstract
Chronic ischemic heart disease remains a major cause of morbidity and mortality worldwide. Several trials have been performed to evaluate benefit of stem cells transplantation to restore cardiac function in short- and long-term period after myocardial infarction. This narrative review analyzes 24 clinical trials between 2005 and 2023 comprising 1824 patients with chronic heart disease without heart failure. Percent increase in left ventricular ejection fraction (LVEF) and decrease in New York Heart Association (NYHA) class at 6/12 months after stem cells transplantation are reported. Thirteen trials showed a statistically significant percent LVEF increase between 4% to 19% at 6/12 months after stem cells transplantation (p values from 0.05 to 0.0001). No significant differences in LVEF were observed between patients who underwent intracoronary or intramyocardial transplantation. NYHA class decrease from severe to mild/moderate was demonstrated in 10 trials reporting a significant LVEF increase. Patients transplanted with bone marrow and peripheral blood CD133+ stem cells showed a doubling of percentage LVEF increase in comparison to patients transplanted with CD133- cells. This narrative review reports the conflicting results on this topic. Multicenter randomized clinical trials should be performed to define the efficacy of stem cells transplantation in chronic ischemic heart disease.
Collapse
Affiliation(s)
| | - Simone Negrini
- Department of Internal Medicine, University of GenoaGenoa, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of GenoaGenoa, Italy
| | - Vincenzo Fontana
- Clinical Epidemiology Unit, IRCCS San Martino HospitalGenoa, Italy
| | - Francesco Puppo
- Department of Internal Medicine, University of GenoaGenoa, Italy
| |
Collapse
|
39
|
Attar A, Farjoud Kouhanjani M, Hessami K, Vosough M, Kojuri J, Ramzi M, Hosseini SA, Faghih M, Monabati A. Effect of once versus twice intracoronary injection of allogeneic-derived mesenchymal stromal cells after acute myocardial infarction: BOOSTER-TAHA7 randomized clinical trial. Stem Cell Res Ther 2023; 14:264. [PMID: 37740221 PMCID: PMC10517503 DOI: 10.1186/s13287-023-03495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
BACKGROUND Mesenchymal stromal cell (MSC) transplantation can improve the left ventricular ejection fraction (LVEF) after an acute myocardial infarction (AMI). Transplanted MSCs exert a paracrine effect, which might be augmented if repeated doses are administered. This study aimed to compare the effects of single versus double transplantation of Wharton's jelly MSCs (WJ-MSCs) on LVEF post-AMI. METHODS We conducted a single-blind, randomized, multicenter trial. After 3-7 days of an AMI treated successfully by primary PCI, 70 patients younger than 65 with LVEF < 40% on baseline echocardiography were randomized to receive conventional care, a single intracoronary infusion of WJ-MSCs, or a repeated infusion 10 days later. The primary endpoint was the 6-month LVEF improvement as per cardiac magnetic resonance (CMR) imaging. RESULTS The mean baseline EF measured by CMR was similar (~ 40%) in all three groups. By the end of the trial, while all patients experienced a rise in EF, the most significant change was seen in the repeated intervention group. Compared to the control group (n = 25), single MSC transplantation (n = 20) improved the EF by 4.54 ± 2%, and repeated intervention (n = 20) did so by 7.45 ± 2% when measured by CMR imaging (P < 0.001); when evaluated by echocardiography, these values were 6.71 ± 2.4 and 10.71 ± 2.5%, respectively (P < 0.001). CONCLUSIONS Intracoronary transplantation of WJ-MSCs 3-7 days after AMI in selected patients significantly improves LVEF, with the infusion of a booster dose 10 days later augmenting this effect. TRIAL REGISTRATION Trial registration: Iranian Registry of Clinical Trials, IRCT20201116049408N1. Retrospectively Registered 20 Nov. 2020, https://en.irct.ir/trial/52357.
Collapse
Affiliation(s)
- Armin Attar
- Department of Cardiovascular Medicine, TAHA Clinical Trial Group, School of Medicine, Shiraz University of Medical Sciences, Zand Street, Shiraz, 71344-1864, Iran.
| | | | - Kamran Hessami
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Javad Kojuri
- Department of Cardiovascular Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mani Ramzi
- Hematopathology and Molecular Pathology Service, Department of Pathology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, 71344-1864, Iran
| | | | - Marjan Faghih
- Department of Biostatistics, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ahmad Monabati
- Hematopathology and Molecular Pathology Service, Department of Pathology, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, 71344-1864, Iran.
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
40
|
Sundin A, Ionescu SI, Balkan W, Hare JM. Mesenchymal STRO-1/STRO-3 + precursor cells for the treatment of chronic heart failure with reduced ejection fraction. Future Cardiol 2023; 19:567-581. [PMID: 37933628 PMCID: PMC10652293 DOI: 10.2217/fca-2023-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/30/2023] [Indexed: 11/08/2023] Open
Abstract
The heart is susceptible to proinflammatory and profibrotic responses after myocardial injury, leading to further worsening of cardiac dysfunction. Important developments in the management of heart failure with reduced ejection fraction have reduced morbidity and mortality; however, these therapies focus on optimizing cardiac function through hemodynamic and neurohormonal pathways and not by repairing the underlying cardiac injury. The potential of cell-based therapy to reverse cardiac injury has received substantial attention. Herein are examined the phase II and III studies of bone marrow-derived mesenchymal STRO-1+ or STRO-1/STRO-3+ precursor cells in patients with ischemic and nonischemic heart failure with reduced ejection fraction, addressing the safety and efficacy of cell-based therapy throughout multiple clinical trials, the optimal dose and the steps toward revolutionizing the treatment of heart failure.
Collapse
Affiliation(s)
- Andrew Sundin
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Simona I Ionescu
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
41
|
Iqbal F, Johnston A, Wyse B, Rabani R, Mander P, Hoseini B, Wu J, Li RK, Gauthier-Fisher A, Szaraz P, Librach C. Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury. NPJ Regen Med 2023; 8:45. [PMID: 37626067 PMCID: PMC10457300 DOI: 10.1038/s41536-023-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-β, and VEGF-C. PDGF-β signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.
Collapse
Affiliation(s)
- Farwah Iqbal
- Create Fertility Centre, Toronto, ON, Canada
- Virginia Tech Carillion School of Medicine, Roanoke, VA, USA
| | | | | | | | | | | | - Jun Wu
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | | | | | - Clifford Librach
- Create Fertility Centre, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
42
|
Ouzin M, Kogler G. Mesenchymal Stromal Cells: Heterogeneity and Therapeutical Applications. Cells 2023; 12:2039. [PMID: 37626848 PMCID: PMC10453316 DOI: 10.3390/cells12162039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Mesenchymal stromal cells nowadays emerge as a major player in the field of regenerative medicine and translational research. They constitute, with their derived products, the most frequently used cell type in different therapies. However, their heterogeneity, including different subpopulations, the anatomic source of isolation, and high donor-to-donor variability, constitutes a major controversial issue that affects their use in clinical applications. Furthermore, the intrinsic and extrinsic molecular mechanisms underlying their self-renewal and fate specification are still not completely elucidated. This review dissects the different heterogeneity aspects of the tissue source associated with a distinct developmental origin that need to be considered when generating homogenous products before their usage for clinical applications.
Collapse
Affiliation(s)
- Meryem Ouzin
- Institute for Transplantation Diagnostics and Cell Therapeutics, University Hospital Düsseldorf, 40225 Düsseldorf, Germany;
| | | |
Collapse
|
43
|
Krishna Mohan GV, Tirumandyam G, Vemulapalli HS, Vajje J, Asif H, Saleem F. Mesenchymal Stem Cell Therapy for a Better Prognosis of Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Cureus 2023; 15:e43037. [PMID: 37674948 PMCID: PMC10479956 DOI: 10.7759/cureus.43037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2023] [Indexed: 09/08/2023] Open
Abstract
Mesenchymal stem cell (MSC) therapy is a frequently used treatment option for achieving a better prognosis in patients with heart failure (HF). However, due to reported adverse effects, patients are often hesitant to consider this treatment. Consequently, the aim of this systemic review and meta-analysis is to further investigate the effects of MSCs on survival outcomes, hospital readmissions, and left ventricular ejection fraction (LVEF) in individuals with pre-existing HF. We systematically searched PubMed, Web of Science, Embase, and Cochrane Library to review studies published up until July 16, 2023. Risk ratios were generated using the extracted data for all the outcomes except LVEF. The mean difference was generated for LVEF. Sensitivity analysis was performed to investigate heterogeneity, and the risk of bias tool was used to assess the quality of the included studies. Fourteen randomized controlled trials were included in the meta-analysis. Pooled results revealed that the MSC therapy group did not significantly affect the outcomes of cardiovascular death, rehospitalization rate, myocardial infarction, recurrence of HF, and total death when compared to a control group. However, MSC therapy was significantly associated with an increased LVEF (RR = 3.35; 95% CI: 0.79-5.72; p = 0.010; I2 = 95%). Upon sensitivity analysis, MSC therapy was significantly associated with a decreased hospitalization rate (RR = 0.46; 95% CI: 0.34-0.64; p < 0.00001; I2 = 0%). MSC transplantation results in a significantly improved LVEF and rehospitalization rate.
Collapse
Affiliation(s)
| | - Gayathri Tirumandyam
- Internal Medicine, Siddhartha Medical College, Dr. YSR University of Health Sciences, Vijayawada, IND
| | | | - Jaahnavi Vajje
- Internal Medicine, Dr. Pinnamaneni Siddhartha Institute of Medical Sciences & Research Foundation, Vijayawada, IND
| | - Hamza Asif
- Pulmonology, Khyber Teaching Hospital, Peshawar, PAK
| | - Faraz Saleem
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
- Internal Medicine, Akhtar Saeed Medical and Dental College, Lahore, PAK
| |
Collapse
|
44
|
Park EH, Kim JM, Seong E, Lee E, Chang K, Choi Y. Effects of Mesenchymal Stem Cell Injection into Healed Myocardial Infarction Scar Border Zone on the Risk of Ventricular Tachycardia. Biomedicines 2023; 11:2141. [PMID: 37626638 PMCID: PMC10452743 DOI: 10.3390/biomedicines11082141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
The scar border zone is a main source of reentry responsible for ischemic ventricular tachycardia (VT). We evaluated the effects of mesenchymal stem cell (MSC) injection into the scar border zone on arrhythmic risks in a post-myocardial infarction (MI) animal model. Rabbit MI models were generated by left descending coronary artery ligation. Surviving rabbits after 4 weeks underwent left thoracotomy and autologous MSCs or phosphate-buffered saline (PBS) was administered to scar border zones in two rabbits in each group. Another rabbit without MI underwent a sham procedure (control). An implantable loop recorder (ILR) was implanted in the left chest wall in all animals. Four weeks after cell injections, ventricular fibrillation was induced in 1/2 rabbit in the PBS group by electrophysiologic study, and no ventricular arrhythmia was induced in the MSC group or control. Spontaneous VT was not detected during ILR analysis in any animal for 4 weeks. Histologic examination showed restoration of connexin 43 (Cx43) expression in the MSC group, which was higher than in the PBS group and comparable to the control. In conclusion, MSC injections into the MI scar border zone did not increase the risk of VT and were associated with favorable Cx43 expression and arrangement.
Collapse
Affiliation(s)
- Eun-Hye Park
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-H.P.); (J.-M.K.); (E.S.); (E.L.); (K.C.)
| | - Jin-Moo Kim
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-H.P.); (J.-M.K.); (E.S.); (E.L.); (K.C.)
| | - EunHwa Seong
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-H.P.); (J.-M.K.); (E.S.); (E.L.); (K.C.)
| | - Eunmi Lee
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-H.P.); (J.-M.K.); (E.S.); (E.L.); (K.C.)
| | - Kiyuk Chang
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-H.P.); (J.-M.K.); (E.S.); (E.L.); (K.C.)
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Young Choi
- Cardiovascular Research Institute for Intractable Disease, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea; (E.-H.P.); (J.-M.K.); (E.S.); (E.L.); (K.C.)
- Division of Cardiology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
45
|
Choi Y, Shin S, Son HJ, Lee NH, Myeong SH, Lee C, Jang H, Choi SJ, Kim HJ, Na DL. Identification of potential biomarkers related to mesenchymal stem cell response in patients with Alzheimer's disease. Stem Cell Res Ther 2023; 14:178. [PMID: 37468918 PMCID: PMC10357744 DOI: 10.1186/s13287-023-03410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Preclinical studies showed that mesenchymal stem cells (MSCs) ameliorate tau phosphorylation, amyloid-beta accumulation, and inflammation in Alzheimer's disease (AD) mouse models via secretion of neurotrophic factors and cytokines. We aimed to identify CSF biomarkers that can be used to predict or monitor the response to MSCs in patients with AD. METHODS AD patients were injected with human umbilical cord blood-MSCs (n = 22) or placebo (n = 12). The cerebrospinal fluid (CSF) samples were collected at baseline, one day after the first injection, and one day after the third injection. The patients injected with MSCs were classified into good responder (GR) or poor responder (PR) groups based on the rate of changes in the ratio of total-tau and phosphorylated-tau in the CSF. We selected three typical participants in each group, and their CSF protein levels were analyzed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). RESULTS In the LC-MS/MS analysis, 1,667 proteins were identified. Eleven proteins showed significant differences between the typical GR and PR at baseline. Based on their significance level and known functions, two proteins, reticulocalbin-3 (RCN3) and follistatin-related protein 3 (FSTL3), were selected as potential biomarkers to predict MSC response. A total of 173 proteins showed significant change one day after the third injection compared to the baseline in typical GR. We excluded 45 proteins that showed significant change after the third injection compared to the baseline in the typical PR. Based on their significance level and known function, four proteins, scrapie-responsive protein 1 (SCRG1), neural proliferation differentiation and control protein (NPDC1), apolipoprotein E (ApoE), and cystatin C (CysC), were selected as potential biomarker to monitor MSC response. Additionally, functional analysis revealed that the increased CSF proteins after the third injection compared to the baseline in the typical GR were associated with synaptogenesis. CONCLUSIONS This study identified two proteins (RCN3 and FSTL3) that may be potential biomarkers for predicting MSC response and four proteins (SCRG1, NPDC1, ApoE, CysC) that may be potential biomarkers for monitoring MSC response in patients with AD. Further studies are needed to validate our results. Trial registration Clinical Trials.gov, NCT02054208. Registered on 4 February 2014. Samsung Medical Center IRB File No.2017-04-025. Registered on 20 June 2017.
Collapse
Affiliation(s)
- Yejoo Choi
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Sungho Shin
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyo Jin Son
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Na-Hee Lee
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea
| | - Su Hyeon Myeong
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Cheolju Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyemin Jang
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., 21, Daewangpangyo-ro 644 Beon-gil, Seongnam-si, Gyeonggi-do, 13494, Republic of Korea
| | - Hee Jin Kim
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- School of Medicine, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Neuroscience Center, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.
| | - Duk L Na
- Cell and Gene Therapy Institute (CGTI), Research Institute for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea.
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
- Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
46
|
Kalou Y, Al-Khani AM, Haider KH. Bone Marrow Mesenchymal Stem Cells for Heart Failure Treatment: A Systematic Review and Meta-Analysis. Heart Lung Circ 2023; 32:870-880. [PMID: 36872163 DOI: 10.1016/j.hlc.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 03/06/2023]
Abstract
AIM Bone marrow-derived mesenchymal stem cells (BM-MSCs) are the most well-studied and characterised stem cell types. This review was undertaken of the current available phase II/III randomised clinical trials (RCTs) that delivered BM-MSCs to treat patients with cardiomyopathy, and to assess their performance. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines were followed during the systematic review and meta-analysis. Eligible studies were reviewed, and their data charted. To assess the efficacy of BM-MSCs, the outcome was improvement in left ventricular ejection fraction (LVEF) and 6-minute walking distance (6MWD). RESULTS The pooled weighted mean difference (WMD) showed that BM-MSCs treatment improved the 6MWD by 27.86 m (95% CI 0.11-55.6 m) compared with the control groups. The pooled WMD showed that BM-MSCs treatment improved the LVEF by 6.37% (95% CI 5.48%-7.26%) compared with the control groups. CONCLUSION BM-MSCs treatment is an effective intervention for managing patients with heart failure, but it requires larger and more robust clinical trials to support its routine use in clinics.
Collapse
Affiliation(s)
- Yazan Kalou
- College of Medicine, Sulaiman Al Rajhi University, Bukairyah, Al-Qassim, Saudi Arabia. https://twitter.com/yazka16
| | - Abdullah Murhaf Al-Khani
- College of Medicine, Sulaiman Al Rajhi University, Bukairyah, Al-Qassim, Saudi Arabia. https://twitter.com/Al_khani_95
| | | |
Collapse
|
47
|
Abubakar M, Masood MF, Javed I, Adil H, Faraz MA, Bhat RR, Fatima M, Abdelkhalek AM, Buccilli B, Raza S, Hajjaj M. Unlocking the Mysteries, Bridging the Gap, and Unveiling the Multifaceted Potential of Stem Cell Therapy for Cardiac Tissue Regeneration: A Narrative Review of Current Literature, Ethical Challenges, and Future Perspectives. Cureus 2023; 15:e41533. [PMID: 37551212 PMCID: PMC10404462 DOI: 10.7759/cureus.41533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2023] [Indexed: 08/09/2023] Open
Abstract
Revolutionary advancements in regenerative medicine have brought stem cell therapy to the forefront, offering promising prospects for the regeneration of ischemic cardiac tissue. Yet, its full efficacy, safety, and role in treating ischemic heart disease (IHD) remain limited. This literature review explores the intricate mechanisms underlying stem cell therapy. Furthermore, we unravel the innovative approaches employed to bolster stem cell survival, enhance differentiation, and seamlessly integrate them within the ischemic cardiac tissue microenvironment. Our comprehensive analysis uncovers how stem cells enhance cell survival, promote angiogenesis, and modulate the immune response. Stem cell therapy harnesses a multifaceted mode of action, encompassing paracrine effects and direct cell replacement. As our review progresses, we underscore the imperative for standardized protocols, comprehensive preclinical and clinical studies, and careful regulatory considerations. Lastly, we explore the integration of tissue engineering and genetic modifications, envisioning a future where stem cell therapy reigns supreme in regenerative medicine.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
- Department of Internal Medicine, Siddique Sadiq Memorial Trust Hospital, Gujranwala, PAK
| | | | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Hira Adil
- Department of Community Medicine, Khyber Girls Medical College, Hayatabad, PAK
| | - Muhammad Ahmad Faraz
- Department of Forensic Medicine, Post Graduate Medical Institute, Lahore General Hospital, Lahore, PAK
| | - Rakshita Ramesh Bhat
- Department of Medical Oncology, Mangalore Institute of Oncology, Mangalore, IND
- Department of Internal Medicine, Bangalore Medical College and Research Institute, Bangalore, IND
| | - Mahek Fatima
- Department of Internal Medicine, Osmania Medical College, Hyderabad, IND
| | | | - Barbara Buccilli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, ITA
| | - Saud Raza
- Department of Internal Medicine, Ameer-Ud-Din Medical College, Lahore General Hospital, Lahore, PAK
| | - Mohsin Hajjaj
- Department of Internal Medicine, Jinnah Hospital Lahore, Lahore, PAK
| |
Collapse
|
48
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications—Are We on the Road to Success? Cells 2023; 12:1727. [DOI: https:/doi.org/10.3390/cells12131727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
49
|
Correia CD, Ferreira A, Fernandes MT, Silva BM, Esteves F, Leitão HS, Bragança J, Calado SM. Human Stem Cells for Cardiac Disease Modeling and Preclinical and Clinical Applications-Are We on the Road to Success? Cells 2023; 12:1727. [PMID: 37443761 PMCID: PMC10341347 DOI: 10.3390/cells12131727] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Collapse
Affiliation(s)
- Cátia D. Correia
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Anita Ferreira
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Mónica T. Fernandes
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- School of Health, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Bárbara M. Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Doctoral Program in Biomedical Sciences, Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - Helena S. Leitão
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sofia M. Calado
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal; (C.D.C.); (A.F.); (M.T.F.); (B.M.S.); (F.E.); (H.S.L.); (J.B.)
- Algarve Biomedical Center (ABC), Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Universidade do Algarve—Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
50
|
Baouche M, Ochota M, Locatelli Y, Mermillod P, Niżański W. Mesenchymal Stem Cells: Generalities and Clinical Significance in Feline and Canine Medicine. Animals (Basel) 2023; 13:1903. [PMID: 37370414 DOI: 10.3390/ani13121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undifferentiated cells and have the ability to differentiate into different types of cells. A considerable amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine. They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive, immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared with pluripotent stem cells. The present review details the current understanding of the fundamental biology of MSCs. We focus on MSCs' properties and their characteristics with the goal of providing an overview of therapeutic innovations based on MSCs in canines and felines.
Collapse
Affiliation(s)
- Meriem Baouche
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Małgorzata Ochota
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| | - Yann Locatelli
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
- Museum National d'Histoire Naturelle, Réserve Zoologique de la Haute Touche, 36290 Obterre, France
| | - Pascal Mermillod
- Physiology of Reproduction and Behaviors (PRC), UMR085, INRAE, CNRS, University of Tours, 37380 Nouzilly, France
| | - Wojciech Niżański
- Department of Reproduction and Clinic of Farm Animals, Wrocław University of Environmental and Life Sciences, 50-366 Wrocław, Poland
| |
Collapse
|