BPG is committed to discovery and dissemination of knowledge
Retrospective Study
Copyright ©The Author(s) 2025.
World J Gastroenterol. Sep 14, 2025; 31(34): 111541
Published online Sep 14, 2025. doi: 10.3748/wjg.v31.i34.111541
Table 1 Baseline characteristics of included patients
Training cohort (n = 459)
Validation cohort (n = 196)
Test cohort (n = 171)
PD HCC (n = 89)
nPD HCC (n = 370)
P value
PD HCC (n = 30)
nPD HCC (n = 166)
P value
PD HCC (n = 36)
nPD HCC (n = 135)
P value
Age (years)55.67 ± 10.5657.24 ± 9.690.1858.07 ± 9.1258.95 ± 9.960.6557.58 ± 8.7559.67 ± 10.410.16
Sex (male), n (%)73 (82.02)312 (84.32)0.7125 (83.33)141 (84.94)1.0027 (75.00)112 (82.96)0.15
BMI (kg/m2)25.39 ± 3.3925.14 ± 3.580.6024.69 ± 3.6824.95 ± 3.280.6124.55 ± 3.2325.07 ± 3.080.40
HBV, n (%)61 (68.54)253 (68.38)1.0023 (76.67)125 (75.30)1.0026 (72.22)92 (68.15)0.79
HCV, n (%)6 (6.74)23 (6.22)1.000 (0)5 (3.01)0.741 (2.78)7 (5.19)0.87
Cirrhosis, n (%)64 (71.91)236 (63.78)0.1925 (83.33)100 (60.24)0.0324 (66.67)76 (56.30)0.35
AFP (ng/mL), n (%)
    < 2021 (23.60)215 (58.11)< 0.0016 (20.00)89 (53.61)0.00111 (30.56)88 (65.19)< 0.001
    20-40029 (32.58)83 (22.43)0.0611 (36.67)49 (29.52)0.5712 (33.33)27 (20.00)0.14
    > 40039 (43.82)72 (19.46)< 0.00113 (43.33)28 (16.87)0.00213 (36.11)20 (14.81)0.01
ALT (U/L)39.43 ± 31.0833.74 ± 27.290.0630.81 ± 12.5733.48 ± 26.510.4737.92 ± 34.0331.51 ± 25.200.17
AST (U/L)32.54 ± 23.9130.03 ± 22.880.1329.26 ± 9.2528.70 ± 18.830.0932.58 ± 22.1427.73 ± 14.450.11
TB (umol/L)18.91 ± 27.9013.55 ± 5.850.3114.38 ± 5.3213.78 ± 6.480.4513.76 ± 9.1412.16 ± 5.220.35
Albumin (g/L)41.65 ± 4.1941.53 ± 3.950.7941.64 ± 4.6341.14 ± 3.900.5340.58 ± 4.1241.78 ± 3.860.08
PT (S)13.45 ± 0.9713.51 ± 1.070.5613.63 ± 0.8513.39 ± 1.010.3413.56 ± 1.1413.60 ± 0.840.77
Tumors size (mm)47.57 ± 22.0847.91 ± 21.10.7348.10 ± 25.7849.83 ± 23.060.5245.64 ± 19.5150.90 ± 21.530.19
Number of tumors, n (%)
    Solitary80 (89.89)330 (89.19)1.0026 (86.67)153 (92.17)0.5336 (100.00)126 (93.33)0.24
    Multiple9 (10.11)40 (10.81)4 (13.33)13 (7.83)0 (0)9 (6.67)
Table 2 Predictive performance of different radiomics models based on XGBoost
Models
Cohorts
Original NR MRI
Deep learning-based SR MRI
AUC (95%CI)
Accuracy
Sensitivity
Specificity
AUC (95%CI)
Accuracy
Sensitivity
Specificity
T2WITraining0.782 (0.732-0.832)0.7410.7080.7490.813 (0.765-0.861)0.7170.8540.684
Validation0.721 (0.613-0.828)0.7450.6000.7710.738 (0.636-0.840)0.7550.6330.777
Test0.685 (0.585-0.785)0.6370.7220.6150.721 (0.620-0.820)0.6370.8330.585
DWITraining0.785 (0.732-0.834)0.6780.7420.6620.770 (0.716-0.825)0.7150.7080.716
Validation0.697 (0.595-0.800)0.6530.7330.6390.721 (0.614-0.827)0.8010.5000.855
Test0.695 (0.595-0.795)0.5500.8610.4670.694 (0.586-0.802)0.6960.6390.711
PVPTraining0.816 (0.765-0.866)0.7780.6850.8000.834 (0.791-0.877)0.7410.7640.735
Validation0.727 (0.610-0.844)0.8010.5670.8430.762 (0.664-0.859)0.8160.5670.861
Test0.713 (0.620-0.805)0.6780.6110.6960.752 (0.659-0.845)0.7430.6670.763
All-sequences1Training0.890 (0.854-0.925)0.7930.8760.7730.884 (0.847-0.920)0.8150.8090.816
Validation0.792 (0.700-0.883)0.8420.5330.8980.832 (0.748-0.915)0.7350.8000.723
Test0.779 (0.695-0.862)0.6670.7780.6370.798 (0.720-0.875)0.7660.6950.785
Table 3 Difference of selected radiomics features for all-sequence model between normal-resolution and super-resolution magnetic resonance imaging

Original NR MRI
Deep learning-based SR MRI
1DWI_original_glrlm_RunVarianceDWI_original_glrlm_LongRunEmphasis
2DWI_original_glszm_ZonePercentageDWI_original_glszm_SmallAreaEmphasis
3DWI_original_shape_ElongationDWI_wavelet_HLL_glcm_ClusterShade
4DWI_wavelet_LHH_firstorder_SkewnessDWI_wavelet_LLL_ngtdm_Complexity
5DWI_wavelet_LHL_firstorder_RobustMeanAbsoluteDeviationDWI_log_sigma_5_0_mm_3D_glcm_DifferenceVariance
6DWI_wavelet_LLL_glszm_GrayLevelVariancePVP_original_firstorder_Kurtosis
7PVP_log_sigma_5_0_mm_3D_glrlm_ShortRunEmphasisPVP_wavelet_HLL_firstorder_Kurtosis
8PVP_wavelet_LHH_glcm_ClusterShadePVP_wavelet_LHL_firstorder_Median
9PVP_wavelet_LHH_glcm_CorrelationPVP_wavelet_LLL_glszm_ZonePercentage
10PVP_wavelet_LHL_firstorder_MedianT2WI_wavelet_HHL_glszm_SmallAreaEmphasis
11T2WI_wavelet_HHL_firstorder_KurtosisT2WI_wavelet_HLH_firstorder_Median
12T2WI_wavelet_HHL_firstorder_MedianT2WI_wavelet_HLH_glszm_SmallAreaEmphasis
13T2WI_wavelet_LLL_firstorder_RootMeanSquared
Table 4 Univariable and multivariable cox proportional hazards analyses for overall survival and recurrence-free survival
Variable
Overall survival
Recurrence-free survival
Univariable analysis
Multivariable analysis
Univariable analysis
Multivariable analysis
Signature from SR MRI1.67 (1.21, 2.30)0.0021.81 (1.29, 2.55)0.0011.39 (1.04, 1.88)0.0281.36 (1.02, 1.85)0.042
Age (> 65 years)1.20 (0.80, 1.79)0.3811.12 (0.79, 1.59)0.533
Gender (male)1.08 (0.70, 1.67)0.7231.13 (0.75, 1.71)0.559
HBV0.97 (0.67, 1.39)0.8550.93 (0.67, 1.29)0.677
Cirrhosis1.30 (0.94, 1.80)0.1181.15 (0.86, 1.54)0.341
MVI1.78 (1.28, 2.47)< 0.0011.48 (1.04, 2.09)0.0291.80 (1.34, 2.42)0.0011.67 (1.23, 2.28)0.001
INR (> 1.5 ratio)2.31 (0.32, 16.64)0.4052.61 (0.64, 10.54)0.179
AFP1.48 (1.02, 2.14)0.041.53 (1.06, 2.19)0.2191.44 (1.03, 2.02)0.031
Multiple1.07 (0.67, 1.72)0.7661.59 (1.07, 2.37)0.0211.53 (1.03, 2.28)0.036
Pseudocapsule0.74 (0.52, 1.04)0.0830.88 (0.65, 1.20)0.426
Tumor size1.38 (1.01, 1.90)0.0491.53 (1.06, 2.19)0.0221.38 (1.01, 1.91)0.0481.38 (0.96, 1.98)0.08