Copyright
©The Author(s) 2025.
World J Gastroenterol. Sep 14, 2025; 31(34): 111541
Published online Sep 14, 2025. doi: 10.3748/wjg.v31.i34.111541
Published online Sep 14, 2025. doi: 10.3748/wjg.v31.i34.111541
Table 1 Baseline characteristics of included patients
Training cohort (n = 459) | Validation cohort (n = 196) | Test cohort (n = 171) | |||||||
PD HCC (n = 89) | nPD HCC (n = 370) | P value | PD HCC (n = 30) | nPD HCC (n = 166) | P value | PD HCC (n = 36) | nPD HCC (n = 135) | P value | |
Age (years) | 55.67 ± 10.56 | 57.24 ± 9.69 | 0.18 | 58.07 ± 9.12 | 58.95 ± 9.96 | 0.65 | 57.58 ± 8.75 | 59.67 ± 10.41 | 0.16 |
Sex (male), n (%) | 73 (82.02) | 312 (84.32) | 0.71 | 25 (83.33) | 141 (84.94) | 1.00 | 27 (75.00) | 112 (82.96) | 0.15 |
BMI (kg/m2) | 25.39 ± 3.39 | 25.14 ± 3.58 | 0.60 | 24.69 ± 3.68 | 24.95 ± 3.28 | 0.61 | 24.55 ± 3.23 | 25.07 ± 3.08 | 0.40 |
HBV, n (%) | 61 (68.54) | 253 (68.38) | 1.00 | 23 (76.67) | 125 (75.30) | 1.00 | 26 (72.22) | 92 (68.15) | 0.79 |
HCV, n (%) | 6 (6.74) | 23 (6.22) | 1.00 | 0 (0) | 5 (3.01) | 0.74 | 1 (2.78) | 7 (5.19) | 0.87 |
Cirrhosis, n (%) | 64 (71.91) | 236 (63.78) | 0.19 | 25 (83.33) | 100 (60.24) | 0.03 | 24 (66.67) | 76 (56.30) | 0.35 |
AFP (ng/mL), n (%) | |||||||||
< 20 | 21 (23.60) | 215 (58.11) | < 0.001 | 6 (20.00) | 89 (53.61) | 0.001 | 11 (30.56) | 88 (65.19) | < 0.001 |
20-400 | 29 (32.58) | 83 (22.43) | 0.06 | 11 (36.67) | 49 (29.52) | 0.57 | 12 (33.33) | 27 (20.00) | 0.14 |
> 400 | 39 (43.82) | 72 (19.46) | < 0.001 | 13 (43.33) | 28 (16.87) | 0.002 | 13 (36.11) | 20 (14.81) | 0.01 |
ALT (U/L) | 39.43 ± 31.08 | 33.74 ± 27.29 | 0.06 | 30.81 ± 12.57 | 33.48 ± 26.51 | 0.47 | 37.92 ± 34.03 | 31.51 ± 25.20 | 0.17 |
AST (U/L) | 32.54 ± 23.91 | 30.03 ± 22.88 | 0.13 | 29.26 ± 9.25 | 28.70 ± 18.83 | 0.09 | 32.58 ± 22.14 | 27.73 ± 14.45 | 0.11 |
TB (umol/L) | 18.91 ± 27.90 | 13.55 ± 5.85 | 0.31 | 14.38 ± 5.32 | 13.78 ± 6.48 | 0.45 | 13.76 ± 9.14 | 12.16 ± 5.22 | 0.35 |
Albumin (g/L) | 41.65 ± 4.19 | 41.53 ± 3.95 | 0.79 | 41.64 ± 4.63 | 41.14 ± 3.90 | 0.53 | 40.58 ± 4.12 | 41.78 ± 3.86 | 0.08 |
PT (S) | 13.45 ± 0.97 | 13.51 ± 1.07 | 0.56 | 13.63 ± 0.85 | 13.39 ± 1.01 | 0.34 | 13.56 ± 1.14 | 13.60 ± 0.84 | 0.77 |
Tumors size (mm) | 47.57 ± 22.08 | 47.91 ± 21.1 | 0.73 | 48.10 ± 25.78 | 49.83 ± 23.06 | 0.52 | 45.64 ± 19.51 | 50.90 ± 21.53 | 0.19 |
Number of tumors, n (%) | |||||||||
Solitary | 80 (89.89) | 330 (89.19) | 1.00 | 26 (86.67) | 153 (92.17) | 0.53 | 36 (100.00) | 126 (93.33) | 0.24 |
Multiple | 9 (10.11) | 40 (10.81) | 4 (13.33) | 13 (7.83) | 0 (0) | 9 (6.67) |
Table 2 Predictive performance of different radiomics models based on XGBoost
Models | Cohorts | Original NR MRI | Deep learning-based SR MRI | ||||||
AUC (95%CI) | Accuracy | Sensitivity | Specificity | AUC (95%CI) | Accuracy | Sensitivity | Specificity | ||
T2WI | Training | 0.782 (0.732-0.832) | 0.741 | 0.708 | 0.749 | 0.813 (0.765-0.861) | 0.717 | 0.854 | 0.684 |
Validation | 0.721 (0.613-0.828) | 0.745 | 0.600 | 0.771 | 0.738 (0.636-0.840) | 0.755 | 0.633 | 0.777 | |
Test | 0.685 (0.585-0.785) | 0.637 | 0.722 | 0.615 | 0.721 (0.620-0.820) | 0.637 | 0.833 | 0.585 | |
DWI | Training | 0.785 (0.732-0.834) | 0.678 | 0.742 | 0.662 | 0.770 (0.716-0.825) | 0.715 | 0.708 | 0.716 |
Validation | 0.697 (0.595-0.800) | 0.653 | 0.733 | 0.639 | 0.721 (0.614-0.827) | 0.801 | 0.500 | 0.855 | |
Test | 0.695 (0.595-0.795) | 0.550 | 0.861 | 0.467 | 0.694 (0.586-0.802) | 0.696 | 0.639 | 0.711 | |
PVP | Training | 0.816 (0.765-0.866) | 0.778 | 0.685 | 0.800 | 0.834 (0.791-0.877) | 0.741 | 0.764 | 0.735 |
Validation | 0.727 (0.610-0.844) | 0.801 | 0.567 | 0.843 | 0.762 (0.664-0.859) | 0.816 | 0.567 | 0.861 | |
Test | 0.713 (0.620-0.805) | 0.678 | 0.611 | 0.696 | 0.752 (0.659-0.845) | 0.743 | 0.667 | 0.763 | |
All-sequences1 | Training | 0.890 (0.854-0.925) | 0.793 | 0.876 | 0.773 | 0.884 (0.847-0.920) | 0.815 | 0.809 | 0.816 |
Validation | 0.792 (0.700-0.883) | 0.842 | 0.533 | 0.898 | 0.832 (0.748-0.915) | 0.735 | 0.800 | 0.723 | |
Test | 0.779 (0.695-0.862) | 0.667 | 0.778 | 0.637 | 0.798 (0.720-0.875) | 0.766 | 0.695 | 0.785 |
Table 3 Difference of selected radiomics features for all-sequence model between normal-resolution and super-resolution magnetic resonance imaging
Original NR MRI | Deep learning-based SR MRI | |
1 | DWI_original_glrlm_RunVariance | DWI_original_glrlm_LongRunEmphasis |
2 | DWI_original_glszm_ZonePercentage | DWI_original_glszm_SmallAreaEmphasis |
3 | DWI_original_shape_Elongation | DWI_wavelet_HLL_glcm_ClusterShade |
4 | DWI_wavelet_LHH_firstorder_Skewness | DWI_wavelet_LLL_ngtdm_Complexity |
5 | DWI_wavelet_LHL_firstorder_RobustMeanAbsoluteDeviation | DWI_log_sigma_5_0_mm_3D_glcm_DifferenceVariance |
6 | DWI_wavelet_LLL_glszm_GrayLevelVariance | PVP_original_firstorder_Kurtosis |
7 | PVP_log_sigma_5_0_mm_3D_glrlm_ShortRunEmphasis | PVP_wavelet_HLL_firstorder_Kurtosis |
8 | PVP_wavelet_LHH_glcm_ClusterShade | PVP_wavelet_LHL_firstorder_Median |
9 | PVP_wavelet_LHH_glcm_Correlation | PVP_wavelet_LLL_glszm_ZonePercentage |
10 | PVP_wavelet_LHL_firstorder_Median | T2WI_wavelet_HHL_glszm_SmallAreaEmphasis |
11 | T2WI_wavelet_HHL_firstorder_Kurtosis | T2WI_wavelet_HLH_firstorder_Median |
12 | T2WI_wavelet_HHL_firstorder_Median | T2WI_wavelet_HLH_glszm_SmallAreaEmphasis |
13 | T2WI_wavelet_LLL_firstorder_RootMeanSquared |
Table 4 Univariable and multivariable cox proportional hazards analyses for overall survival and recurrence-free survival
Variable | Overall survival | Recurrence-free survival | ||||||
Univariable analysis | Multivariable analysis | Univariable analysis | Multivariable analysis | |||||
Signature from SR MRI | 1.67 (1.21, 2.30) | 0.002 | 1.81 (1.29, 2.55) | 0.001 | 1.39 (1.04, 1.88) | 0.028 | 1.36 (1.02, 1.85) | 0.042 |
Age (> 65 years) | 1.20 (0.80, 1.79) | 0.381 | 1.12 (0.79, 1.59) | 0.533 | ||||
Gender (male) | 1.08 (0.70, 1.67) | 0.723 | 1.13 (0.75, 1.71) | 0.559 | ||||
HBV | 0.97 (0.67, 1.39) | 0.855 | 0.93 (0.67, 1.29) | 0.677 | ||||
Cirrhosis | 1.30 (0.94, 1.80) | 0.118 | 1.15 (0.86, 1.54) | 0.341 | ||||
MVI | 1.78 (1.28, 2.47) | < 0.001 | 1.48 (1.04, 2.09) | 0.029 | 1.80 (1.34, 2.42) | 0.001 | 1.67 (1.23, 2.28) | 0.001 |
INR (> 1.5 ratio) | 2.31 (0.32, 16.64) | 0.405 | 2.61 (0.64, 10.54) | 0.179 | ||||
AFP | 1.48 (1.02, 2.14) | 0.04 | 1.53 (1.06, 2.19) | 0.219 | 1.44 (1.03, 2.02) | 0.031 | ||
Multiple | 1.07 (0.67, 1.72) | 0.766 | 1.59 (1.07, 2.37) | 0.021 | 1.53 (1.03, 2.28) | 0.036 | ||
Pseudocapsule | 0.74 (0.52, 1.04) | 0.083 | 0.88 (0.65, 1.20) | 0.426 | ||||
Tumor size | 1.38 (1.01, 1.90) | 0.049 | 1.53 (1.06, 2.19) | 0.022 | 1.38 (1.01, 1.91) | 0.048 | 1.38 (0.96, 1.98) | 0.08 |
- Citation: Wang ZZ, Song SM, Zhang G, Chen RQ, Zhang ZC, Liu R. Multiparametric magnetic resonance imaging of deep learning-based super-resolution reconstruction for predicting histopathologic grade in hepatocellular carcinoma. World J Gastroenterol 2025; 31(34): 111541
- URL: https://www.wjgnet.com/1007-9327/full/v31/i34/111541.htm
- DOI: https://dx.doi.org/10.3748/wjg.v31.i34.111541