BPG is committed to discovery and dissemination of knowledge
Review
Copyright ©The Author(s) 2025.
World J Gastroenterol. Oct 21, 2025; 31(39): 110971
Published online Oct 21, 2025. doi: 10.3748/wjg.v31.i39.110971
Table 1 Application of high-accuracy artificial intelligence models in the diagnosis and prognosis management of pancreatitis
Application
Prediction target
AI methodology
Patient cohort
Input data type
Performance metrics
Stage of clinical translation
Ref.
DiagnosisAP early diagnosis and risk stratificationXGBoost model61894Vital signs and lab measurementsAUC: 0.921Experimental[47]
Logistic regression model27528 important radiomics features, lipase levelsAUC: 0.933Experimental[32]
Pancreatic lesions detection and segmentationV-Net model144Pancreatic volume. The split volume ratiosAUC: 0.854Experimental[31]
SegFormer model165EUS imagesAUC: 0.95Validation phase[41]
Pediatric pancreas segmentationPanSegNet84Imaging parameters, biologic sex, age at imaging, clinical diagnosisDice coefficient: Approximately 0.88Validation phase[37]
Non-invasive diagnosis of PDAC and CPDLR model558CEUS imagesTraining cohort AUC: 0.986. Internal validation cohort AUC: 0.978. External validation cohorts 1 AUC: 0.967. External validation cohorts 2 AUC: 0.953Validation phase[39]
491EUS imagesAUC: 0.936Validation phase[40]
Distinguish AIP from PDACSVM-RFE model111251 expert-designed features from 2D and 3D PET/CT imagesAUC: 0.93 ± 0.01Validation phase[44]
Random forest model182431 radiomics features. Two types of CT parameters with dual phase CTAUC: 0.975Validation phase[45]
AP severity early predictionLightGBM model215Radiomics featuresTraining cohort AUC: 0.992. Validation cohort AUC: 0.965. Test cohort AUC: 0.894Hospital IT integration[33,64]
CTA model192Age, gender, BMI, temperature, pulse, systolic blood pressure, WBC, CRP, albumin, calcium, APACHE II and BISAP, Balthazar grade, CTSI, MCTSI, EPIC scoreTraining cohort AUC: 0.853. Validation cohort AUC: 0.833Validation phase[51]
Random forest model648Blood urea nitrogen, serum creatinine, albumin, HDL, LDL, calcium, glucoseTraining cohort AUC: 0.89. Test cohort AUC: 0.96Validation phase[48]
740Age, gender, BMI, comorbidities, serum biochemical index, CTTraining cohort AUC: 0.969. Training cohort AUC: 0.961Validation phase[52]
Prognosis managementMortalityXGBoost model499WBC count, hemoglobin, platelet count, serum creatinine, albuminAUC: 0.881Hospital IT integration[61,64]
ANNs model337Total bilirubin, creatinine, amylase, lipase, LDHAUC: 0.769Experimental[72]
Multiple organ failureANNs model312Age, hematocrit, serum glucose, BUN, serum calciumAUC: 0.96 ± 0.02Experimental[62]
SVM model263HCT, K-time, IL-6, creatinineAUC: 0.840Validation phase[69]
ComplicationsANNs model217Pancreatic necrosis rate, LDH, oxyhemoglobin saturationAUC: 0.859 ± 0.048Experimental[66]
XGBoost model334APACHE II, IAP, PCT rankAUC: 0.9193Experimental[67]
GBDT model1672Age, vasopressors, mechanical ventilation, GCSAUC: 0.985Validation phase[70]
RecurrenceXGBoost model531TG levels, smoking, drinking, ANCAUC: 0.779Experimental[79]
CECT model389Age, etiology, CTSI, hospital stay, pancreatic necrosisAUC: 0.941Experimental[76]