Retrospective Study
Copyright ©The Author(s) 2024.
World J Gastroenterol. Dec 28, 2024; 30(48): 5111-5129
Published online Dec 28, 2024. doi: 10.3748/wjg.v30.i48.5111
Table 1 Experimental parameter settings
Parameter name
Parameter value
Initial learning rate0.01
Learning rate float0.01
Epochs300
Batch size16
OptimizerAdamW
Weight_decay0.0005
Momentum0.937
Table 2 Training results of the YOLOv8 versions using our dataset
Model
Parameter (M)
mAP50
mAP50:95
GFLOPS
FPS
YOLOv8n2.8786.066.28.2400.00
YOLOv8s10.6286.167.628.7283.03
YOLOv8m24.6788.668.379.1189.47
YOLOv8 L41.6285.367.1165.5149.25
YOLOv8x65.0183.264.1258.2114.94
Table 3 Training results of different detection models on the dataset
Model
mAP50
mAP50:90
FPS
YOLOv578.358.9176.25
YOLOv679.658.1316.63
YOLOv775.856.4206.37
YOLOv9[32]82.064.794.30
SSD78.657.984.62
Faster R-CNN79.060.961.98
RT-DETR[33]81.963.9143.46
WCE_detection91.568.6129.70
Table 4 Experimental results of different numbers of detection heads
Method
P2
P3
P4
P5
mAP50
GFLOPS
FPS
Method 1YNNN87.147.9233.65
Method 2NYNN88.679.1189.47
Method 3NNYN89.2126.7179.19
Method 4NNNY89.5166.3153.95
Table 5 Experimental results of different necks
Method
FPN
PANet
BiFPN
mAP50
GFLOPS
FPS
Method 1YNN86.358.6226.63
Method 2NYN88.679.1189.47
Method 3NNY90.198.4178.36
Table 6 Experimental results of different attention modules
Method
CBAM
SE
VIT
Swin Transformer
mAP50
GFLOPS
FPS
Method 1YNNN88.9133.6163.96
Method 2NYNN87.2121.5173.73
Method 3NNYN89.2219.9103.76
Method 4NNNY90.7159.7149.58
Table 7 Ablation experiment results
Method
p4
BiFPN
Swin Transformer
mAP50
GFLOPS
FPS
Method 1NNN88.679.1189.47
Method 2YNN89.2126.7179.19
Method 3YYN90.6138.4183.35
Method 4YYY91.5203.6129.70